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Abstract

We prove that for a germ of normal isolated singularity (Y, )
obtained by contracting a curve if the fundamental group of the link
singularity is infinite then the universal covering of Y \ {yo} can be
written as the union of (n — 1) Stein open subsets.

1 Introduction

Let (Y, yo) be the germ of a normal 2-dimensional singularity and let K be
the associated link singularity. It was shown in [4] that if 71 (K) is an infinite
group then the universal covering of Y \ {yo} is Stein for ¥ small enough.

In this paper we generalize this result to the case when (Y, yg) is a normal
isolated singularity of dimension n > 2 obtained by contracting a complex
curve. More precisely we prove:

Theorem. Suppose that (Y, o) is a germ of normal isolated singularity ob-
tained by contracting a curve, dim(Y) =n > 2 and K the corresponding link
singularity. If m (K) is infinite then the universal covering space of Y \ yo,
for a small' Y, can be written as the union of (n — 1) Stein open subsets. In
particular it is (n — 1)-complete.

The theory of g-convexity was introduced by A. Andreotti and H. Grauert
in [1] and is one of the basic tools in the study of the geometry of non-compact
complex spaces.
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2 Preliminaries

For the following result see [15].

Theorem 1. Let X be a complex space and p 1Y — X a covering. If X 1is
Stein then Y 1is Stein as well.

Theorem 2 was proved by Y. T. Siu in [14].

Theorem 2. If X is a complex space and Y is a Stein subspace then there
exists an open Stein subset U of X such thatY C U.

Definition 1. Suppose that X s a Stein space and U is an open subset. We
say that U is Runge in X (or that the pair (U, X) is Runge) if U is Stein
and the restriction map O(X) — O(U) has dense image.

The following lemma is standard.

Lemma 1. Suppose that X is a complex space and {X,},>1 is an increasing
sequence of Stein open subsets of X. If each pair (X, X,1+1) is Runge then
U,s1 Xn ds Stein.

For the next lemma see [10].

Lemma 2. Suppose that X is a Stein space and ¢ : X — R is a plurisubhar-
monic function. Then for any r € R the open set U = {x € X : ¢(x) < r} is
Runge 1 X.

The lemma bellow follows from the fact that for a connected locally ir-
reducible complex space the complement of a complex subspace of positive
codimension is connected.

Lemma 3. Suppose that m : X — Y 1is a proper morphism of complex spaces
and that there exists a discrete subset A of Y such that w : X \m 1(A) — Y\ A
1s a btholomorphism. If X 1is locally irreducible then Y is locally irreducible
as well.

The following result is Theorem 2 in [13].

Theorem 3. Let X be a locally irreducible Stein complex space of pure di-
mension 2 with isolated singularities and A C X a closed complex subvariety
without isolated points. Then X \ A is Stein.
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Remark: In [3] it was proved that if dim(X) = n > 2 then X \ A is the
union of (n — 1) Stein open subsets.

Using Theorem 3 and Lemma 3 we obtain:

Corollary 1. Let X be a locally irreducible complex space of dimension 2
and A C X a 1-dimensional closed complex subspace. We assume that X
is a proper modification of a Stein space at a discrete set of points, A is
connected, it has at least one non-compact irreducible component, and X \ A
has no compact subspaces of positive dimension. Then X \ A is Stein.

For the following Proposition see Remark a), page 165, in [12].

Proposition 1. Suppose that X is a I-convex complex space and its ex-
ceptional set A is 1-dimensional. Then A has a neighborhood that can be
embedded into a space C" x P™.

The following theorem follows immediately from Theorem 2.4 in [12] using
a desingularization:

Theorem 4. Let X be a 1-convex manifold which is embeddable into a space
C"xP™. Then there exist V an open 1-convex neighborhood of the exceptional
set and Z a complex projective manifold such that V' is an open subset of Z.

The following theorem was proved in [2] and [9].

Theorem 5. Let 7 : X — T be a proper holomorphic surjective map of
complex spaces, let ty € T be any point, and denote by X;, := 7 1(ty) the
fiber of m at ty. Assume that dim X;, = 1. Let o : X — X be a covering
space and let X, = 0~ (Xy,). If Xy, is holomorphically conver, then there
exists an open neighborhood Q2 of to such that (moc)~(Q) is holomorphically
convez.

Lemma 4. Suppose that X is a Stein space and U and V' are two Stein open
subsets of X. If (U, X) is Runge then (U NV,V) is also Runge.

Proof. Let K C U NV be a compact set. We have to show that there
exists ¢ : V' — R a plurisubharmonic function with K C {x € V : ¢(z) <
0} e UNV. Let ¢; : X — R be a plurisubharmonic function such that
K c{re X :¢) <0} €U and ¢ : V — R a plurisubharmonic
exhaustion function such that ¢g, < 0. Then ¢ = max{ ¢y, ¢} will have the
desired property. O



Corollary 2. Suppose that X s a complexr space and 2y, s, Uy and U,
are open Stein subspaces of X such that Uy, Us C Q3 N Q. If (Uy,82) and
(Us, Q9) are Runge then U; N Uy is Runge both in 0y and Q.

The next lemma was proved in [4].

Lemma 5. Let X be a Stein space and let Y, U be Stein open subsets such
that X = UUY. Assume that (Y NU,U) is Runge. Then (Y, X) is also
Runge.

Theorem 6 was proved in [5]; for a more general result see [6].

Theorem 6. Suppose that X and Y are complex analytic subsets of some
neighborhood U of the origin in C" such that 0 € Y, Y C X and X \Y
is smooth. If the dimension of each component of X \'Y is > n and if Y
is defined in X by k holomorphic equations, the pair (X, \ {0}, Y.\ {0}) is
(n —k — 1) connected for e > 0 small enough.

In the above theorem X, = {z € X : ||z|| < €} and similarly for Y,. We
also want to recall the following definition:

Definition 2. A pair (X, A) with A < X is called k-connected if i
(A, {a}) — m;(X,{a}) is bijective for j < k and surjective for j = k,
for all a € A.

Corollary 3. Suppose that X is a locally irreducible complex space such that
all its irreducible components have dimension at least n and Y is a subspace

of X. If X \'Y is smooth and Y is locally defined in X by at most n — 2
holomorphic equations, then Y s locally irreducible.

We shall need the following;:

Definition 3. Let L be a connected 1-dimensional complexr space and UL;
be its decomposition into irreducible components. L is called an infinite Nori
string if all L; are compact and L is not compact

Definition 4. a) If Q is an open subset of C", and ¢ : Q — R is a smooth
function then v is called strictly q-convez if its Levi form has at least n—q—+1
positive eigenvalues at every point.

b) Suppose that X is a complex space. A function ¢ : X — R is called strictly
q-convex if for every a € X there exists an embedding of a neighborhood U
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of a as a closed analytic subset of an open subset 2 of C"*, for some n, and
Y Q — R a smooth strictly q-convex function such that V¥ = ¢.

c) A complez space X is called q-complete if there exists ¢ : X — R a strictly
q-convex exhaustion function (i.e. {x € X : ¢(x) < ¢} € X for every c € R).

3 The Results

Proposition 2. Suppose that Z is a complex projective variety, dim(Z) = n
andY is a closed subvariety of Z, dim(Y') = k, such that Sing(Z) C Sing(Y)
and k < ”T’l Then there exists a principal hypersurface H of Z such that
Y C H and Sing(H) C Sing(Y).

Proof. Let L be a positive line bundle on Z and let Z the ideal of Y. It follows

(see for example [8]) that there exists mg € N such that for any m > myg

the canonical map ¢, : I'(Z,Z @ L™) — I'(Z,Z,/m,Z ® L™) is surjective

for every z € Y. If x is a regular point of Y then I'(X,Z,/m,Z ® L™) =

X, ZT®O,/m, ® L") is a vector space of dimension n — k. It follows that

for such a point dim(Ker(y,)) = N —n+ k where N = dim(I'(Z,Z ® L™)).
We consider the following diagram

R — Reg(Y)xI'(Z,T® L™) 2 I'(Z,T® L™)

g

Reg(Y)

where R = {(z,s) € Reg(Y) x I'(Z,Z ® L™) : ds(x) = 0}. Then dim(R N
p () = N —n+k for every € Reg(Y) and hence dim(R) < N —n + 2k,
We assumed that & < 271 and therefore dim(R) < N. We deduce that
p2(R) has measure zero. If s is a section in I'(Z,Z @ L™) \ p2(R) and we
set H = {z € X : s(x) = 0} then H is smooth at every point of Reg(Y’).
Also it follows from Bertini’s theorem, see [7], that for almost every s the
hypersurface H is smooth at every point of Z \ Sing(Z), hence at every
point of Z \'Y. we deduce that Sing(H) C Sing(Y) for almost every s €

[(Z,T®L™). 0

Lemma 6. Suppose that C is a one-dimensional connected compact com-
plex space such that C' has an irreducible component which is not locally
irreducible. Then there exists a connected infinite Nori string C and an un-
branched covering map p: C — C.



Proof. Let C' an irreducible component of C' and x5 € C! a point such that
Cl ,» the germ of C! at zy is not irreducible. Let Uscy, C; z, the decomposition
of C;O into irreducible components (according to our assumption I; has at
least two elements) and U;c;C; ,, the decomposition of C,, into irreducible
components Iy C I. Let U and V be open neighborhoods of zy such that
U C V and there exist C;, i € I, closed analytic subsets of V which are
representatives for Cj,,. We pick an index j € I, and let C" = Ujep ;3 C;
which is a closed analytic subset of V. Let F := ((C\U)[JC'|IC))/ ~
where the equivalence relation is defined as follows: suppose that x is a point
in (C\U)NV. Note that (C\U)NV = (C'"\U) U (C; \ U) and that
C'\ U and C; \ U are disjoint. Then if z € C'\ U we identify it with the
corresponding point in C’ and if z € C; \ U it with the corresponding point
in C;. Note now that we have a projection 7 : F' — C whose fiber above x
has exactly two elements, P € C" and Q € C; and 7: F\{P,Q} — C\ {zo}
is a biholomorphism. Note that F'is connected and compact.

We consider now {Fy}rez be 1-dimensional complex spaces, each one of
them biholomorphic to F via 7, : Fj, — F and P, = 7, '(P), Q) = 7, ' (Q).
We set C' = (|| Fx) / ~ where Qy is identified with P,_;. If we putp : C — C,
p(z) = 7(mi(x)) for each x € Fy \ { Py, Qx} and p(Qr) = x¢ we obtain an
unramified covering. Obviously C is a connected infinite Nori string. O

Remark. Let T be the equivalence class of Fj, in C and zi, be the
unique intersection point of T} and T4y (i.e. z is the equivalence class of
Qk). The identity map F' — F induces a biholomorphism T} — F' which in
turn induces a biholomorphism gy : Ty — Tj41. Then g : C — C’, 91, = 9k
is a (well-defined) covering transformation map.

Proposition 3. Let X and Y be two n-dimensional normal complex spaces,
n>3 4y €Y andm: X — Y a proper holomorphic map such that C' =
71 (yo) is a connected 1-dimensional complex space and m: X\ C' — Y\ {yo}
is a biholomorphism. We assume that H,(C) is infinite and that there exists
a locally irreducible 2-dimensional complex subspace S of X with isolated
singularities such that C C S. Then there exist an open neighborhood W of
C in X and an unbranched covering p: W — W such that p~((S\ C) N W)

18 Stein.

Proof. We consider C' = UC; the decomposition of C' into irreducible com-
ponents. Because H;(C) is infinite we distinguish three possible cases:



1) All irreducible components C; are locally irreducible, their graph is a (con-
nected) tree, and at least one them has genus greater than or equal to 1.
2) There exists an irreducible component C;, which is not locally irreducible.
3) All irreducible components C; are locally irreducible, and their graph con-
tains a cycle

Case 1) In this case let p : C' — C be a connected holomorphically con-
vex covering of C' that has at least one non-compact irreducible component.
There exists such a covering because at least one irreducible component of C
has genus greater or equal to 1. We choose also an open neighborhood W; of
C'in X such that on one hand W; has a continuous deformation retract onto
WiNS and Wi NS has a continuous deformation retract onto C. We extend
the covering p : ¢ — C' to a covering p : Wy — W, which in turn induces
a covering p : S — SN W;. We apply Theorem 5 and we deduce that we
can find a neighborhood W of C' in X such that p~'(W) is holomorphically
convex and therefore p~!(S N W) is holomorphically convex. Note that every
compact 1-dimensional subspace of p~!(S N W) is included in C and there-
fore p~'(SNW) is a proper modification of a Stein space at a discrete set of
points. Corollary 1 implies then that p~*(SN W)\ C =p ' ((S\ C)NW) is
Stein.

Case 2) We apply Lemma 6 and we get the covering space p : C—C
such that C is an infinite Nori string. As in Case 1, we choose an open
neighborhood W; of C' in X such that W; has a continuous deformation
retract on W7, NS and W; N S has a continuous deformation retract in S
onto C' and we extend p to a covering p : W, — W, which induces a covering
p: S — SNW;. At the same time the covering transformation map ¢ extends
to a covering transformation map ¢ : S — S. We are using here the notations
of the proof of Lemma 6 and of the Remark that follows. Let Uy C S a strictly
pseudoconvex, relatively compact neighborhood of Ty. For k € Z, k > 0 we
denote by ¢®) the k-th iterate go ---o g and for k € Z, k < 0 we put
g® = (g7H®. We set U, = g™ (Uy). Then Uy is a strictly pseudoconvex
neighborhood of Tj. Shrinking U, we can assume that Uy N (U‘ K>2 Uk> =0
and that pjy,nv, and pjyynv_, are 1-1. In particular Uy does not contain any
Ty, k # 0. Tt follows, obviously, that U, N U, = 0 if |k — p| > 1. By Corollary
1 Ug \ Ty—1 and Uyyq \ Tpeo are Stein open subsets of S. We choose now
an open Stein neighborhood By of zy such that By C Uy N U; and that By
is Runge both in Uy \ 7_1 and in U; \ Ty (see Corollary 2). Moreover we
assume that there exists V; an open Stein neighborhood of 3y in Y such that



Vi D p(By). It follows from Lemma 4 that By \ C is Runge both in Uy \ C
and U; \ C. We set B, = g™ (B,). Note that p(By,) = p(B,) for every k € Z
and that By \ C is Runge both in Uy \ C and Uiy \ C.

We choose and ¢ : Vi — R a strictly plurisubharmonic exhaustion
function for Vi such that ¢(yy) = 0, ¢(y) > 0 for y € Vi \ {yo}. Let
€ > 0 be such that V.= {y € V] : ¢(y) < ¢} CC p(By). We claim that
(pom) 1 (VNS)\ C is Stein. To prove this we consider for k,l € Z, [ < Fk,
Qs = (U U) N ((pom)™ (VN S)) and My = Qg \ C. Note that since
p(0U;, N 0U;,) N By = 0 for j; # jo» we have that each €y, is a strictly
pseudoconvex, relatively compact open subset of S. Its maximal compact
1-dimensional subvariety is 7; U - - - U T}, which is exceptional. Hence € is
1-convex. On the other hand C’ﬂQM = (Uf:lTj) U (T N2t ) U (111 N Q).
Because €2 does not contain Ty, or T;_; it follows from Corollary 1 that
My is Stein. Note now that M1y = My, U (Upsr N (pom) 1V NS))\ C)
and that My, N ((Ups N (pom) ' (VNSNH\C) = (BxN(por) ' (VNS)\C
which by Lemma 2 is Runge in (Upsy N (pom) (VN S))\ C. We deduce
from Lemma 5 that Mj; is Runge in Mjy;;. Similarly M;; is Runge in
My —1. Therefore M _j is Runge in My 41 for every k € Z, k > 0.
As (pom) (VN S)\C = U M1 it follows from Lemma 1 that
(pom)~Y(VNS)\ C is Stein as claimed.

Case 3) Let C1,C5...,Cy be irreducible components of C' such that
their graph forms a minimal cycle (i.e. no proper subset of {Cy,Cy...,Ci}
forms a cycle). We contract Cy U --- U Cy in X and we obtain a normal
complex space X’'. Let S’ and C’ the images of S and C respectively. It
follows from Lemma 3 that S’ is locally irreducible. Notice at the same time
that C” is not locally irreducible anymore and hence we can apply Case 2.
We obtain a neighborhood W’ of €’ and a covering map p/ : W' — W’
such that p'~1((S"\ C’) N W’) is Stein. We pull-back this covering via the
contraction map and we obtain a covering for a neighborhood of C' with the
desired property.

O

Theorem 7. Suppose that (Y, yo) is a germ of normal isolated singularity
obtained by contracting a curve, dim(Y') = n > 2 and K the corresponding
link singularity. If m (K) is infinite, then the universal covering space of
Y \ yo, for a small Y can be written as the union of (n — 1) Stein open
subsets. In particular it is (n — 1)-complete.

Proof. 1If dim(Y) = 2 the theorem was proved in [4]. Hence we assume that
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dim(Y) > 3. Let 7 : X — Y be a local resolution of singularities and C'
the exceptional curve. As we assumed that n > 3 it follows that H;(C) is
infinite since 71 (C') is infinite (note that C' has in X real codimension > 2 so
m(X) =m (X \ C)). On the other hand from Proposition 1 it follows that
C has a strictly pseudoconvex neighborhood which can be embedded into
a space C" x P, and then by Theorem 4, there exist V' an open 1-convex
neighborhood of the exceptional set and Z a complex projective manifold
such that V is an open subset of Z. We will show now that we can find S
a two-dimensional locally irreducible subvariety of Z such that Sing(S) C
Sing(C) and Z \ S is the union of (n — 2) Stein open subsets. The local
irreducibility will follow from Corollary 3 if we can choose S to be a local
set-theoretic complete intersection. To obtain S we apply Proposition 2
(n — 2) times and we obtain a sequence of projective varieties H; O Hy D
-+ D H, 9 =18 D C such that H;; is a principal hypersurface in H; and
Sing(H;) C Sing(C). Each H; \ Hj41 , j = 1,2,...,n — 3, is Stein and
Theorem 2 implies that there exists a Stein open subset €2;,; of Z such that
Qi NH; = H;j\Hj+y. If weput Q) = Z\ Hy we get that Z\ H,_o = Z\ S =
Q1 U---Q, 5. In particular, since V is strictly pseudoconvex, we have that
V'\ S is the union of (n — 2) Stein open subsets.

We apply now Proposition 3 and we find W a strictly pseudoconvex neigh-
borhood of C'in X such that on one hand W\ S =W U---W,_5 where W,
7 =1,2,...,n—2 are Stein open subsets of X and on the other hand there ex-
ists an (unbranched) covering space p : W — W for which p~* ((S\ C) N W)
is Stein.

What is left to notice is that W; := p~'(W;), j = 1,2,...,n—2, are Stein
(see Theorem 1) and, at the same time, by Theorem 2 there exists W,_;
a Stein open subset of W such that W,_, Np~*(S) = p~' ((S\ C)NW).
Obviously W = W; U ---W,_; and hence W is the union of (n — 1) Stein
open sets. As the universal covering W oof Wis a covering of W, Theorem 1
implies that T is the union of (n—1) Stein open sets. The (n—1)-completness
of W follows from [11], Satz 2.3. O
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