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Abstract

We prove that if X is a projective algebraic space, Y is a normal
compact complex space and p : X → Y is a surjective morphism with
equidimensional fibers then Y is also projective algebraic.

1 Introduction

If X is a Kähler manifold, Y is a complex manifold, p : X → Y is a proper
holomorphic map, and p is equidimensional, then it follows by a result of
Varouchas [10] that Y is also Kähler. This result was extended in [11] to
complex spaces with singularities (under the flatness assumption of p). On
the other hand it is known that the image of a Moishezon space by a holomor-
phic map is itself Moishezon (see, for example [1]). The well-known result of
Moishezon [7] asserts that a compact complex manifold is projective if and
only if it is Kähler and Moishezon. A similar result does not hold for spaces
with singularities even for normal complex surfaces (see, e.g. [3]). In this
paper we consider morphisms p : X → Y of compact complex spaces with
equidimensional fibers such that X is a projective algebraic space. If X and
Y are assumed to be smooth it follows from the results mentioned above that
Y is projective algebraic.

Our main result (Theorem 2) states that if X is a projective algebraic
space, Y is a normal compact complex space and p : X → Y is a morphism
with equidimensional fibers then Y is also projective algebraic. When the
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fibers of p are 0-dimensional (i.e. p is a ramified covering map) this result was
obtained by Remmert and Van de Ven in [8]. For fibers of positive dimension
Theorem 2 was proved by C. Horst in [6], under the additional assumption
that Y has isolated singularities, using an analytic version of Chevalley’s
criterion of projectivity (see [2]). Note that the normality assumption is
essential (see e.g. [4] page 171, ex. 7.13 and [6]).

2 The Results

We denote by Pν,n the projective space that parametrizes homogeneous poly-
nomials F ∈ C[z0, . . . , zn] of degree ν. For F ∈ Pν,n we set Z(F ) := {[z0 :
· · · : zn] ∈ Pn : F (z0, . . . , zn) = 0}.

Lemma 1. Given a subvariety C, dim C ≥ 1, of Pn then {F ∈ Pν,n :
dim(Z(F ) ∩ C) = dim(C)} is a finite union of linear subspaces of Pν,n of
codimension at least ν + 1.

Proof. Let Cj, j = 1, . . . , k, be the irreducible components of C with dim Cj =
dim C. Then we have

{F ∈ Pν,n : dim(Z(F ) ∩ C) = dim(C)} = ∪k
j=1{F ∈ Pν,n : Z(F ) ⊃ Cj}.

Obviously each {F ∈ Pν,n : Z(F ) ⊃ Cj} is a linear subspace of Pν,n.
For the codimension inequality notice that if A1, · · · , Aν+1 are distinct

points on Cj for any fixed j then {F ∈ Pν,n : F (Al) = 0, l = 1, ν + 1}
has codimension ν + 1 in Pν,n. Indeed, as F (Al) = 0 is just a linear equa-
tion in Pν,n, it suffices to show that for each k ≤ ν there exists a homoge-
neous polynomial, F , of degree ν such that F (A1) = 0, . . . , F (Ak) = 0 and
F (Ak+1) 6= 0. To see this let Gl be homogeneous polynomials of degree 1
in z0, . . . , zn, l = 1, . . . , k, such that Gl(Al) = 0 and Gl(Ai) 6= 0 for i 6= l,
i = 1, . . . , k+1. We set F = Gi1

1 · · ·G
ik
k where i1, . . . , ik ≥ 1 are integers such

that i1 + · · ·+ ik = ν.

We denote by Cn,k,d the Chow variety that parametrizes subvarieties of
degree d and dimension k of Pn. We have then that Cn,k,d is a quasi-projective
variety and that the incidence set {(X, z) ∈ Cn,k,d × Pn : z ∈ X} is an
algebraic subset of Cn,k,d × Pn (see, for example [9]).
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Theorem 1. Suppose that n, k and d are integers, n, k, d ≥ 1. Then there
exists ν0 ∈ Z, ν0 ≥ 1, such that for every ν ∈ Z, ν ≥ ν0 there exists a
homogeneous polynomial F ∈ C[z0, z1, . . . , zn] of degree ν with the property
that Z(F ) ⊂ Pn contains no subvariety of Pn of dimension k and degree at
most d.

Proof. For 1 ≤ j ≤ d let Hj := {(X, F ) ∈ Cn,k,j × Pν,n : dim(Z(F ) ∩ X) =
k}. We prove that Hj is a closed algebraic subset of Cn,k,j × Pν,n. Let
H̃j = {(X, z, F ) ∈ Cn,k,j × Pn × Pν,n : z ∈ X, F (z) = 0}. Notice that
H̃j = H̃ ′

j ∩ H̃ ′′
j where H̃ ′

j = {(X, z) ∈ Cn,k,j × Pn : z ∈ X} × Pν,n and

H̃ ′′
j = Cn,k,j×{(z, F ) ∈ Pn×Pν,n : F (z) = 0}. As both H̃ ′

j and H̃ ′′
j are closed

algebraic subsets of Cn,k,j × Pn × Pν,n it follows that H̃j is a closed algebraic
subsets of Cn,k,j × Pn × Pν,n. Let πj : Cn,k,j × Pn × Pν,n → Cn,k,j × Pν,n be
the canonical projection. As Pn is compact it follows that πj is proper. If we
denote by π̃j : H̃j → Cn,k,j × Pν,n the restriction of πj to H̃j we have that π̃j

is also proper. It follows that {(X, F ) ∈ Cn,k,j ×Pν,n : dim π̃−1
j (X, F ) ≥ k} is

an analytic subset of Cn,k,j × Pν,n (by the semi-continuity of the dimension
of the fibers in the Zariski topology, see e.g. [12], page 240). However
π−1

j (X, F ) = {X}× (Z(F )∩X)×{F} and therefore dim π̃−1
j (X, F ) ≤ k. We

deduce that {(X, F ) ∈ Cn,k,j × Pν,n : dim π̃−1
j (X, F ) ≥ k} = Hj and hence

Hj is a closed analytic subset of Cn,k,j × Pν,n as claimed.
Let p1,j : Hj → Cn,k,j, p2,j : Hj → Pν,n be the canonical projections.

From Lemma 1 it follows that the fibers of p1,j have dimension at most
dim(Pν,n) − ν − 1 and therefore dim(Hj) ≤ dim Cn,k,j + dim(Pν,n) − ν − 1.
If we choose ν ≥ max{dim Cn,k,j : j = 1 . . . , d} then dim(Hj) < dim Pν,n.
Here the projections p2j are not necessarily proper, but we can nevertheless

conclude that
⋃d

j=1 p2,j(Hj) is of Hausdorff dimension ≤ 2n − 2 in Pν,n.
Therefore for almost every polynomial F ∈ Pν,n we will have that Z(F )
does not contain any irreducible component of X of dimension k for any
X ∈ Cn,k,j, j ≤ d.

For the next Lemma we assume that X is a closed subvariety of Pn, Y is
a reduced compact complex space and p : X → Y is a surjective morphism.
For y ∈ Y we set Xy := p−1(y). If dim Xy = m we denote by X

(m)
y the union

of all irreducible components of Xy of dimension m.

Lemma 2. If the fibers of p, Xy, y ∈ Y , have all the same dimension m

then there exists an integer d such that deg X
(m)
y ≤ d for every y ∈ Y
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Proof. We prove first that if y0 ∈ Y is any point then there exists U a
neighborhood of y0 and an integer dU such that deg X

(m)
y ≤ dU for every

y ∈ U . Indeed, let L be a linear subspace of Pn such that dim L = n−m− 1
and L ∩Xy0 = ∅. For some small connected neighborhood U of y0 we have
that L ∩Xy = ∅ for every y ∈ U . Let X(U) = p−1(U). Note that Pn \ L has
the structure of a holomorphic vector bundle π : Pn \ L → Pm and, for any

y ∈ U , π|X(m)
y

: X
(m)
y → Pm is a branched covering of degree dy = deg X

(m)
y .

We consider the analytic map G : X(U) → Pm × U , G(x) = (π(x), p(x)).
Then G is a proper finite surjective morphism. It follows that there exists
an integer dU such that dy ≤ dU for every y ∈ U .

The conclusion of the Lemma follows now from the compacity of Y .

Theorem 2. Suppose that X and Y are reduced compact complex spaces
and p : X → Y is a surjective holomorphic mapping. We assume that X
is projective algebraic, Y is normal and the fibers of p have all the same
dimension. Then Y is projective algebraic.

Proof. We will prove the theorem by induction on the dimensions of the
fibers of p. If p has discrete fibers this was proved in [8].

We assume now that we proved our theorem for every morphism such that
each fiber has dimension k − 1, k ≥ 1, and we consider a proper surjective
holomorphic mapping p : X → Y such that Xy := p−1(y) has dimension
k for each y ∈ Y . Let X ↪→ Pn be an embedding of X. It follows from
Lemma 2 that there exists a positive integer d such that deg X

(k)
y is at most

d for every y ∈ Y . We apply then Theorem 1 and we deduce that there
exists F ∈ C[z0, z1, . . . , zn], a homogeneous polynomial of sufficiently large
degree, such that Z(F ) contains no irreducible component of dimension k
of the fibers of p. Then for every y ∈ Y we have that Z(F ) ∩ Xy 6= ∅ and
dim Z(F ) ∩Xy = k − 1. If we let X1 := Z(F ) ∩X and p1 : X1 → Y to the
restriction of p we can apply the induction hypothesis and deduce that Y is
projective algebraic.

Remark: In [5], Theorem 2.6, Hironaka studied proper mappings π :
X → Y in the algebraic category and and showed that a generic hypersection
of X does not contain any fiber of Y . However his arguments rely heavily on
the algebraicity of Y .
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