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Abstract

We prove that a complex surface that contains an infinite Nori string of rational
curves is not ps-convex and that a covering of a 1-convex complex surface which does
not contain an infinite Nori string of rational curves is ps-convex.

1 Introduction

Let X be a 1-convex complex surface whose exceptional set is the compact complex curve A.
In this paper we are interested in studying the geometric convexity properties of unramified
coverings p : X — X. In general X is not holomorphically convex and not even weakly
pseudoconvex (i.e. it does not carry a plurisubharmonic continuous exhaustion function).
In [2] it was proved that X is ps-convex in the sense of [7], i.e. it can be written as an
increasing union of relatively compact strongly pseudoconvex domains.

In this paper we study the ps-convexity of X in the sense of [7] (see Definition 3 below).
Our main result (see Theorem 6) asserts that X is ps-convex if and only if A := p~(A)
does not contain an infinite Nori string of rational curves.

For arbitrary surfaces (not necessarily coverings of 1-convex surfaces) we are able to
show (Theorem 5) that they are not ps-convex if they contain an infinite Nori string of
rational curves (not necessarily exceptional).

We also give an example of a covering X of a 1-convex surface such that X is ps-convex
and ps-convex but its cohomology group H 1(5( ,Ox) is not separated. In our construction
X contains an infinite Nori string of irrational curves.

2 Preliminaries

Definitions 1 and 3 were given in [7].
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Definition 1. A complex manifold is called p3-convex if it has an exhaustion with relatively
compact strictly pseudoconvex domains.

The following theorem was proved in [2].

Theorem 1. Suppose that X is a 1-conver manifold and that the exceptional set of X has
dimension 1. Then any covering of X is p3-convez.

Definition 2. We denote by A the unit disk in C, A = {z € C: |z| < 1}. A holomorphic
disk in a complex space X is a function f : A — X which is holomorphic on A and
continuous on A.

Definition 3. We say that a complex space X is ps-convex (or that it satisfies the
Kontinuitdtssatz) if for every sequence of holomorphic disks {fy}nen, fu + A — X, if
Unen fn(0A) is relatively compact in X then | J, oy fn(4) is relatively compact in X.

Definition 4. An infinite Nori string is a connected 1-dimensional complex space which
is not compact but all its irreducible components are compact.

In [5] we proved the following.

Theorem 2. There exists a 1-convexr complex surface whose universal covering is not ps-
CONVEL.

On the other hand in [4] we proved that if X is a l-convex surface, p : X — X
is a covering and X does not contain an infinite Nori string of rational curves then X
satisfies a property which is weaker than ps-convexity. More precisely we were considering
a sequence of holomorphic functions f,, : U — X defined on the same neighborhood U of
A, we assumed that U,s1 fo(U \ A) is relatively compact in X and that fns1 converges
uniformly to a continuous function v : S' = {z € C : |z| = 1} — X and we proved that

U,.>; fu(A) is relatively compact in X. For the study of these two notions of convexity,
see [10].

The following theorem was proved in [3].

Theorem 3. Suppose that X and T are complex spaces and w: X — T is a holomorphic
map. Let to € T and Xy, := 7 '(ty). We assume that w is proper and surjective and
that dimX,, = 1. Let 0 : X — X be a covering space and let X;, = o~ "(Xy,). If
Xto 1s holomorphically convex, then there exists an open neighbourhood ) of ty such that
(o) HQ) is holomorphically convex.

The next result was proved in [2].

Proposition 1. Let X be a 1-convex manifold with exceptional set S and p : X — X
any covemng Then there exists a strongly plurisubharmonic function qb X - [—00, 00)
such that p~1(S) = {¢ = —oc} and for any open neighbourhood U of S, the restriction
¢|X\p 1wy 8 an ezhaustion function on X\ p (U).



Definition 5. Suppose that X is a complex surface, A C X is a 1-dimensional compact
complex subspace, and A = U§:1 L; is its decomposition into irreducible components.

a) We say that A is a chain of P! if each L; is isomorphic to P!, for each j € {1,--- ,k—1},
L; and L;;; intersect transversely in precisely one point, and L; N L; = 0 for |i — j| > 2.
b) We say that A is a cycle of P! if each L; is isomorphic to P!, for each j € {1,--- ,k—1},
L; and L;;; intersect transversely in precisely one point, L; and L; intersect transversely
in precisely one point, and L; N L; = () for all other pairs (4, j), i # j.

For the next result, see [11].

Theorem 4. Suppose that X and X' are complex surfaces, A C X and A" C X' are
1-dimensional compact subspaces. Then in either one the following two situations:
a) A and A" are chains of P* of the same length and (L; - L;) = (L} - L) < =2 for
j=1k
b) A and A" are cycles of P! of the same length, (L; - L;) = (L} - L;) < =2 for j = 1,k
and there exists jo such that (Lj, - Lj,) < =3
there exists U C X and U' C X' biholomorphic neighbourhoods of A and respectively A'.

3 The Results

Theorem 5. Suppose that X is a smooth complex surface. If X contains an infinite Nori
string of rational curves, then X is not ps-conver.

Proof. After a locally finite sequence of blow-ups we obtain a complex surface X; and
a proper surjective morphism X; — Xsuch that X; contains an infinite Nori string of
rational curves as well and, moreover, this Nori string satisfies the following properties:

e all its irreducible components are smooth,
e any two irreducible components intersect in at most one point,
e any two irreducible components intersect transversely.

If we prove that X is not ps-convex, since the map X; — X is proper, we deduce that
X is not ps-convex as well. Hence we can assume from the beginning that X contains an
infinite Nori string of rational curves that satisfies the three properties listed above. It
follows then that there exists a sequence {F},},>o of smooth closed complex curves in X
such that each Fj is isomorphic to P', F} and Fj,; intersect in precisely one point and the
intersection is transversal, F; N F, = 0 if |j — k| > 2.

Let K C X be a compact subset such that Fy C K. -
We will prove that there exists a sequence of holomorphic disks {g,}, g, : A — X, such
that

1. g,(0A) C K



2. gu(A)NE, #10
The second property will guarantee that | g,(A) is not relatively compact in X.

We fix n > 1.

Let d = max{|F;-F;| : j = 0,...,n}+2 where F}- F; denotes the self-intersection of F}.
By blowing-up d + F} - F pomts on each Fj we obtam a surface Y together with a proper
map h:Y — X. If F CY,j=0,...,n are the proper transforms of Fj, then F F = —d.
If we manage to find g, : A — Y such that g,(0A) C h™}(K) and gn(A) N F, # 0 then
gn = ho g, will be the holomorphic disk in X that we are looking for. All these show that
we can assume from the beginning that F} - F; = —d for =0,...,n withd € N, d > 3.

Now we make a construction that was used in [5]. The main point about this construc-
tion is that it allows us to define holomorphic disks in an explicit manner.

We consider C* with coordinate functions (z1,23). We let Qp = C?, the coordinate
functions (z%o), zéo)) = (21, 22) and ag = (0,0). We consider €, to be the blow-up of € in
ao. Hence Qp = {(2, 20 1€ ¢y € Qg x P!+ 200 = 20¢Y and ay = (0,0,[0 :
1]) € ;. We let Q5 to be the blow up of €; in a; and Ly to be the proper transform of
the exceptional set of {2;. The subset of ), given by §§0) # 0 is biholomorphic to C? and

1 . &2 1) . _(0)

the coordinate functions are z;’ = o) and zy ' := zy . Moreover, in these coordinates
ay is defined by zg ) = 0, z2 = 0. We repeat this blowing-up process until we obtain a
complex surface 2,5 and n+ 1 smooth rational curves Ly, ... L,, each one of them having

self-intersection (—2).

The description of each Ly, is the following: we start with C? with coordinate functions
(zgk), zék)) we blow it up at the origin and then we blow it up again at the point (0,0, [0 : 1]).
We obtain a surface M and L is the proper transform of the exceptional divisor of the
first blow-up.

If in C? x P! x P! we write the coordinate functions as (2{ ), zé ), I3 (k). §2k)], I3 (h+1)

§§k+1)]) then M is given by

k) ~(k k) ~(k k) ~(k+1 k+1) (k) (k
A0 = SO0, O = gl

and L is given by the equations z%k) =0, §§k+1) = 0. This means that Ly = {(0,0, [ék) :
fék)], [1:0]): where [ék) : fék)] € P'}. We will blow-up p = d — 2 points on each L.

We fix now by, - - - , b, distinct complex numbers with |b;| =1Vj € {1,...,p}.

For each k € {0,...,n} and each j € {1,...,p} we consider the point bf of L; which
in the above description is given by b¥ = (0,0,[1 : b;],[1: 0]) € Ly, we blow-up Q4 at all
these points and we obtain §~n+2.~ We let Ly, to be the proper transform of L. Therefore:
each L is isomorphic to P!, Ly, - L, = —p +2= —d, Ly and L intersect in precisely one
point and the intersection is transversal, L; N Ly = 0 if |j — k| > 2.



It follows from Theorem 4, that a neighbourhood of £ J- - - |J £, in X is biholomorphic

to a neighbourhood of Lo J---|J L, in Qnio. Therefore it suffices to prove the following
statement.

Statement: For each neighbourhood W of [20 U--- Uf/n in §n+2 and for each compact
set K C §~2n+2 such that Ly C K there exist a holomorphic map gn - C — W such that

L g.(A)CcW
2. g,(0A) C K,
3. gn(A)N L, #0.

We fix W and K. The holomorphic map g, will be deﬁned as follows: We construct
two polynomial functions with convenient properties f; = 1 ) and fo= f2 and we will
let g, : C — (ng to be the proper transform of (fi, f2) : C — g after all the blow-ups
we made. We will denote by g, : C — §2,,,5 the proper transform of (f, fo) after the first
(n + 2) blow-ups.

We will construct in fact f; and f, such that g,(Ay) C W where Ay, = {2z € C : |2| < 2}.

We have to describe a fundamental system of neighbourhoods for Lo J- - - Ly.

First we notice that a fundamental system of nelghbourhoods for Ly, in the coordinates
1ntroduced above is the following: UMF) = {|§2/7€+1 | < |£1k+1 l, |z k)| < r}, r> 0. Then

( 2 ,52 —b;) are local coordinates around b;‘? and in these coordinates b;‘f is the origin and
Ly, is given by ZYg) = 0. When we blow-up 2,12 at b , locally we obtain {(z1 , ék) b, [wy :
wy)) : wl(ﬁék) —b;) = w2z§k)} and the proper transform of Ly, is given by w; = 0. It follows
that a fundamental system of neighbourhoods for L is given by {|w:| < p|ws|} for p >0
which outside Ly is given by

k k k k+1 k+1 k k
{0, 20 1e® ), (e ) e UM L 129] 16 < pled® — 0,6, Vi =Top).

We obtain in this way a fundamental system of neighbourhoods Vr(,];), r > 0,p > 0, for each
Ly and hence |J;_, V}(,l;) is a fundamental system of neighbourhoods for Lo - - - J L,. We

choose 1 > r > 0,1 > p > 0 such that |J;_, V}(,];) C W. Moreover we choose them such
that p
< =(1—=r).
51 =7)

In particular § > r.

If we are working outside Lo Uy L, and we express z%k), zék), ék), fék) in terms of

z1 and z, we obtain:

SB) _ oz
“1 T

2
2 2
£ zW .,
® — () — k1
2 2 2



Hence UM \ LoU---U L, is given by
{l2"2 <rlal, || < 7fz2]"}
and Vr(,';) \ LyU---U L, is given by
{l2a]2 < rlzl, || <vl2al®s |2a* < plza|® - |5* = bja|, Vi =T, p}
Note also that if we set Z := {\ € C: fi(\) = fo(\) = 0} then g, (Z) C Lo - Ln.

Remark 1. ’
a) (UFNUF N\ Lou- - ULy, is given by {|2o? < 7|z, |21] < 7|2} and UPNUY = 0
for [j — k| > 2.

b) {lz1] > 712/} 01 (Upey UF) = 0.

The construction of f; and f,.
eletc; =1 Fork=1,...,n—1 we define inductively

Cop1 =2k + 1+ plker + (K —D)ea+ -+ + ¢

e We set d,, = p and we define inductively downward

dy = p(dgs1 +2dgyo+ -+ (n—k)d, +n—k+1).
o Let N=2(n+1)(d; +dy+---+d,+ 1) and let € be a positive number such that
Ny r
°= <6> n+3 ()

e We define the following polynomials:
Py, () = = b;A,

Po(A) = 1] Pty V)

j=1
and, inductively downward for £k < n — 1,

e f; and f5 are defined by:
fi(A) = eP(NPE(A) - PY(A) - A"
f2(A) = E2PL M) P(N) - Pu(N) - A



Lemma 1. The polynomials defined above have the following properties:
1. deg P, = dj, and the absolute value of its leading coefficient is 1.

Py(0) # 0 and P; and Py, have no common zero for j # k.

If Pe(A) =0 then || < 5.

|P.(\)| < 3% for |\ < 2.

(3)™ < [PV < 3% for 1< A < 2.

6. || < L and |f2(N)| < Z for || < 2.
7. (0] < A for 1 < A < 2.
8 | f2NF < [N for 1 <X <2 and k> 1.

Proof. 1 and 2 are obvious. For 3 one uses backward induction and Rouché’s theorem.
Indeed, notice that if all the zeros of P;, j > k + 1, are inside {|A| < 55} then, since the
leading coefficient of P; has the absolute value equal to 1, we get, for || = 5, that | P;j(\)| >
(#)dj. Using our choice of &, we obtain then that |b; Pey1(A) P2 o(A) - - - PEF(A)A ] >
% for |A| = 5 and hence Py, and b;jPyy1 - P2, -+ PP~% - A""*1 have the same number
of zeros inside |A| < 2% As the two polynomials have the same degree and the latter one
has all its zeros in the disk |A| = 5, the former has also all its zeros inside || = 5.

The rest of the relations follow easily from 3. See also Corollaries 1 and 2 in [5]. O

Lemma 2. (fi, f2)(82\ 2) € Upoo UM\ (LoU--- U L)

Prozf. We have that U\ (Lo U -+ U L,) is given by {|z[**2 < r|z], |2 < rlzolf} =

2 1

{@ < |z1| < r|zo|F}. If |22] < r2 then (because r < 1) we have also that 22! =< 7|2aF.
n+2

These show that [ J;~, A \ (LoU---UL,) D {]z| < r? @ < |z1] <7} . By Lemma 1,

part 6, we have |fi(A)| < r and |f2(A\)] < r? for |A| < 2. At the same time we notice that
f2(>\)n+1

fi(y)
n+1
then 7%2(&’\))" < 1. By the maximum modulus principle the same inequality holds for

A\ € Ay. Therefore, if A € Ay, we have that |fi(\)] > 7| fo(A)|[" T > 2™, O

r

r

is a holomorphic function on C. By Lemma 1, part 8, we have that if A € 0A,,

Next we want to show that if for some A € Ay \ Z we have that (f1, f2)(\) € U \
(LoU---U Ly) then, in fact, (f1, fo)(A) € VE,\ (LoU--- U L,). This is the content of the
next proposition.

Proposition 2. Suppose that A € Ay \ Z and k € {0,1,...,n}. If [fi(N)| < r|f2(\)|F and
| f2(MFF2 < e[ f1(N)] then

LA < pl 2V = b ] [NIF ¥ =Top.



In order to prove Proposition 2 we need the following lemma which is in fact one of the
main motivations for the inductive construction of P.

Lemma 3. a) For every k € {0,1,...,n — 1} we have that
Piivy, is a divisor of e F'PF . PV Py — b Pypyy - P2y PIRTL AR

b) e HIPE. Py Py— b Pyyg- Py PrRol Ak = Piy1,-Q where Q is a polynomial
that does not vanish on As

Proof. a) For k = 0 this follows from the definition of P, . For & > 1 we notice that for
s < k we have:
Py, = €% (mod Ppy1) = P = ¢*P(mod Pq,) =

€2k+1plkr P = g2k-i—1-i—p(l<:cl.q_....q_ck) = O (mod Pk+1) — Pk+1,bj |52k+1P1k o Py — gtk
However e+ = Ppy1p, + 0jPryo - Prysg- - Pr=F=1. \n=k and the conclusion follows.

b) It follows from Lemma 1 and our choice of e that [e**+1PF. Py~ ... P| < |bjPrys -
P2 -+ ProR=l.\n=k| for 1 < |A| < 2. Hence, by Rouché’s theorem, e2#1PF. Py~1... p —
bjPiio - PE.g--- PP 51 X" and b;jPyio - P25+ Po71 . A"% have the same number
of zeros inside As. We have seen that all the zeros of each P, are inside A and hence
bjPiyo - Pl PP o1 X"k has dyyo 4+ 2djys + -+ (n—k = 1)d, +n—k = dj1 /p =
deg Py1,, zeros inside Ay. Therefore 241 PF . Pyl P —bjPyyg P2y PrRol\nk
and Pyy1p, have the same number of zeros counting multlphClty inside A, and therefore
their quotient does not vanish.

]

Proof of Proposition 2. We fix j.
We deal first with the case k = 0. We will to prove that |fi(A)[* < £]fa(X) — b; f1(N)]
for A € Ay. This will imply, of course that |fi(A\)[2 < p|fa(A) — b fi(N)| for X € Ay \ Z.

We notice first that ffl_(—/\)z is holomorphic on a neighbourhood of A,. Indeed
2(N)=b;f1(M)

fi(\)? _ eP - P p2rl N

fo(0) = bifi(A)  e—bjPy- P2 Pn=l.)\n
By the definition of P4, since ¢; = 1, we have that ¢ — 0, P - P;.--prl.\n = Py,
This implies immediately that indeed f(>\—l/>\)f(>\)
A, (in fact on C). Hence, by the maximum modulus principle, it suffices to show that
% < £ on 9A,. It suffices then to show that | f1(A)?| < 8] f1(A)] — &|f2(N)] which
is the same as |f1(A)?] 4+ &|o(N)] < Elf(N)|, Le. €| PP--- PIN"2| 4+ £e2|Py - PA| <
Le|Py--- PPA"|. Hence we want e(|Py--- P2 IN"H |+ £) < E|Py .- PPIX"| on OA,.

However this follows from Lemma 1, part 5, and (x).

Suppose now that k > 1. In this case we will show in fact that if | fo(\)]|*"2 < r|fi1(N)]
then |fi(A)? < &[N = b fi(N)] - [f2(AN)[F V). In order to do this we let Aj =

is holomorphic on a neighbourhood of

8



N e Ayt |V < rlf2(M)]F}. Notice that by Lemma 1, part 8, A, C A and hence
|fi()] = 7|f2(N)|*¥ on DAy, We also note that, for [ < k — 1, P, does not vanish on Ay.
Indeed the polynomials P, ..., P, have no common zero and the order of vanishing of f;
at a zero of P is (strictly) less than the order of vanishing f¥ at the same zero.

Then part b) of Lemma 3 and a direct computation shows that

fiN)
(271 = bifr(N) - 5 (V)

is holomorphic on a neighbourhood of Aj.
By the maximum modulus theorem, it suffices to show that

[fE)]
(£ ) = 0, i(N) - FE )

on A, hence for |fi(A)] = r|f2(A)|*. But then it suffices to prove that |[fZ()\)| <
)

<

N

| f2(A)[¥, this means that it suffices to show that 7> < 2(r — | f2(\)]) and, since | f2())]
it suffices to have r < £(1 —r) and this exactly the condition that we have imposed
and p. ]

All together, from Lemma 2 and Proposition 2 we deduce that g,(A\ Z) C U;_, V%, \

<I~L0UUI~/n> As we have already mentioned, ¢,(Z) C Lo\J---JLn. Therefore
gn(Z) - UZ:O ‘/7"1::,0 cw.

We prove now that we can choose r and p such that g,(0A) C K.

Since {V,?,} is a fundamental system of neighbourhoods for Ly it follows that there
exists 7 and p such that V,°, C K. Hence it suffices to show that g,(0A) C V;?,. We have
seen that Z C A. Therefore it suffices to show that for |[A\| = 1 the following inequalities
are satisfied: |fof> < r|fil, |f1] <7, [fi]* < plfa — b f1] for every j. That |fi| < r follows
from Lemma 1, part 6. The inequality |f1]|? < p|fa — b; f1] for every j was already proved.
It remains to deal with the first inequality. For |A| = 1 we have that:

r|Pspy - Py

|fol® < 7| f1] <= Pt PPN} < re|PLP?-- - PPA'"T | = &3 < B
1

This last inequality follows from Lemma 1, part 5, and ().

It remains to check that g,(A) N L, # (. Note that since A\ = 0 is a zero of order
1 for fy and order n + 1 for f; then ¢,(0) € L, (g, was the proper transform of (f, f2)
after the first (n + 2) blow-ups). Moreover §,(0) = (0,0, [f1(0) : f2T'(0)],[1 : 0]). Now

f%:(lo()o) = g2t pr0)--- P,(0) and () and Lemma 1, part 4, imply that |f€£1+(10()0‘)‘ # 1. In

particular g,(0) # b} and this implies that g,,(0) € L.
This finishes the proof of Theorem 5.




Proposition 3. Let X be a I-convexr manifold and let A be its exceptional set. Let also
p: X — X be a covering and A :=p~ Y(A). Ifdim A =1 and A is holomorphically convex
then X is holomorphically convez.

Proof. Let U be a neighbourhood of A such that p~ L(U) is holomorphically convex. Such
an U exists by Theorem 3 since dim A = 1 and A is holomorphically convex. Let U be
the Remmert reduction of p~*(U) and 1 : U—Ra strongly plurlsubharmonlc exhaustion
function. The same contractions of connected compact subspaces of p~'(U) (hence of A)
used to obtain U can be viewed as taking place in X and we obtain a complex space X
and a proper modification p : X — X. We have also that U is an open subset of X.

We let ¢ : X — [—00,00) be the plurisubharmonic function given by Proposition 1
and V' C X be an open neighbourhood of A such that V' € U. Since &‘X\p,l(v) is an
exhaustion we can find a strictly convex and increasing function y : R — R such that
Yo¢>1onp '(9V). Then ¢ : X — R defined as x o ¢ on X \ p~ (V) = X \ p~ (V)
and as max{x o ¢, 9} on p(p~'(V)) is a well-defined strictly plurisubharmonic exhaustion
function. Therefore X is Stein and hence X is holomorphically convex. ]

Lemma 4. Let A be a complex space of dimension 1 such that A does not contain as a
closed subspace an infinite Nori string of rational curves. If Ly, ..., Ly are finitely many

irreducible components of A, then there exists a holomorphically convex covering of A such
that LiJ-- -\ Ly is evenly covered.

Proof. We let A = J,.; Li be the decomposition of A into irreducible components. Hence
{1,...0k} CI. Welet Iy ={1,...,k}U{i € I: A, isrational} and [, = I\ I,. We set
Ay = U,e 1o Lis A= U, 1, Li- Because A does not contain an infinite Nori string of rational
curves we have that all connected components of Ay are compact. We let p : A — A;
be the universal covering of A; (or any other Stein covering), {b;,j € J} = AN A; and
{bjn:neN}=p ;) C A;. We consider A? countably many disjoint copies of Ay and
b} € Ap the points corresponding to b;.

Now we define A := (4, ||,en AG)/ ~ where ~ identifies b;,, and b}. Also we define
p:A— Abyp= pon A, and p is the identity on Ap. It is not dlfﬁcult to see that p
is a covering and A is holomorphically convex. Also AO is evenly covered and therefore
LiJ-- - Ly is evenly covered.

]

Theorem 6. Let X be a I-convex complex surface and p : X — X be a covering. Then X
18 ps-convex if and only if X does not contain an infinite Nori string of rational curves.

Proof. The only if part follows from Theorem 5. We prove the if part.

Let f, : A — X be a sequence of holomorphic disks such that f,(0A) C K where K is
a compact subset of X.

Let A be the exceptional set of X. Let W be a neighbourhood of A such that there
exists a continuous strong deformation retract W — A. It follows that there exists a strong
deformation retract p : p~ (W) — p~1(A).

10



We choose ¢ : X — R a plurisubharmonic function and 0 < b < a real numbers such
that 1);x\a is strictly plurisubharmonic, ¥4 =0, and A C {¢ < b} € {¢) <a} € W. We
set U ={1Y <a}and V = {¢ < b}.

We apply Proposition 1 and we choose ¢ : X - [—00,00) a strictly plurisubharmonic
function such that {¢p = —oo} = p~!(A) and for every open neighbourhood Q of A,
<;5| K\e-1(n) 1S an exhaustion. Let M = max,cx ¢(x). By the maximum principle we have
that ¢ o f,, < M on A.

Since ¢ g\ 4-1(y) 15 an exhaustion it follows that {¢ < M} \ p~'(V) is compact. Let
Ki=KU{¢ <M} \ p(V)) which is also compact. Let K, be another compact subset
such that Ky C p~!'(W) and the interior of Ky contains K; Np~'(U). We have that p(K3)
is a compact subset of p~1(A). We choose Ly, ..., L, finitely many irreducible components
of p~1(A) such that LyU---ULy, D p(K3). We apply Lemma 4 to obtain a holomorphically
convex covering A— p~(A) such that L; U---U L is evenly covered. We consider the
fiber product of this covering map and p and we obtain a covering p : W — p~ 1 (W) which
extends the covering A — p~1(A). Tt follows that p~'(Ly U--- U Ly) is evenly covered for
p. In particular K, is also evenly covered. We choose K a compact subset of W such that
P K, — Ky is a homeomorphism. Since U is strictly pseudoconvex, Proposition 3 implies
that p~'(p~*(U)) is holomorphically convex. Also since U is given by {1 < a} it follows
that f, '(p™*(U)) N A is Runge in A. Let €, ; be its connected components. Hence Q,, ;
are all simply connected.

We notice now that (f; 1(p™1(U))NA) C (A\ £, 1(p™1(V))) UIA and hence f,,(0, ;)
is contained in the interior of K. We let ], ; € (2, ; such that they have smooth boundary
and they are diffeomorphic to a disk, and, moreover f,(2,;\ €, ;) is still contained in the
interior of K,. Let f, : ﬁ:w' — p~Yp 1 (U)) be liftings of f”lﬁln,j such that fmj(@Q;L’j) C
K. Because p~'(p~'(U)) is holomorphically convex, it follows that | J f,, ; (ﬁ; ;) is contained

in a compact subset K3 of W. Hence fn (Z) C K1 U K, U K3 and the proof of the theorem
is complete. O

4 Some remarks regarding separation of cohomology

In [6] we proved that there exists a 1-convex complex surface X and a covering X of X
such that H'(X,Oy) is not separated. The main ingredients where:
e the ps-convexity of X,
e our construction from [5] of a I-convex surface X such that for its universal covering X
there exists a sequence of holomorphic disks g, : A — X such that

a) [Jgn(0A) is relatively compact and | g,,(A) is not.

b) there exist closed 1-dimensional analytic subsets A, of X such that g,(A) C A,.

It turns out that the following more general statement holds:

Proposition 4. Let X be a I-convex surface, A its exceptional set and p : X — X a
covering map. We assume that A has a closed subspace A, which is a cycle of P* such that
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p~ 1 (A1) has a noncompact connected component. Then H' (X, Ox) is not separated.

Proof. Let ¢ : X — [0,00) be a plurisubharmonic exhaustion function on X such that
A ={p =0} and ¢ is strictly plurisubharmonic outside A.
We prove first that there exist:
- a strictly pseudoconvex neighbourhood 2 C X of A, Q = {p < gy} for some g5 > 0,
- a sequence {B,} of closed 1-dimensional analytic subsets of p~!(Q), and
- a sequence of holomorphic disks &, : A — p~1(€Q),

such that h,(A) C B,, Uh,(0A) is relatively compact in p~*(Q2), and [Jh,(A) is not
relatively compact. This will imply, as in [6], that H'(p~(Q2), O) is not separated.

Let .oy,
chain of IPj’l. Let U?:g F; be the decomposition of A; into irreducible components and let
Ag be the union of all irreducible components of A that are not included in A;. After a
finite number of blow-ups we can assume that (FoUF,)NAy =0 and F;- F; = F;- F; < =3
for i,5 € {0,...,q). Of course, all these blow-ups can be performed in X as well and still
we obtain a covering.

Exactly as in [5], using the construction from the proof of Theorem 5, we can construct
a complex surface X’ containing a cycle of P!, A’ , A" = §:o F} with F} - F; = Fj - F} for

L; be the noncompact connected component of p~*(A;). This is an infinite

each j and a covering p’ : X’ — X’ such that X’ is not ps-convex. In fact X’ = Urkez VT(QI?)Q
and contains an infinite chain of P!, UJEZ L;. Here 0 <7y < 1and 0 < p; < 1. By Theorem
4, there exist U C X and U’ € X’ biholomorphic neighbourhoods of A; and respectively
A’. Let x : U — U’ be a biholomorphism. We let W C U be an open neighborhood of
A; that has a continuous deformation retract onto A; and W’ = x(W) C U’. We let X,
be the connected component of p~' (W) that contains |J;., L; and Xg be the connected
component of p'~!(W’) that contains {J;., L;. Then Xj is in fact the universal covering of
W and X| is the universal covering of W’. Let x : Xy — X, be the lifting of x. It follows
that y is a biholomorphism.

We choose 0 < 1 < 7r9 and 0 < p; < po such that UkeZ Vr(fz)l C X{}. Then

Urez %(112,1 will cover a neighbourhood of A’. The indices are chosen such that p’ (V}(l’fz,l) =
p’(Vr(llf;rqu)) D Fjif j =k (mod q+1). For j € {0,...,q} we set V; = p’(W(f,z)l) C W' and
Vi =x"1(V)).

We choose €9 > 0 such that Q := {¢ < &¢}, which is a strictly pseudoconvex neighbour-
hood of A, satisfies QNI(VyUV,) C V1 UV,_1. This is possible because (FyU F,) N Ay = 0.

Finally, we choose 0 < r < r; and 0 < p < p; such that » < £(1 —r) and UkGZij“p) C
P N X(Q)).

As in the proof of Theorem 5, we can construct a sequence of holomorphic disks,
9n i A = Upes V%) such that U gn(0A) is relatively compact in (J,c; V%) and Ugn(A)
is not. We let h, = g, o Y~ ! and we regard them as holomorphic disks in p~!(Q). Then
U hn(9A) is relatively compact in p~*(Q2) and |k, (A) is not.

At the same time there exist 1-dimensional analytic subsets B], which are closed in X,

such that g,(A) C BJ,. These analytic sets are nothing else than the intersection of X

12



with g,(C), g, being the proper transform of (f;, fo) where f; = fl("), fo = f2(n) are the
polynomials defined in the proof of Theorem 5. They are closed analytic subsets because
f1 and f5, being nonconstant polynomials, are proper maps from C to C. At the same
time, by construction, g,(C) N X{ C U;_, vk

Let B, = ¥ 1B, N (UrezVit)) N p~1(Q). Clearly h,(A) C B,. We claim that the
sets B, are closed analytic subsets of p~!(€2). That they are analytic is obvious. We have
to check that they are closed.

Because g, (A) is a compact subset of X} and g,(A) C Ukezw(llle, it follows that we
have to deal only with g,,(C\ A). That means that it suffices to show that Y ~'(g,(C\ A)N
(UrezVi ) N p=1(Q) is a closed subset of p~1(€).

We note now that Lemma 1 and our choice of ¢ imply that for |[A| > 1 we have
that |f1(A)| > 7|f2(N)]. This inequality and Remark 1, b) imply that (fi, f2)(C\ A) N
(Ukler(;f,)DQ) =0, i.e. gn(C\A)ﬂ(Ukzlwgfl)oz) = (). At the same time, since g,(C\A)NX] C
Ur—o W(Qlfzz and VT(QJ ),)2 N (Up—o V}(z’f)m) = () for j < —2 (see Remark 1, a)), we deduce that
g (C\A)N XN [UkeZ\{A,o}W(;fz)z)] =0.

The inclusion QN I(VyUV,) C Vy UV, implies that p~1(Q) N 8)2_1(‘4(1}11) UV
)Z_l(VT(;p? U Vr(ll,)pl). We deduce that

X ga(C\A) N X nax (V) UV P ) npTH(Q) = 0.

T1,P1
The following simple remark implies then that the sets B,, are closed in p~(£2).

Remark 2. Suppose that D, Dy, D, are open sets in a topological space such that D; C
D,. Let A be a closed subset of Dy. If ANOD; N D =0 then AN Dy N D is closed in D.

Indeed, we apply this remark for Dy = X, D = )2*1(1/,«(;,)11) U W(l%l), D =p Q) and
A=x"Hga(C\ A) NXG).
In order to finish the proof of the proposition we need the following;:

Lemma 5. Suppose that X is a 1-convex manifold with exceptional set A andp: X — X
is a covering. Let ¢ : X — [0,00) be a plurisubharmonic exhaustion function on X such
that A = {¢ = 0} and ¢ is strictly plurisubharmonic outside A. If the cohomology group
H'(p~{p < e}, Ox) is non-separated for some ¢ > 0 then H'(X,05) is non-separated.

Proof. (Sketch) Using “bumpings” (see [8]) we have that the morphism induced by restric-
tion H'(X,Ox) — H'({¢ < e}, Ox) is surjective and becomes injective when passing
to separates (see Proposition 1.3, page 346 in [1]). The bumpings on X induce bumpings
on X which gives easily that H(X,0%) — H'(p~'{¢ < g0}, Ox) is surjective and be-
comes injective when passing to separates. This implies, of course, the conclusion of the
lemma. O

Example 1. We give an example of a 1-convex surface X and a covering X of X such that
even though X does not contain an infinite Nori string of rational curves, H U(X,0%) is
not separated. Note that by Theorem 1 X is ps-convex and by Theorem 6 it is ps-convex.
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Let us start with a 1-convex complex surface Y with exceptional set A and a covering
py : Y — Y such that
o A = F,UF, where I} and F, are isomorphic with P!,
e [ and Fj intersect in precisely two points a and b and the intersection is transversal,
o [ -Fy=F-F,=-3,
e py' (A) = Upez Lk is an infinite chain of Pl py' (Fy) = UjGZ Logy1, py' (Fy) = Urez Lok-
We have seen that H'(Y, Oy ) is not separated.

For j € {1,2}, let F; — F; be the normal bundle of F; in Y. We choose simply
connected neighbourhoods U; of F; in Y such that U; is biholomorphic to a neighbourhood
V; of the zero section of F; and U; N Uy has two connected components U* > a and
U’ 2 b. The existence of U; follows from Theorem 4. See also [9]. Let ¢, : U; — V; be
biholomorphisms. We have that py' (U;) = U,z Ujx Where Uy, is a neighborhood of Loy
isomorphic via py with U; and Us, is a neighbourhood of Ly, isomorphic via py with Us.

Let S7 and Sy be two compact complex curves of genus > 1 and m : S; — Fi,
o : 8o — F5 be ramified coverings that have the same number, p, of points in the generic
fiber. This is possible if p is large enough. Moreover, we assume that a and b are not
ramification points for 7;. We pull-back F; to S; and we let ¢; : m;F; — F; be the
canonical maps. We have that 1; are also ramified coverings and by shrinking U; and U,
we can assume that ¢;(Uy N Us) is evenly covered by ¢;. We let o5 ' (¢;(U%)) = U], Vi
and %'_I(QSJ‘(UI))) = %7:1 Vlbg

Now we let X = o (Vi) |y ' (Va)/ ~, where, for [ = 1,...,p, ~ identifies, V% with
V% and Vlb1 with V}lg using the automorphisms induced by ¢; and ;. It follows that X is
a 1-convex surface and there exists a finite map f : X — Y. The exceptional set of X is
the union of two complex curves of genus g that intersect transversely in 2p points.

In a completely similar manner, by gluing ramified coverings of U;y, j € {1,2}, k € Z,
we can construct a covering X of X and a finite map f: X — Y.

Since H'(Y, Oy ) is not separated, we get that H 1(5( ;Ox) is not separated: simply
consider the canonical map Oy — f.Oz and the trace map f,O; — Oy. Their compo-
sition Oy — f*OX — Oy is an isomorphism. By passing to cohomology we deduce that
HY(Y,0;) — HYY, f,0y) is injective. Since f is finite, H' (Y, f,O) is isomorphic to
H'(X,0%) and the conclusion follows.

Given this example, a natural question is the following.

Problem. Suppose that X is a 1-convex surface and Xisa covering of X. If X is not
holomorphically convex, does it follow that H'(X,Ox) is not separated?

Remark 3. The complex surface X constructed in the above example is satisfies the
Kontinuitatssatz with respect to holomorphic disks but not with respect with 1-dimensional
analytic sets with boundary.
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