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Abstract

We prove that for a germ of normal isolated singularity (Y, y0)
obtained by contracting a curve if the fundamental group of the link
singularity is infinite then the universal covering of Y \ {y0} can be
written as the union of (n− 1) Stein open subsets.

1 Introduction

Let (Y, y0) be the germ of a normal 2-dimensional singularity and let K be
the associated link singularity. It was shown in [4] that if π1(K) is an infinite
group then the universal covering of Y \ {y0} is Stein for Y small enough.

In this paper we generalize this result to the case when (Y, y0) is a normal
isolated singularity of dimension n ≥ 2 obtained by contracting a complex
curve. More precisely we prove:

Theorem. Suppose that (Y, y0) is a germ of normal isolated singularity ob-
tained by contracting a curve, dim(Y ) = n ≥ 2 and K the corresponding link
singularity. If π1(K) is infinite then the universal covering space of Y \ y0,
for a small Y , can be written as the union of (n− 1) Stein open subsets. In
particular it is (n− 1)-complete.

The theory of q-convexity was introduced by A. Andreotti and H. Grauert
in [1] and is one of the basic tools in the study of the geometry of non-compact
complex spaces.
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2 Preliminaries

For the following result see [15].

Theorem 1. Let X be a complex space and p : Y → X a covering. If X is
Stein then Y is Stein as well.

Theorem 2 was proved by Y. T. Siu in [14].

Theorem 2. If X is a complex space and Y is a Stein subspace then there
exists an open Stein subset U of X such that Y ⊂ U .

Definition 1. Suppose that X is a Stein space and U is an open subset. We
say that U is Runge in X (or that the pair (U,X) is Runge) if U is Stein
and the restriction map O(X) → O(U) has dense image.

The following lemma is standard.

Lemma 1. Suppose that X is a complex space and {Xn}n≥1 is an increasing
sequence of Stein open subsets of X. If each pair (Xn, Xn+1) is Runge then⋃

n≥1Xn is Stein.

For the next lemma see [10].

Lemma 2. Suppose that X is a Stein space and φ : X → R is a plurisubhar-
monic function. Then for any r ∈ R the open set U = {x ∈ X : φ(x) < r} is
Runge in X.

The lemma bellow follows from the fact that for a connected locally ir-
reducible complex space the complement of a complex subspace of positive
codimension is connected.

Lemma 3. Suppose that π : X → Y is a proper morphism of complex spaces
and that there exists a discrete subset A of Y such that π : X\π−1(A) → Y \A
is a biholomorphism. If X is locally irreducible then Y is locally irreducible
as well.

The following result is Theorem 2 in [13].

Theorem 3. Let X be a locally irreducible Stein complex space of pure di-
mension 2 with isolated singularities and A ⊂ X a closed complex subvariety
without isolated points. Then X \ A is Stein.
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Remark: In [3] it was proved that if dim(X) = n ≥ 2 then X \ A is the
union of (n− 1) Stein open subsets.

Using Theorem 3 and Lemma 3 we obtain:

Corollary 1. Let X be a locally irreducible complex space of dimension 2
and A ⊂ X a 1-dimensional closed complex subspace. We assume that X
is a proper modification of a Stein space at a discrete set of points, A is
connected, it has at least one non-compact irreducible component, and X \A
has no compact subspaces of positive dimension. Then X \ A is Stein.

For the following Proposition see Remark a), page 165, in [12].

Proposition 1. Suppose that X is a 1-convex complex space and its ex-
ceptional set A is 1-dimensional. Then A has a neighborhood that can be
embedded into a space Cn × Pm.

The following theorem follows immediately from Theorem 2.4 in [12] using
a desingularization:

Theorem 4. Let X be a 1-convex manifold which is embeddable into a space
Cn×Pm. Then there exist V an open 1-convex neighborhood of the exceptional
set and Z a complex projective manifold such that V is an open subset of Z.

The following theorem was proved in [2] and [9].

Theorem 5. Let π : X → T be a proper holomorphic surjective map of
complex spaces, let t0 ∈ T be any point, and denote by Xt0 := π−1(t0) the
fiber of π at t0. Assume that dimXt0 = 1. Let σ : X̃ → X be a covering
space and let X̃t0 = σ−1(Xt0). If X̃t0 is holomorphically convex, then there
exists an open neighborhood Ω of t0 such that (π ◦σ)−1(Ω) is holomorphically
convex.

Lemma 4. Suppose that X is a Stein space and U and V are two Stein open
subsets of X. If (U,X) is Runge then (U ∩ V, V ) is also Runge.

Proof. Let K ⊂ U ∩ V be a compact set. We have to show that there
exists φ : V → R a plurisubharmonic function with K ⊂ {x ∈ V : φ(x) <
0} b U ∩ V . Let φ1 : X → R be a plurisubharmonic function such that
K ⊂ {x ∈ X : φ(x) < 0} b U and φ2 : V → R a plurisubharmonic
exhaustion function such that φ2|K < 0. Then φ = max{φ1, φ2} will have the
desired property.
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Corollary 2. Suppose that X is a complex space and Ω1, Ω2, U1 and U2

are open Stein subspaces of X such that U1, U2 ⊂ Ω1 ∩ Ω2. If (U1,Ω1) and
(U2,Ω2) are Runge then U1 ∩ U2 is Runge both in Ω1 and Ω2.

The next lemma was proved in [4].

Lemma 5. Let X be a Stein space and let Y , U be Stein open subsets such
that X = U ∪ Y . Assume that (Y ∩ U,U) is Runge. Then (Y,X) is also
Runge.

Theorem 6 was proved in [5]; for a more general result see [6].

Theorem 6. Suppose that X and Y are complex analytic subsets of some
neighborhood U of the origin in Cn such that 0 ∈ Y , Y ⊂ X and X \ Y
is smooth. If the dimension of each component of X \ Y is ≥ n and if Y
is defined in X by k holomorphic equations, the pair (Xε \ {0}, Yε \ {0}) is
(n− k − 1) connected for ε > 0 small enough.

In the above theorem Xε = {x ∈ X : ‖x‖ ≤ ε} and similarly for Yε. We
also want to recall the following definition:

Definition 2. A pair (X,A) with A
i
↪→ X is called k-connected if i∗ :

πj(A, {a}) → πj(X, {a}) is bijective for j < k and surjective for j = k,
for all a ∈ A.

Corollary 3. Suppose that X is a locally irreducible complex space such that
all its irreducible components have dimension at least n and Y is a subspace
of X. If X \ Y is smooth and Y is locally defined in X by at most n − 2
holomorphic equations, then Y is locally irreducible.

We shall need the following:

Definition 3. Let L be a connected 1-dimensional complex space and ∪Li

be its decomposition into irreducible components. L is called an infinite Nori
string if all Li are compact and L is not compact

Definition 4. a) If Ω is an open subset of Cn, and ψ : Ω → R is a smooth
function then ψ is called strictly q-convex if its Levi form has at least n−q+1
positive eigenvalues at every point.
b) Suppose that X is a complex space. A function φ : X → R is called strictly
q-convex if for every a ∈ X there exists an embedding of a neighborhood U
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of a as a closed analytic subset of an open subset Ω of Cn, for some n, and
ψ : Ω → R a smooth strictly q-convex function such that ψ|U = φ.
c) A complex space X is called q-complete if there exists φ : X → R a strictly
q-convex exhaustion function (i.e. {x ∈ X : φ(x) < c} b X for every c ∈ R).

3 The Results

Proposition 2. Suppose that Z is a complex projective variety, dim(Z) = n
and Y is a closed subvariety of Z, dim(Y ) = k, such that Sing(Z) ⊂ Sing(Y )
and k ≤ n−1

2
. Then there exists a principal hypersurface H of Z such that

Y ⊂ H and Sing(H) ⊂ Sing(Y ).

Proof. Let L be a positive line bundle on Z and let I the ideal of Y . It follows
(see for example [8]) that there exists m0 ∈ N such that for any m ≥ m0

the canonical map ψx : Γ(Z, I ⊗ Lm) → Γ(Z, I�mxI ⊗ Lm) is surjective
for every x ∈ Y . If x is a regular point of Y then Γ(X, I�mxI ⊗ Lm) =
Γ(X, I ⊗ O�mx ⊗ Lm) is a vector space of dimension n− k. It follows that
for such a point dim(Ker(ψx)) = N − n+ k where N = dim(Γ(Z, I ⊗ Lm)).

We consider the following diagram

R ↪→ Reg(Y )× Γ(Z, I ⊗ Lm)
p2−−−→ Γ(Z, I ⊗ Lm)

p1

y
Reg(Y )

where R = {(x, s) ∈ Reg(Y ) × Γ(Z, I ⊗ Lm) : ds(x) = 0}. Then dim(R ∩
p−1

1 (x)) = N −n+ k for every x ∈ Reg(Y ) and hence dim(R) ≤ N −n+ 2k.
We assumed that k ≤ n−1

2
and therefore dim(R) < N . We deduce that

p2(R) has measure zero. If s is a section in Γ(Z, I ⊗ Lm) \ p2(R) and we
set H = {x ∈ X : s(x) = 0} then H is smooth at every point of Reg(Y ).
Also it follows from Bertini’s theorem, see [7], that for almost every s the
hypersurface H is smooth at every point of Z \ Sing(Z), hence at every
point of Z \ Y . we deduce that Sing(H) ⊂ Sing(Y ) for almost every s ∈
Γ(Z, I ⊗ Lm).

Lemma 6. Suppose that C is a one-dimensional connected compact com-
plex space such that C has an irreducible component which is not locally
irreducible. Then there exists a connected infinite Nori string C̃ and an un-
branched covering map p : C̃ → C.
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Proof. Let C1 an irreducible component of C and x0 ∈ C1 a point such that
C1

x0
, the germ of C1 at x0 is not irreducible. Let ∪i∈I1Ci,x0 the decomposition

of C1
x0

into irreducible components (according to our assumption I1 has at
least two elements) and ∪i∈ICi,x0 the decomposition of Cx0 into irreducible
components I1 ⊂ I. Let U and V be open neighborhoods of x0 such that
U ⊂ V and there exist Ci, i ∈ I, closed analytic subsets of V which are
representatives for Ci,x0 . We pick an index j ∈ I1 and let C ′ = ∪i∈I\{j}Ci

which is a closed analytic subset of V . Let F :=
(
(C \ U)

⊔
C ′ ⊔Cj

)
/ ∼

where the equivalence relation is defined as follows: suppose that x is a point
in (C \ U) ∩ V . Note that (C \ U) ∩ V = (C ′ \ U) ∪ (Cj \ U) and that
C ′ \ U and Cj \ U are disjoint. Then if x ∈ C ′ \ U we identify it with the
corresponding point in C ′ and if x ∈ Cj \ U it with the corresponding point
in Cj. Note now that we have a projection τ : F → C whose fiber above x0

has exactly two elements, P ∈ C ′ and Q ∈ Cj and τ : F \ {P,Q} → C \ {x0}
is a biholomorphism. Note that F is connected and compact.

We consider now {Fk}k∈Z be 1-dimensional complex spaces, each one of
them biholomorphic to F via πk : Fk → F and Pk = π−1

k (P ), Qk = π−1
k (Q).

We set C̃ = (
⊔
Fk) / ∼ whereQk is identified with Pk−1. If we put p : C̃ → C,

p(x) = τ(πk(x)) for each x ∈ Fk \ {Pk, Qk} and p(Qk) = x0 we obtain an
unramified covering. Obviously C̃ is a connected infinite Nori string.

Remark. Let Tk be the equivalence class of Fk in C̃ and zk be the
unique intersection point of Tk and Tk+1 (i.e. zk is the equivalence class of
Qk). The identity map F → F induces a biholomorphism Tk → F which in
turn induces a biholomorphism gk : Tk → Tk+1. Then g : C̃ → C̃, g|Tk

= gk

is a (well-defined) covering transformation map.

Proposition 3. Let X and Y be two n-dimensional normal complex spaces,
n ≥ 3, y0 ∈ Y and π : X → Y a proper holomorphic map such that C =
π−1(y0) is a connected 1-dimensional complex space and π : X \C → Y \{y0}
is a biholomorphism. We assume that H1(C) is infinite and that there exists
a locally irreducible 2-dimensional complex subspace S of X with isolated
singularities such that C ⊂ S. Then there exist an open neighborhood W of
C in X and an unbranched covering p : W̃ → W such that p−1((S \C)∩W )
is Stein.

Proof. We consider C = ∪Ci the decomposition of C into irreducible com-
ponents. Because H1(C) is infinite we distinguish three possible cases:
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1) All irreducible components Ci are locally irreducible, their graph is a (con-
nected) tree, and at least one them has genus greater than or equal to 1.
2) There exists an irreducible component Ci0 which is not locally irreducible.
3) All irreducible components Ci are locally irreducible, and their graph con-
tains a cycle

Case 1) In this case let p : C̃ → C be a connected holomorphically con-
vex covering of C that has at least one non-compact irreducible component.
There exists such a covering because at least one irreducible component of C
has genus greater or equal to 1. We choose also an open neighborhood W1 of
C in X such that on one hand W1 has a continuous deformation retract onto
W1∩S and W1∩S has a continuous deformation retract onto C. We extend
the covering p : C̃ → C to a covering p : W̃1 → W1 which in turn induces
a covering p : S̃ → S ∩W1. We apply Theorem 5 and we deduce that we
can find a neighborhood W of C in X such that p−1(W ) is holomorphically
convex and therefore p−1(S∩W ) is holomorphically convex. Note that every
compact 1-dimensional subspace of p−1(S ∩W ) is included in C̃ and there-
fore p−1(S ∩W ) is a proper modification of a Stein space at a discrete set of
points. Corollary 1 implies then that p−1(S ∩W ) \ C̃ = p−1((S \C) ∩W ) is
Stein.

Case 2) We apply Lemma 6 and we get the covering space p : C̃ → C
such that C̃ is an infinite Nori string. As in Case 1, we choose an open
neighborhood W1 of C in X such that W1 has a continuous deformation
retract on W1 ∩ S and W1 ∩ S has a continuous deformation retract in S
onto C and we extend p to a covering p : W̃1 → W1 which induces a covering
p : S̃ → S∩W1. At the same time the covering transformation map g extends
to a covering transformation map g : S̃ → S̃. We are using here the notations
of the proof of Lemma 6 and of the Remark that follows. Let U0 ⊂ S̃ a strictly
pseudoconvex, relatively compact neighborhood of T0. For k ∈ Z, k > 0 we
denote by g(k) the k-th iterate g ◦ · · · ◦ g and for k ∈ Z, k < 0 we put
g(k) = (g−1)(k). We set Uk = g(k)(U0). Then Uk is a strictly pseudoconvex

neighborhood of Tk. Shrinking U0 we can assume that U0 ∩
(⋃

|k|≥2 Uk

)
= ∅

and that p|U0∩U1 and p|U0∩U−1 are 1-1. In particular U0 does not contain any
Tk, k 6= 0. It follows, obviously, that Up ∩Uq = ∅ if |k− p| > 1. By Corollary
1 Uk \ Tk−1 and Uk+1 \ Tk+2 are Stein open subsets of S̃. We choose now
an open Stein neighborhood B0 of z0 such that B0 ⊂ U0 ∩ U1 and that B0

is Runge both in U0 \ T−1 and in U1 \ T2 (see Corollary 2). Moreover we
assume that there exists V1 an open Stein neighborhood of y0 in Y such that
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V1 ⊃ p(B0). It follows from Lemma 4 that B0 \ C̃ is Runge both in U0 \ C̃
and U1 \ C̃. We set Bk = g(k)(B0). Note that p(Bk) = p(B0) for every k ∈ Z
and that Bk \ C̃ is Runge both in Uk \ C̃ and Uk+1 \ C̃.

We choose and φ : V1 → R a strictly plurisubharmonic exhaustion
function for V1 such that φ(y0) = 0, φ(y) > 0 for y ∈ V1 \ {y0}. Let
ε > 0 be such that V = {y ∈ V1 : φ(y) < ε} ⊂⊂ p(B0). We claim that
(p ◦ π)−1(V ∩ S) \ C̃ is Stein. To prove this we consider for k, l ∈ Z, l < k,
Ωk,l = (∪k

j=lUj) ∩ ((p ◦ π)−1(V ∩ S)) and Mk,l = Ωk,l \ C̃. Note that since
p(∂Uj1 ∩ ∂Uj2) ∩ B0 = ∅ for j1 6= j2 we have that each Ωk,l is a strictly
pseudoconvex, relatively compact open subset of S̃. Its maximal compact
1-dimensional subvariety is Tl ∪ · · · ∪ Tk which is exceptional. Hence Ωk,l is
1-convex. On the other hand C̃∩Ωk,l = (∪k

j=lTj)∪(Tk+1∩Ωk,l)∪(Tl−1∩Ωk,l).
Because Ωk does not contain Tk+1 or Tl−1 it follows from Corollary 1 that
Mk,l is Stein. Note now that Mk+1,l = Mk,l ∪ ((Uk+1 ∩ (p ◦ π)−1(V ∩ S)) \ C̃)
and that Mk,l ∩ ((Uk+1 ∩ (p ◦ π)−1(V ∩S)) \ C̃) = (Bk ∩ (p ◦ π)−1(V ∩S)) \ C̃
which by Lemma 2 is Runge in (Uk+1 ∩ (p ◦ π)−1(V ∩ S)) \ C̃. We deduce
from Lemma 5 that Mk,l is Runge in Mk+1,l. Similarly Mk,l is Runge in
Mk,l−1. Therefore Mk,−k is Runge in Mk+1,−k−1 for every k ∈ Z, k > 0.
As (p ◦ π)−1(V ∩ S) \ C̃ = ∪∞k=1Mk+1,−k−1 it follows from Lemma 1 that
(p ◦ π)−1(V ∩ S) \ C̃ is Stein as claimed.

Case 3) Let C1, C2 . . . , Ck be irreducible components of C such that
their graph forms a minimal cycle (i.e. no proper subset of {C1, C2 . . . , Ck}
forms a cycle). We contract C2 ∪ · · · ∪ Ck in X and we obtain a normal
complex space X ′. Let S ′ and C ′ the images of S and C respectively. It
follows from Lemma 3 that S ′ is locally irreducible. Notice at the same time
that C ′ is not locally irreducible anymore and hence we can apply Case 2.
We obtain a neighborhood W ′ of C ′ and a covering map p′ : W̃ ′ → W ′

such that p′−1((S ′ \ C ′) ∩W ′) is Stein. We pull-back this covering via the
contraction map and we obtain a covering for a neighborhood of C with the
desired property.

Theorem 7. Suppose that (Y, y0) is a germ of normal isolated singularity
obtained by contracting a curve, dim(Y ) = n ≥ 2 and K the corresponding
link singularity. If π1(K) is infinite, then the universal covering space of
Y \ y0, for a small Y can be written as the union of (n − 1) Stein open
subsets. In particular it is (n− 1)-complete.

Proof. If dim(Y ) = 2 the theorem was proved in [4]. Hence we assume that
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dim(Y ) ≥ 3. Let π : X → Y be a local resolution of singularities and C
the exceptional curve. As we assumed that n ≥ 3 it follows that H1(C) is
infinite since π1(C) is infinite (note that C has in X real codimension > 2 so
π1(X) = π1(X \ C)). On the other hand from Proposition 1 it follows that
C has a strictly pseudoconvex neighborhood which can be embedded into
a space Cn × Pm, and then by Theorem 4, there exist V an open 1-convex
neighborhood of the exceptional set and Z a complex projective manifold
such that V is an open subset of Z. We will show now that we can find S
a two-dimensional locally irreducible subvariety of Z such that Sing(S) ⊂
Sing(C) and Z \ S is the union of (n − 2) Stein open subsets. The local
irreducibility will follow from Corollary 3 if we can choose S to be a local
set-theoretic complete intersection. To obtain S we apply Proposition 2
(n − 2) times and we obtain a sequence of projective varieties H1 ⊃ H2 ⊃
· · · ⊃ Hn−2 =: S ⊃ C such that Hj+1 is a principal hypersurface in Hj and
Sing(Hj) ⊂ Sing(C). Each Hj \ Hj+1 , j = 1, 2, . . . , n − 3, is Stein and
Theorem 2 implies that there exists a Stein open subset Ωj+1 of Z such that
Ωj+1∩Hj = Hj \Hj+1. If we put Ω1 = Z \H1 we get that Z \Hn−2 = Z \S =
Ω1 ∪ · · ·Ωn−2. In particular, since V is strictly pseudoconvex, we have that
V \ S is the union of (n− 2) Stein open subsets.

We apply now Proposition 3 and we findW a strictly pseudoconvex neigh-
borhood of C in X such that on one hand W \S = W1∪ · · ·Wn−2 where Wj,
j = 1, 2, . . . , n−2 are Stein open subsets ofX and on the other hand there ex-
ists an (unbranched) covering space p : W̃ → W for which p−1 ((S \ C) ∩W )
is Stein.

What is left to notice is that W̃j := p−1(Wj), j = 1, 2, . . . , n−2, are Stein
(see Theorem 1) and, at the same time, by Theorem 2 there exists W̃n−1

a Stein open subset of W̃ such that W̃n−1 ∩ p−1(S) = p−1 ((S \ C) ∩W ).
Obviously W̃ = W̃1 ∪ · · · W̃n−1 and hence W̃ is the union of (n − 1) Stein
open sets. As the universal covering Ŵ of W is a covering of W̃ , Theorem 1
implies that Ŵ is the union of (n−1) Stein open sets. The (n−1)-completness
of Ŵ follows from [11], Satz 2.3.

Acknowledgments : The first two named authors were partially supported
by CNCSIS Grant PN-II ID 1186, contract 455/2008.

9



References
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Räume. Math. Z. 200 (1989), no. 4, 547–581.

[12] T. Peternell: On strongly pseudoconvex Kähler manifolds. Invent.
Math. 70 (1982/83), no. 2, 157–168.

10



[13] R. R. Simha: On the complement of a curve on a Stein space of dimen-
sion two. Math. Z. 82 (1963) 63–66.

[14] Y. T. Siu: Every Stein subvariety admits a Stein neighborhood. Invent.
Math. 38 (1976/77), no. 1, 89–100.
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