On the image of an algebraic projective space *

M. Colţoiu, N. Gaşiţoi, C. Joiţa

Abstract

We prove that if X is a projective algebraic space, Y is a normal compact complex space and $p: X \rightarrow Y$ is a surjective morphism with equidimensional fibers then Y is also projective algebraic.

1 Introduction

If X is a Kähler manifold, Y is a complex manifold, $p: X \rightarrow Y$ is a proper holomorphic map, and p is equidimensional, then it follows by a result of Varouchas [10] that Y is also Kähler. This result was extended in [11] to complex spaces with singularities (under the flatness assumption of p). On the other hand it is known that the image of a Moishezon space by a holomorphic map is itself Moishezon (see, for example [1]). The well-known result of Moishezon [7] asserts that a compact complex manifold is projective if and only if it is Kähler and Moishezon. A similar result does not hold for spaces with singularities even for normal complex surfaces (see, e.g. [3]). In this paper we consider morphisms $p: X \rightarrow Y$ of compact complex spaces with equidimensional fibers such that X is a projective algebraic space. If X and Y are assumed to be smooth it follows from the results mentioned above that Y is projective algebraic.

Our main result (Theorem 2) states that if X is a projective algebraic space, Y is a normal compact complex space and $p: X \rightarrow Y$ is a morphism with equidimensional fibers then Y is also projective algebraic. When the

[^0]fibers of p are 0 -dimensional (i.e. p is a ramified covering map) this result was obtained by Remmert and Van de Ven in [8]. For fibers of positive dimension Theorem 2 was proved by C. Horst in [6], under the additional assumption that Y has isolated singularities, using an analytic version of Chevalley's criterion of projectivity (see [2]). Note that the normality assumption is essential (see e.g. [4] page 171, ex. 7.13 and [6]).

2 The Results

We denote by $\mathbb{P}_{\nu, n}$ the projective space that parametrizes homogeneous polynomials $F \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ of degree ν. For $F \in \mathbb{P}_{\nu, n}$ we set $Z(F):=\left\{\left[z_{0}\right.\right.$: $\left.\left.\cdots: z_{n}\right] \in \mathbb{P}^{n}: F\left(z_{0}, \ldots, z_{n}\right)=0\right\}$.

Lemma 1. Given a subvariety $C, \operatorname{dim} C \geq 1$, of \mathbb{P}^{n} then $\left\{F \in \mathbb{P}_{\nu, n}\right.$: $\operatorname{dim}(Z(F) \cap C)=\operatorname{dim}(C)\}$ is a finite union of linear subspaces of $\mathbb{P}_{\nu, n}$ of codimension at least $\nu+1$.

Proof. Let $C_{j}, j=1, \ldots, k$, be the irreducible components of C with $\operatorname{dim} C_{j}=$ $\operatorname{dim} C$. Then we have

$$
\left\{F \in \mathbb{P}_{\nu, n}: \operatorname{dim}(Z(F) \cap C)=\operatorname{dim}(C)\right\}=\cup_{j=1}^{k}\left\{F \in \mathbb{P}_{\nu, n}: Z(F) \supset C_{j}\right\} .
$$

Obviously each $\left\{F \in \mathbb{P}_{\nu, n}: Z(F) \supset C_{j}\right\}$ is a linear subspace of $\mathbb{P}_{\nu, n}$.
For the codimension inequality notice that if $A_{1}, \cdots, A_{\nu+1}$ are distinct points on C_{j} for any fixed j then $\left\{F \in \mathbb{P}_{\nu, n}: F\left(A_{l}\right)=0, l=\overline{1, \nu+1}\right\}$ has codimension $\nu+1$ in $\mathbb{P}_{\nu, n}$. Indeed, as $F\left(A_{l}\right)=0$ is just a linear equation in $\mathbb{P}_{\nu, n}$, it suffices to show that for each $k \leq \nu$ there exists a homogeneous polynomial, F, of degree ν such that $F\left(A_{1}\right)=0, \ldots, F\left(A_{k}\right)=0$ and $F\left(A_{k+1}\right) \neq 0$. To see this let G_{l} be homogeneous polynomials of degree 1 in $z_{0}, \ldots, z_{n}, l=1, \ldots, k$, such that $G_{l}\left(A_{l}\right)=0$ and $G_{l}\left(A_{i}\right) \neq 0$ for $i \neq l$, $i=1, \ldots, k+1$. We set $F=G_{1}^{i_{1}} \cdots G_{k}^{i_{k}}$ where $i_{1}, \ldots, i_{k} \geq 1$ are integers such that $i_{1}+\cdots+i_{k}=\nu$.

We denote by $C_{n, k, d}$ the Chow variety that parametrizes subvarieties of degree d and dimension k of \mathbb{P}^{n}. We have then that $C_{n, k, d}$ is a quasi-projective variety and that the incidence set $\left\{(X, z) \in C_{n, k, d} \times \mathbb{P}^{n}: z \in X\right\}$ is an algebraic subset of $C_{n, k, d} \times \mathbb{P}^{n}$ (see, for example [9]).

Theorem 1. Suppose that n, k and d are integers, $n, k, d \geq 1$. Then there exists $\nu_{0} \in \mathbb{Z}, \nu_{0} \geq 1$, such that for every $\nu \in \mathbb{Z}, \nu \geq \nu_{0}$ there exists a homogeneous polynomial $F \in \mathbb{C}\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ of degree ν with the property that $Z(F) \subset \mathbb{P}^{n}$ contains no subvariety of \mathbb{P}^{n} of dimension k and degree at most d.

Proof. For $1 \leq j \leq d$ let $H_{j}:=\left\{(X, F) \in C_{n, k, j} \times \mathbb{P}_{\nu, n}: \operatorname{dim}(Z(F) \cap X)=\right.$ $k\}$. We prove that H_{j} is a closed algebraic subset of $C_{n, k, j} \times \mathbb{P}_{\nu, n}$. Let $\tilde{H}_{j}=\left\{(X, z, F) \in C_{n, k_{2} j} \times \mathbb{P}^{n} \times \mathbb{P}_{\nu, n}: z \in X, F(z)=0\right\}$. Notice that $\tilde{H}_{j}=\tilde{H}_{j}^{\prime} \cap \tilde{H}_{j}^{\prime \prime}$ where $H_{j}^{\prime}=\left\{(X, z) \in C_{n, k, j} \times \mathbb{P}^{n}: z \in X\right\} \times \mathbb{P}_{\nu, n}$ and $\tilde{H}_{j}^{\prime \prime}=C_{n, k, j} \times\left\{(z, F) \in \mathbb{P}^{n} \times \mathbb{P}_{\nu, n}: F(z)=0\right\}$. As both \tilde{H}_{j}^{\prime} and $\tilde{H}_{j}^{\prime \prime}$ are closed algebraic subsets of $C_{n, k, j} \times \mathbb{P}^{n} \times \mathbb{P}_{\nu, n}$ it follows that \tilde{H}_{j} is a closed algebraic subsets of $C_{n, k, j} \times \mathbb{P}^{n} \times \mathbb{P}_{\nu, n}$. Let $\pi_{j}: C_{n, k, j} \times \mathbb{P}^{n} \times \mathbb{P}_{\nu, n} \rightarrow C_{n, k, j} \times \mathbb{P}_{\nu, n}$ be the canonical projection. As \mathbb{P}^{n} is compact it follows that π_{j} is proper. If we denote by $\tilde{\pi}_{j}: \tilde{H}_{j} \rightarrow C_{n, k, j} \times \mathbb{P}_{\nu, n}$ the restriction of π_{j} to \tilde{H}_{j} we have that $\tilde{\pi}_{j}$ is also proper. It follows that $\left\{(X, F) \in C_{n, k, j} \times \mathbb{P}_{\nu, n}: \operatorname{dim} \tilde{\pi}_{j}^{-1}(X, F) \geq k\right\}$ is an analytic subset of $C_{n, k, j} \times \mathbb{P}_{\nu, n}$ (by the semi-continuity of the dimension of the fibers in the Zariski topology, see e.g. [12], page 240). However $\pi_{j}^{-1}(X, F)=\{X\} \times(Z(F) \cap X) \times\{F\}$ and therefore $\operatorname{dim} \tilde{\pi}_{j}^{-1}(X, F) \leq k$. We deduce that $\left\{(X, F) \in C_{n, k, j} \times \mathbb{P}_{\nu, n}: \operatorname{dim} \tilde{\pi}_{j}^{-1}(X, F) \geq k\right\}=H_{j}$ and hence H_{j} is a closed analytic subset of $C_{n, k, j} \times \mathbb{P}_{\nu, n}$ as claimed.

Let $p_{1, j}: H_{j} \rightarrow C_{n, k, j}, p_{2, j}: H_{j} \rightarrow \mathbb{P}_{\nu, n}$ be the canonical projections. From Lemma 1 it follows that the fibers of $p_{1, j}$ have dimension at most $\operatorname{dim}\left(\mathbb{P}_{\nu, n}\right)-\nu-1$ and therefore $\operatorname{dim}\left(H_{j}\right) \leq \operatorname{dim} C_{n, k, j}+\operatorname{dim}\left(\mathbb{P}_{\nu, n}\right)-\nu-1$. If we choose $\nu \geq \max \left\{\operatorname{dim} C_{n, k, j}: j=1 \ldots, d\right\}$ then $\operatorname{dim}\left(H_{j}\right)<\operatorname{dim} \mathbb{P}_{\nu, n}$. Here the projections $p_{2 j}$ are not necessarily proper, but we can nevertheless conclude that $\bigcup_{j=1}^{d} p_{2, j}\left(H_{j}\right)$ is of Hausdorff dimension $\leq 2 n-2$ in $\mathbb{P}_{\nu, n}$. Therefore for almost every polynomial $F \in \mathbb{P}_{\nu, n}$ we will have that $Z(F)$ does not contain any irreducible component of X of dimension k for any $X \in C_{n, k, j}, j \leq d$.

For the next Lemma we assume that X is a closed subvariety of \mathbb{P}^{n}, Y is a reduced compact complex space and $p: X \rightarrow Y$ is a surjective morphism. For $y \in Y$ we set $X_{y}:=p^{-1}(y)$. If $\operatorname{dim} X_{y}=m$ we denote by $X_{y}^{(m)}$ the union of all irreducible components of X_{y} of dimension m.

Lemma 2. If the fibers of $p, X_{y}, y \in Y$, have all the same dimension m then there exists an integer d such that $\operatorname{deg} X_{y}^{(m)} \leq d$ for every $y \in Y$

Proof. We prove first that if $y_{0} \in Y$ is any point then there exists U a neighborhood of y_{0} and an integer d_{U} such that $\operatorname{deg} X_{y}^{(m)} \leq d_{U}$ for every $y \in U$. Indeed, let L be a linear subspace of \mathbb{P}^{n} such that $\operatorname{dim} L=n-m-1$ and $L \cap X_{y_{0}}=\emptyset$. For some small connected neighborhood U of y_{0} we have that $L \cap X_{y}=\emptyset$ for every $y \in U$. Let $X(U)=p^{-1}(U)$. Note that $\mathbb{P}^{n} \backslash L$ has the structure of a holomorphic vector bundle $\pi: \mathbb{P}^{n} \backslash L \rightarrow \mathbb{P}^{m}$ and, for any $y \in U, \pi_{\mid X_{y}^{(m)}}: X_{y}^{(m)} \rightarrow \mathbb{P}^{m}$ is a branched covering of degree $d_{y}=\operatorname{deg} X_{y}^{(m)}$. We consider the analytic map $G: X(U) \rightarrow \mathbb{P}^{m} \times U, G(x)=(\pi(x), p(x))$. Then G is a proper finite surjective morphism. It follows that there exists an integer d_{U} such that $d_{y} \leq d_{U}$ for every $y \in U$.

The conclusion of the Lemma follows now from the compacity of Y.
Theorem 2. Suppose that X and Y are reduced compact complex spaces and $p: X \rightarrow Y$ is a surjective holomorphic mapping. We assume that X is projective algebraic, Y is normal and the fibers of p have all the same dimension. Then Y is projective algebraic.

Proof. We will prove the theorem by induction on the dimensions of the fibers of p. If p has discrete fibers this was proved in [8].

We assume now that we proved our theorem for every morphism such that each fiber has dimension $k-1, k \geq 1$, and we consider a proper surjective holomorphic mapping $p: X \rightarrow Y$ such that $X_{y}:=p^{-1}(y)$ has dimension k for each $y \in Y$. Let $X \hookrightarrow \mathbb{P}^{n}$ be an embedding of X. It follows from Lemma 2 that there exists a positive integer d such that $\operatorname{deg} X_{y}^{(k)}$ is at most d for every $y \in Y$. We apply then Theorem 1 and we deduce that there exists $F \in \mathbb{C}\left[z_{0}, z_{1}, \ldots, z_{n}\right]$, a homogeneous polynomial of sufficiently large degree, such that $Z(F)$ contains no irreducible component of dimension k of the fibers of p. Then for every $y \in Y$ we have that $Z(F) \cap X_{y} \neq \emptyset$ and $\operatorname{dim} Z(F) \cap X_{y}=k-1$. If we let $X_{1}:=Z(F) \cap X$ and $p_{1}: X_{1} \rightarrow Y$ to the restriction of p we can apply the induction hypothesis and deduce that Y is projective algebraic.

Remark: In [5], Theorem 2.6, Hironaka studied proper mappings π : $X \rightarrow Y$ in the algebraic category and and showed that a generic hypersection of X does not contain any fiber of Y. However his arguments rely heavily on the algebraicity of Y.

Acknowledgments: The authors are grateful to Iustin Coandă for useful discussions.

References

[1] V. Ancona; G. Tomassini: Modifications analytiques. Lecture Notes in Mathematics, 943. Springer-Verlag, Berlin-New York, 1982.
[2] G. Fischer: Projektive Einbettung komplexer Mannigfaltigkeiten. Math. Ann. 234 (1978), no. 1, 45-50.
[3] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962), 331-368.
[4] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[5] H. Hironaka: Smoothing of algebraic cycles of small dimensions. Amer. J. Math. 90 (1968) 1-54.
[6] C. Horst: Über Bilder projektiv-algebraischer Räume. J. Reine Angew. Math. 324 (1981), 136-140.
[7] B. G. Moišezon: On n-dimensional compact complex manifolds having n algebraically independent meromorphic functions. Amer. Math. Soc. Transl. 63 (1967), 51-177.
[8] R. Remmert; T. van de Ven: Uber holomorphe Abbildungen projektivalgebraischer Mannigfaltigkeiten auf komplexe Räume. Math. Ann. 142 (1961), 453-486.
[9] I. R. Shafarevich: Basic algebraic geometry. Die Grundlehren der mathematischen Wissenschaften, Band 213. Springer-Verlag, New YorkHeidelberg, 1974.
[10] J. Varouchas: Stabilité de la classe des variétés kählériennes par certains morphismes propres. Invent. Math. 77 (1984), no. 1, 117-127.
[11] J. Varouchas: Kähler spaces and proper open morphisms. Math. Ann. 283 (1989), no. 1, 13-52.
[12] H. Whitney: Complex analytic varieties. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972.

Mihnea Colţoiu
Institute of Mathematics of the Romanian Academy P.O. Box 1-764, Bucharest 014700, Romania
E-mail address: Mihnea.Coltoiu@imar.ro
Natalia Gaşiţoi
Department of Mathematics, State University A. Russo
Str. Pushkin 38, MD-3121, Bălţi, Republic of Moldova
E-mail address: natalia_gasitoi@ yahoo. com
Cezar Joiţa
Institute of Mathematics of the Romanian Academy P.O. Box 1-764, Bucharest 014700, Romania
E-mail address: Cezar.Joita@imar.ro

[^0]: ${ }^{*}$ Mathematics Subject Classification (2000): 32J20, 32C22.
 Key words: projective algebraic space, Moishezon space, Kähler space.
 The first and third named author were supported by CNCS grant PN-II-ID-PCE-2011-3-0269.

