Geometry of the Sasakura bundle

Cristian Anghel

IMAR

Locally free Geometry Seminars Bucharest $13^{th} - 14^{th}$ September 2013

Cristian Anghel (IMAR)

Geometry of the Sasakura bundle

Locally free Geom. Seminars

1 / 28

• The Sasakura bundle is a relatively recent appearance in the world of remarkable vector bundles on projective spaces.

- The Sasakura bundle is a relatively recent appearance in the world of remarkable vector bundles on projective spaces.
- In fact, it is connected with some surfaces in \mathbb{P}^4 which missed in early classification papers.

- The Sasakura bundle is a relatively recent appearance in the world of remarkable vector bundles on projective spaces.
- In fact, it is connected with some surfaces in \mathbb{P}^4 which missed in early classification papers.
- The aim of my talk is to present various, scattered in the literature, aspects concerning the geometry of this bundle.

- The Sasakura bundle is a relatively recent appearance in the world of remarkable vector bundles on projective spaces.
- In fact, it is connected with some surfaces in \mathbb{P}^4 which missed in early classification papers.
- The aim of my talk is to present various, scattered in the literature, aspects concerning the geometry of this bundle.
- The last part will be devoted to the place of this bundle in the classification of globally generated locally free sheaves with c₁ ≤ 4 on *Pⁿ* in a joint paper with I. Coanda and N. Manolache.

f 1 Introduction: some interesting bundles on \mathbb{P}^n

- 2 The Abo Decker construction
- 3 The Sasakura method
- The Ranestad construction
- 5 The Kumar-Peterson-Rao construction
- 6 The Coanda-Manolache method

• The r = 2 Horrocks-Mumford bundle on \mathbb{P}^4 ('73).

- The r = 2 Horrocks-Mumford bundle on \mathbb{P}^4 ('73).
- The r = n 1 Vetter-Trautmann-Tango bundle on \mathbb{P}^n ('73 -' 76).

- The r = 2 Horrocks-Mumford bundle on \mathbb{P}^4 ('73).
- The r = n 1 Vetter-Trautmann-Tango bundle on \mathbb{P}^n ('73 -' 76).
- The r = n 1 nullcorrelation bundle on \mathbb{P}^n for odd n ('77).

- The r = 2 Horrocks-Mumford bundle on \mathbb{P}^4 ('73).
- The r = n 1 Vetter-Trautmann-Tango bundle on \mathbb{P}^n ('73 -' 76).
- The r = n 1 nullcorrelation bundle on \mathbb{P}^n for odd n ('77).
- The r = 3 Horrocks bundle on \mathbb{P}^5 ('78).

- The r = 2 Horrocks-Mumford bundle on \mathbb{P}^4 ('73).
- The r = n 1 Vetter-Trautmann-Tango bundle on \mathbb{P}^n ('73 -' 76).
- The r = n 1 nullcorrelation bundle on \mathbb{P}^n for odd n ('77).
- The r = 3 Horrocks bundle on \mathbb{P}^5 ('78).
- The r = 3 Sasakura bundle on \mathbb{P}^4 ('86).

- The r = 2 Horrocks-Mumford bundle on \mathbb{P}^4 ('73).
- The r = n 1 Vetter-Trautmann-Tango bundle on \mathbb{P}^n ('73 -' 76).
- The r = n 1 nullcorrelation bundle on \mathbb{P}^n for odd n ('77).
- The r = 3 Horrocks bundle on \mathbb{P}^5 ('78).
- The r = 3 Sasakura bundle on \mathbb{P}^4 ('86).
- More recent examples are the weighted Tango bundles in arbitrary dimension introduced by Cascini ('01), and the bundles of Kumar-Peterson-Rao in low dimension for various characteristics ('02).

• The first construction we discuss is due to Abo-Decker-Sasakura in a paper on arxiv:alg-geom/9708023 which appeared one year later in Math. Zeit.

- The first construction we discuss is due to Abo-Decker-Sasakura in a paper on arxiv:alg-geom/9708023 which appeared one year later in Math. Zeit.
- The aim of the paper, apart the construction of the Sasakura bundle itself, was the construction of elliptic conic bundles in \mathbb{P}^4 .

- The first construction we discuss is due to Abo-Decker-Sasakura in a paper on arxiv:alg-geom/9708023 which appeared one year later in Math. Zeit.
- The aim of the paper, apart the construction of the Sasakura bundle itself, was the construction of elliptic conic bundles in \mathbb{P}^4 .
- A result of Okonek asserts that:

Okonek's Theorem

A smooth surface $X \subset \mathbb{P}^4$ of degree 8 and sectional genus 5 and irregularity 1 is an elliptic conic bundle with exactly 8 singular fibers composed by pairs of -1 lines.

- The first construction we discuss is due to Abo-Decker-Sasakura in a paper on arxiv:alg-geom/9708023 which appeared one year later in Math. Zeit.
- The aim of the paper, apart the construction of the Sasakura bundle itself, was the construction of elliptic conic bundles in \mathbb{P}^4 .
- A result of Okonek asserts that:

Okonek's Theorem

A smooth surface $X \subset \mathbb{P}^4$ of degree 8 and sectional genus 5 and irregularity 1 is an elliptic conic bundle with exactly 8 singular fibers composed by pairs of -1 lines.

• Okonek claimed that such surfaces does not exists.

• The main tool is the Beilinson theorem which describes coherent sheaves as the cohomology of a certain complex.

- The main tool is the Beilinson theorem which describes coherent sheaves as the cohomology of a certain complex.
- For a sheaf F on P⁴ denote by Fⁱ := ⊕H^{i+j}(F(-j)) ⊗ Ω^j(j), the direct sum being over all j's.

Beilinson Theorem

The F^{i} 's forms an increasing complex, exact except in dimension 0, where the cohomology is \mathcal{F} .

• A firs step in the construction is the calculus of the cohomology table for \mathcal{J}_X , the ideal of (apriori an hypothetical) X:

• A firs step in the construction is the calculus of the cohomology table for \mathcal{J}_X , the ideal of (apriori an hypothetical) X:

• A firs step in the construction is the calculus of the cohomology table for \mathcal{J}_X , the ideal of (apriori an hypothetical) X:

where in the (m, i) box is depicted $h^i(\mathcal{J}_X(m))$.

In particular Ext¹(J_X(3), O(−1)) is 4-dimensional, and if it is denoted by W, then the identity in W* ⊗ W defines an extension G, which is locally free by a generalized Serre correspondence:

• A firs step in the construction is the calculus of the cohomology table for \mathcal{J}_X , the ideal of (apriori an hypothetical) X:

where in the (m, i) box is depicted $h^i(\mathcal{J}_X(m))$.

- In particular Ext¹(J_X(3), O(−1)) is 4-dimensional, and if it is denoted by W, then the identity in W* ⊗ W defines an extension G, which is locally free by a generalized Serre correspondence:
- $0 \to 4\mathcal{O}(-1) \to \mathcal{G} \to \mathcal{J}_X(3) \to 0$. It is the rank 5 version of the Sasakura bundle.

• For $\mathcal{G}(-3)$, the above construction show the following cohomology table:

э

• For $\mathcal{G}(-3)$, the above construction show the following cohomology table:

- For $\mathcal{G}(-3)$, the above construction show the following cohomology table:
- $\uparrow i$ | 11 | 11 | 11 | m
- \bullet By Beilinson theorem, ${\cal G}$ is the cohomology of the monad:

- For $\mathcal{G}(-3)$, the above construction show the following cohomology table:
- $\uparrow i$ | 11 | 11 | 11 | m

• By Beilinson theorem, \mathcal{G} is the cohomology of the monad: • $0 \rightarrow \Omega^3(3) \rightarrow \Omega^2(2) \oplus \Omega^1(1) \rightarrow \mathcal{O} \rightarrow 0.$

- For $\mathcal{G}(-3)$, the above construction show the following cohomology table:
- By Beilinson theorem, $\mathcal G$ is the cohomology of the monad:
- $0 \rightarrow \Omega^3(3) \rightarrow \Omega^2(2) \oplus \Omega^1(1) \rightarrow \mathcal{O} \rightarrow 0.$
- Moreover, if α, β are the maps in the monad, and e₀, ..., e₄ is a basis in V-the underlying vector space of P⁴, using the identification Hom(Ωⁱ(i), Ω^j(j)) ≃ Λ^{i-j}V it can be proved that:

• For $\mathcal{G}(-3)$, the above construction show the following cohomology table:

- By Beilinson theorem, $\mathcal G$ is the cohomology of the monad:
- $0 \rightarrow \Omega^3(3) \rightarrow \Omega^2(2) \oplus \Omega^1(1) \rightarrow \mathcal{O} \rightarrow 0.$
- Moreover, if α, β are the maps in the monad, and e₀, ..., e₄ is a basis in V-the underlying vector space of P⁴, using the identification Hom(Ωⁱ(i), Ω^j(j)) ≃ Λ^{i-j}V it can be proved that:

•
$$\alpha = \begin{pmatrix} e_4 \\ e_0 \wedge e_2 + e_1 \wedge e_3 \end{pmatrix}$$
 and $\beta = (e_0 \wedge e_2 + e_1 \wedge e_3 - e_4)$

Theorem (Conclusion)

An elliptic conic bundle in \mathbb{P}^4 determines an unique, up to isomorphism and linear change of coordinates, 5-bundle \mathcal{G} given by the monad above.

• Conversely, starting with such a $\mathcal{G}, \mathcal{G}(1)$ is globally generated.

Theorem (Conclusion)

An elliptic conic bundle in \mathbb{P}^4 determines an unique, up to isomorphism and linear change of coordinates, 5-bundle \mathcal{G} given by the monad above.

- Conversely, starting with such a $\mathcal{G}, \ \mathcal{G}(1)$ is globally generated.
- By a result of Banica, the dependancy locus is a smooth surface and has the desired invariants.

• A different idea was used by Sasakura in '86 to construct a rank 3 bundle ${\cal E}.$

- A different idea was used by Sasakura in '86 to construct a rank 3 bundle ${\cal E}.$
- It is related to the \mathcal{G} above by:

$$0
ightarrow 2\mathcal{O}
ightarrow \mathcal{G}(1)
ightarrow \mathcal{E}
ightarrow 0.$$

- A different idea was used by Sasakura in '86 to construct a rank 3 bundle *E*.
- It is related to the $\mathcal G$ above by:

$$0
ightarrow 2\mathcal{O}
ightarrow \mathcal{G}(1)
ightarrow \mathcal{E}
ightarrow 0.$$

 Also, it is globally generated and the dependancy locus of two general sections is an elliptic conic bundle.

The general setting of the construction is the following:

- A different idea was used by Sasakura in '86 to construct a rank 3 bundle *E*.
- It is related to the $\mathcal G$ above by:

$$0
ightarrow 2\mathcal{O}
ightarrow \mathcal{G}(1)
ightarrow \mathcal{E}
ightarrow 0.$$

- Also, it is globally generated and the dependancy locus of two general sections is an elliptic conic bundle. The general setting of the construction is the following:
- *ε* is a rank *r* vector bundle on ℙⁿ with first Chern class *c*₁. *s*₁, ..., *s*_l and σ₁, ..., σ_k are generators of H⁰_{*}(ε) and H⁰_{*}(ε[∨]).

- A different idea was used by Sasakura in '86 to construct a rank 3 bundle *E*.
- It is related to the \mathcal{G} above by:

$$0
ightarrow 2\mathcal{O}
ightarrow \mathcal{G}(1)
ightarrow \mathcal{E}
ightarrow 0.$$

- Also, it is globally generated and the dependancy locus of two general sections is an elliptic conic bundle. The general setting of the construction is the following:
- \mathcal{E} is a rank *r* vector bundle on \mathbb{P}^n with first Chern class c_1 . $s_1, ..., s_l$ and $\sigma_1, ..., \sigma_k$ are generators of $H^0_*(\mathcal{E})$ and $H^0_*(\mathcal{E}^{\vee})$.
- They determines the morphisms (the first epi and the second mono) $\mathcal{L} \to \mathcal{E} \to \mathcal{K}$, where \mathcal{L} and \mathcal{K} are direct sums of line bundles.

10 / 28

- A different idea was used by Sasakura in '86 to construct a rank 3 bundle *E*.
- It is related to the \mathcal{G} above by:

$$0
ightarrow 2\mathcal{O}
ightarrow \mathcal{G}(1)
ightarrow \mathcal{E}
ightarrow 0.$$

- Also, it is globally generated and the dependancy locus of two general sections is an elliptic conic bundle. The general setting of the construction is the following:
- \mathcal{E} is a rank *r* vector bundle on \mathbb{P}^n with first Chern class c_1 . $s_1, ..., s_l$ and $\sigma_1, ..., \sigma_k$ are generators of $H^0_*(\mathcal{E})$ and $H^0_*(\mathcal{E}^{\vee})$.
- They determines the morphisms (the first epi and the second mono) $\mathcal{L} \to \mathcal{E} \to \mathcal{K}$, where \mathcal{L} and \mathcal{K} are direct sums of line bundles.
- In particular, the composition $S : \mathcal{L} \to \mathcal{K}$ is a matrix of homogenous polynomials.
The construction works in the hypothesis that *K* has a direct summand of the form *rO*(*m*). Let σ_{i1},..., σ_{ir} the corresponding generators.

- The construction works in the hypothesis that *K* has a direct summand of the form *rO*(*m*). Let σ_{i1},..., σ_{ir} the corresponding generators.
- By projecting on $r\mathcal{O}(m)$, we obtain an analogous sequence as above: $\mathcal{L} \to \mathcal{E} \to r\mathcal{O}(m)$, the composition being denoted by T.

- The construction works in the hypothesis that \mathcal{K} has a direct summand of the form $r\mathcal{O}(m)$. Let $\sigma_{i_1}, ..., \sigma_{i_r}$ the corresponding generators.
- By projecting on $r\mathcal{O}(m)$, we obtain an analogous sequence as above: $\mathcal{L} \to \mathcal{E} \to r\mathcal{O}(m)$, the composition being denoted by T.
- Therefore *E* is a sub-sheaf in *rO(m)*, and moreover a sub-bundle outside the divisor of the form *f* := σ_{i1} ∧ ... ∧ σ_{ir} of degree *r* · *m* − *c*₁.

- The construction works in the hypothesis that *K* has a direct summand of the form *rO*(*m*). Let σ_{i1},..., σ_{ir} the corresponding generators.
- By projecting on $r\mathcal{O}(m)$, we obtain an analogous sequence as above: $\mathcal{L} \to \mathcal{E} \to r\mathcal{O}(m)$, the composition being denoted by T.
- Therefore *E* is a sub-sheaf in *rO*(*m*), and moreover a sub-bundle outside the divisor of the form *f* := σ_{i1} ∧ ... ∧ σ_{ir} of degree *r* · *m* − *c*₁.
- Conversely, we can start with a pair (T, f) and ask for conditions under which the resulting sheaf E is locally free. Let I the ideal defined by the maximal minors of T. The following is sufficient for the local freeness of E:

- The construction works in the hypothesis that *K* has a direct summand of the form *rO*(*m*). Let σ_{i1},..., σ_{ir} the corresponding generators.
- By projecting on $r\mathcal{O}(m)$, we obtain an analogous sequence as above: $\mathcal{L} \to \mathcal{E} \to r\mathcal{O}(m)$, the composition being denoted by T.
- Therefore *E* is a sub-sheaf in *rO*(*m*), and moreover a sub-bundle outside the divisor of the form *f* := σ_{i1} ∧ ... ∧ σ_{ir} of degree *r* · *m* − *c*₁.
- Conversely, we can start with a pair (T, f) and ask for conditions under which the resulting sheaf E is locally free. Let I the ideal defined by the maximal minors of T. The following is sufficient for the local freeness of E:
- The ideal (I : f) define the empty set in \mathbb{P}^n .

• An useful choice is $f = f'^{r-1}$ with $f' = x_1....x_{c_1}$ and T = (T', T'') with $T' = f' \cdot Id$. Using this idea can be produced many known bundles, eg. nullcorelation bundle on \mathbb{P}^3 , the Horrocks-Mumford on \mathbb{P}^4 and the Sasakura rank 3 bundle on \mathbb{P}^4 .

- An useful choice is $f = f'^{r-1}$ with $f' = x_1....x_{c_1}$ and T = (T', T'') with $T' = f' \cdot Id$. Using this idea can be produced many known bundles, eg. nullcorelation bundle on \mathbb{P}^3 , the Horrocks-Mumford on \mathbb{P}^4 and the Sasakura rank 3 bundle on \mathbb{P}^4 .
- The last one, is constructed with f = f' = x₀...x₄ and a convenient but complicated (3x8) matrix T of forms of degree 4.

• In ('99), also in Math. Zeitschrift, Ranestad gives a geometric construction for the elliptic conic bundle.

- In ('99), also in Math. Zeitschrift, Ranestad gives a geometric construction for the elliptic conic bundle.
- In fact, his construction works only for elliptic conic bundles (recall they are not minimal) with an elliptic quintic scroll in P⁴ as minimal model. The main steps are as follows:

- In ('99), also in Math. Zeitschrift, Ranestad gives a geometric construction for the elliptic conic bundle.
- In fact, his construction works only for elliptic conic bundles (recall they are not minimal) with an elliptic quintic scroll in P⁴ as minimal model. The main steps are as follows:
- Step 1 For every elliptic quintic scroll, denoted X_5 , in \mathbb{P}^4 there are smooth curves G and L such that G is a rational normal curve intersecting the scroll in 10 points, and L is a secant of G and a fiber of the scroll.

- In ('99), also in Math. Zeitschrift, Ranestad gives a geometric construction for the elliptic conic bundle.
- In fact, his construction works only for elliptic conic bundles (recall they are not minimal) with an elliptic quintic scroll in P⁴ as minimal model. The main steps are as follows:
- Step 1 For every elliptic quintic scroll, denoted X_5 , in \mathbb{P}^4 there are smooth curves G and L such that G is a rational normal curve intersecting the scroll in 10 points, and L is a secant of G and a fiber of the scroll.
- The ideal of G ∪ L is generated by 5 quadrics, which by an ancient result of Semple ('29) defines a Cremona transformation φ on P⁴.

- In ('99), also in Math. Zeitschrift, Ranestad gives a geometric construction for the elliptic conic bundle.
- In fact, his construction works only for elliptic conic bundles (recall they are not minimal) with an elliptic quintic scroll in P⁴ as minimal model. The main steps are as follows:
- Step 1 For every elliptic quintic scroll, denoted X_5 , in \mathbb{P}^4 there are smooth curves G and L such that G is a rational normal curve intersecting the scroll in 10 points, and L is a secant of G and a fiber of the scroll.
- The ideal of G ∪ L is generated by 5 quadrics, which by an ancient result of Semple ('29) defines a Cremona transformation φ on ℙ⁴.
- Step 2 The restriction of φ to X₅ is defined by the system | 2H − L | with 8 base points: those where G meet the scroll and are not on L.

Step 3 This restrction is an embedding of the blow-up at the 8 points as soon as the 10 points in G ∩ X₅ are distinct and no other secant of G is a fiber of the scroll. The image φ(X̂₅) will be of course an elliptic conic bundle.

- Step 3 This restrction is an embedding of the blow-up at the 8 points as soon as the 10 points in G ∩ X₅ are distinct and no other secant of G is a fiber of the scroll. The image φ(X̂₅) will be of course an elliptic conic bundle.
- For the converse Cremona transformation, a first intricate construction, produce a quadratic surface X₂.

- Step 3 This restrction is an embedding of the blow-up at the 8 points as soon as the 10 points in G ∩ X₅ are distinct and no other secant of G is a fiber of the scroll. The image φ(X̂₅) will be of course an elliptic conic bundle.
- For the converse Cremona transformation, a first intricate construction, produce a quadratic surface X_2 .
- Secondly, a cubic scroll X_3 is produced using the secant variety of G.

- Step 3 This restrction is an embedding of the blow-up at the 8 points as soon as the 10 points in G ∩ X₅ are distinct and no other secant of G is a fiber of the scroll. The image φ(X̂₅) will be of course an elliptic conic bundle.
- For the converse Cremona transformation, a first intricate construction, produce a quadratic surface X_2 .
- Secondly, a cubic scroll X_3 is produced using the secant variety of G.
- Finally, the converse Cremona is defined by the cubic hypersurfaces through X₂ ∪ X₃.

• In J. Alg. Geom. ('02) the above authors gives new methods for the construction of low rank vector bundles on projective spaces. Among some new examples they rediscovered the rank 3 Sasakura bundle.

- In J. Alg. Geom. ('02) the above authors gives new methods for the construction of low rank vector bundles on projective spaces. Among some new examples they rediscovered the rank 3 Sasakura bundle.
- The general construction starts with a sort of Maruyama's elementary transformation:

let X projective variety (later it will be \mathbb{P}^4) and Y the divisor of a section s in $\mathcal{O}_X(Y)$ (later it will be the thickening of order t of a hyperplane in \mathbb{P}^4).

- In J. Alg. Geom. ('02) the above authors gives new methods for the construction of low rank vector bundles on projective spaces. Among some new examples they rediscovered the rank 3 Sasakura bundle.
- The general construction starts with a sort of Maruyama's elementary transformation:

let X projective variety (later it will be \mathbb{P}^4) and Y the divisor of a section s in $\mathcal{O}_X(Y)$ (later it will be the thickening of order t of a hyperplane in \mathbb{P}^4).

• let's consider on Y an exact sequence $0 \rightarrow A \rightarrow F \rightarrow B \rightarrow 0$ of vector bundles, such that F extends to an F on X.

15 / 28

- In J. Alg. Geom. ('02) the above authors gives new methods for the construction of low rank vector bundles on projective spaces. Among some new examples they rediscovered the rank 3 Sasakura bundle.
- The general construction starts with a sort of Maruyama's elementary transformation:

let X projective variety (later it will be \mathbb{P}^4) and Y the divisor of a section s in $\mathcal{O}_X(Y)$ (later it will be the thickening of order t of a hyperplane in \mathbb{P}^4).

- let's consider on Y an exact sequence $0 \rightarrow A \rightarrow F \rightarrow B \rightarrow 0$ of vector bundles, such that F extends to an \mathcal{F} on X.
- Let \mathcal{G} the kernel of the induced surjection $\mathcal{F} \to B$.

The next ingredients are two bundles L₁ and L₂ on the ambient X, their restrictions to Y, L₁ and L₂ with a surjection L₁ → A and an injection as vector bundle B → L₂.

- The next ingredients are two bundles L₁ and L₂ on the ambient X, their restrictions to Y, L₁ and L₂ with a surjection L₁ → A and an injection as vector bundle B → L₂.
- Suppose that the induced $\phi : L_1 \to F$ and $\psi : F \to L_2$ also extends to $\Phi : \mathcal{L}_1 \to \mathcal{F}$ and $\Psi : \mathcal{F} \to \mathcal{L}_2$.

- The next ingredients are two bundles L₁ and L₂ on the ambient X, their restrictions to Y, L₁ and L₂ with a surjection L₁ → A and an injection as vector bundle B → L₂.
- Suppose that the induced $\phi : L_1 \to F$ and $\psi : F \to L_2$ also extends to $\Phi : \mathcal{L}_1 \to \mathcal{F}$ and $\Psi : \mathcal{F} \to \mathcal{L}_2$.
- Then $\Psi\Phi$ vanishes on Y and one can construct a map

$$\Delta:\mathcal{F}(-Y)\oplus\mathcal{L}_1 o\mathcal{F}\oplus\mathcal{L}_2(-Y)$$

given by the matrix below:

$$\begin{pmatrix} s \cdot I & \Phi \\ \Psi & s^{-1} \cdot \Psi \Phi \end{pmatrix}$$

where I is the identity of \mathcal{F} (and s the section which determines Y).

The Kumar-Peterson-Rao construction

 The role of the above map Δ whose image is in fact G is tied with the fact that if F splits, under some aditional hypothesis, this will produce sub or quotient bundles of G, producing lower rank bundles.

- The role of the above map Δ whose image is in fact G is tied with the fact that if F splits, under some aditional hypothesis, this will produce sub or quotient bundles of G, producing lower rank bundles.
- For example, concerning the sub-bundle case, the authors have the following

Proposition

Suppose:

1. \mathcal{F} split as $\mathcal{N} \oplus \mathcal{N}'$ with induced splitting $F = N \oplus N'$ 2. there is $\theta : N(-Y) \to A$ with lift $\Theta : \mathcal{N}(-Y) \to \mathcal{L}_1$ such that $\Phi\Theta$ $(: \mathcal{N}(-Y) \to \mathcal{F})$ has image in \mathcal{N}' . Then, there is an induced map $\mathcal{N}(-Y) \to \mathcal{G}$ which is a bundle inclusion iff the restriction $N(-Y) \to \mathcal{G} \mid_Y$ is.

The Kumar-Peterson-Rao construction

• Roughly speaking, we need splittable bundles on Y which extends with the splitting on the ambient X.

The Kumar-Peterson-Rao construction

- Roughly speaking, we need splittable bundles on Y which extends with the splitting on the ambient X.
- This goal is achieved through the so called four generated rank two bundles. A vector bundle B on a scheme Y is four generated if there is a completely split rank 4 bundle F and a surjection F → B.

- Roughly speaking, we need splittable bundles on Y which extends with the splitting on the ambient X.
- This goal is achieved through the so called four generated rank two bundles. A vector bundle B on a scheme Y is four generated if there is a completely split rank 4 bundle F and a surjection F → B.
- The result below construct plenty (but of course not all) of four generated rank 2 bundles on \mathbb{P}^3 :

Proposition

Let T, U, V, W a regular sequence of forms of positive degrees t, u, v, wsuch that t + w = u + v and $r \ge 2$ an integer. Then there is an exact sequence $L_1 \rightarrow F \rightarrow L_2$, with maps ϕ and ψ such that: 1. the bundles above are completely split, 2. the images A and B of ϕ and ψ are four generated rank 2 bundles on \mathbb{P}^3

∃ ► < ∃ ►</p>

18 / 28

- Finally, one can put together the ideas above in the case of \mathbb{P}^4 :
 - one starts with the above F and four generated rank 2 bundles A,B on \mathbb{P}^3
 - one consider a t'-thickening Y of $\mathbb{P}^3\subset\mathbb{P}^4$ and one pull back F,A and B on Y
 - one apply the Maruyama type construction obtaining a rank 4 bundle ${\mathcal G}$ on ${\mathbb P}^4$

- for convenient values of the parameters (the forms T, U, V, W and integers $t', r \ge 2$) the bundle \mathcal{G} has line sub or quotient bundles - by taking the quotient or the kernel one arrive at rank 3 bundles on \mathbb{P}^4 .

• An interesting problem studied in the lasts years is the description of globally generated bundles in projective spaces.

- An interesting problem studied in the lasts years is the description of globally generated bundles in projective spaces.
- Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of rank 2 globally generated vector bundles with c₁ ≤ 5 on Pⁿ.

- An interesting problem studied in the lasts years is the description of globally generated bundles in projective spaces.
- Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of rank 2 globally generated vector bundles with c₁ ≤ 5 on Pⁿ.
- Sierra and Ugaglia in J. Pure App. Alg. ('09) classified globally generated vector bundles with c₁ ≤ 2 on Pⁿ.

- An interesting problem studied in the lasts years is the description of globally generated bundles in projective spaces.
- Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of rank 2 globally generated vector bundles with c₁ ≤ 5 on Pⁿ.
- Sierra and Ugaglia in J. Pure App. Alg. ('09) classified globally generated vector bundles with c₁ ≤ 2 on Pⁿ.
- Sierra and Ugaglia in arxiv:1203.0185 and independently and Manolache arxiv:1202.6261 classified globally generated vector bundles with c₁ ≤ 3 on ℙⁿ.

- An interesting problem studied in the lasts years is the description of globally generated bundles in projective spaces.
- Chiodera and Ellia in arxiv:1111.5725 determined the Chern classes of rank 2 globally generated vector bundles with c₁ ≤ 5 on Pⁿ.
- Sierra and Ugaglia in J. Pure App. Alg. ('09) classified globally generated vector bundles with c₁ ≤ 2 on Pⁿ.
- Sierra and Ugaglia in arxiv:1203.0185 and independently and Manolache arxiv:1202.6261 classified globally generated vector bundles with c₁ ≤ 3 on ℙⁿ.
- -, Coanda and Manolache in arxiv:1305.3464 classified globally generated vector bundles with c₁ ≤ 4 on Pⁿ.

The Coanda-Manolache method

 For example, for c₁ ≤ 3 the main result from the joint paper with Manolache, can be formulated as:

Theorem

Let E an indecomposable globally generated vector bundle on \mathbb{P}^n , with $n \ge 2$, $1 \le c_1 \le 3$ and $H^i(E^*) = 0$ for i = 0, 1. Then one of the following holds:

- $E = \mathcal{O}(a)$
- $E = P(\mathcal{O}(a))$
- n = 3 and $E = \Omega(2)$
- n = 4 and $E = \Omega(2)$
- n = 4 and $E = \Omega^{2}(3)$

where the P-operation above means the dual of the kernel of the evaluation map.

• The technical condition $H^i(E^*) = 0$ for i = 0, 1 is irrelevant. In fact any globally generated bundle can be obtained by one which verify this condition by taking the quotient with a trivial sub-bundle and then adding a trivial summand:

Proposition

For any *E* there is an *F* which satisfy $H^i(F^*) = 0$ for i = 0, 1 such that if $t = h^0(E^*)$ and $s = h^1(E^*)$ then $E \simeq F/s\mathcal{O} \oplus t\mathcal{O}$.
• The technical condition $H^i(E^*) = 0$ for i = 0, 1 is irrelevant. In fact any globally generated bundle can be obtained by one which verify this condition by taking the quotient with a trivial sub-bundle and then adding a trivial summand:

Proposition

For any *E* there is an *F* which satisfy $H^i(F^*) = 0$ for i = 0, 1 such that if $t = h^0(E^*)$ and $s = h^1(E^*)$ then $E \simeq F/s\mathcal{O} \oplus t\mathcal{O}$.

 Another important observation is that for a globally generated bundle one has c₂ ≤ c₁². This show via the standard sequence 0 → (r − 1)O → E → J_Y(c₁) that globally generated bundles with c₁ ≤ 3 are related with sub-varieties of degree at most 9 in Pⁿ. The main result in the joint paper with Coanda and Manolache is more complicated. In the c₁ = 4 case there are 16 indecomposable bundles, the last one being the Sasakura's rank 5 bundle once twisted G(1).

- The main result in the joint paper with Coanda and Manolache is more complicated. In the c₁ = 4 case there are 16 indecomposable bundles, the last one being the Sasakura's rank 5 bundle once twisted G(1).
- However one can formulate the following consequence:

Corollary

Let *E* an indecomposable globally generated vector bundle on \mathbb{P}^n , with $n \ge 4$, $c_1 = 4$, $r \ge 2$ and $H^i(E^*) = 0$ for i = 0, 1. Then *E* is: - $P(\mathcal{O}(4))$ - $\Omega(2)$ or $\Omega^3(4)$ on \mathbb{P}^5 - $\mathcal{G}(1)$.

• The main steps in the classification for $c_1 = 4$ are:

- The main steps in the classification for $c_1 = 4$ are:
- First we classify the bundles on \mathbb{P}^2 (easy) and \mathbb{P}^3 (hard)

- The main steps in the classification for $c_1 = 4$ are:
- \bullet First we classify the bundles on \mathbb{P}^2 (easy) and \mathbb{P}^3 (hard)
- Next we try to decide which bundles can be extended to higher dimensional projective spaces using Horrocks method of killing cohomology.

- The main steps in the classification for $c_1 = 4$ are:
- First we classify the bundles on \mathbb{P}^2 (easy) and \mathbb{P}^3 (hard)
- Next we try to decide which bundles can be extended to higher dimensional projective spaces using Horrocks method of killing cohomology.
- The problem is tied to the theory of varieties of small degree as we have seen, and also to the theory of rank 2 reflexive sheaves on \mathbb{P}^3 via an exact sequence as below:

$$0 \rightarrow (r-2)\mathcal{O} \rightarrow E \rightarrow \mathcal{E}' \rightarrow 0.$$

24 / 28

• The twisted Sasakura bundle $\mathcal{G}(1)$ appear for n = 4 and $c_2 = 8$ and it has the following description:

- The twisted Sasakura bundle $\mathcal{G}(1)$ appear for n = 4 and $c_2 = 8$ and it has the following description:
- Consider the surjection $4\mathcal{O}(-1) \oplus \mathcal{O}(-2) \to \mathcal{O}$ defined by $x_0, ..., x_3, x_4^2$, and the Koszul complex (C_p, δ_p) for it. Denote by E' the co-kernel of $\delta_4(4)$:

 $\mathcal{O} \oplus 4\mathcal{O}(-1) \rightarrow 4\mathcal{O}(1) \oplus 6\mathcal{O}.$

- The twisted Sasakura bundle $\mathcal{G}(1)$ appear for n = 4 and $c_2 = 8$ and it has the following description:
- Consider the surjection 4O(-1) ⊕ O(-2) → O defined by x₀,..., x₃, x₄², and the Koszul complex (C_p, δ_p) for it. Denote by E' the co-kernel of δ₄(4):

$$\mathcal{O} \oplus 4\mathcal{O}(-1) \rightarrow 4\mathcal{O}(1) \oplus 6\mathcal{O}.$$

• then E is the kernel of a surjection $E' \to \mathcal{O}(2)$ such that $H^0(E'(-1)) \to H^0(\mathcal{O}(1))$ is injective.

• The Koszul complex appear also in another case, n = 3 $c_2 = 8$ where one consider the complex associated with x_0, x_1, x_2^2, x_3^2 and the *E* is the cohomology of the monad

$$\mathcal{O}(-1)
ightarrow 2\mathcal{O}(2) \oplus 2\mathcal{O}(1) \oplus 4\mathcal{O}
ightarrow \mathcal{O}(3)$$

• The Koszul complex appear also in another case, n = 3 $c_2 = 8$ where one consider the complex associated with x_0, x_1, x_2^2, x_3^2 and the *E* is the cohomology of the monad

$$\mathcal{O}(-1)
ightarrow 2\mathcal{O}(2) \oplus 2\mathcal{O}(1) \oplus 4\mathcal{O}
ightarrow \mathcal{O}(3)$$

 Other different types of Koszul complexes were used by Kumar-Peterson-Rao to produce interesting deformations of known bundles. Recall that Kumar construction use the existence of many four generated rank 2 bundles on P³.

27 / 28

- Recall that Kumar construction use the existence of many four generated rank 2 bundles on P³.
- It would be interesting to produce, with Kumar method, other examples of bundles on P⁴ using four generated bundles on divisors of higher degree in P⁴.

THANK YOU!

æ