On complex spaces with prescribed singularities *

To the memory of our unforgettable teacher and shining example Hans Grauert

M. Colţoiu, K. Diederich, C. Joiţa

Abstract

For a given complex space Y we construct a complex space X such that Sing(X) = Y.

1 Introduction

For a reduced complex space X we denote by Sing(X) the set of singular points of X. In this paper we are dealing with the following question: given a reduced complex space Y, does there exist a reduced complex space X such that Sing(X) = Y. We show that the answer is "yes". Namely we prove the following theorem:

Theorem 1. Let Y be a reduced complex space. Then there exists a reduced complex space X such that:

1) Sing(X) = Y, $\dim(X) = \dim(Y) + 2$.

2) along Reg(Y), the complex space X has only quadratic singularities, (i.e. the product of a complex manifold of dimension $n = \dim(Y)$ and a surface with an isolated quadratic 2-dimensional singularity).

Moreover, if Y is normal then X can be chosen to be normal and if Y is locally irreducible then X can be chosen to be locally irreducible.

^{*}Mathematics Subject Classification (2000): 32C45, 32C15, 32C40

Key words: singularities, desingularization, holomorphically convex space, Remmert reduction, relatively exceptional, blowing down

If Y is a complex manifold the proof is trivial because one can choose $X = Y \times S$ where S has only one singular point. Obviously this argument does not work if $Sing(Y) \neq \emptyset$ because $Sing(Y \times S) = Sing(Y) \times S \bigcup Y \times Sing(S)$. To prove our main theorem we consider a resolution of singularities $\pi : \tilde{Y} \to Y$ (which exists by the results of E. Bierstone and P.D. Milmann [3], and J.M. Aroca, H. Hironaka, and J.L. Vicente [1]) and over \tilde{Y} we consider a rank 2 vector bundle $E \to \tilde{Y}$ which is relatively negative. On each fiber of E we have the equivalence relation $x \sim (-x)$. If we let $F := E/\sim$ we obtain a locally trivial fibration $\tau : F \to \tilde{Y}$ with typical fiber $\{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1 z_2 = z_3^2\}$ which has a quadratic 2-dimensional isolated singularity. From F we get the desired complex space X by applying the relative Remmert quotient theorem (see [12]) and Wiegmann quotient theorem [16].

In the embedded case, i.e. if Y is a complex subspace of a complex manifold Z, we give another construction of X using only Wiegmann quotient theorem. In this particular case we obtain:

Theorem 2. Suppose that Z is a complex manifold and Y is a closed subspace of Z. Then there exists a complex space X with the following properties: 1) Sing(X) = Y and dim(X) = dim(Z) + 1. 2) X is locally irreducible. 3) The normalization of X is smooth and therefore X is not normal at any point of Y. 4) If Z is connected then X is irreducible.

2 Preliminaries

Throughout this paper all complex spaces are assumed to be reduced.

We recall that a complex space X is called holomorphically convex if the holomorphically convex hull of every compact subset is compact.

Definition 1. A holomorphic map of complex spaces $\pi : X \to S$ is called holomorphically convex if for any point $s \in S$ there exists an open neighborhood U of s such that $X(U) := \pi^{-1}(U)$ is holomorphically convex. If for any point s we can find U such that X(U) is Stein then π is called a Stein morphism.

K. Knorr and M. Schneider in [12] proved the following result:

Theorem 3. Suppose that $\pi : X \to S$ is a holomorphically convex map between two complex spaces. Then there exist a complex spaces R and a holomorphic map $\rho : X \to R$, called the relative Remmert reduction of π , such that $\rho_* \mathcal{O}_X = \mathcal{O}_R$ (so ρ is proper, surjective, and has connected fibers) and a commutative diagram

with σ being a Stein morphism.

Throughout this paper a complex space X is called 1-convex if there exists a smooth exhaustion function $\phi : X \to \mathbb{R}$ which is strictly plurisubharmonic outside a compact subset $K \subset X$.

Definition 2. A holomorphic map $\pi : X \to S$ is called 1-convex if for any $s \in S$ there exists an open neighborhood U of s, a C^{∞} function $\phi : X(U) \to \mathbb{R}$ and a real number $c_0 \in \mathbb{R}$ such that: 1) $\phi_{|\{x \in X(U): \phi(x) > c_0\}}$ is 1-convex, 2) for every $c \in \mathbb{R}$ we have that $\pi_{|\{x \in X(U): \phi(x) < c\}}$ is a proper map.

The following Theorem is Satz. 3.4 in [12], see also [15].

Theorem 4. Every 1-convex map is holomorphically convex.

We recall the definition of a relatively exceptional set given in [12].

Definition 3. Suppose that $\pi : X \to S$ is a holomorphic map between two complex spaces and $A \subset X$ is a closed analytic subset such that $\pi_{|A}$ is proper and has nowhere discrete fibers. A is called relatively exceptional with respect to π if there exists a commutative diagram

where Y is a complex space and π' and Φ are holomorphic maps, such that: i) $\pi'_{|\Phi(A)}$ has discrete fibers,

ii) Φ induces a biholomorphism $X \setminus A \to Y \setminus \Phi(A)$, iii) $\Phi_*(\mathcal{O}_X) = \mathcal{O}_Y$. **Definition 4.** If $\pi : X \to S$ is a holomorphic map between two complex spaces and A is a closed analytic subset of X, then A is called maximally proper over S if $\pi_{|A}$ is proper, has nowhere discrete fibers and for any closed analytic subset A' of X with these two properties we have $A' \subset A$.

The following result is Satz 5.4 of [12].

Proposition 1. Suppose that $\pi : X \to S$ is a holomorphic map and $A \subset X$ is a closed analytic subspace of X. We assume that A has a neighborhood W such that $\pi_{|W}$ is 1-convex and A is maximally proper over S in W. Then A is relatively exceptional with respect to S.

We identify a vector bundle with the sheaf of germs of local sections in the bundle. Suppose that X is a compact complex space and $p : E \to X$ is a holomorphic vector bundle of rank r. We let $\pi : \mathbb{P}(E) \to X$ be the holomorphic fiber bundle for which $\pi^{-1}(x)$ is the space of all (r-1)dimensional linear subspaces of $p^{-1}(x)$. In general, for a coherent sheaf \mathcal{F} on X one ca associate a projective variety over $X, \mathbb{P}(\mathcal{F})$, obtaining in this way a contravariant functor. For details we refer to [9] and [5], Chapter 1. For the proof of the following theorem see [7] and [11].

Theorem 5. The following statements are equivalent:

a) $L = \mathcal{O}_{\mathbb{P}(E)}(1)$ is ample.

b) For every coherent sheaf \mathcal{F} on X there exists a positive integer m_0 such that $H^q(X, \mathcal{F} \otimes S^m(E)) = 0$ for every $q \ge 1$, $m \ge m_0$ ($S^m(E)$) denotes the *m*-th symmetric power of E).

c) For every coherent sheaf \mathcal{F} on X there exists a positive integer m_0 such that $\mathcal{F} \otimes S^m(E)$ is spanned by its global sections.

d) The zero section of E^* is exceptional.

e) The zero section of E^* has a strongly pseudoconvex neighborhood.

A vector bundle is called ample if the above equivalent conditions are satisfied. A vector bundle is called negative if its dual is ample.

We will need the following generalization in the relative case. Suppose that $\pi: X \to S$ is a proper holomorphic map and $p: E \to X$ is a holomorphic vector bundle.

Definition 5. a) E is called relatively negative if its restriction to every fiber of $\pi^{-1}(s)$ is negative in the sense of Grauert, i.e. the null-section has a strictly pseudoconvex neighborhood.

b) E is called relatively ample if its dual E^* is relatively negative.

c) $\pi: X \to S$ is called relatively ample if there exists a relatively ample line bundle $p: L \to X$.

For the next Lemma see Corollary 2.7 in [14]

Lemma 1. Suppose that s_0 is a point in S and $E_{|\pi^{-1}(s_0)}$ is negative. Then there exists a neighborhood U of s_0 such that $\pi \circ p$ is a 1-convex morphism on $p^{-1}(\pi^{-1}(U))$.

Corollary 1. If π has nowhere discrete fibers then E is relatively negative iff its null-section is relatively exceptional.

Remark: For more general results concerning the relative blowing down of complex spaces, see [6].

Suppose now that X and Y are complex spaces, $f: X \to Y$ is a proper holomorphic map, and $L \to X$ a holomorphic line bundle. It was proved in [14], Theorem 3.6, (using the results on 1-convex morphisms obtained in [12]) that L is relatively ample with respect to f if and only if for every coherent sheaf \mathcal{F} on X and every compact set $K \subset Y$ there exists a positive integer $n_0 = n_0(K, \mathcal{F})$ such that $R^q f_*(\mathcal{F}(n)) = 0$ on K for every $n \geq n_0$ and every $q \geq 1$ ($\mathcal{F}(n)$ stands for $\mathcal{F} \otimes L^n$). At the same time in [2], chapter 4, Théorème 4.1, it was shown that this last property implies that for every point $y \in Y$ there exist a neighborhood V of y and a large enough positive integer n such that, on $f^{-1}(V)$, the canonical morphism $f^{-1}(V) \to \mathbb{P}(f_*(L^n))$ is an embedding. Moreover, in the proof of this theorem of [2] (page 179) it was shown that by further increasing n we obtain that for every relatively compact open subset U of Y the canonical morphism $f^{-1}(U) \to \mathbb{P}(f_*(L^n))$ is an embedding for n large enough (n depending on U). Therefore putting together Theorem 3.6 in [14] and Theorem 4.1, chapter 4 in [2], when X and Y are compact, we have:

Theorem 6. If X and Y are compact complex spaces, $f : X \to Y$ is a holomorphic map, and $L \to X$ a holomorphic line bundle, the following are equivalent:

a) L is relatively ample with respect to f.

b) There exists n_0 such that $R^q f_*(\mathcal{F}(n)) = 0$ for every $n \ge n_0$ and every $q \ge 1$.

c) There exists n_0 such that the canonical morphism $f^*f_*\mathcal{F}(n) \to \mathcal{F}(n)$ is surjective for every $n \ge n_0$.

d) There exists n_1 such that $X \to \mathbb{P}(f_*(L^n))$ is an embedding for $n \ge n_1$.

Remark. From c) we have an embedding $X \hookrightarrow \mathbb{P}(f^*f_*L^n) = \mathbb{P}(f_*L^n) \times_Y X$, hence a map $X \to \mathbb{P}(f_*L^n)$. d) means that increasing n this map becomes an embedding.

The following Lemma is a folklore result (see e.g. [10] Exercise 5.12). For reader's convenience we provide a proof.

Lemma 2. Suppose that X and Y are compact complex spaces, $f : X \to Y$ a holomorphic map, $G \to Y$ an ample line bundle and $L \to X$ a relatively ample line bundle with respect to f. Then $L \otimes f^*G$ is ample on X.

Proof. Using Theorem 6, we choose a positive integer n such that we have an embedding j over Y:

such that $L^n = j^*(\mathcal{O}(1))$. By [9], Proposition 1.5, if $\mathcal{F}_1 \to \mathcal{F}_2$ is a sheaf epimorphism then one has an embedding $\mathbb{P}(\mathcal{F}_2) \hookrightarrow \mathbb{P}(\mathcal{F}_1)$ over Y which is linear over each fiber. Since G is ample it follows that, for ν large enough, $f_*L^n \otimes G^{\nu}$ is generated by global sections. Hence we have an epimorhism $\mathcal{O}_Y^k \longrightarrow f_*L^n \otimes G^{\nu}$ for some k. Because G is a line bundle we have that $\mathbb{P}(f_*L^n \otimes G^{\nu}) = \mathbb{P}(f_*L^n)$. Passing to the associated projective spaces, we get an embedding $h : \mathbb{P}(f_*L^n) \hookrightarrow Y \times \mathbb{P}^{k-1}$ over Y such that $\mathcal{O}(1)$ over $\mathbb{P}(f_*L^n)$ is the pull-back by h of the hypersection bundle of \mathbb{P}^{k-1} . Composing with jand using again the ampleness of G we get that $L^n \otimes f^*G^{\mu}$ is ample for every μ . In particular it is ample for $\mu = n$ and this in turn implies that $L \otimes f^*G$ is ample.

We will briefly recall some facts about desingularization of complex spaces (see [3]).

Let X be a complex space and $Z \subset X$ a smooth closed complex subspace. For any point $x_0 \in X$ we choose U an open neighborhood of x_0 together with a closed embedding $U \hookrightarrow B \Subset \mathbb{C}^N$ where B is an open ball in \mathbb{C}^N . Then Z corresponds to a complex submanifold W of B and we consider the blow-up of B with center W. In this blow-up we consider the proper transform of U and in this way we obtain the blow-up of U with center $U \cap Z$. This construction does not depend on the local embedding and the local blow-ups patch-up to get the blow-up of X with (smooth) center Z.

The following result (Theorem 13.4 of [3]) is the fundamental theorem of global desingularization of complex spaces.

Theorem 7. Any complex space X admits a desingularization $\pi : \tilde{X} \to X$ such that π is the composition of a locally finite sequence of blow-ups with smooth centers and $\pi^{-1}(Sing(X))$ is a divisor with normal crossings in \tilde{X} .

In this theorem locally finite means that on compact sets all but finitely many blow-ups are trivial.

Corollary 2. The desingularization $\pi : \tilde{X} \to X$ given by Theorem 7 is relatively ample, the relatively ample line bundle $p: L \to \tilde{X}$ corresponding to the exceptional divisor of π .

Proof. Let

$$\cdots \to X_3 \xrightarrow{\pi_3} X_2 \xrightarrow{\pi_2} X_1 \xrightarrow{\pi_1} X$$

be the sequence of blow-ups given by Theorem 7 and $L_j \to X_j$ the line bundle corresponding to the exceptional divisor of π_j . Each L_j is relatively ample with respect to π_j .

Suppose that x is a point in X. We consider the restrictions of L_1 and L_2 to $\pi_1^{-1}(x)$ and, respectively, $(\pi_1 \circ \pi_2)^{-1}(x)$ and we denote them by $L_1 \to \pi_1^{-1}(x)$ and $L_2 \to (\pi_1 \circ \pi_2)^{-1}(x)$. We have that $L_1 \to \pi_1^{-1}(x)$ is ample and $L_2 \to (\pi_1 \circ \pi_2)^{-1}(x)$ is relatively ample with respect to π_2 . We apply Lemma 2 and we deduce that $L_2 \otimes \pi_2^*(L_1) \to (\pi_1 \circ \pi_2)^{-1}(x)$ is ample.

We conclude that $L_2 \otimes \pi_2^*(L_1) \to X$ is relatively ample with respect to $\pi_1 \circ \pi_2$. We continue inductively this procedure and we obtain that the line bundle L defined, by abuse of notation, by $L = \bigotimes_{i \in \mathbb{N}} L_i \to \tilde{X}$ is relatively ample with respect to π .

The infinite tensor product of line bundles (and the entire construction) makes sense since the sequence of blow-ups is locally finite. \Box

Definition 6. ([16]) Suppose that (X, \mathcal{O}_X) is a complex space, F is a subset of $\mathcal{O}_X(X)$ and let $\phi_F : X \to \mathbb{C}^F$, $\phi_F(x) = (f(x))_{f \in F}$. a) (X, \mathcal{O}_X) is called F-separable if ϕ_F is injective. b) (X, \mathcal{O}_X) is called F-convex if ϕ_F is proper. *F*-separable means that functions in *F* separate the points of *X* and *F*-convex means that for every discrete sequence $\{x_n\}$ in *X* there exists a function $f \in F$ such that $\{|f(x_n)|\}$ is unbounded.

The following theorem, generalizing a result of R. Remmert, was proved by K.-W. Wiegmann [16].

Theorem 8. Suppose that (X, \mathcal{O}_X) is a reduced complex space and F is a subalgebra of $\mathcal{O}_X(X)$ such that (X, \mathcal{O}_X) is F-convex. Then there exists an F-convex and F-separable reduced Stein space (Y, \mathcal{O}_Y) together with a proper surjective holomorphic mapping $p : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ such that if $\pi : \mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$ is the induced morphisms of \mathbb{C} -algebras then $\pi(\mathcal{O}_Y(Y)) \supset F$. Moreover, (Y, \mathcal{O}_Y) is unique, up to isomorphism, with these properties, if F is closed in $\mathcal{O}_X(X)$ then $\pi(\mathcal{O}_Y(Y)) = F$ and if $F = \mathcal{O}_X(X)$ then π is an isomorphism.

The complex space (Y, \mathcal{O}_Y) is called the Remmert reduction of (X, \mathcal{O}_X) with respect to F and is denoted by $R_F(X, \mathcal{O}_X)$. Note that Remmert's theorem corresponds to the case $F = \mathcal{O}_X(X)$.

For a complex space (Z, \mathcal{O}_Z) we let $T(Z, \mathcal{O}_Z)$ be the underlying topological space Z and, for an open subset U of Z, $\Gamma_U(Z, \mathcal{O}_Z) = \mathcal{O}_Z(U)$. We recall briefly Wiegmann's construction. The topological space $T(R_F(X, \mathcal{O}_X))$ is defined as $T(R_F(X, \mathcal{O}_X)) = X/ \sim$ and p is the quotient map, where, for $x_1, x_2 \in X, x_1 \sim x_2$ if and only if $f(x_1) = f(x_2)$ for every $f \in F$. The structure sheaf is defined as follows. For $y \in T(R_F(X, \mathcal{O}_X))$ let m_y by the ideal of F that contains all function $f \in F$ that vanish on $p^{-1}(y)$. For every open subset U of $T(R_F(X, \mathcal{O}_X)), \Gamma_U(R_F(X, \mathcal{O}_X))$ is the algebra of all functions $g \in \mathcal{O}_X(p^{-1}(U))$ such that for every point $y \in U$ there exist a positive integer k, a convergent power series $\sum_{i_1,\ldots,i_k}^{\infty} c_{i_1,\ldots,i_k} T_1^{i_1} \cdots T_k^{i_k} \in \mathbb{C}[\langle T_1,\ldots,T_k \rangle]$ and $f_1,\ldots,f_k \in m_y$ such that $\sum_{i_1,\ldots,i_k}^{\infty} c_{i_1,\ldots,i_k} f_1^{i_1} \cdots f_k^{i_k}$ converges uniformly to g on a neighborhood of $p^{-1}(y)$.

Lemma 3. Suppose that (X, \mathcal{O}_X) is a reduced complex space, F and G are two subalgebras of $\mathcal{O}_X(X)$ such that (X, \mathcal{O}_X) is F-convex, $F \subset G$ and F is dense in G. Then the canonical morphism $R_F(X, \mathcal{O}_X) \to R_G(X, \mathcal{O}_X)$ is an isomorphism.

Proof. It follows from the discussion after Theorem 8 that if F is a dense subset of G then $T(R_F(X, \mathcal{O}_X)) = T(R_G(X, \mathcal{O}_X))$ and that for every open subset U of $T(R_F(X, \mathcal{O}_X))$ we have $\Gamma_U(R_F(X, \mathcal{O}_X)) \subset \Gamma_U(R_G(X, \mathcal{O}_X))$. Let \overline{F} be the closure of F (hence $G \subset \overline{F}$) and let $Y := T(R_F(X, \mathcal{O}_X))$. We have then $F \subset \Gamma_Y(R_F(X, \mathcal{O}_X)) \subset \Gamma_Y(R_G(X, \mathcal{O}_X)) \subset \Gamma_Y(R_{\overline{F}}(X, \mathcal{O}_X)) = \overline{F}$. As $\Gamma_Y(R_F(X, \mathcal{O}_X))$ and $\Gamma_Y(R_G(X, \mathcal{O}_X))$ are closed in $\mathcal{C}(Y)$ (the algebra of continuous functions on Y) and \overline{F} is the smallest closed subset containing F, it follows that the map $\Gamma_Y(R_F(X, \mathcal{O}_X)) \to \Gamma_Y(R_G(X, \mathcal{O}_X))$ is bijective. As both $R_F(X, \mathcal{O}_X)$ and $R_G(X, \mathcal{O}_X)$ are reduced Stein spaces it follows that the canonical morphism $R_F(X, \mathcal{O}_X) \to R_G(X, \mathcal{O}_X)$ is an isomorphism. \Box

In Wiegmann's theorem one needs X to be F-convex. In particular X has to be $\mathcal{O}_X(X)$ -convex which is a strong global condition. On the other hand, it may happen that $\mathcal{O}_X(X) = \mathbb{C}$ (e.g. if X is compact) and then the Remmert reduction is just a point. For our purpose we need to apply Wiegmann's theorem *locally*. To be able do this, we need a "patching" result. This is the purpose of the following proposition.

Proposition 2. Suppose that (X, \mathcal{O}_X) is a reduced complex space and $\{V_i\}_{i \in \mathbb{N}}$ is a locally finite open covering of X. Let F_i be a closed subalgebra of $\mathcal{O}_X(V_i)$, \sim_i be the equivalence relation on V_i induced by F_i $(x_1 \sim_i x_2 \text{ iff } f(x_1) = f(x_2) \forall f \in F_i)$, and $F_{ij} = F_{ji}$ be a closed subalgebra of $\mathcal{O}_X(V_i \cap V_j)$. We assume that:

a) $\mathcal{O}_X|V_i$ is F_i -convex,

b) $F_{i|V_i \cap V_i}$ is a dense subset of F_{ij} for every $i, j \in \mathbb{N}$,

c) $V_i \cap V_j$ is saturated with respect to \sim_i for every $i, j \in \mathbb{N}$.

Then there exists a reduced complex space (Y, \mathcal{O}_Y) , a proper holomorphic map $p: X \to Y$ and an open covering $\{U_i\}_i$ of Y such that $(U_i, \mathcal{O}_{Y|U_i})$ is isomorphic to $R_{F_i}(V_i, \mathcal{O}_X|V_i)$ and $p_{|U_i}$ is the canonical morphism given by Theorem 8.

Proof. We define the following relation on $X: x \sim y$ if and only if there exists $i \in \mathbb{N}$ such that $x, y \in V_i$ and $x \sim_i y$. Note that if $x \in V_i, y \in V_i \cap V_j$ and $x \sim_i y$ then using c) we get that $x \in V_i \cap V_j$ and by b) and Lemma 3 we get that $x \sim_j y$. This shows that \sim is an equivalence relation. Moreover, each V_i is saturated with respect to \sim . Let $Y = X/\sim$, endowed with the quotient topology, and $p: X \to Y$ be the quotient map. We set $U_i = p(V_i)$ which is an open subset of Y. By Wiegmann's construction of $R_{F_i}(V_i, \mathcal{O}_X | V_i)$ explained above we have that $T(R_{F_i}(V_i, \mathcal{O}_X | V_i)) = U_i$. We define the structure sheaf \mathcal{O}_Y as follows: if Ω is an open subset of Y and $f \in \mathcal{C}(\Omega)$ then $f \in \mathcal{O}_Y(\Omega)$ if and only if for every point $y \in U_i$ for some $i \in I$ there exists D an open subset of Y such that $D \subset \Omega \cap U_i$ and $f|_D \in \Gamma_D(R_{F_i}(V_i, \mathcal{O}_X | V_i))$. By Lemma

3 this definition does not depend on the choice of i. The fact that $(U_i, \mathcal{O}_{Y|U_i})$ is isomorphic to $R_{F_i}(V_i, \mathcal{O}_X|V_i)$ follows from the construction of the relative Remmert reduction.

Example. Suppose that $X = \mathbb{P}^1$. Let B_1, B_2, B_3 be three balls (in local coordinate charts) such that $B_1 \cup B_2 \cup B_3 = \mathbb{P}^1$ and $B_i \cap B_i$ is Runge in B_i for every $i, j \in \{1, 2, 3\}$. We assume that $a := [0:1] \in B_1 \setminus (\overline{B}_2 \cup \overline{B}_3)$. Let $F_2 = F_{22} = \mathcal{O}(B_2), \ F_3 = F_{33} = \mathcal{O}(B_3), \ F_1 = F_{11} = \{f \in \mathcal{O}(B_1) : f'(a) = 0\}$ and, for $i \neq j$, $F_{i,j} = \mathcal{O}(B_i \cap B_j)$. Then we are in the hypothesis of Proposition 2. Note that a holomorphic function f, defined in a neighborhood of the origin $0 \in \mathbb{C}$, satisfies f'(0) = 0 if and only if there exists a holomorphic function F of two variables, defined in a neighborhood of the origin in \mathbb{C}^2 , such that $f(z) = F(z^3, z^2)$ and the map $z \to (z^3, z^2)$ is a parametrization of the cusp singularity $\{(x, y) \in \mathbb{C}^2 : x^2 = y^3\}.$

We deduce that the complex space that we obtain by applying Proposition 2 is $Y = \{[z_0 : z_1 : z_2] \in \mathbb{P}^2 : z_0^2 z_2 = z_1^3\}$ and $p : \mathbb{P}^1 \to Y$ is given by $p([x_0 : x_1]) = [x_0^3 : x_0^2 x_1 : x_1^3].$

3 The results

Lemma 4. If X is a complex space then any open covering has a locally finite open refinement $\{\Omega_m\}_{m\in\mathbb{N}}$ such that Ω_m is Stein for every $m\in\mathbb{N}$ and the pair $(\Omega_{m_1}, \Omega_{m_1} \cap \Omega_{m_2})$ is Runge for every $m_1, m_2 \in \mathbb{N}$.

Proof. We consider $\{W_j\}_{j\in\mathbb{N}}, \{V_j\}_{j\in\mathbb{N}}, \{U_j\}_{j\in\mathbb{N}}$ locally finite countable open covering of X such that $\{U_i\}_{i\in\mathbb{N}}$ is a refinement of the given covering, $W_i \in$ $V_j \subseteq U_j$ and U_j is Stein for every $j \in \mathbb{N}$. For each $j \in \mathbb{N}$ and each $x \in \overline{W}_j$ we choose $\phi_{j,x}: U_j \to [0,\infty)$ a plurisubharmonic function such that:

a) $\phi_{j,x}(x) = 0$ and $\{z \in U_j : \phi_{j,x}(z) < 1\} \subset V_j$, b) if, for some $k \in \mathbb{N}, \{z \in U_j : \phi_{j,x}(z) < 1\} \cap \overline{V}_k \neq \emptyset$ then $\{z \in U_j : \phi_{j,x}(z) < 0\}$ $1\} \subset U_k.$

Then $\{z \in U_j : \phi_{j,x}(z) < 1\}_{x \in \overline{W}_i}$ is an open covering of \overline{W}_j . We extract a finite subcovering $\{z \in U_j : \phi_{j,s}(z) < 1\}_{s \in A_j}$ where A_j is a finite set and we set $\Omega_{j,s} := \{z \in U_j : \phi_{j,s}(z) < 1\}$. The $\{\Omega_{j,s}\}_{j,s}$ is a locally finite open covering of X. Since $\phi_{i,x}$ is plurisubharmonic on U_i each $\Omega_{i,s}$ is Stein. On the other hand, if $\Omega_{j,s} \cap \Omega_{k,l} \neq \emptyset$, as $\Omega_{k,l} \subset V_k$, we have that $\Omega_{j,s} \cap V_k \neq \emptyset$ and hence by property b) above we have that $\Omega_{j,s} \subset U_k$ This implies that $\Omega_{j,s} \cap \Omega_{k,l} = \{z \in \Omega_{j,s} : \phi_{k,l}(z) < 1\}$ which is Runge in $\Omega_{j,s}$, see [13]. If we choose a bijection $\chi : \mathbb{N} \to \{(j,s) : j \in \mathbb{N}, s \in A_j\}$ and we set $\Omega_m := \Omega_{\chi(m)}$ we get the desired family.

Proof of Theorem 1. Let $\nu: Y_1 \to Y$ be the normalization map and $\tau: Z \to Y_1$ be a desingularization map which is relatively ample. Let $p: L \to Z$ be a relatively negative line bundle (which exists by Corollary 2)and set $E := L \oplus L$.

Let $\sigma: \mathbb{C}^2 \to \mathbb{C}^2$, $\sigma(w) = -w$. Clearly $\sigma \circ \sigma$ is the identity of \mathbb{C}^2 and therefore we obtain a linear action of \mathbb{Z}_2 on \mathbb{C}^2 . It is easy to see that $\mathbb{C}^2/\mathbb{Z}_2$ is isomorphic to $\{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1 z_2 = z_3^2\}$ which is a normal surface with only one singular point of quadratic type. By linearity we obtain an action of \mathbb{Z}_2 on any rank-two vector bundle and in particular on the vector bundle E defined above. Let E be the quotient space of E through this action. We get then a locally trivial fibration $\tilde{p} : \tilde{E} \to Z$ with typical fiber $\{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1 z_2 = z_3^2\}$. Note that $Sing(\tilde{E}) = Z$ (the zero section). The composition $f := \tau \circ \tilde{p} : \tilde{E} \to Y_1$ is 1-convex, and hence is a holomorphically convex map. Thus we can consider the relative Remmert quotient associated to f. We obtain a complex space W_1 together with a map $g: E \to W_1$ such that $g_* \mathcal{O}_{\tilde{E}} = \mathcal{O}_{W_1}$. We get then a closed embedding $\sigma: Y_1 \hookrightarrow W_1$. Via this embedding Y_1 is the image through g of the nullsection of E. Note that g is biholomorphic outside the null-section and hence W_1 has singularities precisely on Y_1 . There is a natural holomorphic retraction $r: W_1 \to Y_1$, which is a Stein morphism, corresponding to the projection map $f: E \to Y_1$. Over the regular part of Y_1 the space W_1 has only quadratic singularities.

At this moment we reduced the proof of Theorem 1 to the following Lemma (relative contraction for finite maps) which will be applied to the normalization map.

Lemma 5. Let A and B be complex spaces and $m : A \to B$ be a finite surjective holomorphic map. We assume that A is a closed complex space of a complex space S and m admits a holomorphic extension $\tilde{m} : S \to B$ which is a Stein morphism. Then there exists a complex space T and a holomorphic map $\alpha : S \to T$ such that T contains B as a closed complex subspace, $\alpha_{|A|} = m$ and, outside B, α is a biholomorphism between $S \setminus A$ and $T \setminus B$.

Proof. Using Lemma 4 we choose a locally finite Stein covering $\{D_i\}_{i\in\mathbb{N}}$ of

B such that $D_i \cap D_j$ is Runge in D_i and in D_j for every $i, j \in \mathbb{N}$ and $\tilde{m}^{-1}(D_i) \subset S$ is Stein. Therefore $\tilde{m}^{-1}(D_i \cap D_j)$ is Runge in $\tilde{m}^{-1}(D_i)$ and in $\tilde{m}^{-1}(D_j)$ for every $i, j \in \mathbb{N}$. On $\tilde{m}^{-1}(D_i)$ we consider the set F_i of all holomorphic functions $f \in \mathcal{O}(\tilde{m}^{-1}(D_i))$ such that $f_{|A \cap \tilde{m}^{-1}(D_i)}$ comes from a holomorphic function on D_i , i.e. there exists a holomorphic function $g \in \mathcal{O}(D_i)$ with $f_{|A \cap \tilde{m}^{-1}(D_i)} = g \circ m$. Then F_i is a subalgebra of $\mathcal{O}(\tilde{m}^{-1}(D_i))$ and $\tilde{m}^{-1}(D_i)$ is F_i -holomorphically convex. Similarly we define the set F_{ij} of all holomorphic functions $f \in \mathcal{O}(\tilde{m}^{-1}(D_i \cap D_j))$ such that $f_{|A \cap \tilde{m}^{-1}(D_i \cap D_j)}$ comes from a holomorphic function on $D_i \cap D_j$. Applying Wiegmann quotient theorem to the subalgebras F_i we get a Stein complex space T_i containing D_i as a closed complex subspace. Using Proposition 2, these complex spaces $\{T_i\}_{i \in \mathbb{N}}$ can be glued together and we get the desired complex space T. This concludes the proof of Lemma 5 and of Theorem 1. □

Proof of Theorem 2. Suppose that Ω is a Stein manifold and A is a closed analytic subset of Ω . We denote by $\pi : \Omega \times \mathbb{C} \to \Omega$ the standard projection and we identify a holomorphic function $f \in \mathcal{O}(\Omega)$ with $f \circ \pi$. Hence we have $\mathcal{O}(\Omega) \subset \mathcal{O}(\Omega \times \mathbb{C})$. Let λ be the coordinate function on \mathbb{C} and $F := \{f \in \mathcal{O}(\Omega \times \mathbb{C}) : \frac{\partial f}{\partial \lambda} \equiv 0 \text{ on } A \times \{0\}\}$. Then: - F is a closed subalgebra of $\mathcal{O}(\Omega \times \mathbb{C})$ and $F \supset \mathcal{O}(\Omega)$,

- if $f \in \mathcal{O}(\Omega \times \mathbb{C})$ and $f_{|A \times \{0\}} \equiv 0$ then $f^2 \in F$.

Suppose that K is a compact subset of $\Omega \times \mathbb{C}$. Then \widehat{K}^F , the holomorphically convex hull of K with respect to F is a subset of $\widehat{K}^{\mathcal{O}_{\Omega \times \mathbb{C}}} \cup A$. Indeed, if $z \in \Omega \times \mathbb{C} \setminus (\widehat{K}^{\mathcal{O}_{\Omega \times \mathbb{C}}} \cup A)$ then there exists $f \in \mathcal{O}_{\Omega \times \mathbb{C}}$ such that $f_{|A \times \{0\}} \equiv 0$ and $|f(z)| > ||f||_K$. It follows that $|f^2(z)| > ||f^2||_K$ and $f^2 \in F$. At the same time from $\mathcal{O}(\Omega) \subset F$ we get that $\widehat{K}^F \subset \pi^{-1}(\widehat{\pi(K)}^{\mathcal{O}_{\Omega}})$. Hence $\widehat{K}^F \subset (\widehat{K}^{\mathcal{O}_{\Omega \times \mathbb{C}}} \cup A) \cap \pi^{-1}(\widehat{\pi(K)}^{\mathcal{O}_{\Omega}})$, which implies that \widehat{K}^F is compact and hence $\Omega \times \mathbb{C}$ is F-convex.

Similarly we can show that $\Omega \times \mathbb{C}$ is *F*-separable. Namely, for any two points $x, y \in \Omega \times \mathbb{C}$, if $x, y \in A \times \{0\}$ then we can choose $f \in \mathcal{O}(\Omega)$ with $f(x) \neq f(y)$ and if at least one of them is not in *A* we can choose $f \in \mathcal{O}(\Omega \times \mathbb{C})$ such that $f^2(x) \neq f^2(y)$. Let $(Y, \mathcal{O}_Y) = R_F(\Omega \times \mathbb{C}, \mathcal{O}_{\Omega \times \mathbb{C}})$, $p : \Omega \times \mathbb{C} \to Y$ the canonical morphism and $B = p(A \times \{0\})$, which is a closed analytic subset of *Y*. Since $\Omega \times \mathbb{C}$ is *F*-separable it follows that *p* is a homeomorphism.

We want to show next that $p: \Omega \times \mathbb{C} \setminus A \times \{0\} \to Y \setminus B$ is a biholomorphism

and hence, in particular $Sing(Y) \subset B$. It suffices to show that for any open subset U of $\Omega \times \mathbb{C} \setminus A \times \{0\}$ and any $x \in U$ we have that every holomorphic function f on U can be approximated, uniformly on a neighborhood of x by functions in F (this will imply that the functions in F give local coordinates outside $A \times \{0\}$). Let $c \in \mathbb{C}$ be such that $f(x) + c \neq 0$. We choose an open neighborhood V of x such that $V \subseteq U, \overline{V} \cap A = \emptyset, \overline{V}$ is holomorphically convex and there exists a holomorphic function g defined on a neighborhood of \overline{V} such that $g^2 = f + c$. It follows that we can find $\{h_j\}_{j\geq 0}, h_j \in \mathcal{O}(\Omega)$ such that $h_{j|A\times\{0\}} \equiv 0$ and $h_j \to g$ uniformly on \overline{V} . It remains to notice that $h_i^2 - c \in F$ and $h_i^2 - c \to f$ uniformly on \overline{V} .

Notice also that $F \supset \mathcal{O}(\Omega)$ implies that $p_{|\Omega \times \{0\}} : \Omega \times \{0\} \to p(\Omega \times \{0\})$ is a biholomorphism and hence $p_{|A} : A \to B$ is a biholomorphism.

We claim now that $B \subset Sing(Y)$. Let $y \in B$ and $x = p^{-1}(y) \in A$. If Y were smooth in y, it would be normal in y, hence it would be normal in a neighborhood of y, and therefore we could find $U \subset X$ an open neighborhood of x and $W \subset Y$ an open neighborhood of y such that p(U) = W and $p: U \to W$ is a biholomorphism. Therefore for every holomorphic function $f: U \to \mathbb{C}$ we would have that $f \circ p^{-1}$ is holomorphic on W. This would imply that we can approximate f, uniformly on a neighborhood of x, with functions from F. However the coordinate function $\lambda: U \to \mathbb{C}$ does not satisfy this property.

Lemma 6. Let M be a Stein manifold, $A \subset M$ a closed analytic subset and $U \subset M$ a Runge open subset of M. Then $\{f_{|U \times \mathbb{C}} : f \in \mathcal{O}(M \times \mathbb{C}), \frac{\partial f}{\partial \lambda} \equiv 0$ on $A \times \{0\}\}$ is dense in $\{f \in \mathcal{O}(U \times \mathbb{C}) : \frac{\partial f}{\partial \lambda} \equiv 0$ on $A \cap U \times \{0\}\}$ with the topology of uniform convergence on compacts. Here λ is the coordinate function on \mathbb{C} .

Proof. Let $f: U \times \mathbb{C} \to \mathbb{C}$ be a holomorphic function such that $\frac{\partial f}{\partial \lambda} \equiv 0$ on $A \cap U \times \{0\}$. Because $U \times \mathbb{C}$ is Runge in $M \times \mathbb{C}$ there exists a sequence of holomorphic functions $\{g_n\}_{n\geq 1}, g_n \in \mathcal{O}(M \times \mathbb{C})$, such that $g_n \equiv 0$ on $A \cap U \times \{0\}$ and $\{g_{n|U \times \mathbb{C}}\}_{n\geq 1}$ converges to $\frac{\partial f}{\partial \lambda}$. At the same time there exists a sequence $\{h_n\}_{n\geq 1}, h_n \in \mathcal{O}(M)$ such that $\{h_{n|U}\}_{n\geq 1}$ converges to f(z, 0). For each $n \geq 1$ we consider the following primitive with respect to λ of g_n : $f_n(z,\lambda) = \int_{\gamma} g_n(z,\xi) d\xi + h_n(z)$ where $\gamma: [0,1] \to \mathbb{C}$ is a path that joins $0 \in \mathbb{C}$ with λ . For $\gamma(t) = tz$ we get $f_n(z,\lambda) = \int_0^1 g_n(z,t\lambda) \lambda dt + h_n(z)$. We have then $\frac{\partial f_n}{\partial \lambda} = g_n \equiv 0$ on $A \times \{0\}$. At the same time, since both f and $\int_0^1 \frac{\partial f}{\partial \lambda}(z,t\lambda) \lambda dt$ are primitives for $\frac{\partial f}{\partial \lambda}$, we have $f(z,\lambda) = \int_0^1 \frac{\partial f}{\partial \lambda}(z,t\lambda) \lambda dt + f(z,0)$. Hence

$$f_n(z,\lambda) - f(z,\lambda) = \int_0^1 \left(g_n(z,t\lambda) - \frac{\partial f}{\partial \lambda}(z,t\lambda) \right) \lambda dt + (h_n(z) - f(z,0)).$$

Now, if $K \subset M \times C$ is a compact set, we choose K_0 , a compact subset of M, and $B \subset \mathbb{C}$ a compact disk centered at the origin such that $K \subset K_0 \times B$. Using $\|g_n - \frac{\partial f}{\partial \lambda}\|_{K_0 \times B} \to 0$ and $\|h_n - f(z, 0)\|_{K_0} \to 0$ we obtain easily that $\|f_n - f\|_K \to 0$.

Let now Z be a complex manifold and Y a closed complex subspace of Z. We use Lemma 4 and we choose an open Stein covering $\{\Omega_i\}_{i\in\mathbb{N}}$ of Z such that the pair $(\Omega_i, \Omega_i \cap \Omega_j)$ is Runge for every $i, j \in \mathbb{N}$. Let $F_i := \{f \in \mathcal{O}((\Omega_i) \times \mathbb{C}) : \frac{\partial f}{\partial \lambda} \equiv 0 \text{ on } Y \times \{0\}\}$ and, similarly, $F_{ij} := \{f \in \mathcal{O}((\Omega_i \cap \Omega_j) \times \mathbb{C}) : \frac{\partial f}{\partial \lambda} \equiv 0 \text{ on } Y \times \{0\}\}.$

We apply Wiegmann's quotient theorem to F_i and we use Proposition 2, to glue together the complex spaces thus obtained and we get the desired complex space X. Note that because a positive codimension analytic subset does not disconnect a complex manifold it follows that X is locally irreducible and, if Z is connected, X is irreducible. At the same time it follows from our proof that the normalization of X is $Z \times \mathbb{C}$.

 \square

Remarks: 1) In [4] the following result was proved : given a closed analytic subset A of \mathbb{C}^n , $codim(A) \geq 2$, there exists an irreducible analytic hypersurface $H \subset \mathbb{C}^n$ such that Sing(H) = A. This shows, in particular, that one can prescribe singularities for Stein spaces. However the construction in [4] cannot be used for arbitrary singularities since it is not functorial and the local models cannot be glued together to obtain a complex space with prescribed singularities.

2) The following problem was raised to the first author by C. Bănică in connection with the duality on complex spaces: could every complex space Z of bounded Zariski dimension be embedded as a closed analytic subset of a complex manifold?

3) The following problem remains open: suppose that Y is a reduced complex space, not necessarily normal. Is it possible to find a *normal* complex space X such that Sing(X) = Y?

4) If Y is a projective algebraic variety then one can construct a normal projective algebraic variety X such that Sing(X) = Y. We would like to thank Iustin Coandă for this remark.

Acknowledgments: We would like to thank the referee for very useful remarks.

The first and third named authors were supported by CNCS grant PN-II-ID-PCE-2011-3-0269.

References

- J.M. Aroca, H. Hironaka, J.L. Vicente: Desingularization theorems, (Mem. Math. Inst. Jorge Juan, No. 30) Madrid: Consejo Superior de Investigaciones Científicas 1977.
- [2] C. Bănică; O. Stănăşilă: Méthodes algébriques dans la théorie globale des espaces complexes. Troisième édition. Gauthier-Villars, Paris, 1977
- [3] E. Bierstone; P. D. Milman: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. *Invent. Math.* **128** (1997), no. 2, 207–302.
- [4] J.-P. Demailly: Construction d'hypersurfaces irréductibles avec lieu singulier donné dans Cⁿ. Ann. Inst. Fourier **30** (1980), no. 3, 219–236.
- [5] G. Fischer: Complex analytic geometry. Lecture Notes in Mathematics, Vol. 538. Springer-Verlag, Berlin-New York, 1976.
- [6] A. Fujiki: On the blowing down of analytic spaces. Publ. Res. Inst. Math. Sci. 10 (1974/75), 473–507.
- [7] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962), 331–368.
- [8] H. Grauert; R. Remmert: Bilder und Urbilder analytischer Garben. Ann. of Math. (2) 68 (1958), 393–443.
- [9] A. Grothendieck: Techniques de construction en géométrie analytique V. Fibrés vectoriels, fibrés projectifs, fibrés en drapeaux. Séminaire Henri Cartan; 13e année: 1960/61. Exposé no. 12, 15 pp.
- [10] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977

- [11] R. Hartshorne: Ample vector bundles. Publ. Math. Inst. Hautes Études Sci. No. 29 (1966), 63–94.
- [12] K. Knorr; M. Schneider: Relativexzeptionelle analytische Mengen. Math. Ann. 193 (1971), 238–254.
- [13] R. Narasimhan: The Levi problem for complex spaces. II. Math. Ann. 146 (1962), 195–216.
- [14] M. Schneider: Familien negativer Vektorraumbündel und 1-konvexe Abbildungen. Abh. Math. Sem. Univ. Hamburg 47 (1978), 150–170.
- [15] P. Siegfried: Un théorème de finitude pour les morphismes q-convexes. Comment. Math. Helv. 49 (1974), 417–459.
- [16] K.-W. Wiegmann: Uber Quotienten holomorph-konvexer komplexer Räume. Math. Z. 97 (1967), 251–258.

Mihnea Colţoiu

Simion Stoilow Institute of Mathematics of the Romanian Academy Research Unit 3 P.O. Box 1-764, Bucharest 014700, ROMANIA *E-mail address*: Mihnea.Coltoiu@imar.ro

Klas Diederich Mathematik, Universität Wuppertal Gausstr. 20, D-42095 Wuppertal, GERMANY *E-mail address*: klas@math.uni-wuppertal.de

Cezar Joița Simion Stoilow Institute of Mathematics of the Romanian Academy Research Unit 3 P.O. Box 1-764, Bucharest 014700, ROMANIA *E-mail address*: Cezar.Joita@imar.ro