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Abstract

The Sasakura bundle is a relatively recent appearance in the world of
remarkable vector bundles on projective spaces.

In fact, it is connected with some surfaces in P4 which missed in early
classification papers.

The aim of my talk is to present various, scattered in the literature,
aspects concerning the geometry of this bundle.

The last part will be devoted to the place of this bundle in the
classification of globally generated locally free sheaves with c1 ≤ 4 on
Pn in a joint paper with I. Coanda and N. Manolache.
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Introduction: some interesting bundles on Pn

It is difficult to construct indecomposable algebraic bundles on Pn of small
rank r < n for 4 ≤ n. Some famous examples are:

The r = 2 Horrocks-Mumford bundle on P4 (′73).

The r = n − 1 Vetter-Trautmann-Tango bundle on Pn (′73−′ 76).

The r = n − 1 nullcorrelation bundle on Pn for odd n (′77).

The r = 3 Horrocks bundle on P5 (′78).

The r = 3 Sasakura bundle on P4 (′86).

More recent examples are the weighted Tango bundles in arbitrary
dimension introduced by Cascini (′01), and the bundles of
Kumar-Peterson-Rao in low dimension for various characteristics (′02).
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The Abo Decker construction

The first construction we discuss is due to Abo-Decker-Sasakura in a
paper on arxiv:alg-geom/9708023 which appeared one year later in
Math. Zeit.

The aim of the paper, apart the construction of the Sasakura bundle
itself, was the construction of elliptic conic bundles in P4.

A result of Okonek asserts that:

Okonek’s Theorem

A smooth surface X ⊂ P4 of degree 8 and sectional genus 5 and
irregularity 1 is an elliptic conic bundle with exactly 8 singular fibers
composed by pairs of −1 lines.

Okonek claimed that such surfaces does not exists.
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The Beilinson monad

The main tool is the Beilinson theorem which describes coherent
sheaves as the cohomology of a certain complex.

For a sheaf F on P4 denote by F i := ⊕H i+j(F(−j))⊗ Ωj(j), the
direct sum being over all j ’s.

Beilinson Theorem

The F i ’s forms an increasing complex, exact except in dimension 0, where
the cohomology is F .
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The Beilinson monad

A firs step in the construction is the calculus of the cohomology table
for JX , the ideal of (apriori an hypothetical) X :

↑ i
4 |
| 1 1
| 1 1
| 6

−−−−−−−−−−−−−−−− −→ m
where in the (m, i) box is depicted hi (JX (m)).

In particular Ext1(JX (3),O(−1)) is 4-dimensional, and if it is
denoted by W , then the identity in W ∗ ⊗W defines an extension G,
which is locally free by a generalized Serre correspondence:

0→ 4O(−1)→ G → JX (3)→ 0. It is the rank 5 version of the
Sasakura bundle.
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The Beilinson monad

For G(−3), the above construction show the following cohomology
table:

↑ i
|
| 1 1
| 1 1
|

− − −−−−−−−−−−−−−− −→ m

By Beilinson theorem, G is the cohomology of the monad:

0→ Ω3(3)→ Ω2(2)⊕ Ω1(1)→ O → 0.

Moreover, if α, β are the maps in the monad, and e0, ..., e4 is a basis
in V -the underlying vector space of P4, using the identification
Hom(Ωi (i),Ωj(j)) ' Λi−jV it can be proved that:

α =

(
e4

e0 ∧ e2 + e1 ∧ e3

)
and β =

(
e0 ∧ e2 + e1 ∧ e3 −e4

)
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The Beilinson monad

Theorem (Conclusion)

An elliptic conic bundle in P4 determines an unique, up to isomorphism
and linear change of coordinates, 5-bundle G given by the monad above.

Conversely, starting with such a G, G(1) is globally generated.

By a result of Banica, the dependancy locus is a smooth surface and
has the desired invariants.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 9 / 28



The Beilinson monad

Theorem (Conclusion)

An elliptic conic bundle in P4 determines an unique, up to isomorphism
and linear change of coordinates, 5-bundle G given by the monad above.

Conversely, starting with such a G, G(1) is globally generated.

By a result of Banica, the dependancy locus is a smooth surface and
has the desired invariants.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 9 / 28



The Sasakura method

A different idea was used by Sasakura in ′86 to construct a rank 3
bundle E .

It is related to the G above by:

0→ 2O → G(1)→ E → 0.

Also, it is globally generated and the dependancy locus of two general
sections is an elliptic conic bundle.
The general setting of the construction is the following:

E is a rank r vector bundle on Pn with first Chern class c1. s1, ..., sl
and σ1, ..., σk are generators of H0

∗(E) and H0
∗(E∨).

They determines the morphisms (the first epi and the second mono)
L → E → K, where L and K are direct sums of line bundles.

In particular, the composition S : L → K is a matrix of homogenous
polynomials.
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The Sasakura method

The construction works in the hypothesis that K has a direct
summand of the form rO(m). Let σi1 , ..., σir the corresponding
generators.

By projecting on rO(m), we obtain an analogous sequence as above:
L → E → rO(m), the composition being denoted by T .

Therefore E is a sub-sheaf in rO(m), and moreover a sub-bundle
outside the divisor of the form f := σi1 ∧ ... ∧ σir of degree r ·m − c1.

Conversely, we can start with a pair (T , f ) and ask for conditions
under which the resulting sheaf E is locally free. Let I the ideal
defined by the maximal minors of T . The following is sufficient for
the local freeness of E :

The ideal (I : f ) define the empty set in Pn.
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the local freeness of E :

The ideal (I : f ) define the empty set in Pn.
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The Sasakura method

An useful choice is f = f ′r−1 with f ′ = x1.....xc1 and T = (T ′,T ′′)
with T ′ = f ′ · Id . Using this idea can be produced many known
bundles, eg. nullcorelation bundle on P3, the Horrocks-Mumford on
P4 and the Sasakura rank 3 bundle on P4.

The last one, is constructed with f = f ′ = x0...x4 and a convenient
but complicated (3x8) matrix T of forms of degree 4.
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The Ranestad construction

In (′99), also in Math. Zeitschrift, Ranestad gives a geometric
construction for the elliptic conic bundle.

In fact, his construction works only for elliptic conic bundles (recall
they are not minimal) with an elliptic quintic scroll in P4 as minimal
model. The main steps are as follows:

Step 1 For every elliptic quintic scroll, denoted X5, in P4 there are
smooth curves G and L such that G is a rational normal curve
intersecting the scroll in 10 points, and L is a secant of G and a fiber
of the scroll.

The ideal of G ∪ L is generated by 5 quadrics, which by an ancient
result of Semple (′29) defines a Cremona transformation ϕ on P4.

Step 2 The restriction of ϕ to X5 is defined by the system | 2H − L |
with 8 base points: those where G meet the scroll and are not on L.
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The Ranestad construction

Step 3 This restrction is an embedding of the blow-up at the 8 points
as soon as the 10 points in G ∩ X5 are distinct and no other secant of
G is a fiber of the scroll. The image ϕ(X̂5) will be of course an
elliptic conic bundle.

For the converse Cremona transformation, a first intricate
construction, produce a quadratic surface X2.

Secondly, a cubic scroll X3 is produced using the secant variety of G .

Finally, the converse Cremona is defined by the cubic hypersurfaces
through X2 ∪ X3.
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The Kumar-Peterson-Rao construction

In J. Alg. Geom. (′02) the above authors gives new methods for the
construction of low rank vector bundles on projective spaces. Among
some new examples they rediscovered the rank 3 Sasakura bundle.

The general construction starts with a sort of Maruyama’s elementary
transformation:
let X projective variety (later it will be P4) and Y the divisor of a
section s in OX (Y ) (later it will be the thickening of order t of a
hyperplane in P4).

let’s consider on Y an exact sequence
0→ A→ F → B → 0 of vector bundles, such that F extends to an
F on X .

Let G the kernel of the induced surjection F → B.
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The Kumar-Peterson-Rao construction

The next ingredients are two bundles L1 and L2 on the ambient X ,
their restrictions to Y , L1 and L2 with a surjection L1 → A and an
injection as vector bundle B → L2.

Suppose that the induced φ : L1 → F and ψ : F → L2 also extends to
Φ : L1 → F and Ψ : F → L2.

Then ΨΦ vanishes on Y and one can construct a map

∆ : F(−Y )⊕ L1 → F ⊕L2(−Y )

given by the matrix below:(
s · I Φ
Ψ s−1 ·ΨΦ

)
where I is the identity of F (and s the section which determines Y ).
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The Kumar-Peterson-Rao construction

The role of the above map ∆ whose image is in fact G is tied with
the fact that if F splits, under some aditional hypothesis, this will
produce sub or quotient bundles of G, producing lower rank bundles.

For example, concerning the sub-bundle case, the authors have the
following

Proposition

Suppose:
1. F split as N ⊕N ′ with induced splitting F = N ⊕ N ′

2. there is θ : N(−Y )→ A with lift Θ : N (−Y )→ L1 such that ΦΘ
(: N (−Y )→ F) has image in N ′.
Then, there is an induced map N (−Y )→ G which is a bundle inclusion iff
the restriction N(−Y )→ G |Y is.
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The Kumar-Peterson-Rao construction

Roughly speaking, we need splittable bundles on Y which extends
with the splitting on the ambient X .

This goal is achieved through the so called four generated rank two
bundles. A vector bundle B on a scheme Y is four generated if there
is a completely split rank 4 bundle F and a surjection F → B.

The result below construct plenty (but of course not all) of four
generated rank 2 bundles on P3:

Proposition

Let T ,U,V ,W a regular sequence of forms of positive degrees t, u, v ,w
such that t + w = u + v and r ≥ 2 an integer. Then there is an exact
sequence L1 → F → L2, with maps φ and ψ such that:
1. the bundles above are completely split,
2. the images A and B of φ and ψ are four generated rank 2 bundles on
P3.
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The Kumar-Peterson-Rao construction

Finally, one can put together the ideas above in the case of P4:
- one starts with the above F and four generated rank 2 bundles A,B
on P3

- one consider a t ′-thickening Y of P3 ⊂ P4 and one pull back F ,A
and B on Y
- one apply the Maruyama type construction obtaining a rank 4
bundle G on P4

- for convenient values of the parameters ( the forms T ,U,V ,W and
integers t ′, r ≥ 2 ) the bundle G has line sub or quotient bundles
- by taking the quotient or the kernel one arrive at rank 3 bundles on
P4.
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The Coanda-Manolache method

An interesting problem studied in the lasts years is the description of
globally generated bundles in projective spaces.

Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of
rank 2 globally generated vector bundles with c1 ≤ 5 on Pn.

Sierra and Ugaglia in J. Pure App. Alg. (’09) classified globally
generated vector bundles with c1 ≤ 2 on Pn.

Sierra and Ugaglia in arxiv:1203.0185 and independently - and
Manolache arxiv:1202.6261 classified globally generated vector
bundles with c1 ≤ 3 on Pn.

-, Coanda and Manolache in arxiv:1305.3464 classified globally
generated vector bundles with c1 ≤ 4 on Pn.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 20 / 28



The Coanda-Manolache method

An interesting problem studied in the lasts years is the description of
globally generated bundles in projective spaces.

Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of
rank 2 globally generated vector bundles with c1 ≤ 5 on Pn.

Sierra and Ugaglia in J. Pure App. Alg. (’09) classified globally
generated vector bundles with c1 ≤ 2 on Pn.

Sierra and Ugaglia in arxiv:1203.0185 and independently - and
Manolache arxiv:1202.6261 classified globally generated vector
bundles with c1 ≤ 3 on Pn.

-, Coanda and Manolache in arxiv:1305.3464 classified globally
generated vector bundles with c1 ≤ 4 on Pn.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 20 / 28



The Coanda-Manolache method

An interesting problem studied in the lasts years is the description of
globally generated bundles in projective spaces.

Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of
rank 2 globally generated vector bundles with c1 ≤ 5 on Pn.

Sierra and Ugaglia in J. Pure App. Alg. (’09) classified globally
generated vector bundles with c1 ≤ 2 on Pn.

Sierra and Ugaglia in arxiv:1203.0185 and independently - and
Manolache arxiv:1202.6261 classified globally generated vector
bundles with c1 ≤ 3 on Pn.

-, Coanda and Manolache in arxiv:1305.3464 classified globally
generated vector bundles with c1 ≤ 4 on Pn.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 20 / 28



The Coanda-Manolache method

An interesting problem studied in the lasts years is the description of
globally generated bundles in projective spaces.

Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of
rank 2 globally generated vector bundles with c1 ≤ 5 on Pn.

Sierra and Ugaglia in J. Pure App. Alg. (’09) classified globally
generated vector bundles with c1 ≤ 2 on Pn.

Sierra and Ugaglia in arxiv:1203.0185 and independently - and
Manolache arxiv:1202.6261 classified globally generated vector
bundles with c1 ≤ 3 on Pn.

-, Coanda and Manolache in arxiv:1305.3464 classified globally
generated vector bundles with c1 ≤ 4 on Pn.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 20 / 28



The Coanda-Manolache method

An interesting problem studied in the lasts years is the description of
globally generated bundles in projective spaces.

Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of
rank 2 globally generated vector bundles with c1 ≤ 5 on Pn.

Sierra and Ugaglia in J. Pure App. Alg. (’09) classified globally
generated vector bundles with c1 ≤ 2 on Pn.

Sierra and Ugaglia in arxiv:1203.0185 and independently - and
Manolache arxiv:1202.6261 classified globally generated vector
bundles with c1 ≤ 3 on Pn.

-, Coanda and Manolache in arxiv:1305.3464 classified globally
generated vector bundles with c1 ≤ 4 on Pn.

Cristian Anghel (IMAR) Geometry of the Sasakura bundle Locally free Geom. Seminars 20 / 28



The Coanda-Manolache method

For example, for c1 ≤ 3 the main result from the joint paper with
Manolache, can be formulated as:

Theorem

Let E an indecomposable globally generated vector bundle on Pn, with
n ≥ 2, 1 ≤ c1 ≤ 3 and H i (E ∗) = 0 for i = 0, 1. Then one of the following
holds:
- E = O(a)
- E = P(O(a))
- n = 3 and E = Ω(2)
- n = 4 and E = Ω(2)
- n = 4 and E = Ω2(3)

where the P-operation above means the dual of the kernel of the
evaluation map.
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The Coanda-Manolache method

The technical condition H i (E ∗) = 0 for i = 0, 1 is irrelevant. In fact
any globally generated bundle can be obtained by one which verify
this condition by taking the quotient with a trivial sub-bundle and
then adding a trivial summand:

Proposition

For any E there is an F which satisfy H i (F ∗) = 0 for i = 0, 1 such that if
t = h0(E ∗) and s = h1(E ∗) then E ' F/sO ⊕ tO.

Another important observation is that for a globally generated bundle
one has c2 ≤ c1

2. This show via the standard sequence
0→ (r − 1)O → E → JY (c1) that globally generated bundles with
c1 ≤ 3 are related with sub-varieties of degree at most 9 in Pn.
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The Coanda-Manolache method

The main result in the joint paper with Coanda and Manolache is
more complicated. In the c1 = 4 case there are 16 indecomposable
bundles, the last one being the Sasakura’s rank 5 bundle once twisted
G(1).

However one can formulate the following consequence:

Corollary

Let E an indecomposable globally generated vector bundle on Pn, with
n ≥ 4, c1 = 4, r ≥ 2 and H i (E ∗) = 0 for i = 0, 1. Then E is:
-P(O(4))
-Ω(2) or Ω3(4) on P5

-G(1).
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The Coanda-Manolache method

The main steps in the classification for c1 = 4 are:

First we classify the bundles on P2 (easy) and P3 (hard)

Next we try to decide which bundles can be extended to higher
dimensional projective spaces using Horrocks method of killing
cohomology.

The problem is tied to the theory of varieties of small degree as we
have seen, and also to the theory of rank 2 reflexive sheaves on P3 via
an exact sequence as below:

0→ (r − 2)O → E → E ′ → 0.
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The Coanda-Manolache method

The twisted Sasakura bundle G(1) appear for n = 4 and c2 = 8 and it
has the following description:

Consider the surjection 4O(−1)⊕O(−2)→ O defined by
x0, ..., x3, x4

2, and the Koszul complex (Cp, δp) for it. Denote by E ′

the co-kernel of δ4(4):

O ⊕ 4O(−1)→ 4O(1)⊕ 6O.

then E is the kernel of a surjection E ′ → O(2) such that
H0(E ′(−1))→ H0(O(1)) is injective.
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Final remarks

The Koszul complex appear also in another case, n = 3 c2 = 8 where
one consider the complex associated with x0, x1, x2

2, x3
2 and the E is

the cohomology of the monad

O(−1)→ 2O(2)⊕ 2O(1)⊕ 4O → O(3)

Other different types of Koszul complexes were used by
Kumar-Peterson-Rao to produce interesting deformations of known
bundles.
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Open question

Recall that Kumar construction use the existence of many four
generated rank 2 bundles on P3.

It would be interesting to produce, with Kumar method, other
examples of bundles on P4 using four generated bundles on divisors of
higher degree in P4.
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THANK YOU!
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