q-convexity properties of the coverings of a link singularity *

M. Colţoiu, C. Joiţa, M. Tibăr

Abstract

We prove that for a germ of normal isolated singularity $\left(Y, y_{0}\right)$ obtained by contracting a curve if the fundamental group of the link singularity is infinite then the universal covering of $Y \backslash\left\{y_{0}\right\}$ can be written as the union of $(n-1)$ Stein open subsets.

1 Introduction

Let $\left(Y, y_{0}\right)$ be the germ of a normal 2-dimensional singularity and let K be the associated link singularity. It was shown in [4] that if $\pi_{1}(K)$ is an infinite group then the universal covering of $Y \backslash\left\{y_{0}\right\}$ is Stein for Y small enough.

In this paper we generalize this result to the case when $\left(Y, y_{0}\right)$ is a normal isolated singularity of dimension $n \geq 2$ obtained by contracting a complex curve. More precisely we prove:

Theorem. Suppose that $\left(Y, y_{0}\right)$ is a germ of normal isolated singularity obtained by contracting a curve, $\operatorname{dim}(Y)=n \geq 2$ and K the corresponding link singularity. If $\pi_{1}(K)$ is infinite then the universal covering space of $Y \backslash y_{0}$, for a small Y, can be written as the union of $(n-1)$ Stein open subsets. In particular it is $(n-1)$-complete.

The theory of q-convexity was introduced by A. Andreotti and H. Grauert in [1] and is one of the basic tools in the study of the geometry of non-compact complex spaces.

[^0]
2 Preliminaries

For the following result see [15].
Theorem 1. Let X be a complex space and $p: Y \rightarrow X$ a covering. If X is Stein then Y is Stein as well.

Theorem 2 was proved by Y. T. Siu in [14].
Theorem 2. If X is a complex space and Y is a Stein subspace then there exists an open Stein subset U of X such that $Y \subset U$.

Definition 1. Suppose that X is a Stein space and U is an open subset. We say that U is Runge in X (or that the pair (U, X) is Runge) if U is Stein and the restriction map $\mathcal{O}(X) \rightarrow \mathcal{O}(U)$ has dense image.

The following lemma is standard.
Lemma 1. Suppose that X is a complex space and $\left\{X_{n}\right\}_{n \geq 1}$ is an increasing sequence of Stein open subsets of X. If each pair $\left(X_{n}, X_{n+1}\right)$ is Runge then $\bigcup_{n \geq 1} X_{n}$ is Stein.

For the next lemma see [10].
Lemma 2. Suppose that X is a Stein space and $\phi: X \rightarrow R$ is a plurisubharmonic function. Then for any $r \in \mathbb{R}$ the open set $U=\{x \in X: \phi(x)<r\}$ is Runge in X.

The lemma bellow follows from the fact that for a connected locally irreducible complex space the complement of a complex subspace of positive codimension is connected.

Lemma 3. Suppose that $\pi: X \rightarrow Y$ is a proper morphism of complex spaces and that there exists a discrete subset A of Y such that $\pi: X \backslash \pi^{-1}(A) \rightarrow Y \backslash A$ is a biholomorphism. If X is locally irreducible then Y is locally irreducible as well.

The following result is Theorem 2 in [13].
Theorem 3. Let X be a locally irreducible Stein complex space of pure dimension 2 with isolated singularities and $A \subset X$ a closed complex subvariety without isolated points. Then $X \backslash A$ is Stein.

Remark: In [3] it was proved that if $\operatorname{dim}(X)=n \geq 2$ then $X \backslash A$ is the union of $(n-1)$ Stein open subsets.

Using Theorem 3 and Lemma 3 we obtain:
Corollary 1. Let X be a locally irreducible complex space of dimension 2 and $A \subset X$ a 1-dimensional closed complex subspace. We assume that X is a proper modification of a Stein space at a discrete set of points, A is connected, it has at least one non-compact irreducible component, and $X \backslash A$ has no compact subspaces of positive dimension. Then $X \backslash A$ is Stein.

For the following Proposition see Remark a), page 165, in [12].
Proposition 1. Suppose that X is a 1-convex complex space and its exceptional set A is 1-dimensional. Then A has a neighborhood that can be embedded into a space $\mathbb{C}^{n} \times \mathbb{P}^{m}$.

The following theorem follows immediately from Theorem 2.4 in [12] using a desingularization:

Theorem 4. Let X be a 1-convex manifold which is embeddable into a space $\mathbb{C}^{n} \times \mathbb{P}^{m}$. Then there exist V an open 1 -convex neighborhood of the exceptional set and Z a complex projective manifold such that V is an open subset of Z.

The following theorem was proved in [2] and [9].
Theorem 5. Let $\pi: X \rightarrow T$ be a proper holomorphic surjective map of complex spaces, let $t_{0} \in T$ be any point, and denote by $X_{t_{0}}:=\pi^{-1}\left(t_{0}\right)$ the fiber of π at t_{0}. Assume that $\operatorname{dim} X_{t_{0}}=1$. Let $\sigma: \tilde{X} \rightarrow X$ be a covering space and let $\tilde{X}_{t_{0}}=\sigma^{-1}\left(X_{t_{0}}\right)$. If $\tilde{X}_{t_{0}}$ is holomorphically convex, then there exists an open neighborhood Ω of t_{0} such that $(\pi \circ \sigma)^{-1}(\Omega)$ is holomorphically convex.

Lemma 4. Suppose that X is a Stein space and U and V are two Stein open subsets of X. If (U, X) is Runge then $(U \cap V, V)$ is also Runge.

Proof. Let $K \subset U \cap V$ be a compact set. We have to show that there exists $\phi: V \rightarrow \mathbb{R}$ a plurisubharmonic function with $K \subset\{x \in V: \phi(x)<$ $0\} \Subset U \cap V$. Let $\phi_{1}: X \rightarrow \mathbb{R}$ be a plurisubharmonic function such that $K \subset\{x \in X: \phi(x)<0\} \Subset U$ and $\phi_{2}: V \rightarrow \mathbb{R}$ a plurisubharmonic exhaustion function such that $\phi_{2 \mid K}<0$. Then $\phi=\max \left\{\phi_{1}, \phi_{2}\right\}$ will have the desired property.

Corollary 2. Suppose that X is a complex space and $\Omega_{1}, \Omega_{2}, U_{1}$ and U_{2} are open Stein subspaces of X such that $U_{1}, U_{2} \subset \Omega_{1} \cap \Omega_{2}$. If $\left(U_{1}, \Omega_{1}\right)$ and $\left(U_{2}, \Omega_{2}\right)$ are Runge then $U_{1} \cap U_{2}$ is Runge both in Ω_{1} and Ω_{2}.

The next lemma was proved in [4].
Lemma 5. Let X be a Stein space and let Y, U be Stein open subsets such that $X=U \cup Y$. Assume that $(Y \cap U, U)$ is Runge. Then (Y, X) is also Runge.

Theorem 6 was proved in [5]; for a more general result see [6].
Theorem 6. Suppose that X and Y are complex analytic subsets of some neighborhood U of the origin in \mathbb{C}^{n} such that $0 \in Y, Y \subset X$ and $X \backslash Y$ is smooth. If the dimension of each component of $X \backslash Y$ is $\geq n$ and if Y is defined in X by k holomorphic equations, the pair $\left(X_{\epsilon} \backslash\{0\}, Y_{\epsilon} \backslash\{0\}\right)$ is $(n-k-1)$ connected for $\epsilon>0$ small enough.

In the above theorem $X_{\epsilon}=\{x \in X:\|x\| \leq \epsilon\}$ and similarly for Y_{ϵ}. We also want to recall the following definition:

Definition 2. A pair (X, A) with $A \stackrel{i}{\hookrightarrow} X$ is called k-connected if i_{*} : $\pi_{j}(A,\{a\}) \rightarrow \pi_{j}(X,\{a\})$ is bijective for $j<k$ and surjective for $j=k$, for all $a \in A$.

Corollary 3. Suppose that X is a locally irreducible complex space such that all its irreducible components have dimension at least n and Y is a subspace of X. If $X \backslash Y$ is smooth and Y is locally defined in X by at most $n-2$ holomorphic equations, then Y is locally irreducible.

We shall need the following:
Definition 3. Let L be a connected 1-dimensional complex space and $\cup L_{i}$ be its decomposition into irreducible components. L is called an infinite Nori string if all L_{i} are compact and L is not compact

Definition 4. a) If Ω is an open subset of \mathbb{C}^{n}, and $\psi: \Omega \rightarrow \mathbb{R}$ is a smooth function then ψ is called strictly q-convex if its Levi form has at least $n-q+1$ positive eigenvalues at every point.
b) Suppose that X is a complex space. A function $\phi: X \rightarrow \mathbb{R}$ is called strictly q-convex if for every $a \in X$ there exists an embedding of a neighborhood U
of a as a closed analytic subset of an open subset Ω of \mathbb{C}^{n}, for some n, and $\psi: \Omega \rightarrow \mathbb{R}$ a smooth strictly q-convex function such that $\psi_{\mid U}=\phi$.
c) A complex space X is called q-complete if there exists $\phi: X \rightarrow \mathbb{R}$ a strictly q-convex exhaustion function (i.e. $\{x \in X: \phi(x)<c\} \Subset X$ for every $c \in \mathbb{R}$).

3 The Results

Proposition 2. Suppose that Z is a complex projective variety, $\operatorname{dim}(Z)=n$ and Y is a closed subvariety of $Z, \operatorname{dim}(Y)=k$, such that $\operatorname{Sing}(Z) \subset \operatorname{Sing}(Y)$ and $k \leq \frac{n-1}{2}$. Then there exists a principal hypersurface H of Z such that $Y \subset H$ and $\operatorname{Sing}(H) \subset \operatorname{Sing}(Y)$.

Proof. Let L be a positive line bundle on Z and let \mathcal{I} the ideal of Y. It follows (see for example [8]) that there exists $m_{0} \in \mathbb{N}$ such that for any $m \geq m_{0}$ the canonical map $\psi_{x}: \Gamma\left(Z, \mathcal{I} \otimes L^{m}\right) \rightarrow \Gamma\left(Z, \mathcal{I} / \mathfrak{m}_{x} \mathcal{I} \otimes L^{m}\right)$ is surjective for every $x \in Y$. If x is a regular point of Y then $\Gamma\left(X, \mathcal{I} / \mathfrak{m}_{x} \mathcal{I} \otimes L^{m}\right)=$ $\Gamma\left(X, \mathcal{I} \otimes \mathcal{O} / \mathfrak{m}_{x} \otimes L^{m}\right)$ is a vector space of dimension $n-k$. It follows that for such a point $\operatorname{dim}\left(\operatorname{Ker}\left(\psi_{x}\right)\right)=N-n+k$ where $N=\operatorname{dim}\left(\Gamma\left(Z, \mathcal{I} \otimes L^{m}\right)\right)$.

We consider the following diagram

$$
\begin{gathered}
\mathcal{R} \hookrightarrow \operatorname{Reg}(Y) \times \Gamma\left(Z, \mathcal{I} \otimes L^{m}\right) \xrightarrow{p_{2}} \Gamma\left(Z, \mathcal{I} \otimes L^{m}\right) \\
p_{1} \downarrow \\
\operatorname{Reg}(Y)
\end{gathered}
$$

where $\mathcal{R}=\left\{(x, s) \in \operatorname{Reg}(Y) \times \Gamma\left(Z, \mathcal{I} \otimes L^{m}\right): \mathrm{d} s(x)=0\right\}$. Then $\operatorname{dim}(\mathcal{R} \cap$ $\left.p_{1}^{-1}(x)\right)=N-n+k$ for every $x \in \operatorname{Reg}(Y)$ and hence $\operatorname{dim}(\mathcal{R}) \leq N-n+2 k$. We assumed that $k \leq \frac{n-1}{2}$ and therefore $\operatorname{dim}(\mathcal{R})<N$. We deduce that $p_{2}(\mathcal{R})$ has measure zero. If s is a section in $\Gamma\left(Z, \mathcal{I} \otimes L^{m}\right) \backslash p_{2}(\mathcal{R})$ and we set $H=\{x \in X: s(x)=0\}$ then H is smooth at every point of $\operatorname{Reg}(Y)$. Also it follows from Bertini's theorem, see [7], that for almost every s the hypersurface H is smooth at every point of $Z \backslash \operatorname{Sing}(Z)$, hence at every point of $Z \backslash Y$. we deduce that $\operatorname{Sing}(H) \subset \operatorname{Sing}(Y)$ for almost every $s \in$ $\Gamma\left(Z, \mathcal{I} \otimes L^{m}\right)$.

Lemma 6. Suppose that C is a one-dimensional connected compact complex space such that C has an irreducible component which is not locally irreducible. Then there exists a connected infinite Nori string \tilde{C} and an unbranched covering map $p: \tilde{C} \rightarrow C$.

Proof. Let C^{1} an irreducible component of C and $x_{0} \in C^{1}$ a point such that $C_{x_{0}}^{1}$, the germ of C^{1} at x_{0} is not irreducible. Let $\cup_{i \in I_{1}} C_{i, x_{0}}$ the decomposition of $C_{x_{0}}^{1}$ into irreducible components (according to our assumption I_{1} has at least two elements) and $\cup_{i \in I} C_{i, x_{0}}$ the decomposition of $C_{x_{0}}$ into irreducible components $I_{1} \subset I$. Let U and V be open neighborhoods of x_{0} such that $\bar{U} \subset V$ and there exist $C_{i}, i \in I$, closed analytic subsets of V which are representatives for $C_{i, x_{0}}$. We pick an index $j \in I_{1}$ and let $C^{\prime}=\cup_{i \in I \backslash\{j\}} C_{i}$ which is a closed analytic subset of V. Let $F:=\left((C \backslash \bar{U}) \bigsqcup C^{\prime} \bigsqcup C_{j}\right) / \sim$ where the equivalence relation is defined as follows: suppose that x is a point in $(C \backslash \bar{U}) \cap V$. Note that $(C \backslash \bar{U}) \cap V=\left(C^{\prime} \backslash \bar{U}\right) \cup\left(C_{j} \backslash \bar{U}\right)$ and that $C^{\prime} \backslash \bar{U}$ and $C_{j} \backslash \bar{U}$ are disjoint. Then if $x \in C^{\prime} \backslash \bar{U}$ we identify it with the corresponding point in C^{\prime} and if $x \in C_{j} \backslash \bar{U}$ it with the corresponding point in C_{j}. Note now that we have a projection $\tau: F \rightarrow C$ whose fiber above x_{0} has exactly two elements, $P \in C^{\prime}$ and $Q \in C_{j}$ and $\tau: F \backslash\{P, Q\} \rightarrow C \backslash\left\{x_{0}\right\}$ is a biholomorphism. Note that F is connected and compact.

We consider now $\left\{F_{k}\right\}_{k \in \mathbb{Z}}$ be 1-dimensional complex spaces, each one of them biholomorphic to F via $\pi_{k}: F_{k} \rightarrow F$ and $P_{k}=\pi_{k}^{-1}(P), Q_{k}=\pi_{k}^{-1}(Q)$. We set $\tilde{C}=\left(\bigsqcup F_{k}\right) / \sim$ where Q_{k} is identified with P_{k-1}. If we put $p: \tilde{C} \rightarrow C$, $p(x)=\tau\left(\pi_{k}(x)\right)$ for each $x \in F_{k} \backslash\left\{P_{k}, Q_{k}\right\}$ and $p\left(Q_{k}\right)=x_{0}$ we obtain an unramified covering. Obviously \tilde{C} is a connected infinite Nori string.

Remark. Let T_{k} be the equivalence class of F_{k} in \tilde{C} and z_{k} be the unique intersection point of T_{k} and T_{k+1} (i.e. z_{k} is the equivalence class of Q_{k}). The identity map $F \rightarrow F$ induces a biholomorphism $T_{k} \rightarrow F$ which in turn induces a biholomorphism $g_{k}: T_{k} \rightarrow T_{k+1}$. Then $g: \tilde{C} \rightarrow \tilde{C}, g_{\mid T_{k}}=g_{k}$ is a (well-defined) covering transformation map.

Proposition 3. Let X and Y be two n-dimensional normal complex spaces, $n \geq 3, y_{0} \in Y$ and $\pi: X \rightarrow Y$ a proper holomorphic map such that $C=$ $\pi^{-1}\left(y_{0}\right)$ is a connected 1-dimensional complex space and $\pi: X \backslash C \rightarrow Y \backslash\left\{y_{0}\right\}$ is a biholomorphism. We assume that $H_{1}(C)$ is infinite and that there exists a locally irreducible 2-dimensional complex subspace S of X with isolated singularities such that $C \subset S$. Then there exist an open neighborhood W of C in X and an unbranched covering $p: \tilde{W} \rightarrow W$ such that $p^{-1}((S \backslash C) \cap W)$ is Stein.

Proof. We consider $C=\cup C_{i}$ the decomposition of C into irreducible components. Because $H_{1}(C)$ is infinite we distinguish three possible cases:

1) All irreducible components C_{i} are locally irreducible, their graph is a (connected) tree, and at least one them has genus greater than or equal to 1 .
2) There exists an irreducible component $C_{i_{0}}$ which is not locally irreducible.
3) All irreducible components C_{i} are locally irreducible, and their graph contains a cycle

Case 1) In this case let $p: \tilde{C} \rightarrow C$ be a connected holomorphically convex covering of C that has at least one non-compact irreducible component. There exists such a covering because at least one irreducible component of C has genus greater or equal to 1 . We choose also an open neighborhood W_{1} of C in X such that on one hand W_{1} has a continuous deformation retract onto $W_{1} \cap S$ and $W_{1} \cap S$ has a continuous deformation retract onto C. We extend the covering $p: \tilde{C} \rightarrow C$ to a covering $p: \tilde{W}_{1} \rightarrow W_{1}$ which in turn induces a covering $p: \tilde{S} \rightarrow S \cap W_{1}$. We apply Theorem 5 and we deduce that we can find a neighborhood W of C in X such that $p^{-1}(W)$ is holomorphically convex and therefore $p^{-1}(S \cap W)$ is holomorphically convex. Note that every compact 1-dimensional subspace of $p^{-1}(S \cap W)$ is included in \tilde{C} and therefore $p^{-1}(S \cap W)$ is a proper modification of a Stein space at a discrete set of points. Corollary 1 implies then that $p^{-1}(S \cap W) \backslash \tilde{C}=p^{-1}((S \backslash C) \cap W)$ is Stein.

Case 2) We apply Lemma 6 and we get the covering space $p: \tilde{C} \rightarrow C$ such that \tilde{C} is an infinite Nori string. As in Case 1, we choose an open neighborhood W_{1} of C in X such that W_{1} has a continuous deformation retract on $W_{1} \cap S$ and $W_{1} \cap S$ has a continuous deformation retract in S onto C and we extend p to a covering $p: \tilde{W}_{1} \rightarrow W_{1}$ which induces a covering $p: \tilde{S} \rightarrow S \cap W_{1}$. At the same time the covering transformation map g extends to a covering transformation map $g: \tilde{S} \rightarrow \tilde{S}$. We are using here the notations of the proof of Lemma 6 and of the Remark that follows. Let $U_{0} \subset \tilde{S}$ a strictly pseudoconvex, relatively compact neighborhood of T_{0}. For $k \in \mathbb{Z}, k>0$ we denote by $g^{(k)}$ the k-th iterate $g \circ \cdots \circ g$ and for $k \in \mathbb{Z}, k<0$ we put $g^{(k)}=\left(g^{-1}\right)^{(k)}$. We set $U_{k}=g^{(k)}\left(U_{0}\right)$. Then U_{k} is a strictly pseudoconvex neighborhood of T_{k}. Shrinking U_{0} we can assume that $\bar{U}_{0} \cap\left(\bigcup_{|k| \geq 2} \bar{U}_{k}\right)=\emptyset$ and that $p_{\mid U_{0} \cap U_{1}}$ and $p_{\mid U_{0} \cap U_{-1}}$ are 1-1. In particular U_{0} does not contain any $T_{k}, k \neq 0$. It follows, obviously, that $U_{p} \cap U_{q}=\emptyset$ if $|k-p|>1$. By Corollary $1 U_{k} \backslash T_{k-1}$ and $U_{k+1} \backslash T_{k+2}$ are Stein open subsets of \tilde{S}. We choose now an open Stein neighborhood B_{0} of z_{0} such that $B_{0} \subset U_{0} \cap U_{1}$ and that B_{0} is Runge both in $U_{0} \backslash T_{-1}$ and in $U_{1} \backslash T_{2}$ (see Corollary 2). Moreover we assume that there exists V_{1} an open Stein neighborhood of y_{0} in Y such that
$V_{1} \supset p\left(\bar{B}_{0}\right)$. It follows from Lemma 4 that $B_{0} \backslash \tilde{C}$ is Runge both in $U_{0} \backslash \tilde{C}$ and $U_{1} \backslash \tilde{C}$. We set $B_{k}=g^{(k)}\left(B_{0}\right)$. Note that $p\left(B_{k}\right)=p\left(B_{0}\right)$ for every $k \in \mathbb{Z}$ and that $B_{k} \backslash \tilde{C}$ is Runge both in $U_{k} \backslash \tilde{C}$ and $U_{k+1} \backslash \tilde{C}$.

We choose and $\phi: V_{1} \rightarrow \mathbb{R}$ a strictly plurisubharmonic exhaustion function for V_{1} such that $\phi\left(y_{0}\right)=0, \phi(y)>0$ for $y \in V_{1} \backslash\left\{y_{0}\right\}$. Let $\epsilon>0$ be such that $V=\left\{y \in V_{1}: \phi(y)<\epsilon\right\} \subset \subset p\left(B_{0}\right)$. We claim that $(p \circ \pi)^{-1}(V \cap S) \backslash \tilde{C}$ is Stein. To prove this we consider for $k, l \in \mathbb{Z}, l<k$, $\Omega_{k, l}=\left(\cup_{j=l}^{k} U_{j}\right) \cap\left((p \circ \pi)^{-1}(V \cap S)\right)$ and $M_{k, l}=\Omega_{k, l} \backslash \tilde{C}$. Note that since $p\left(\partial U_{j_{1}} \cap \partial U_{j_{2}}\right) \cap B_{0}=\emptyset$ for $j_{1} \neq j_{2}$ we have that each $\Omega_{k, l}$ is a strictly pseudoconvex, relatively compact open subset of \tilde{S}. Its maximal compact 1-dimensional subvariety is $T_{l} \cup \cdots \cup T_{k}$ which is exceptional. Hence $\Omega_{k, l}$ is 1-convex. On the other hand $\tilde{C} \cap \Omega_{k, l}=\left(\cup_{j=l}^{k} T_{j}\right) \cup\left(T_{k+1} \cap \Omega_{k, l}\right) \cup\left(T_{l-1} \cap \Omega_{k, l}\right)$. Because Ω_{k} does not contain T_{k+1} or T_{l-1} it follows from Corollary 1 that $M_{k, l}$ is Stein. Note now that $M_{k+1, l}=M_{k, l} \cup\left(\left(U_{k+1} \cap(p \circ \pi)^{-1}(V \cap S)\right) \backslash \tilde{C}\right)$ and that $M_{k, l} \cap\left(\left(U_{k+1} \cap(p \circ \pi)^{-1}(V \cap S)\right) \backslash \tilde{C}\right)=\left(B_{k} \cap(p \circ \pi)^{-1}(V \cap S)\right) \backslash \tilde{C}$ which by Lemma 2 is Runge in $\left(U_{k+1} \cap(p \circ \pi)^{-1}(V \cap S)\right) \backslash \tilde{C}$. We deduce from Lemma 5 that $M_{k, l}$ is Runge in $M_{k+1, l}$. Similarly $M_{k, l}$ is Runge in $M_{k, l-1}$. Therefore $M_{k,-k}$ is Runge in $M_{k+1,-k-1}$ for every $k \in \mathbb{Z}, k>0$. As $(p \circ \pi)^{-1}(V \cap S) \backslash \tilde{C}=\cup_{k=1}^{\infty} M_{k+1,-k-1}$ it follows from Lemma 1 that $(p \circ \pi)^{-1}(V \cap S) \backslash \tilde{C}$ is Stein as claimed.

Case 3) Let $C_{1}, C_{2} \ldots, C_{k}$ be irreducible components of C such that their graph forms a minimal cycle (i.e. no proper subset of $\left\{C_{1}, C_{2} \ldots, C_{k}\right\}$ forms a cycle). We contract $C_{2} \cup \cdots \cup C_{k}$ in X and we obtain a normal complex space X^{\prime}. Let S^{\prime} and C^{\prime} the images of S and C respectively. It follows from Lemma 3 that S^{\prime} is locally irreducible. Notice at the same time that C^{\prime} is not locally irreducible anymore and hence we can apply Case 2. We obtain a neighborhood W^{\prime} of C^{\prime} and a covering map $p^{\prime}: \tilde{W}^{\prime} \rightarrow W^{\prime}$ such that $p^{\prime-1}\left(\left(S^{\prime} \backslash C^{\prime}\right) \cap W^{\prime}\right)$ is Stein. We pull-back this covering via the contraction map and we obtain a covering for a neighborhood of C with the desired property.

Theorem 7. Suppose that $\left(Y, y_{0}\right)$ is a germ of normal isolated singularity obtained by contracting a curve, $\operatorname{dim}(Y)=n \geq 2$ and K the corresponding link singularity. If $\pi_{1}(K)$ is infinite, then the universal covering space of $Y \backslash y_{0}$, for a small Y can be written as the union of $(n-1)$ Stein open subsets. In particular it is $(n-1)$-complete.

Proof. If $\operatorname{dim}(Y)=2$ the theorem was proved in [4]. Hence we assume that
$\operatorname{dim}(Y) \geq 3$. Let $\pi: X \rightarrow Y$ be a local resolution of singularities and C the exceptional curve. As we assumed that $n \geq 3$ it follows that $H_{1}(C)$ is infinite since $\pi_{1}(C)$ is infinite (note that C has in X real codimension >2 so $\left.\pi_{1}(X)=\pi_{1}(X \backslash C)\right)$. On the other hand from Proposition 1 it follows that C has a strictly pseudoconvex neighborhood which can be embedded into a space $\mathbb{C}^{n} \times \mathbb{P}^{m}$, and then by Theorem 4 , there exist V an open 1 -convex neighborhood of the exceptional set and Z a complex projective manifold such that V is an open subset of Z. We will show now that we can find S a two-dimensional locally irreducible subvariety of Z such that $\operatorname{Sing}(S) \subset$ $\operatorname{Sing}(C)$ and $Z \backslash S$ is the union of $(n-2)$ Stein open subsets. The local irreducibility will follow from Corollary 3 if we can choose S to be a local set-theoretic complete intersection. To obtain S we apply Proposition 2 $(n-2)$ times and we obtain a sequence of projective varieties $H_{1} \supset H_{2} \supset$ $\cdots \supset H_{n-2}=: S \supset C$ such that H_{j+1} is a principal hypersurface in H_{j} and $\operatorname{Sing}\left(H_{j}\right) \subset \operatorname{Sing}(C)$. Each $H_{j} \backslash H_{j+1}, j=1,2, \ldots, n-3$, is Stein and Theorem 2 implies that there exists a Stein open subset Ω_{j+1} of Z such that $\Omega_{j+1} \cap H_{j}=H_{j} \backslash H_{j+1}$. If we put $\Omega_{1}=Z \backslash H_{1}$ we get that $Z \backslash H_{n-2}=Z \backslash S=$ $\Omega_{1} \cup \cdots \Omega_{n-2}$. In particular, since V is strictly pseudoconvex, we have that $V \backslash S$ is the union of $(n-2)$ Stein open subsets.

We apply now Proposition 3 and we find W a strictly pseudoconvex neighborhood of C in X such that on one hand $W \backslash S=W_{1} \cup \cdots W_{n-2}$ where W_{j}, $j=1,2, \ldots, n-2$ are Stein open subsets of X and on the other hand there exists an (unbranched) covering space $p: \tilde{W} \rightarrow W$ for which $p^{-1}((S \backslash C) \cap W)$ is Stein.

What is left to notice is that $\tilde{W}_{j}:=p^{-1}\left(W_{j}\right), j=1,2, \ldots, n-2$, are Stein (see Theorem 1) and, at the same time, by Theorem 2 there exists \tilde{W}_{n-1} a Stein open subset of \tilde{W} such that $\tilde{W}_{n-1} \cap p^{-1}(S)=p^{-1}((S \backslash C) \cap W)$. Obviously $\tilde{W}=\tilde{W}_{1} \cup \cdots \tilde{W}_{n-1}$ and hence \tilde{W} is the union of $(n-1)$ Stein open sets. As the universal covering \hat{W} of W is a covering of \tilde{W}, Theorem 1 implies that \hat{W} is the union of $(n-1)$ Stein open sets. The $(n-1)$-completness of \hat{W} follows from [11], Satz 2.3.

Acknowledgments: The first two named authors were partially supported by CNCSIS Grant PN-II ID_1186, contract 455/2008.

References

[1] A. Andreotti; H. Grauert: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962) 193-259.
[2] M. Colţoiu; K. Diederich: On the coverings of proper families of 1dimensional complex spaces. Michigan Math. J. 47 (2000), no. 2, 369 375.
[3] M. Colţoiu; K. Diederich: Convexity properties of analytic complements in Stein spaces. Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. (1995), Special Issue, 153160.
[4] M. Colţoiu; M. Tibăr: Steinness of the universal covering of the complement of a 2-dimensional complex singularity. Math. Ann. 326 (2003), no. 1, 95-104.
[5] H. Hamm: Lokale topologische Eigenschaften komplexer Räume. Math. Ann. 191 (1971) 235-252.
[6] H. Hamm: On the vanishing of local homotopy groups for isolated singularities of complex spaces. J. Reine Angew. Math. 323 (1981), 172-176.
[7] J. Harris: Algebraic geometry. A first course. Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1995.
[8] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[9] T. Napier: Convexity properties of coverings of smooth projective varieties. Math. Ann. 28 (1990), no. 1-3, 433-479
[10] R. Narasimhan: The Levi problem for complex spaces. II. Math. Ann. 146 (1962) 195-216
[11] M. Peternell: Algebraische Varietäten und q-vollständige komplexe Räume. Math. Z. 200 (1989), no. 4, 547-581.
[12] T. Peternell: On strongly pseudoconvex Kähler manifolds. Invent. Math. 70 (1982/83), no. 2, 157-168.
[13] R. R. Simha: On the complement of a curve on a Stein space of dimension two. Math. Z. 82 (1963) 63-66.
[14] Y. T. Siu: Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38 (1976/77), no. 1, 89-100.
[15] K. Stein: Überlagerungen holomorph-vollständiger komplexer Räume. Arch. Math. 7 (1956), 354-361.

Mihnea Colţoiu
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, Bucharest 014700, Romania
E-mail address: Mihnea.Coltoiu@imar.ro
Cezar Joiţa
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, Bucharest 014700, Romania
E-mail address: Cezar.Joita@imar.ro
Mihai Tibăr
Mathématiques, UMR 8524 CNRS
Université des Sciences et Technologies de Lille (USTL)
59655 Villeneuve d'Ascq, France
E-mail address: tibar@math.univ-lille1.fr

[^0]: *Mathematics Subject Classification (2000): 32E10,32F10, 32S45.
 Key words: link singularity, q-complete space, Stein space, 1-convex manifold.

