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1 Introduction

If π : Cn+1 → Cn is the standard projection and D is a connected pseudocon-
vex domain in Cn+1 then π(D) is not necessarily pseudoconvex. Examples in
this sense were given in [5] and [8]. In [3] it was proved that any connected
open subset of Cn is the projection of a connected Runge open subset of
Cn+1. In this paper we will show that we can prescribe all projections of
connected Runge open subsets. Moreover we will be working with products
of Stein spaces. More precisely we will show that if X1 and X2 are Stein
spaces D1 ⊂ X1 and D2 ⊂ X2 are connected open subsets then we can find
D a connected Runge open subset of X1 × X2 such that the projections of
D on X1 and X2 are D1 and D2 respectively.

In [4] it was constructed a bounded and connected Runge open subset
of Cn which has smooth boundary and whose closure is not holomorphically
convex. We will show that in general the closure of a connected Runge
domain in a Stein space does not enjoy any special property. That is, we will
show that given a connected open set Ω in a Stein space X we can find D,
a connected Runge open subset of X such that D ⊂ Ω and D is dense in Ω.
This implies, of course, that D = Ω.
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2 Preliminaries

Throughout this paper all Stein spaces are considered to be reduced and of
finite embedding dimension.

Suppose that X is a Stein space and O is the sheaf of holomorphic func-
tions on X. If D is an open subset X, D is said to be Runge in X if D is
Stein and the restriction map O(X) → O(D) has dense image. If K ⊂ X is
a compact subset, we denote by

K̂ = {z ∈ X : |f(z)| ≤ sup
K
|f | for any f ∈ O(X)}

its holomorphically convex hull. K is called holomorphically convex (in X)

if K = K̂. The following facts were proved in [7]:
- K is holomorphically convex if and only if it has a fundamental system of
Runge neighborhoods.
- If φ : X → R is a strictly plurisubharmonic function and c ∈ R then
{x ∈ X : φ(x) < c} is Runge in X. If moreover φ is an exhaustion then
{x ∈ X : φ(x) ≤ c} is compact and {x ∈ X : φ(x) < c + ε} is a fundamental
system of Runge neighborhoods, hence {x ∈ X : φ(x) ≤ c} is holomorphically
convex.

The following theorem is Theorem 5.1 in [6].

Theorem 1. Let X be a Stein purely 1-dimensional space and Y ⊂ X be an
open subset. The following conditions are equivalent:
i) Y is Runge in X;
ii) the natural map H1(Y, Z) → H1(X, Z) is injective.

Proposition 1 was proved in [2].

Proposition 1. Let X a Stein space A ⊂ X be a closed analytic subset, K ⊂
X a holomorphically convex compact subset and L ⊂ A a holomorphically
convex compact subset with K ∩ A ⊂ L. Then K ∪ L is holomorphically
convex.

3 The Results

Proposition 2. Suppose that X is a Stein space, K and K ′ are compact
subsets of X such that K ∪ K ′ is holomorphically convex in X and Ω is a
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connected open subset of X such that K ⊂ Ω and K ′ ∩ Ω = ∅. Then there
exists F , a connected compact subset of X, such that K ⊂ F ⊂ Ω and F ∪K ′

is holomorphically convex.

Remark: When X = C, C \ Ω is finite and K ′ = ∅ this result is Lemma 3
in [9].

Proof. We can assume, of course, that Ω is relatively compact in X and
K ′ ∩ Ω = ∅. Since K ∪ K ′ is holomorphically convex there exists a C∞
strictly plurisubharmonic exhaustion function for X, φ : X → R, such
that K ∪ K ′ ⊂ {x ∈ X : φ(x) < 0} ⊂⊂ (Ω ∪ (X \ Ω)). It follows that
{x ∈ X : φ(x) < 0} is holomorphically convex in X. As K is compact, a fi-
nite set of connected components of {x ∈ X : φ(x) ≤ 0}, say F1, F2 . . . , Fp,
will cover K. Clearly K ′ ∪ F1 ∪ · · · ∪ Fp is holomorphically convex and
∪Fj ⊂ Ω. That means that we can assume from the beginning that K has
finitely many connected components. The rest of the proof will be done in
several steps.
Step 1. We assume that X is purely 1-dimensional and irreducible, and
K = K1 ∪ K2 where K1 and K2 are two connected compact subsets of X.
Since K1 ∪K2 ∪K ′ is holomorphically convex there exists φ : X → R a C∞
strictly subharmonic exhaustion function such that K1 ∪ K2 ∪ K ′ ⊂ {x ∈
X : φ(x) < 0} ⊂⊂ Ω ∪ (X \ Ω). Moreover, since Sing(X) is discrete, we
can assume that {x ∈ X : φ(x) = 0} ⊂ Reg(X) and that 0 is a regular
value for φ. It follows that {x ∈ X : φ(x) < 0} = {x ∈ X : φ(x) ≤ 0} is
holomorphically convex in X. Let D1 and D2 the connected components of
{x ∈ X : φ(x) < 0} that contain K1 and K2 respectively. We have that
(D1 ∪D2) = D1 ∪D2 and D1 ∪D2 ∪K ′is holomorphically convex. Of course
it might happen that D1 = D2 and then we can set F = D1. Suppose that
D1 6= D2. Then, as we assumed that 0 is a regular value for φ we have that
D1 ∩D2 = ∅. Let p1 ∈ D1 and p2 ∈ D2 any two points. Since Ω is connected
there exists γ : [0, 1] → Ω a path with γ(0) = p1 and γ(1) = p2. On the other
hand, as we assumed that X is irreducible, hence Reg(X) is connected, we
can assume that γ([0, 1]) ⊂ Reg(X) and that γ|(0,1) is a C∞ submersion. If we
let t0 = max{t ∈ [0, 1] : γ(t) ∈ D1} and t1 = min{t ∈ [0, 1] : γ(t) ∈ D2} and
we replace γ by γ|[t0,t1] we can assume on one hand that γ(0, 1)∩(D1∪D2) = ∅
and that D1 ∪ D2 ∪ γ([0, 1]) is connected. At the same time by perturbing
a little bit γ we can assume that, around t = 0 and t = 1, γ([0, 1]) is or-
thogonal to {x ∈ X : φ(x) = ε} for ε > 0 close enough to zero. We claim
that D1 ∪ D2 ∪ γ([0, 1]) ∪ K ′ is holomorphically convex. This is equivalent
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to D1 ∪D2 ∪ γ([0, 1])∪K ′ having a fundamental system of Runge neighbor-
hoods. Note that if we denote by D1,ε and D2,ε the connected components
of {x ∈ X : φ(x) < ε} that contain K1 and K2 respectively, and if we choose
D3,ε ⊂ ((X \ Ω) ∩ {x ∈ X : φ(x) < 0}) a fundamental system of Runge
neighborhoods for K ′ then {D1,ε∪D2,ε∪D3,ε}ε>0 is a fundamental system of
Runge neighborhoods for D1 ∪D2 ∪K ′ Since γ is a submersion, γ(0, 1) has
a tubular neighborhood, U . Let f : U → γ(0, 1) be a deformation retract.
By the above orthogonality we can assume that there exists δ1, δ2 ∈ (0, 1)
such that, for any small enough ε > 0, D1,ε ∪ f−1(γ(0, δ1)) has a deformation
retract onto D1,ε and D2,ε∪f−1(γ(δ2, 1)) has a deformation retract onto D2,ε.
At the same time H1(f

−1(γ( δ1
2
, δ1)), Z) = 0, H1(f

−1(γ( δ1
2
, 1+δ2

2
)), Z) = 0,

H1(f
−1(γ(δ2,

1+δ2
2

)), Z) = 0. It follows from a standard Mayer-Vietoris argu-
ment that the natural map H1(D1,ε ∪D2,ε ∪D3,ε, Z) → H1(D1,ε ∪D2,ε ∪ U ∪
D3,ε, Z) is an isomorphism. Since D1,ε∪D2,ε∪D3,ε is Runge in X, Theorem 1
implies that the natural map H1(D1,ε∪D2,ε∪D3,ε, Z) → H1(X, Z) is injective
and therefore the natural map H1(D1,ε ∪ D2,ε ∪ U ∪ D3,ε, Z) → H1(X, Z) is
injective. Applying again Theorem 1 we deduce that D1,ε ∪ D2,ε ∪ U ∪ D3,ε

is Runge in X. Clearly when we shrink U and let ε → 0 we obtain a funda-
mental system of neighborhoods for D1 ∪D2 ∪ γ([0, 1]) ∪K ′.
Step 2. We assume that X is purely 1-dimensional and irreducible (and
no other condition on K). By the discussion that we started the proof
with, we can assume that K has finitely many connected components say
K1, K2, . . . , Kn. Let Ω′ be a connected open set such that K1∪K2 ⊂ Ω′ ⊂ Ω
and (K3 ∪ · · · ∪Kn ∪K ′)∩Ω′ = ∅. Using Step 1 we can find F1 a connected
compact set such that K1 ∪ K2 ⊂ F1 ⊂ Ω′ and F1 ∪ K3 ∪ · · · ∪ Kn ∪ K ′ is
holomorphically convex. We apply this argument n− 1 times and we find F .
Step 3. We assume that X is purely 1-dimensional (not necessarily irre-
ducible). Since we assumed that Ω is relatively compact in X, Ω inter-
sects only finitely many irreducible components of X, say X1, X2, . . . , Xp,
and A = Ω ∩ (∪i6=j(Xi ∩ Xj)) is finite (we assume that Ω ∩ Xj 6= ∅ for
j = 1, 2 . . . , p). It follows that K ∪ K ′ ∪ A is holomorphically convex. Let
{Ωj,s}s be the finitely many connected components of Ω ∩Xj that intersect
K ∪ A. Note that, since (K ∪ A) ∩ Xj ⊂ ∪sΩj,s and {Ωj,s}s are pairwise
disjoint, it follows that (K ∪ A) ∩ Ωj,s are compact. As in Step 2 there ex-
ist Fj,s connected compact sets such that (K ∪ A) ∩ Ωj,s ⊂ Fj,s ⊂ Ωj,s and
(∪sFj,s)∪ (K ′ ∩Xj) is holomorphically convex. Applying now Proposition 1
we deduce that (∪j,sFj,s) ∪ K ′ is holomorphically convex. Let F = ∪j,sFj,s
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It remains to notice that F is connected. This is equivalent to showing
that for any two points x, y ∈ F there exists a connected set C such that
x, y ∈ C ⊂ F . So let x, y ∈ F . In particular x, y ∈ Ω which is connected and
open, hence path connected. Let γ be a path that joins x and y. If there
exists j such that γ ⊂ Xj then x and y are in the same connected component
of Ω ∩ Xj. Hence there exists s such that x, y ∈ Ωj,s. On the other hand
since x, y ∈ F there exist j1, s1, j2, s2 such that x ∈ Fj1,s1 and y ∈ Fj2,s2 .
If j1 = j then s1 = s and therefore x ∈ Fj,s. If j1 6= j, as Fj1,s1 ⊂ Xj1 it
follows that x ∈ Xj ∩ Xj1 ⊂ A. We deduce that x ∈ (K ∪ A) ∩ Ωj,s which
is contained in Fj,s. In both cases we get that x ∈ Fj,s. Similarly y ∈ Fj,s

and Fj,s is connected. If there is no j such that γ ⊂ Xj we can write γ as
γ = γ1γ2 · · · γq where for each l = 1, . . . , q there exists jl such that γl ⊂ Xjl

and jl 6= jl+1. Let al−1 and al be the endpoints of γl, a0 = x, aq = y. However
from al ∈ Xjl

∩Xjl+1
we get that al ∈ A and therefore al ∈ F . By what we

said before we can find C1, . . . , Cq connected sets such that al−1, al ∈ Cl ⊂ F .
Then x, y ∈ ∪Cl ⊂ F and ∪Cl is connected.
Step 4. The general case. As we mentioned at the beginning we can as-
sume that K has finitely many connected components. As in Step 2, it
suffices to prove the proposition when K has two connected components,
K1 and K2. For every x0 ∈ Ω let Ω(x0) be the set of all x ∈ Ω such
there exist x1, x2, . . . , xn = x points in Ω, there exist Y1, . . . Yn purely 1-
dimensional Stein subspaces of X and there exist U1, . . . , Un such that each
Uj is a connected open subset of Yj ∩ Ω (open in the topology of Xj) and
Uj ⊃ {xj−1, xj}. It follows from the arguments in [1] that Ω(x0) is open
for every x0 ∈ Ω. Since Ω(x) and Ω(y) are either disjoint or coincide,
∪x∈ΩΩ(x) = Ω and Ω is connected it follows that Ω(x) = Ω for every x.
We choose two points x0 ∈ K1 and x ∈ K2. We have that x ∈ Ω(x0)
and therefore there exist x1, x2, . . . , xn = x, Y1, . . . Yn and U1, . . . , Un as
above. We can assume that for i 6= j Yi and Yj have no common irreducible
component and, if we shrink Uj we can assume that Uj ∩ Yj+1 = {xj},
Uj ∩ Yj−1 = {xj−1} and Uj ∩ Yi = ∅ for i 6∈ {j − 1, j, j + 1}. It follows
that U = ∪Uj is a connected open subset of the 1-dimensional Stein space
Y = ∪Yj. Let V1, . . . , Vr, V1 ⊃ U , the connected components of Ω ∩ Y that
intersect K. Since K ∩ Y ⊂ ∪Vj it follows that each K ∩ Vj is compact and
(K ∩ V1) ∪ · · · ∪ (K ∩ Vr) ∪ (K ′ ∩ Y ) is holomorphically convex. By Step
3 we choose L a connected compact set such that (K ∩ V1) ⊂ L ⊂ V1 and
L∪(K∩V2))∪· · ·∪(K∩Vr)∪K ′∩Y is holomorphically convex. By Proposition
1 we have that [K∪K ′]∪ [L∪(K∩V2))∪· · ·∪(K∩Vr)∪(K ′∩Y )] is holomor-
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phically convex. However [K∪K ′]∪[L∪(K∩V2))∪· · ·∪(K∩Vr)∪(K ′∩Y )] =
K ∪ L ∪K ′ and K ∪ L = K1 ∪K2 ∪ L. As K1, K2 and L are connected and
K1 ∩ L 6= ∅, K2 ∩ L 6= ∅ we get that F := K ∪ L is connected.

Theorem 2. Suppose that X1 and X2 are two Stein spaces, D1 is a connected
open subset of X1 and D2 is a connected open subset of X2. Let π1 : X1 ×
X2 → X1 be the projection on the first coordinate and π2 : X1 × X2 → X2

be the projection on the second coordinate. Then there exists D a connected
open subset of X1 ×X2 such that D is Runge in X1 ×X2, π1(D) = D2 and
π2(D) = D2.

Proof. Let {Pk}k≥1 be a sequence of holomorphically convex compact subsets
of X1 and {Qk}k≥1 be a sequence of holomorphically convex compact subsets
of X2 such that ∪Pk = D1 and ∪Qk = D2. We will construct inductively
a sequence {Vm}m≥1 of connected open subsets of X1 × X2 and {Fm}m≥1 a
sequence of compact subsets of X1 ×X2 with the following properties:
1) Vm ⊂ Fm ⊂ Vm+1 and πj(Fm) ⊂ Dj for all m ≥ 1 and j ∈ {1, 2}
2) Vm is Runge in X1×X2 and Fm is holomorphically convex in X1×X2 for
all m ≥ 1
3) π1(V2m−1) ⊃ Pm and π2(V2m) ⊃ Qm

Note that if we manage to construct {Vm}m≥1 with these three proper-
ties and we set D = ∪Vm then since {Vm}m≥1 is an increasing sequence of
connected Runge open subsets of X1×X2 it follows that D is connected and
Runge and properties 1) and 3) guarantee that π1(D) = D2 and π2(D) = D2.

Let x1 be any point in X2. It follows that P1 × {x1} is holomorphically
convex in X1 × X2. We can find then φ : X1 × X2 → R a C∞ strictly
plurisubharmonic exhaustion for X1 ×X2 such that P1 × {x1} ⊂ {x ∈ X1 ×
X2 : φ(x) < 0} ⊂⊂ D1 ×D2. We choose V1 to be the connected component
of {x ∈ X1×X2 : φ(x) < 0} that contains P1×{x1} and F1 = {x ∈ X1×X2 :
φ(x) ≤ 0}.

Suppose now that we have constructed V1, . . . , V2m−1 and F1, . . . , F2m−1

and we construct V2m and F2m. Since π1(F2m−1) is a compact subset of
D1, π1(F2m−1) 6= D1. Let x2m ∈ D1 \ π1(F2m−1) be any point. We have
that {x2m} × Q2m is holomorphically convex. Moreover since {x2m} × X2

is an analytic subset of X1 × X2 and ({x2m} × X2) ∩ F2m−1 = ∅ it follows
that ({x2m} × Q2m) ∪ F2m−1 is holomorphically convex. By Proposition 2
there exists F a connected holomorphically convex compact subset of X
such that ({x2m} × Q2m) ∪ F2m−1 ⊂ F ⊂ D1 × D2. Let φ : X1 × X2 → R
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be a C∞ strictly plurisubharmonic exhaustion for X1 × X2 such that F ⊂
{x ∈ X1 × X2 : φ(x) < 0} ⊂⊂ D1 × D2. We choose V2m to be to be the
connected component of {x ∈ X1 × X2 : φ(x) < 0} that contains F and
F2m = {x ∈ X1×X2 : φ(x) ≤ 0}. The construction of V2m+1 and F2m+1 once
that we have constructed V1, . . . , V2m is completely similar.

Proposition 3. Suppose that X is Stein space and Ω is a connected open
subset of X. Then there exists D a connected open subset of Ω such that D
is Runge in X and D is dense in Ω.

Proof. Let {xm}m≥1 be a countable dense subset of Ω. As in the proof of
Theorem 2 we will construct inductively a sequence {Vm}m≥1 of connected
open subsets of Ω and {Fm} a sequence of compact subsets of Ω with the
following properties:
1) Vm ⊂ Fm ⊂ Vm+1 and xm ∈ Vm for all m ≥ 1 and j ∈ {1, 2}
2) Vm is Runge in Ω and Fm is holomorphically convex in Ω for all m ≥ 1.

Once that we have constructed this sequences we set D = ∪Vm. The
construction of V1 and F1 is straightforward. We assume that we have con-
structed V1, . . . , Vm−1 and F1, . . . , Fm−1 and we construct Vm and Fm. Since
Fm−1 is holomorphically convex, Fm−1∪{xm} is also holomorphically convex.
By Proposition 2 we can find a connected holomorphically convex compact
subset of X such that Fm−1∪{xm} ⊂ F ⊂ Ω. Let φ : X → R be a C∞ strictly
plurisubharmonic exhaustion for X such that F ⊂ {x ∈ X : φ(x) < 0} ⊂⊂ Ω.
We choose Vm to be the connected component of {x ∈ X:φ(x) < 0} that con-
tains F and Fm = {x ∈ X : φ(x) ≤ 0}.
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