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Abstract

We prove that there exists a 1-convex surface whose universal cov-
ering does not satisfy the discrete disk property.

1 Introduction

The well-known Shafarevich Conjecture asserts that the universal covering
space of a projective algebraic manifold is holomorphically convex. Although
there are partial results, a complete answer to this problem is not known
even for surfaces. (We remark that if instead of the universal covering one
considers an arbitrary non-compact one, there are counterexamples, see [9]).

In this paper we are interested in studying convexity properties of the
universal covering of 1-convex surfaces. We recall that projective algebraic
manifolds are a particular case of Moishezon manifolds, that the exceptional
set of a 1-convex manifold is a Moishezon space and that every Moishezon
space is the exceptional set of a 1-convex space.

Suppose that X is a 1-convex surface and p : X̃ → X is a covering map.
It is known (see [1]) that in general X̃ is not holomorphically convex. In
fact X̃ might not be even weakly 1-complete (that is, X̃ might not carry
a continuous plurisubharmonic exhaustion function). However X̃ can be
exhausted by a sequence of strongly pseudoconvex domains and therefore
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X̃ satisfies the continuous disk property (see the next section for a precise
definition). We investigate the discrete disk property for X̃ which definitely
is a stronger property.

Our main goal is to give an example of a 1-convex surface whose universal
covering does not satisfy the discrete disk property. In particular it will not
be p5-convex in the sense of [4]. This means that we will prove the following
theorem:

Theorem. There exists a 1-convex surface whose universal covering does not
satisfy the discrete disk property.

We remark that we proved in [2] that if X̃ does not contain an infinite
Nori string of rational curves then actually X̃ does satisfy the discrete disk
property. Therefore our example must contain such a Nori string.

We note that important convexity properties of coverings of 1-convex
manifolds have been established in [9].

In the study of coverings of compact complex surfaces an important phe-
nomenon is the appearance of rational Nori strings, see [11], section 6. For
different configurations of Nori strings that can appear in the universal cov-
ering surfaces of Kodaira’s class V II0 see [3], Theorem 3.27 and [8].

The main point of our paper is that we construct a neighborhood of a
Nori string (that appears in the covering of a 1-convex surface) that does not
satisfy the discrete disk property.

2 Preliminaries

We denote by ∆ the unit disk in C, ∆ = {z ∈ C : |z| < 1} and for c > 0 by
∆1+c the disk ∆1+c := {z ∈ C : |z| < 1 + c}.
For ε > 0 we define Hε ⊂ C× R as

Hε = ∆1+ε × [0, 1)
⋃
{z ∈ C : 1− ε < |z| < 1 + ε} × {1}.

The following is just an intrinsic version of the classical Continuity Prin-
ciple (see, for example, [7] page 47).

Definition 1. A complex space X is said to satisfy the continuous disk prop-
erty if whenever ε is a positive number and F : Hε → X is a continuous func-
tion such that, for every t ∈ [0, 1), Ft : ∆1+ε → X, Ft(z) = F (z, t), is holo-
morphic we have that F (Hε1) is relatively compact in X for any 0 < ε1 < ε.
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Motivated by the above definition we introduced in [2]:

Definition 2. Suppose that X is a complex space. We say that X satisfies the
discrete disk property if whenever gn : U → X is a sequence of holomorphic
functions defined on an open neighborhood U of ∆ for which there exists an
ε > 0 and a continuous function γ : S1 = {z ∈ C : |z| = 1} → X such that
∆1+ε ⊂ U ,

⋃
n≥1 gn(∆1+ε \∆) is relatively compact in X and gn|S1 converges

uniformly to γ we have that
⋃
n≥1 gn(∆) is relatively compact in X.

Note that if a complex space is p5-convex in the sense of Docquier and
Grauert [4] then it satisfies the discrete disk property. Therefore our example
will not be p5-convex either. X is called p5-convex if whenever {∆ν}ν≥0 is
a sequence of holomorphic disks such that

⋃
ν≥0 ∂∆ν b X we have that⋃

ν≥0 ∆ν b X as well.
In [5] it is constructed a complex manifold which is an increasing union

of Stein open subsets, and therefore it satisfies the continuous disk property,
but it does not satisfy the discrete disk property. In particular this shows
that the discrete disk property is stronger that the continuous one.

We recall that a compact complex curve is called rational if its normal-
ization is P1.

A complex manifold is called 1-convex if it is the modification of a Stein
space at a finite set of points.

Definition 3. Let L be a connected 1-dimensional complex space and ∪Li
be its decomposition into irreducible components. L is called an infinite Nori
string if all Li are compact and L is not compact

The following theorem was proved in [2].

Theorem 1. Let X be a 1-convex surface and p : X̃ → X be a covering
map. If X̃ does not contain an infinite Nori string of rational curves then X̃
satisfies the discrete disk property.

3 The Results

As we mentioned in the introduction, our goal is to prove the following the-
orem.

Theorem 2. There exists a 1-convex surface whose universal covering does
not satisfy the discrete disk property.
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We will describe first the basic idea of the proof of the theorem. We
start with a basic example of a 2-dimensional complex manifold X that does
not satisfy the discrete disk property and contains an infinite Nori string of
rational curves. We consider the complex manifold which is obtained from C2

after an infinite sequence of blow-ups as follows: we blow-up first Ω0 := C2

at the origin (0, 0) = a0 ∈ C2 and we denote this blow-up by Ω1. Let l1 be
the proper transform of z1 = 0 and let a1 be the intersection between l1 and
the exceptional divisor of Ω1. We blow-up Ω1 at a1 and we obtain Ω2. We
let l2 to be the proper transform of l1 and a2 the intersection between l2 and
the exceptional divisor of Ω2 and we blow-up again. Inductively we obtain
a sequence {Ωk}k≥0 of complex manifolds and Ωk \ {ak} ⊂ Ωk+1 \ {ak+1}.
Let X0 be the union (i.e. the inductive limit) of Ωk \ {ak}. Notice now that
the standard biholomorphism (z1, z2)→ ( ξ1

ξ2
, z2) between C2 and {(z1, z2, [ξ1 :

ξ2]) ∈ C2×P1 : z1ξ2 = z2ξ1 and ξ2 6= 0} induces a biholomorphism ι between
X0 and an open subset of X0. We let Xk, k ∈ Z, k < 0, be copies of X0

and Xk ↪→ Xk−1 be the inclusion given by ι. For details see Step 1. (it is a
going back process which is possible since we consider the blow-up at a point
of C2 not of P2). We define X as the union

⋃
k≤0Xk. It is not difficult to

see that X does not satisfy the discrete disk property: we let fn : C → C2,
n ≥ 1, fn(λ) = ((λ

2
)n, λ) and gn : C→ X0 the proper transform of fn. Then⋃

n≥1 gn(∆2 \∆) is relatively compact in X and {gn(0)}n≥1 is discrete.
Notice that X contains a Nori string {Lk}k∈Z of curves isomorphic to P1.

Then
⋃
k∈Z Lk will cover F0 ∪ F1 where F0 and F1 are isomorphic to P1 and

F0 ∩ F1 has exactly two points. An appropriately chosen neighborhood U of⋃
k∈Z Lk in X will cover a manifold V which is a neighborhood of F0 ∪ F1.

It is again not very hard to prove that U does not satisfy the discrete disk
property. However F0∪F1 is not exceptional because the intersection matrix
is [

−2 2
2 −2

]
and then we have to blow-up again at two points, one on F0 and one on
F1 in order to make the intersection matrix negatively defined. Then a
small enough neighborhood of the proper transform of F0

⋃
F1 is a 1-convex

surface. We blow-up U at the preimages of these points and then an open
neighborhood, W̃ , of the proper transform of

⋃
k∈Z Lk is a covering of a 1-

convex surface.
The core of our paper is to show that W̃ does not satisfy the discrete disk
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property.
A sequence of holomorphic disks defined in the simple-minded way as

the one above will not work because their image will not stay in a small
neighborhood of the proper transform of

⋃
k∈Z Lk. In fact these disks have to

stay in a union of conic open subsets of X0. To be able to define the sequence
of holomorphic disks needed we will work in local coordinates.

We move now to the proof of Theorem 2.

Step 1. We construct a 1-convex manifold W and a covering p̃ : W̃ → W . In
the second step we will show that W̃ does not have the discrete disk property.

As we said, we let Ω0 = C2, (z
(0)
1 , z

(0)
2 ) the coordinate functions and

a0 = (0, 0). Let Ω1 be the blow-up of Ω0 in a0, that is Ω1 = {(z(0)
1 , z

(0)
2 , [ξ

(0)
1 :

ξ
(0)
2 ]) ∈ Ω0×P1 : z

(0)
1 ξ

(0)
2 = z

(0)
2 ξ

(0)
1 } and a1 = (0, 0, [0 : 1]) ∈ Ω1. Let Ω2 be the

blow up of Ω1 in a1 and let L0 be the proper transform of the exceptional set
of Ω1. The open subset of Ω1 given by ξ

(0)
2 6= 0 is biholomorphic to C2 with

the coordinate functions z
(1)
1 :=

ξ
(0)
1

ξ
(0)
2

and z
(1)
2 := z

(0)
2 . In these coordinates a1

is given by z
(1)
1 = 0, z

(1)
2 = 0. We continue this procedure k times and we

obtain Ωk. In doing so we obtain also L0, . . . Lk−1, which are complex curves
each one of them isomorphic to P1, and a0, a1, . . . , ak the points where we
are blowing up. Note that Ωj \ {aj} is an open subset of Ωj+1 \ {aj+1}. We
set

X0 := ∪∞j=0Ωj \ {aj}.

We call X0 the infinite blow-up of C2 at the origin. Notice that we have
also a canonical map π : X0 → C2 such that π−1(0) =

⋃
k≥0 Lk and π :

X0 \
⋃
k≥0 Lk → C2 \ {0} is a biholomorphism.

As this is clearly a local construction it can carried out around any point
of a smooth complex surface once that we have chosen a system of coordinates
around this point.

We let M be the blow-up of C2 at the origin, written in coordinates as
follows: M = {(z(−1)

1 , z
(−1)
2 , [ξ

(−1)
1 : ξ

(−1)
2 ]) ∈ C2×P1 : z

(−1)
1 ξ

(−1)
2 = z

(−1)
2 ξ

(−1)
1 }.

Then {(z(−1)
1 , z

(−1)
2 , [ξ

(−1)
1 : ξ

(−1)
2 ]) ∈ M : ξ

(−1)
2 6= 0} is an open set of M ,

biholomorphic to C2 with coordinate functions z
(0)
1 :=

ξ
(−1)
1

ξ
(−1)
2

and z
(0)
2 := z

(−1)
2 .

For this open subset of M and this system of coordinates we let X−1

be the infinite blow-up of M at the point (0, 0, [0 : 1]). We let L−1 to be
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the (proper transform of) the exceptional set of M . Notice then that X0 is
an open subset of X−1 and that X−1 is biholomorphic to X0. Similarly we
construct Xk and Lk for k ≤ −2. We have that Xk is an open subset of Xk−1

(in fact Xk is the complement of a line in Xk−1). We put X =
⋃−∞
k=0Xk and

L =
⋃∞
k=−∞ Lk. Notice that if |j − k| ≥ 2 then Lj ∩ Lk = ∅.

Next we want to define a fundamental system of open neighborhoods of
Lk for each k ∈ Z. To do that we notice that, by construction, Lk is obtained
as follows: we have C2 with coordinate functions (z

(k)
1 , z

(k)
2 ) we blow it up

at the origin and then we blow it up again at the point (0, 0, [0 : 1]). The

manifold thus obtained is denoted by Ĉ2. Then Lk is the proper transform
of the exceptional set of the first blow-up. That is we have that Ĉ2 is given
in C2 × P1 × P1 with coordinates (z

(k)
1 , z

(k)
2 , [ξ

(k)
1 : ξ

(k)
2 ], [ξ

(k+1)
1 : ξ

(k+1)
2 ]) by

z
(k)
1 ξ

(k)
2 = z

(k)
2 ξ

(k)
1 , ξ

(k)
1 ξ

(k+1)
2 = ξ

(k+1)
1 ξ

(k)
2 z

(k)
2

In Ĉ2, Lk is given by the equations z
(k)
1 = 0, ξ

(k+1)
2 = 0.

For r ∈ (0, 1] we define U
(k)
r := {|ξ(k+1)

2 | < r|ξ(k+1)
1 |, |z(k)

1 | < r} and we

notice that {U (k)
r }r>0 is indeed a fundamental system of open neighborhoods

of Lk. Obviously U
(j)
r and U

(k)
r are biholomorphic for every j and k.

We want to show that if |j − k| ≥ 2 then U
(j)
r ∩ U (k)

r = ∅. It is clear
from our construction that without loss of generality we can assume that
j = 0 and k ≥ 2. As U

(j)
r ∩ U (k)

r is an open set, it suffices to show that

(U
(0)
r \ L) ∩ (U

(k)
r \ L) = ∅. We recall that we have defined z

(k+1)
1 =

ξ
(k)
1

ξ
(k)
2

and

z
(k+1)
2 = z

(k)
2 . Hence, outside L and for k ≥ 0, we have that [z

(k+1)
1 : z

(k+1)
2 ] =

[ξ
(k)
1 : ξ

(k)
2 z

(k)
2 ] = [z

(k)
1 : z

(k)
2 z

(0)
2 ]. Inductively we get [z

(k+1)
1 : z

(k+1)
2 ] = [z

(0)
1 :

(z
(0)
2 )k+2]. The inequality |z(k)

1 | < r is equivalent to |ξ(k−1)
1 | < r|ξ(k−1)

2 |. As

[ξ
(j)
1 : ξ

(j)
2 ] = [z

(j)
1 : z

(j)
2 ] for every j ∈ Z and every point in X \ L it follows

that

U (k)
r \ L = {(z(0)

1 , z
(0)
2 ) ∈ C2 : |z(0)

2 |k+2 < r|z(0)
1 |, |z

(0)
1 | < r|z(0)

2 |k} (1)

We have that U
(0)
r \ L = {(z(0)

1 , z
(0)
2 ) ∈ C2 : |z(0)

2 |2 < r|z(0)
1 |, |z

(0)
1 | < r}.

In particular every point of U
(0)
r \ L satisfies |z(0)

2 |2 < r|z(0)
1 | < r2, hence

|z(0)
2 | < r. Then a point in the intersection (U

(0)
r \ L) ∩ (U

(k)
r \ L) would

satisfy |z(0)
2 |2 < r|z(0)

1 | < r2|z(0)
2 |k. As k ≥ 2 we get 1 < r2|z(0)

2 |k−2 < rk and
this contradicts our choice of r ≤ 1.

6



It is clear that the mapping (z
(k)
1 , z

(k)
2 , [ξ

(k)
1 : ξ

(k)
2 ], [ξ

(k+1)
1 : ξ

(k+1)
2 ]) →

(z
(j)
1 , z

(j)
2 , [ξ

(j)
1 : ξ

(j)
2 ], [ξ

(j+1)
1 : ξ

(j+1)
2 ]) induces a biholomorphism of qk,j :

U
(k)
r → U

(j)
r . Moreover qk,k+2|U(k)

r ∩U(k+1)
r

= qk+1,k+3|U(k)
r ∩U(k+1)

r
.

Let U =
⋃
k∈Z U

(k)
1 . We have then a biholomorphism q : U → U defined by

q|U(k)
1

= qk,k+2 which induces an action of Z on U . If we set Y := U/Z and we

let p : U → Y be the canonical projection then p is a covering map. Namely
if we set U (0) = p(U

(0)
1 ) = p(U

(2k)
1 ) for every k ∈ Z then p−1U (0) =

⋃
k∈Z U

(2k)
1 ,

and U
(2k)
1 , k ∈ Z, are pairwise disjoint and biholomorphic via p to U (0). The

same thing for U (1) = p(U
(1)
1 ) = p(U

(2k+1)
1 ).

Let F0 := p(L0) and F1 := p(L1). Then F0 and F1 are both biholomorphic
to P1 and, moreover, we have F0 · F0 = −2, F1 · F1 = −2, F0 · F1 = 2. Let
αk ∈ Lk be the point given by (z

(k)
1 , z

(k)
2 , [ξ

(k)
1 : ξ

(k)
2 ], [ξ

(k+1)
1 : ξ

(k+1)
2 ]) =

(0, 0, [1 : 1], [1 : 0]) and β0, β1 ∈ Y the points β0 = p(α2k), β1 = p(α2k+1). We
let π : Ỹ → Y to be the blow up of Y at β0 and β1 and we denote by F̃0 and
F̃1 respectively the proper transforms of F0 and F1. Note that F̃0 · F̃0 = −3,
F̃1 · F̃1 = −3, F̃0 · F̃1 = 2. As the intersection matrix[

−3 2
2 −3

]
is negative definite, it follows, see [6], that F̃ := F̃0 ∪ F̃1 is exceptional. We
consider the following diagram:

Ũ π̃−−−→ U

p̃

y p

y
Ỹ

π−−−→ Y

We let p̃ : Ũ → Ỹ be the pull-back of p. Clearly p̃ is a covering map and
π̃ : Ũ → U is obtained by blowing-up U at every αk, k ∈ Z. We choose now
W a 1-convex neighborhood of F̃ and we put W̃ := p̃−1(W ), L̃ := p̃−1(F̃ ). If
L̃k is the proper transform of Lk in Ũ then L̃ =

⋃
L̃k. We will show that W̃

does not have the discrete disk property. In our construction of the sequence
of holomorphic discs we want to make sure that their image stays in W̃ . To
do that we need a “concrete” open neighborhood of L̃ in W̃ . To obtain it we
consider {W̃ (k)

r,ρ } a fundamental system of neighborhoods for L̃k, each one of
them being actually the preimage via π̃ of a cone centered at αk. Moreover
qk,j induces a biholomorphism W̃

(k)
r,ρ → W̃

(j)
r,ρ . The construction is as follows.
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We have the following description of the blow-up of U
(k)
1 in αk: it is the

set Ũ
(k)
1 of all

(z
(k)
1 , z

(k)
2 , [ξ

(k)
1 : ξ

(k)
2 ], [ξ

(k+1)
1 : ξ

(k+1)
2 ], [w1 : w2]) ∈ C2 × P1 × P1 × P1

such that

z
(k)
1 ξ

(k)
2 = z

(k)
2 ξ

(k)
1 , ξ

(k)
1 ξ

(k+1)
2 = ξ

(k+1)
1 ξ

(k)
2 z

(k)
2 , w2z

(k)
1 ξ

(k)
1 = w1(ξ

(k)
1 − ξ

(k)
2 )

and
|z(k)

1 | < 1, |ξ(k+1)
2 | < |ξ(k+1)

1 |

The proper transform of Lk is given by z
(k)
1 = 0, ξ

(k+1)
2 = 0, w1 = 0. A

fundamental system of neighborhoods for L̃k is given by

W̃ (k)
r,ρ = {|z(k)

1 | < r, |ξ(k+1)
2 | < r|ξ(k+1)

1 |, |w1| < ρ|w2|} ⊂ Ũ
(k)
1 .

There exist then ρ > 0 and r > 0 such that W̃ ρ
r =

⋃
k∈Z W̃

(k)
r,ρ ⊂ W̃ .

If we denote by W ρ
r ⊂ U the set⋃

k∈Z

{(z(k)
1 , z

(k)
2 , [ξ

(k)
1 : ξ

(k)
2 ], [ξ

(k+1)
1 : ξ

(k+1)
2 ]) ∈ U (k)

r : |z(k)
1 ξ

(k)
1 | < ρ|ξ(k)

2 − ξ
(k)
1 |}

we have that W̃ \ L̃ ⊃ W̃ ρ
r \ L̃ ⊃ W ρ

r \ L. We notice at the same time that
keeping ρ ∈ (0, 1) fixed and choosing a small enough r > 0 we have that

W̃
(k)
r,ρ ∩ W̃ (k+1)

r,ρ = U
(k)
r ∩U (k+1)

r for every k ∈ Z. We fix such an r ∈ (0, 1) that
satisfies also r ≤ ρ

2
(1− r).

Step 2. We construct a sequence of holomorphic discs that proves that W̃
does not have the discrete disk property.

We fix n ∈ N. To define our nth holomorphic disk, gn, we will start with
two polynomial functions f1 = f

(n)
1 and f2 = f

(n)
2 and gn will be the proper

transform of (f1, f2) : C→ Ω0 restricted to a neighborhood of ∆2 (we recall

that Ω0 was defined as C2 with coordinate functions (z
(0)
1 , z

(0)
2 )). This proper

transform is considered after all the blow-ups we made, i.e. first at the points
{aj}j∈Z and then {αj}j∈Z.

Lemma 1. Let Z(n) = Z := {λ ∈ C : f1(λ) = f2(λ) = 0}. Suppose that f1

and f2 satisfy the following properties:
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a) (f1, f2)(∆2 \ Z) ⊂
⋃n−1
k≥0 U

(k)
r \ L,

b) for every k ∈ {0, 1, . . . , n− 1} if λ ∈ ∆2 \ Z satisfies
|f1(λ)| < r|f2(λ)|k and
|f2(λ)|k+2 < r|f1(λ)|

then it satisfies |f1(λ)|2 < ρ|f2(λ)k+1 − f1(λ)| · |f2(λ)|k.

Then gn(∆2) ⊂ W̃ .

Proof. Obviously gn(Z) ⊂ L̃. It suffices then to show that gn(∆2 \ Z) ⊂
W̃ ρ
r \ L̃. We have seen that W̃ \ L̃ ⊃ W ρ

r \ L. Hence it is enough to prove
that gn(∆2 \ Z) ⊂ W ρ

r \ L.

By hypothesis we have that gn(∆2\Z) = (f1, f2)(∆2\Z) ⊂
⋃n−1
k≥0 U

(k)
r \L.

Hence it suffices to show, for k ∈ {0, 1, . . . , n− 1} and λ ∈ ∆2 \ Z that if

gn(λ) = (z
(k)
1 , z

(k)
2 , [ξ

(k)
1 : ξ

(k)
2 ], [ξ

(k+1)
1 : ξ

(k+1)
2 ]) ∈ U (k)

r then

|z(k)
1 ξ

(k)
1 | < ρ|ξ(k)

2 − ξ
(k)
1 | (2)

Because [z
(k)
1 : z

(k)
2 ] = [ξ

(k)
1 : ξ

(k)
2 ], outside L this inequality is equivalent to

|z(k)
1 |2 < ρ|z(k)

2 − z
(k)
1 |. At the same time z

(k)
2 = z

(0)
2 and we have seen that

[z
(k)
1 : z

(k)
2 ] = [z

(0)
1 : (z

(0)
2 )k+1]. We deduce that (2) is equivalent to

|z(0)
1 |2 < ρ|(z(0)

2 )k+1 − z(0)
1 | · |z

(0)
2 |k.

Using the description (1) of U
(k)
r we have then to show that if λ ∈

∆2 \ Z satisfies |f1(λ)| < r|f2(λ)|k and |f2(λ)|k+2 < r|f1(λ)| then it satisfies
|f1(λ)|2 < ρ|f2(λ)k+1 − f1(λ)| · |f2(λ)|k.

But this is exactly condition b) in our hypothesis.

Remark: Let us say a few words about the the construction of f1 and f2.
Notice that if by hn we denote the proper transform of (f1, f2) after the blow-
ups at {aj}j∈Z then in order to keep the image of gn inside W̃ the image of
hn must contain αj, 0 ≤ j ≤ n and hence to intersect each Lj for 0 ≤ j ≤ n.
This suggests the form of f1 and f2 bellow. At the same time we will be using
Lemma 1. To prove the inequality |f1(λ)|2 < ρ|f2(λ)k+1− f1(λ)| · |f2(λ)|k we
have to make sure that the function on right does not have more zeros than
the one on the left, counting multiplicities. These leads us to a problem of
divisibility (see Lemma 3).
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The construction of f1 and f2: Let c1, . . . , cn−1 be integers defined
recursively by c1 = 1 and, for k ≥ 2, ck = 2k−1+(k−1)c1+(k−2)c2+· · · ck−1.
We also consider d1, . . . , dn−1 positive integers defined by dn−1 = 1 and, for
k ≤ n − 2, dk = dk+1 + 2dk+2 + · · · (n − k − 1)dn−1 + n − k. Let N =
2n(d1 + d2 + · · ·+ dn−1 + 1).

We define f1 and f2 as

f1(λ) = εP1(λ)P 2
2 (λ) · · ·P n−1

n−1 (λ) · λn,

f2(λ) = ε2P1(λ)P2(λ) · · ·Pn−1(λ) · λ

where:
• ε is a positive real number that satisfies ε < (1

6
)N 1

n+2
r,

• P1, . . . , Pn−1 are polynomials defined recursively by
Pn−1(λ) = εcn−1 − λ and,
Pk(λ) = εck − Pk+1(λ) · P 2

k+2(λ) · · ·P n−k−1
n−1 (λ) · λn−k, for k ≤ n− 2.

Remarks: 1) Pk(0) 6= 0 and Pj and Pk have no common zero for j 6= k.
Therefore Z = {λ ∈ C : f1(λ) = 0} = {λ ∈ C : f2(λ) = 0} = {0} ∪ {λ ∈ C :
∃k such that Pk(λ) = 0}.
2) Each Pk is a monic polynomial of degree dk.

There are four conditions that we want the sequence {gn} to satisfy:
I) gn(∆2) ⊂ W̃ . We will prove in fact that gn(∆2) ⊂ W̃ ρ

r .
II)
⋃
n≥1 gn(∆2 \∆) is relatively compact in W̃

III) gn|S1 is uniformly convergent

IV)
⋃
n≥1 gn(∆) is not relatively compact in W̃ .

• Because Pk(0) 6= 0, the definition of f1 and f2 implies that the origin 0 ∈ C
is a zero of order 1 for f2 and a zero of order n for f1. This implies that
gn(0) ∈ Ln−1 and this shows that {gn(0)}n≥1 is not relatively compact in X.
Hence {gn} satisfies property IV).

• We will prove next that {gn} satisfies properties II) and III).
Let Kn := {(z1, z2, [ξ1 : ξ2] ∈ Ω1 : |z1| ≤ 1

n
, |z2| ≤ 1

n
, |ξ2| ≤ 1

n
|ξ1|}. Note that

Kn is a compact subset of X, Kn ⊃ Kn+1, and ∩n≥1Kn = {(0, 0, [1 : 0])}.
Hence for n large enough Kn ⊂ W̃ . Therefore if we show that gn({λ ∈ C :
1 ≤ |λ| ≤ 2}) ⊂ Kn then we will prove both I) and II).
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Lemma 2. For k ∈ {1, . . . , n− 1}, if Pk(λ) = 0 then |λ| < 1
2k .

Proof. We will prove our assertion by backward induction on k. For k = n−1
the statement is obvious. We assume that we have proved our assertion for
j ≥ k + 1 and we prove it for k. For j ≥ k + 1, as Pj are monic polynomials
and all they zeros are inside the disk {|λ ∈ C : |λ| < 1

2j } ⊂ {λ ∈ C : |λ| <
1

2k+1}, we have that, for every λ ∈ C with |λ| = 1
2k , |Pj(λ)| ≥ (1

2
)dj(k+1)

(see for example the proof of the next Corollary). It follows that |Pk+1(λ) ·
P 2
k+2(λ) · · ·P n−k−1

n−1 (λ) · λn−k| ≥ 1
2N > ε > εck for |λ| = 1

2k . Rouché’s theorem

(see e.g. [10] page 106) implies that Pk(λ) and Pk+1(λ)·P 2
k+2(λ) · · ·P n−k−1

n−1 (λ)·
λn−k have the same number of zeros inside the disk {λ ∈ C : |λ| < 1

2k }. As
the two polynomials have the same degree and all the zeros of the second one
are in this disk, it follows that all the zeros of Pk are in there as well.

Corollary 1. If λ ∈ C, |λ| ≤ 2 then |Pk(λ)| < 3dk .
If 1 ≤ |λ| ≤ 2 then (1

2
)dk < |Pk(λ)| < 3dk .

Proof. Because Pk is a monic polynomial of degree dk we have that it is of
the form Pk(λ) = (λ − λ(k)

1 ) · · · (λ − λ(k)
dk

) where λ
(k)
j are its roots (counted

with multiplicity). Lemma 2 implies that |λ(k)
j | < 1

2k ≤ 1
2

and therefore for

|λ| ≤ 2 we have that |λ(k)
j − λ| < 2 + 1

2
< 3 and for 1 ≤ |λ| ≤ 2 we have that

1
2
< |λ(k)

j − λ| < 3.

Given our choice of ε and Corollary 1, a simple computation shows:

Corollary 2. If λ ∈ C satisfies |λ| ≤ 2 then we have:
a) |f1(λ)| < 1

n
r ≤ 1

n
,

b) |f2(λ)| < 1
n
r2 ≤ 1

n
,

and if 1 ≤ |λ| ≤ 2, then:
c) |f2(λ)| < 1

n
|f1(λ)|,

d) |f1(λ)| > |f2(λ)|k for every k ≥ 1.

As f1 and f2 have no zero inside {λ ∈ C : 1 ≤ |λ| ≤ 2} this last Corollary
implies that gn({λ ∈ C : 1 ≤ |λ| ≤ 2}) ⊂ Kn.

• We move now to the proof of property I).
We will use Lemma 1. Therefore we have to check the two hypothesis, a)

and b). We will start with a).
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We we will show first that (f1, f2)(∆2 \ Z) ⊂
⋃
k≥0 U

(k)
r \ L ⊂ U \ L.

We prove that⋃
k≥0

U (k)
r \ L ⊃ {(z

(0)
1 , z

(0)
2 ) ∈ C2 : 0 < |z(0)

1 | < r, |z(0)
2 | < r2}.

This inclusion together with the first two inequalities of Corollary 2 implies
that indeed (f1, f2)(∆2 \ Z) ⊂ U \ L. Let (z

(0)
1 , z

(0)
2 ) ∈ C2 be such that

0 < |z(0)
1 | < r and |z(0)

2 | < r2. If z
(0)
2 = 0 then obviously (z

(0)
1 , z

(0)
2 ) ∈ U (0)

r \L.

Suppose that z
(0)
2 6= 0. We have seen that

U (k)
r \ L = {(z(0)

1 , z
(0)
2 ) ∈ C2 : |z(0)

1 | < r|z(0)
2 |k, |z

(0)
2 |k+2 < r|z(0)

1 |}.

Hence we have to show that there exists k ≥ 0 such that
|z(0)2 |k+2

r
< |z(0)

1 | <
r|z(0)

2 |k (notice that
|z(0)2 |k+2

r
< r|z(0)

2 |k because |z(0)
2 | < r2 and we assumed that

r < 1). We let Ik := (
|z(0)2 |k+2

r
, r|z(0)

2 |k) ⊂ R. As
|z(0)2 |k+2

r
< r|z(0)

2 |k+1 it follows

that Ik ∩ Ik+1 6= ∅. At the same time I0 = (
|z(0)2 |2
r
, r) and limk→∞

|z(0)2 |k+2

r
= 0.

This implies that
⋃
k≥0 Ik = (0, r) and therefore |z(0)

1 | ∈
⋃
k≥0 Ik.

We prove now that (f1, f2)(∆2 \ Z) ⊂
⋃n−1
k=0 U

(k)
r \ L. To prove this it is

enough to show that for k ≥ n one has |f1(λ)| ≥ r|f2(λ)|k (and therefore

(f1, f2)(λ) 6∈ U
(k)
r for k ≥ n). However from Corollary 2, d) we have that

|f1(λ)| > |f2(λ)|k > r|f2(λ)|k for 1 ≤ |λ| ≤ 2. As f2(λ)k

f1(λ)
is a holomorphic func-

tion for k ≥ n, the maximum modulus principle implies that the inequality
is valid on ∆2.

We will verify that the hypothesis b) of Lemma 1 is satisfied. Let k ∈
{0, 1 . . . , n − 1} and let λ ∈ ∆2 \ Z such that |f1(λ)| < r|f2(λ)|k and
|f2(λ)|k+2 < r|f1(λ)|. We must show that |f1(λ)|2 < ρ|f2(λ)k+1 − f1(λ)| ·
|f2(λ)|k. We will distinguish two cases: k ≥ 1 and k = 0.

For k ≥ 1 we let Ak = {λ ∈ ∆2 : |f1(λ)| < r|f2(λ)|k} which is an open
subset of C. We will prove something stronger. Namely we will prove that
|f1(λ)|2 ≤ ρ

2
|f2(λ)k+1 − f1(λ)| · |f2(λ)|k on λ ∈ Ak.

To prove this inequality we will show that the quotient f1(λ)2/(f2(λ)k+1−
f1(λ))f2(λ)k is a holomorphic function on a neighborhood of Ak, we will check
the inequality on ∂Ak and we will apply the maximum modulus theorem.

Notice that due to Corollary 2 we have that Ak is relatively compact in
∆2 and therefore on ∂Ak we have that |f1(λ)| = r|f2(λ)|k. (It is not true,
however, that ∂Ak = {λ ∈ C : |f1(λ)| = r|f2(λ)|k}.)
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If l ≤ k − 1 and Pl(µ) = 0, then µ 6∈ Ak. Indeed, as the polyno-
mials Pj have no common zero, given the definition of f1 and f2, the or-
der of vanishing of fk2 at µ is greater than the order of vanishing of f1.
Therefor there exists a neighborhood U of µ such that on U \ {µ} we have
|f1(λ)| > r|f2(λ)|k. We deduce that 1

Pl
is holomorphic on a neighborhood of

Ak and hence we do not have to worry about the zeros of P1, P2, . . . , Pk−1

when proving that f1(λ)2/(f2(λ)k+1 − f1(λ))f2(λ)k is holomorphic. Using
the definition of f1 and f2 we see that we have to deal with the roots of
ε2k+1 · P k

1 (λ) · P k−1
2 (λ) · · ·Pk(λ) − Pk+2(λ) · P 2

k+3(λ) · · ·P n−k−2
n−1 (λ) · λn−k−1.

For ε small enough this polynomial has exactly dk+1 roots (counting multi-
plicity) inside ∆2. The purpose of the Lemma 3 is to show that they are
precisely the roots of Pk+1. Then in Lemma 4 we will prove the inequality
|f1(λ)|2 ≤ ρ

2
|f2(λ)k+1 − f1(λ)| · |f2(λ)|k.

Lemma 3. Pk+1(λ) is a divisor of ε2k+1 ·P k
1 (λ) ·P k−1

2 (λ) · · ·Pk(λ)−Pk+2(λ) ·
P 2
k+3(λ) · · ·P n−k−2

n−1 (λ) · λn−k−1.

Proof. For k = 0 we have to show that P1(λ) is a divisor of ε−P2(λ) · · ·P n−2
n−1 (λ)·

λn−1. However, by definition c1 = 1 and hence P1(λ) = ε−P2(λ) · · ·P n−2
n−1 (λ)·

λn−1 and therefore there is nothing to prove. Suppose that k ≥ 1. Notice that
for j ≤ k we have Pj ≡ εcj (mod Pk+1). It follows that ε2k+1 ·P k

1 ·P k−1
2 · · ·Pk−

Pk+2 ·P 2
k+3 · · ·P n−k−2

n−1 ·λn−k−1 ≡ ε2k+1 ·ε(k+1)c1 · · · εck−Pk+2 ·P 2
k+3 · · ·P n−k−2

n−1 ·
λn−k−1 (mod Pk+1). However 2k + 1 + kc1 + (k − 1)c2 + · · · ck = ck+1

and therefore ε2k+1 · P k
1 · P k−1

2 · · ·Pk − Pk+2 · P 2
k+3 · · ·P n−k−2

n−1 · λn−k−1 ≡
εck+1 − Pk+2 · P 2

k+3 · · ·P n−k−2
n−1 · λn−k−1 ≡ 0 (mod Pk+1).

Lemma 4. |f1(λ)|2 ≤ ρ
2
|f2(λ)k+1 − f1(λ)| · |f2(λ)|k for every λ ∈ Ak and

every k with 1 ≤ k ≤ n− 1.

Proof. We claim that on a neighborhood of Ak the meromorphic function

f 2
1 (λ)

(fk+1
2 (λ)− f1(λ)) · fk2 (λ)

is actually holomorphic. We consider first the case k ≤ n− 2 and we notice
that

fk+1
2 (λ)−f1(λ) = εP1(λ)·P 2

2 (λ) · · ·P k+1
k+1 (λ)·P k+1

k+2 (λ) · · ·P k+1
n−1 (λ)·λk+1

(
ε2k+1 ·

P k
1 (λ) · P k−1

2 (λ) · · ·Pk(λ)− Pk+2(λ) · P 2
k+3(λ) · · ·P n−k−2

n−1 (λ) · λn−k−1
)
.
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We have seen that all zeros of Pk+2 · P 2
k+3 · · ·P n−k−2

n−1 · λn−k−1 are inside
the disk {λ ∈ C : |λ| < 1

2
} ⊂ ∆2. At the same time from the definition

of ε and Corollary 1 it follows that on {λ ∈ C : 1 ≤ |λ| ≤ 2} we have
|ε2k+1 ·P k

1 ·P k−1
2 · · ·Pk| < |Pk+2 ·P 2

k+3 · · ·P n−k−2
n−1 ·λn−k−1|. Rouché’s theorem

implies that ε2k+1 ·P k
1 ·P k−1

2 · · ·Pk−Pk+2 ·P 2
k+3 · · ·P n−k−2

n−1 ·λn−k−1 has exactly
dk+2 + 2dk+3 + · · ·+ (n−k− 1)dn−1 +n−k− 1 = dk+1 zeros inside ∆2. Then
Lemma 3 implies that ε2k+1 ·P k

1 ·P k−1
2 · · ·Pk−Pk+2 ·P 2

k+3 · · ·P n−k−2
n−1 ·λn−k−1 =

Pk+1Q where Q is a polynomial which is nonvanishing on a neighborhood of
∆2. We have seen that on a neighborhood of Ak we have that P1 ·P 2

2 · · ·P k−1
k−1

is nonvanishing. Hence we it remains to show that

f 2
1 (λ)

P k
k · P

k+1
k+1 · P

k+1
k+2 · · ·P

k+1
n−1 · λk+1 · Pk+1 · P k

k · P k
k+1 · · ·P k

n−1 · λk

is holomorphic and this follows from the definition of f1.
For k = n− 1 Rouché’s theorem implies as above that fn2 − f1 = f1 ·Q1

where Q1 = ε2n−1P n−1
1 ·P n−2

2 · · ·Pn−1− 1 is nonvanishing on a neighborhood
of ∆2. It remains to notice that f1

fn−1
2

is holomorphic on a neighborhood of

An−1 and our claim is proved.
The maximum modulus principle implies that it is enough to check our

inequality on ∂Ak, hence we may assume that |f1(λ)| = r|f2(λ)|k. Then it
suffices to show that r2|f2(λ)|2k ≤ ρ

2
(r|f2(λ)|k − |f2(λ)|k+1) · |f2(λ)|k. There-

fore it is enough to show that r2 ≤ ρ
2
(r− |f2(λ)|). We have seen in Corollary

1 that |f2(λ)| ≤ r2. This means that it is enough to show that r2 ≤ ρ
2
(r− r2)

and this follows from our choice of r.

This Lemma takes care of the case 1 ≤ k ≤ n−1. It remains to deal with
k = 0. That means that we have to show that for every λ ∈ ∆2 \ Z that
satisfies |f1(λ)| < r and |f2(λ)|2 < r|f1(λ)| we have |f1(λ)|2 < ρ|f2(λ)−f1(λ)|.
This follows from the next Lemma.

Lemma 5. For every λ ∈ ∆2 we have |f1(λ)|2 ≤ ρ
2
|f2(λ)− f1(λ)|

Proof. Exactly as in the proof of Lemma 4 we get that
f2
1 (λ)

f2(λ)−f1(λ)
is holomor-

phic on a neighborhood of ∆2. Hence we have to check the inequality only
on ∂∆2. That is, it suffices to show that |f1|2 + ρ

2
|f2| ≤ ρ

2
|f1| on ∂∆2. This

follows from Corollary 1 (note that the two terms appearing on the left-hand
side of the inequality contain ε2 and the one on right contains ε).

14



Step 3. We show that the universal covering of W̃ (hence of W ) does not
satisfy the discrete disk property.

We will show first that W̃ ρ
r is simply connected. As each W̃

(k)
r,ρ is simply

connected, it suffices to show that W̃
(k)
r,ρ ∩W̃ (k+1)

r,ρ = U
(k)
r ∩U (k+1)

r is connected

for every k ∈ Z. Note that for points in U
(k)
r ∩ U (k+1)

r we have that ξ
(k)
2 6= 0,

ξ
(k+1)
1 6= 0, ξ

(k+2)
1 6= 0. Hence U

(k)
r ∩ U (k+1)

r ⊂ C2 where the coordinate

functions on C2 are x :=
ξ
(k)
1

ξ
(k)
2

and y =
ξ
(k+1)
2

ξ
(k+1)
1

. In this coordinates we have the

following: z
(k)
2 = z

(k+1)
2 = xy, z

(k)
1 = x2y, z

(k+1)
1 = x,

ξ
(k+2)
2

ξ
(k+2)
1

= xy2. Therefore

U (k)
r ∩U (k+1)

r = {(x, y) ∈ C2 : |y| < r, |x2y| < r}∩{(x, y) ∈ C2 : |xy2| < r, |x| < r}.

If |x| < r and |y| < r then |x2y| < r3 < r and |xy2| < r3 < r because we
have assumed that r < 1. it follows that

U (k)
r ∩ U (k+1)

r = {(x, y) ∈ C2 : |y| < r, |x| < r}.

In particular U
(k)
r ∩ U (k+1)

r is connected (even contractible).
We proved that gn(∆2) ⊂ W̃ ρ

r . It follows that the universal cover of W̃
(which contains W̃ ρ

r ) does not satisfy the discrete disk property.
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