q-convexity properties of the coverings of a link singularity *

M. Coltoiu, C. Joita, M. Tibăr

Abstract

We prove that for a germ of normal isolated singularity (Y, y_0) obtained by contracting a curve if the fundamental group of the link singularity is infinite then the universal covering of $Y \setminus \{y_0\}$ can be written as the union of (n-1) Stein open subsets.

1 Introduction

Let (Y, y_0) be the germ of a normal 2-dimensional singularity and let K be the associated link singularity. It was shown in [4] that if $\pi_1(K)$ is an infinite group then the universal covering of $Y \setminus \{y_0\}$ is Stein for Y small enough.

In this paper we generalize this result to the case when (Y, y_0) is a normal isolated singularity of dimension $n \geq 2$ obtained by contracting a complex curve. More precisely we prove:

Theorem. Suppose that (Y, y_0) is a germ of normal isolated singularity obtained by contracting a curve, $\dim(Y) = n \ge 2$ and K the corresponding link singularity. If $\pi_1(K)$ is infinite then the universal covering space of $Y \setminus y_0$, for a small Y, can be written as the union of (n-1) Stein open subsets. In particular it is (n-1)-complete.

The theory of q-convexity was introduced by A. Andreotti and H. Grauert in [1] and is one of the basic tools in the study of the geometry of non-compact complex spaces.

^{*}Mathematics Subject Classification (2000): 32E10,32F10, 32S45.

Key words: link singularity, q-complete space, Stein space, 1-convex manifold.

2 Preliminaries

For the following result see [15].

Theorem 1. Let X be a complex space and $p: Y \to X$ a covering. If X is Stein then Y is Stein as well.

Theorem 2 was proved by Y. T. Siu in [14].

Theorem 2. If X is a complex space and Y is a Stein subspace then there exists an open Stein subset U of X such that $Y \subset U$.

Definition 1. Suppose that X is a Stein space and U is an open subset. We say that U is Runge in X (or that the pair (U, X) is Runge) if U is Stein and the restriction map $\mathcal{O}(X) \to \mathcal{O}(U)$ has dense image.

The following lemma is standard.

Lemma 1. Suppose that X is a complex space and $\{X_n\}_{n\geq 1}$ is an increasing sequence of Stein open subsets of X. If each pair (X_n, X_{n+1}) is Runge then $\bigcup_{n\geq 1} X_n$ is Stein.

For the next lemma see [10].

Lemma 2. Suppose that X is a Stein space and $\phi: X \to R$ is a plurisubharmonic function. Then for any $r \in \mathbb{R}$ the open set $U = \{x \in X : \phi(x) < r\}$ is Runge in X.

The lemma bellow follows from the fact that for a connected locally irreducible complex space the complement of a complex subspace of positive codimension is connected.

Lemma 3. Suppose that $\pi: X \to Y$ is a proper morphism of complex spaces and that there exists a discrete subset A of Y such that $\pi: X \setminus \pi^{-1}(A) \to Y \setminus A$ is a biholomorphism. If X is locally irreducible then Y is locally irreducible as well.

The following result is Theorem 2 in [13].

Theorem 3. Let X be a locally irreducible Stein complex space of pure dimension 2 with isolated singularities and $A \subset X$ a closed complex subvariety without isolated points. Then $X \setminus A$ is Stein.

Remark: In [3] it was proved that if $\dim(X) = n \geq 2$ then $X \setminus A$ is the union of (n-1) Stein open subsets.

Using Theorem 3 and Lemma 3 we obtain:

Corollary 1. Let X be a locally irreducible complex space of dimension 2 and $A \subset X$ a 1-dimensional closed complex subspace. We assume that X is a proper modification of a Stein space at a discrete set of points, A is connected, it has at least one non-compact irreducible component, and $X \setminus A$ has no compact subspaces of positive dimension. Then $X \setminus A$ is Stein.

For the following Proposition see Remark a), page 165, in [12].

Proposition 1. Suppose that X is a 1-convex complex space and its exceptional set A is 1-dimensional. Then A has a neighborhood that can be embedded into a space $\mathbb{C}^n \times \mathbb{P}^m$.

The following theorem follows immediately from Theorem 2.4 in [12] using a desingularization:

Theorem 4. Let X be a 1-convex manifold which is embeddable into a space $\mathbb{C}^n \times \mathbb{P}^m$. Then there exist V an open 1-convex neighborhood of the exceptional set and Z a complex projective manifold such that V is an open subset of Z.

The following theorem was proved in [2] and [9].

Theorem 5. Let $\pi: X \to T$ be a proper holomorphic surjective map of complex spaces, let $t_0 \in T$ be any point, and denote by $X_{t_0} := \pi^{-1}(t_0)$ the fiber of π at t_0 . Assume that dim $X_{t_0} = 1$. Let $\sigma: \tilde{X} \to X$ be a covering space and let $\tilde{X}_{t_0} = \sigma^{-1}(X_{t_0})$. If \tilde{X}_{t_0} is holomorphically convex, then there exists an open neighborhood Ω of t_0 such that $(\pi \circ \sigma)^{-1}(\Omega)$ is holomorphically convex.

Lemma 4. Suppose that X is a Stein space and U and V are two Stein open subsets of X. If (U, X) is Runge then $(U \cap V, V)$ is also Runge.

Proof. Let $K \subset U \cap V$ be a compact set. We have to show that there exists $\phi: V \to \mathbb{R}$ a plurisubharmonic function with $K \subset \{x \in V : \phi(x) < 0\} \in U \cap V$. Let $\phi_1: X \to \mathbb{R}$ be a plurisubharmonic function such that $K \subset \{x \in X : \phi(x) < 0\} \in U$ and $\phi_2: V \to \mathbb{R}$ a plurisubharmonic exhaustion function such that $\phi_{2|K} < 0$. Then $\phi = \max\{\phi_1, \phi_2\}$ will have the desired property.

Corollary 2. Suppose that X is a complex space and Ω_1 , Ω_2 , U_1 and U_2 are open Stein subspaces of X such that $U_1, U_2 \subset \Omega_1 \cap \Omega_2$. If (U_1, Ω_1) and (U_2, Ω_2) are Runge then $U_1 \cap U_2$ is Runge both in Ω_1 and Ω_2 .

The next lemma was proved in [4].

Lemma 5. Let X be a Stein space and let Y, U be Stein open subsets such that $X = U \cup Y$. Assume that $(Y \cap U, U)$ is Runge. Then (Y, X) is also Runge.

Theorem 6 was proved in [5]; for a more general result see [6].

Theorem 6. Suppose that X and Y are complex analytic subsets of some neighborhood U of the origin in \mathbb{C}^n such that $0 \in Y$, $Y \subset X$ and $X \setminus Y$ is smooth. If the dimension of each component of $X \setminus Y$ is $\geq n$ and if Y is defined in X by k holomorphic equations, the pair $(X_{\epsilon} \setminus \{0\}, Y_{\epsilon} \setminus \{0\})$ is (n-k-1) connected for $\epsilon > 0$ small enough.

In the above theorem $X_{\epsilon} = \{x \in X : ||x|| \le \epsilon\}$ and similarly for Y_{ϵ} . We also want to recall the following definition:

Definition 2. A pair (X, A) with $A \stackrel{i}{\hookrightarrow} X$ is called k-connected if i_* : $\pi_j(A, \{a\}) \to \pi_j(X, \{a\})$ is bijective for j < k and surjective for j = k, for all $a \in A$.

Corollary 3. Suppose that X is a locally irreducible complex space such that all its irreducible components have dimension at least n and Y is a subspace of X. If $X \setminus Y$ is smooth and Y is locally defined in X by at most n-2 holomorphic equations, then Y is locally irreducible.

We shall need the following:

Definition 3. Let L be a connected 1-dimensional complex space and $\cup L_i$ be its decomposition into irreducible components. L is called an infinite Nori string if all L_i are compact and L is not compact

Definition 4. a) If Ω is an open subset of \mathbb{C}^n , and $\psi : \Omega \to \mathbb{R}$ is a smooth function then ψ is called strictly q-convex if its Levi form has at least n-q+1 positive eigenvalues at every point.

b) Suppose that X is a complex space. A function $\phi: X \to \mathbb{R}$ is called strictly q-convex if for every $a \in X$ there exists an embedding of a neighborhood U

of a as a closed analytic subset of an open subset Ω of \mathbb{C}^n , for some n, and $\psi: \Omega \to \mathbb{R}$ a smooth strictly q-convex function such that $\psi_{|U} = \phi$.

c) A complex space X is called q-complete if there exists $\phi: X \to \mathbb{R}$ a strictly q-convex exhaustion function (i.e. $\{x \in X : \phi(x) < c\} \subseteq X$ for every $c \in \mathbb{R}$).

3 The Results

Proposition 2. Suppose that Z is a complex projective variety, $\dim(Z) = n$ and Y is a closed subvariety of Z, $\dim(Y) = k$, such that $Sing(Z) \subset Sing(Y)$ and $k \leq \frac{n-1}{2}$. Then there exists a principal hypersurface H of Z such that $Y \subset H$ and $Sing(H) \subset Sing(Y)$.

Proof. Let L be a positive line bundle on Z and let \mathcal{I} the ideal of Y. It follows (see for example [8]) that there exists $m_0 \in \mathbb{N}$ such that for any $m \geq m_0$ the canonical map $\psi_x : \Gamma(Z, \mathcal{I} \otimes L^m) \to \Gamma(Z, \mathcal{I}/\mathfrak{m}_x \mathcal{I} \otimes L^m)$ is surjective for every $x \in Y$. If x is a regular point of Y then $\Gamma(X, \mathcal{I}/\mathfrak{m}_x \mathcal{I} \otimes L^m) = \Gamma(X, \mathcal{I} \otimes \mathcal{O}/\mathfrak{m}_x \otimes L^m)$ is a vector space of dimension n - k. It follows that for such a point $\dim(Ker(\psi_x)) = N - n + k$ where $N = \dim(\Gamma(Z, \mathcal{I} \otimes L^m))$.

We consider the following diagram

where $\mathcal{R} = \{(x,s) \in Reg(Y) \times \Gamma(Z,\mathcal{I} \otimes L^m) : \mathrm{d}s(x) = 0\}$. Then $\dim(\mathcal{R} \cap p_1^{-1}(x)) = N - n + k$ for every $x \in Reg(Y)$ and hence $\dim(\mathcal{R}) \leq N - n + 2k$. We assumed that $k \leq \frac{n-1}{2}$ and therefore $\dim(\mathcal{R}) < N$. We deduce that $p_2(\mathcal{R})$ has measure zero. If s is a section in $\Gamma(Z,\mathcal{I} \otimes L^m) \setminus p_2(\mathcal{R})$ and we set $H = \{x \in X : s(x) = 0\}$ then H is smooth at every point of Reg(Y). Also it follows from Bertini's theorem, see [7], that for almost every s the hypersurface H is smooth at every point of $Z \setminus Sing(Z)$, hence at every point of $Z \setminus Y$. we deduce that $Sing(H) \subset Sing(Y)$ for almost every $s \in \Gamma(Z,\mathcal{I} \otimes L^m)$.

Lemma 6. Suppose that C is a one-dimensional connected compact complex space such that C has an irreducible component which is not locally irreducible. Then there exists a connected infinite Nori string \tilde{C} and an unbranched covering map $p: \tilde{C} \to C$.

Proof. Let C^1 an irreducible component of C and $x_0 \in C^1$ a point such that $C^1_{x_0}$, the germ of C^1 at x_0 is not irreducible. Let $\cup_{i \in I_1} C_{i,x_0}$ the decomposition of $C^1_{x_0}$ into irreducible components (according to our assumption I_1 has at least two elements) and $\cup_{i \in I} C_{i,x_0}$ the decomposition of C_{x_0} into irreducible components $I_1 \subset I$. Let U and V be open neighborhoods of x_0 such that $\overline{U} \subset V$ and there exist C_i , $i \in I$, closed analytic subsets of V which are representatives for C_{i,x_0} . We pick an index $j \in I_1$ and let $C' = \bigcup_{i \in I \setminus \{j\}} C_i$ which is a closed analytic subset of V. Let $F := \left((C \setminus \overline{U}) \bigsqcup C' \bigsqcup C_j \right) / \sim$ where the equivalence relation is defined as follows: suppose that x is a point in $(C \setminus \overline{U}) \cap V$. Note that $(C \setminus \overline{U}) \cap V = (C' \setminus \overline{U}) \cup (C_j \setminus \overline{U})$ and that $C' \setminus \overline{U}$ and $C_j \setminus \overline{U}$ are disjoint. Then if $x \in C' \setminus \overline{U}$ we identify it with the corresponding point in C' and if $x \in C_j \setminus \overline{U}$ it with the corresponding point in C' and if $x \in C_j \setminus \overline{U}$ it with the corresponding point in C' and if $x \in C_j \setminus \overline{U}$ it with the corresponding point in C' and if $x \in C_j \setminus \overline{U}$ it with the corresponding point in C' and if $x \in C_j \setminus \overline{U}$ it with the corresponding point in C' and if $x \in C_j \setminus \overline{U}$ it with the corresponding point in C' and if $C' \in C'$ and $C' \in C'$ an

We consider now $\{F_k\}_{k\in\mathbb{Z}}$ be 1-dimensional complex spaces, each one of them biholomorphic to F via $\pi_k: F_k \to F$ and $P_k = \pi_k^{-1}(P), \ Q_k = \pi_k^{-1}(Q)$. We set $\tilde{C} = (\bigcup F_k) / \sim$ where Q_k is identified with P_{k-1} . If we put $p: \tilde{C} \to C$, $p(x) = \tau(\pi_k(x))$ for each $x \in F_k \setminus \{P_k, Q_k\}$ and $p(Q_k) = x_0$ we obtain an unramified covering. Obviously \tilde{C} is a connected infinite Nori string. \square

Remark. Let T_k be the equivalence class of F_k in \tilde{C} and z_k be the unique intersection point of T_k and T_{k+1} (i.e. z_k is the equivalence class of Q_k). The identity map $F \to F$ induces a biholomorphism $T_k \to F$ which in turn induces a biholomorphism $g_k : T_k \to T_{k+1}$. Then $g : \tilde{C} \to \tilde{C}$, $g_{|T_k} = g_k$ is a (well-defined) covering transformation map.

Proposition 3. Let X and Y be two n-dimensional normal complex spaces, $n \geq 3$, $y_0 \in Y$ and $\pi: X \to Y$ a proper holomorphic map such that $C = \pi^{-1}(y_0)$ is a connected 1-dimensional complex space and $\pi: X \setminus C \to Y \setminus \{y_0\}$ is a biholomorphism. We assume that $H_1(C)$ is infinite and that there exists a locally irreducible 2-dimensional complex subspace S of X with isolated singularities such that $C \subset S$. Then there exist an open neighborhood W of C in X and an unbranched covering $p: \tilde{W} \to W$ such that $p^{-1}((S \setminus C) \cap W)$ is Stein.

Proof. We consider $C = \cup C_i$ the decomposition of C into irreducible components. Because $H_1(C)$ is infinite we distinguish three possible cases:

- 1) All irreducible components C_i are locally irreducible, their graph is a (connected) tree, and at least one them has genus greater than or equal to 1.
- 2) There exists an irreducible component C_{i_0} which is not locally irreducible.
- 3) All irreducible components C_i are locally irreducible, and their graph contains a cycle

Case 1) In this case let $p: \tilde{C} \to C$ be a connected holomorphically convex covering of C that has at least one non-compact irreducible component. There exists such a covering because at least one irreducible component of C has genus greater or equal to 1. We choose also an open neighborhood W_1 of C in X such that on one hand W_1 has a continuous deformation retract onto $W_1 \cap S$ and $W_1 \cap S$ has a continuous deformation retract onto C. We extend the covering $p: \tilde{C} \to C$ to a covering $p: \tilde{W}_1 \to W_1$ which in turn induces a covering $p: \tilde{S} \to S \cap W_1$. We apply Theorem 5 and we deduce that we can find a neighborhood W of C in X such that $p^{-1}(W)$ is holomorphically convex and therefore $p^{-1}(S \cap W)$ is holomorphically convex. Note that every compact 1-dimensional subspace of $p^{-1}(S \cap W)$ is included in \tilde{C} and therefore $p^{-1}(S \cap W)$ is a proper modification of a Stein space at a discrete set of points. Corollary 1 implies then that $p^{-1}(S \cap W) \setminus \tilde{C} = p^{-1}((S \setminus C) \cap W)$ is Stein.

Case 2) We apply Lemma 6 and we get the covering space $p: \tilde{C} \to C$ such that \tilde{C} is an infinite Nori string. As in Case 1, we choose an open neighborhood W_1 of C in X such that W_1 has a continuous deformation retract on $W_1 \cap S$ and $W_1 \cap S$ has a continuous deformation retract in S onto C and we extend p to a covering $p: W_1 \to W_1$ which induces a covering $p: \tilde{S} \to S \cap W_1$. At the same time the covering transformation map g extends to a covering transformation map $g: \hat{S} \to \hat{S}$. We are using here the notations of the proof of Lemma 6 and of the Remark that follows. Let $U_0 \subset \hat{S}$ a strictly pseudoconvex, relatively compact neighborhood of T_0 . For $k \in \mathbb{Z}$, k > 0 we denote by $g^{(k)}$ the k-th iterate $g \circ \cdots \circ g$ and for $k \in \mathbb{Z}, k < 0$ we put $g^{(k)} = (g^{-1})^{(k)}$. We set $U_k = g^{(k)}(U_0)$. Then U_k is a strictly pseudoconvex neighborhood of T_k . Shrinking U_0 we can assume that $\overline{U}_0 \cap \left(\bigcup_{|k| \geq 2} \overline{U}_k\right) = \emptyset$ and that $p_{|U_0\cap U_1}$ and $p_{|U_0\cap U_{-1}}$ are 1-1. In particular U_0 does not contain any $T_k, k \neq 0$. It follows, obviously, that $U_p \cap U_q = \emptyset$ if |k-p| > 1. By Corollary 1 $U_k \setminus T_{k-1}$ and $U_{k+1} \setminus T_{k+2}$ are Stein open subsets of \tilde{S} . We choose now an open Stein neighborhood B_0 of z_0 such that $B_0 \subset U_0 \cap U_1$ and that B_0 is Runge both in $U_0 \setminus T_{-1}$ and in $U_1 \setminus T_2$ (see Corollary 2). Moreover we assume that there exists V_1 an open Stein neighborhood of y_0 in Y such that

 $V_1 \supset p(\overline{B}_0)$. It follows from Lemma 4 that $B_0 \setminus \tilde{C}$ is Runge both in $U_0 \setminus \tilde{C}$ and $U_1 \setminus \tilde{C}$. We set $B_k = g^{(k)}(B_0)$. Note that $p(B_k) = p(B_0)$ for every $k \in \mathbb{Z}$ and that $B_k \setminus \tilde{C}$ is Runge both in $U_k \setminus \tilde{C}$ and $U_{k+1} \setminus \tilde{C}$.

We choose and $\phi: V_1 \to \mathbb{R}$ a strictly plurisubharmonic exhaustion function for V_1 such that $\phi(y_0) = 0$, $\phi(y) > 0$ for $y \in V_1 \setminus \{y_0\}$. Let $\epsilon > 0$ be such that $V = \{y \in V_1 : \phi(y) < \epsilon\} \subset p(B_0)$. We claim that $(p \circ \pi)^{-1}(V \cap S) \setminus \hat{C}$ is Stein. To prove this we consider for $k, l \in \mathbb{Z}, l < k$, $\Omega_{k,l} = (\bigcup_{i=l}^k U_i) \cap ((p \circ \pi)^{-1}(V \cap S))$ and $M_{k,l} = \Omega_{k,l} \setminus \tilde{C}$. Note that since $p(\partial U_{j_1} \cap \partial U_{j_2}) \cap B_0 = \emptyset$ for $j_1 \neq j_2$ we have that each $\Omega_{k,l}$ is a strictly pseudoconvex, relatively compact open subset of \tilde{S} . Its maximal compact 1-dimensional subvariety is $T_l \cup \cdots \cup T_k$ which is exceptional. Hence $\Omega_{k,l}$ is 1-convex. On the other hand $\tilde{C} \cap \Omega_{k,l} = (\bigcup_{j=l}^k T_j) \cup (T_{k+1} \cap \Omega_{k,l}) \cup (T_{l-1} \cap \Omega_{k,l}).$ Because Ω_k does not contain T_{k+1} or T_{l-1} it follows from Corollary 1 that $M_{k,l}$ is Stein. Note now that $M_{k+1,l} = M_{k,l} \cup ((U_{k+1} \cap (p \circ \pi)^{-1}(V \cap S)) \setminus C)$ and that $M_{k,l} \cap ((U_{k+1} \cap (p \circ \pi)^{-1}(V \cap S)) \setminus \tilde{C}) = (B_k \cap (p \circ \pi)^{-1}(V \cap S)) \setminus \tilde{C}$ which by Lemma 2 is Runge in $(U_{k+1} \cap (p \circ \pi)^{-1}(V \cap S)) \setminus \tilde{C}$. We deduce from Lemma 5 that $M_{k,l}$ is Runge in $M_{k+1,l}$. Similarly $M_{k,l}$ is Runge in $M_{k,l-1}$. Therefore $M_{k,-\underline{k}}$ is Runge in $M_{k+1,-k-1}$ for every $k \in \mathbb{Z}, k > 0$. As $(p \circ \pi)^{-1}(V \cap S) \setminus \tilde{C} = \bigcup_{k=1}^{\infty} M_{k+1,-k-1}$ it follows from Lemma 1 that $(p \circ \pi)^{-1}(V \cap S) \setminus \tilde{C}$ is Stein as claimed.

Case 3) Let C_1, C_2, \ldots, C_k be irreducible components of C such that their graph forms a minimal cycle (i.e. no proper subset of $\{C_1, C_2, \ldots, C_k\}$ forms a cycle). We contract $C_2 \cup \cdots \cup C_k$ in X and we obtain a normal complex space X'. Let S' and C' the images of S and C respectively. It follows from Lemma 3 that S' is locally irreducible. Notice at the same time that C' is not locally irreducible anymore and hence we can apply Case 2. We obtain a neighborhood W' of C' and a covering map $p': \tilde{W}' \to W'$ such that $p'^{-1}((S' \setminus C') \cap W')$ is Stein. We pull-back this covering via the contraction map and we obtain a covering for a neighborhood of C with the desired property.

Theorem 7. Suppose that (Y, y_0) is a germ of normal isolated singularity obtained by contracting a curve, $\dim(Y) = n \geq 2$ and K the corresponding link singularity. If $\pi_1(K)$ is infinite, then the universal covering space of $Y \setminus y_0$, for a small Y can be written as the union of (n-1) Stein open subsets. In particular it is (n-1)-complete.

Proof. If $\dim(Y) = 2$ the theorem was proved in [4]. Hence we assume that

 $\dim(Y) \geq 3$. Let $\pi: X \to Y$ be a local resolution of singularities and C the exceptional curve. As we assumed that $n \geq 3$ it follows that $H_1(C)$ is infinite since $\pi_1(C)$ is infinite (note that C has in X real codimension > 2 so $\pi_1(X) = \pi_1(X \setminus C)$. On the other hand from Proposition 1 it follows that C has a strictly pseudoconvex neighborhood which can be embedded into a space $\mathbb{C}^n \times \mathbb{P}^m$, and then by Theorem 4, there exist V an open 1-convex neighborhood of the exceptional set and Z a complex projective manifold such that V is an open subset of Z. We will show now that we can find Sa two-dimensional locally irreducible subvariety of Z such that $Sing(S) \subset$ Sing(C) and $Z \setminus S$ is the union of (n-2) Stein open subsets. The local irreducibility will follow from Corollary 3 if we can choose S to be a local set-theoretic complete intersection. To obtain S we apply Proposition 2 (n-2) times and we obtain a sequence of projective varieties $H_1 \supset H_2 \supset$ $\cdots \supset H_{n-2} =: S \supset C$ such that H_{j+1} is a principal hypersurface in H_j and $Sing(H_j) \subset Sing(C)$. Each $H_j \setminus H_{j+1}$, j = 1, 2, ..., n-3, is Stein and Theorem 2 implies that there exists a Stein open subset Ω_{i+1} of Z such that $\Omega_{i+1} \cap H_i = H_i \setminus H_{i+1}$. If we put $\Omega_1 = Z \setminus H_1$ we get that $Z \setminus H_{n-2} = Z \setminus S = X$ $\Omega_1 \cup \cdots \Omega_{n-2}$. In particular, since V is strictly pseudoconvex, we have that $V \setminus S$ is the union of (n-2) Stein open subsets.

We apply now Proposition 3 and we find W a strictly pseudoconvex neighborhood of C in X such that on one hand $W \setminus S = W_1 \cup \cdots \cup W_{n-2}$ where W_j , $j = 1, 2, \ldots, n-2$ are Stein open subsets of X and on the other hand there exists an (unbranched) covering space $p: \tilde{W} \to W$ for which $p^{-1}((S \setminus C) \cap W)$ is Stein.

What is left to notice is that $\tilde{W}_j := p^{-1}(W_j)$, $j = 1, 2, \dots, n-2$, are Stein (see Theorem 1) and, at the same time, by Theorem 2 there exists \tilde{W}_{n-1} a Stein open subset of \tilde{W} such that $\tilde{W}_{n-1} \cap p^{-1}(S) = p^{-1}((S \setminus C) \cap W)$. Obviously $\tilde{W} = \tilde{W}_1 \cup \cdots \tilde{W}_{n-1}$ and hence \tilde{W} is the union of (n-1) Stein open sets. As the universal covering \hat{W} of W is a covering of \tilde{W} , Theorem 1 implies that \hat{W} is the union of (n-1) Stein open sets. The (n-1)-completness of \hat{W} follows from [11], Satz 2.3.

Acknowledgments: The first two named authors were partially supported by CNCSIS Grant PN-II ID_1186, contract 455/2008.

References

- [1] A. Andreotti; H. Grauert: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France **90** (1962) 193–259.
- [2] M. Colţoiu; K. Diederich: On the coverings of proper families of 1dimensional complex spaces. *Michigan Math. J.* 47 (2000), no. 2, 369– 375.
- [3] M. Colţoiu; K. Diederich: Convexity properties of analytic complements in Stein spaces. Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). *J. Fourier Anal. Appl.* (1995), Special Issue, 153–160.
- [4] M. Colţoiu; M. Tibăr: Steinness of the universal covering of the complement of a 2-dimensional complex singularity. *Math. Ann.* **326** (2003), no. 1, 95–104.
- [5] H. Hamm: Lokale topologische Eigenschaften komplexer Räume. *Math. Ann.* **191** (1971) 235–252.
- [6] H. Hamm: On the vanishing of local homotopy groups for isolated singularities of complex spaces. J. Reine Angew. Math. **323** (1981), 172–176.
- [7] J. Harris: Algebraic geometry. A first course. Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1995.
- [8] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [9] T. Napier: Convexity properties of coverings of smooth projective varieties. *Math. Ann.* **28** (1990), no. 1-3, 433–479
- [10] R. Narasimhan: The Levi problem for complex spaces. II. Math. Ann. 146 (1962) 195–216
- [11] M. Peternell: Algebraische Varietäten und q-vollständige komplexe Räume. *Math. Z.* **200** (1989), no. 4, 547–581.
- [12] T. Peternell: On strongly pseudoconvex Kähler manifolds. *Invent. Math.* **70** (1982/83), no. 2, 157–168.

- [13] R. R. Simha: On the complement of a curve on a Stein space of dimension two. *Math. Z.* **82** (1963) 63–66.
- [14] Y. T. Siu: Every Stein subvariety admits a Stein neighborhood. *Invent. Math.* **38** (1976/77), no. 1, 89–100.
- [15] K. Stein: Überlagerungen holomorph-vollständiger komplexer Räume. *Arch. Math.* **7** (1956), 354–361.

Mihnea Colțoiu

Institute of Mathematics of the Romanian Academy P.O. Box 1-764, Bucharest 014700, Romania *E-mail address*: Mihnea.Coltoiu@imar.ro

Cezar Joita

Institute of Mathematics of the Romanian Academy P.O. Box 1-764, Bucharest 014700, Romania *E-mail address*: Cezar.Joita@imar.ro

Mihai Tibăr

Mathématiques, UMR 8524 CNRS Université des Sciences et Technologies de Lille (USTL) 59655 Villeneuve d'Ascq, France E-mail address: tibar@math.univ-lille1.fr