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Abstract

We prove that every reduced, second countable, connected complex space X can be written
as a finite union of connected Stein open subsets. If X is irreducible, we show that these Stein
open subsets can be chosen to be contractible. We also prove that there exist a connected
Stein space X̃ and a surjective holomorphic, locally biholomorphic map p : X̃ → X with finite
fiber.

1 Introduction

Let X be a second countable reduced complex space. Clearly X has locally finite coverings with
Stein open subsets and any open covering of X has a locally finite refinement with Stein open
subsets. On the other hand, any compact complex space admits finite Stein open coverings. Then,
the natural question one may ask is whether any connected complex space, of finite dimension,
has a covering with finitely many Stein open subsets. A positive answer to this question was
given in [3]. However, the open sets that appear in [3] have in general infinitely many connected
components. At the same time, in the smooth case, Fornaess and Stout [6] proved that any
connected complex manifold can be covered by finitely many polydisks.

The following question was raised in [3]: if X is a connected complex space of finite dimension,
is it true that X can be covered by finitely many connected Stein open subsets? In this paper we
prove (Theorem 11) that the answer is ”yes”. Moreover, if X is irreducible we obtain a stronger
result, namely we prove (see Theorem 10) that X can be covered by finitely many contractible
Stein open subsets. The proof of Theorem 11 can be used to obtain the following result (Theorem
12): given a connected complex space, there exist a connected Stein complex space X̃ and a
holomorphic map p : X̃ → X such that p is surjective, locally biholomorphic and the cardinality
of the fiber is bounded by a constant depending on the dimension of X. When X is irreducible
and locally irreducible this result was proved in [6].

2 Preliminaries

All complex spaces that appear in this paper are assumed to be reduced and countable at infinity.
The following theorem was proved by M. Colţoiu in [3].

Theorem 1. For every n ∈ N there exists d(n) ∈ N such that every complex space of dimension
n can be written as the union of d(n) Stein open subsets.

Theorem 2 was proved by J. E. Fornaess and E. L. Stout in [6].
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Theorem 2. For every n ∈ N there exists λ(n) ∈ N such that every connected complex manifold
of dimension n can be written as the union of λ(n) open subsets, each one of them biholomorphic
to a polydisk.

More precisely, λ(n) is defined as follows: λ(1) = 3 and λ(n) = 2(34n − 1)4n for n ≥ 2.
A well known theorem of Y. T. Siu [14] says that if X is a complex space and Y is a Stein

closed analytic subspace of X then Y has a Stein open neighborhood. The following theorem,
proved by N. Mihalache in [11], is an extension of Siu’s theorem.

Theorem 3. Suppose that X is a complex space and Y closed analytic subspace. If Y is Stein
then Y has a Stein open neighborhood U such that Y is a strong deformation retract of U .

The theorem below is also an extension of Siu’s theorem. It was proved by F. Forstnerič in [7].
For the form presented here see [8], Theorem 3.2.1, page 62.

Theorem. Let X be a complex space, K ⊂ X be a compact subset, and Z ⊂ X be a closed complex
subspace. We assume that the following conditions are satisfied:

i) Z is Stein and Z ∩K is holomorphically convex in Z,

ii) K has a Stein neighborhood U such that K is holomorphically convex in U .

Then Z ∪K has a Stein neighborhood Ω such that K is holomorphically convex in Ω.

Remark 1. Let X,K,U , and Z as in the statement of the above theorem. We assume also

that
◦
K is Stein and Runge in U and let Ω be a Stein neighborhood of K ∪ Z such that K is

holomorphically convex in Ω. Then
◦
K is Runge in Ω. Indeed, as K is holomorphically convex in

U , it has a fundamental system of open neighborhoods that are Runge in U . Let U1 be a Runge
open subset of Ω such that K ⊂ U1 ⊂ U (it exists because K is holomorphically convex in Ω).

Because
◦
K is Runge in U , it follows that it is Runge in U1 and hence it is Runge in Ω.

This implies that we can rewrite Forstnerič’s theorem as follows:

Theorem 4. Let X be a complex space, K ⊂ X be a compact subset, and Z ⊂ X be a closed
complex subspace. We assume that the following conditions are satisfied:

i)
◦
K is Stein,

ii) Z is Stein and Z ∩K is holomorphically convex in Z,

iii) K has a Stein neighborhood U such that K is holomorphically convex in U and
◦
K is Runge

in U .

Then Z ∪ K has a Stein neighborhood Ω such that K is holomorphically convex in Ω and
◦
K is

Runge in Ω.

The next theorem was proved by M. Colţoiu in [4].

Theorem 5. Suppose that X is a Stein space, Y ⊂ X is a closed complex subspace, D ⊂ Y is a
Runge open subset, K ⊂ X a holomorphically convex compact subset such that K ∩ Y ⊂ D and
V ⊂ X is an open subset such that D ∪K ⊂ V . Then there exists a Runge open subset D̃ in X
with D̃ ∩ Y = D and K ⊂ D̃ ⊂ V .

Remark 2. The statement of Theorem 3 in [4] does not require that D̃ ⊂ V , however it fol-
lows easily from the proof presented there that this condition can be achieved as well. Also the
concluding remark of [4] refers to Stein spaces of finite embedding dimension. If X is any Stein
space one can choose an exhaustion of X with relatively compact Runge domains and reduce the
problem to the finite embedding dimension case.
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Definition 1. A sequence, {Dn}n≥1, of disjoint Runge open sets in a Stein space X is called
uniformly Runge if for every sequence of positive real numbers {εn}n≥1, every sequence of compact
sets {Kn}n≥1, Kn ⊂ Dn, and every sequence of holomorphic functions {fn}n≥1, fn ∈ O(Dn), there
exists f ∈ O(X) such that for every n ≥ 1 we have ‖f − fn‖Kn < εn.

Definition 2. A sequence {Kn}n≥1 of disjoint compact sets in a Stein space X is called holomor-
phically separated if there exist f ∈ O(X) and an increasing sequence of real numbers {αn}n≥0

such that limαn =∞ and for each n ≥ 1 one has αn−1 < Re(f|Kn) < αn.

Remark 3. If {Kn}n≥1is a sequence of disjoint holomorphically convex compact sets in a Stein
space X and if there exist an increasing sequence of real numbers {αn}n≥0 and a holomorphic
function f ∈ O(X) such that αn−1 < Re(f|Kn) < αn for each n ≥ 1, then

⋃
Kn has a fundamental

system of Runge neighborhoods. This follows from Lemma 1 in [13]. However, if limαn 6= ∞,
{Kn}n≥1 might not be holomorphically separated. This was noticed in [10].

Propositions 1 and 2 were proved in [10].

Proposition 1. Suppose that {Dn}n≥1 is a sequence of disjoint Runge domains in a Stein space
X. The following are equivalent:

i) {Dn}n≥1 is uniformly Runge

ii) Every sequence of compact sets {Kn}n≥1, Kn ⊂ Dn, is holomorphically separated.

Proposition 2. A sequence {Kn}n≥1 of disjoint holomorphically convex compact sets in a Stein
space X is holomorphically separated if and only if there exists an exhaustion {Pn}n≥1 of X with
holomorphically convex compact subsets such that the following conditions hold:

a)
◦
Pn is Runge in X for all n,

b) Kn ⊂
◦
Pn for all n,

c) For every j and n, j > n, we have that Pn ∩Kj = ∅,

d) For every finite set S ⊂ {n + 1, n + 2 . . . }, we have that Pn ∪
⋃
j∈S Kj is holomorphically

convex.

Remark 4. In [10] Propositions 1 and 2 were stated for Cn. However exactly the same proofs

work for any Stein space. Also Proposition 2 is stated with Kn ⊂ Pn instead of Kn ⊂
◦
Pn and

without asking that
◦
Pn is Runge. However, it is easy to see that one can slightly modify the proof

in order to satisfy these two conditions.

Theorem 6 was proved in [12].

Theorem 6. If X is a Stein space and φ : X → R is a continuous plurisubharmonic exhaustion
function then, for every α ∈ R, the open set {x ∈ X : φ(x) < α} is Runge in X and the compact
set {x ∈ X : φ(x) ≤ α} is holomorphically convex.

Assuming that in the main result of [2] the complex space X is Stein one obtains the following
theorem.

Theorem 7. Let X be a Stein space. Then there exists φ : X → R a smooth strictly plurisubhar-
monic exhaustion function such that the set of local minima of φ is discrete in X.

Remark 5. Suppose that X is a Stein space and φ : X → R is a continuous plurisubharmonic
function. If x0 is an interior point of {x ∈ X : φ(x) = α} such that φ(x0) = α it follows that x0

is a local maximum point of φ and therefore φ is constant on a neighborhood of x0. In particular
every point in this neighborhood is a local minimum. It follows that if the set of local minima of
φ is discrete then interior of {x ∈ X : φ(x) ≤ α} is precisely {x ∈ X : φ(x) < α}. Hence we have:
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Corollary 1. Every Stein space X has an exhaustion {Kn} with holomorphically convex compact

sets such that each
◦
Kn is Runge in X.

We recall the following well-known due to J. H. C. Whitehead, [15].

Theorem 8. A CW-complex X is contractible if and only if πn(X) = 0 for every n.

Recall that a topological space X has covering dimension (topological dimension) ≤ n if any
finite covering U has a refinement V such that for any V1, . . . , Vn+2 ∈ V, Vi 6= Vj for i 6= j, we
have ∩n+2

j=1Vj = ∅. The covering dimension of X is n if it is ≤ n but not ≤ n− 1. Also recall that
a complex space X (countable at infinity) of bounded dimension dimX = n < ∞ has covering
dimension 2n.

The following theorem is due to P. A. Ostrand. For a proof see, for example, [5] page 228.

Theorem 9. A normal topological space X has covering dimension at most n if and only if any
locally finite covering U = {Us}s∈S can be written as the union of n+1 families V1, . . . ,Vn+1 such
that Vj = {Vj,s}s∈S, Vj,s ⊂ Us and Vi,s ∩ Vj,s = ∅ for i 6= j.

Remark 6. If X is a complex space and {xk}k∈N is a discrete set, it is not possible in general to
find γk : [0, 1] → X continuous paths with γk(0) = xk and γk(1) = xk+1 such that the sequence
{γk([0, 1])}k∈N is locally finite. For example if X = C∗ and x2n = 2n, x2n+1 = 1

2n+1 then for any
continuous path with γ with γ(0) = xk and γ(1) = xk+1 we have that γ([0, 1]) ∩ S1 6= ∅. The
same type of of construction works in every manifold with at least two ends.

Instead we can connect the points {xk}k∈N using a locally finite connected graph and this is
the content of the following lemma.

Lemma 1. Suppose that X is a connected complex space and A ⊂ X is a discrete set. Then there
exists E, a countable collection of continuous 1-1 paths γ : [0, 1]→ X, such that:
- for each γ ∈ E we have that γ(0), γ(1) ∈ A and for each a ∈ A there exist γ ∈ E with a ∈
{γ(0), γ(1)}
- G :=

⋃
γ∈E γ([0, 1]) is connected,

- {γ([0, 1]) : γ ∈ E} is locally finite.

Proof. For a compact set K we denote by co(K) the union of K with all relatively compact
connected components of X \ K. It follows that co(K) is also compact. Note that if K is a
compact set such that K = co(K) then X \K has finitely many connected components. Indeed

if F is another compact subset of X such that K ⊂
◦
F then the union of all connected component

of X \K covers ∂F and each one of these components intersects ∂F .
We consider {Kn} an exhaustion of X with compact subsets such that Kn = co(Kn). We will

construct E inductively.
Without loss of generality we can assume that K1 ∩A 6= ∅ and let a ∈ K1 ∩A. For each point

x ∈ K1 ∩ A we choose a continuous 1-1 path joining x and a and we let E0 be the (finite) set of
all these paths.

LetX1
1 , . . . , X

1
p1 be the connected components ofX\K1. Note thatX1

j ∩(K2\K1) 6= ∅. Without
loss of generality we can assume that if X1

j ∩A 6= ∅ for some j then X1
j ∩ (K2 \K1) ∩A 6= ∅. For

each such j we choose a1
j ∈ X1

j ∩ (K2 \K1)∩A. We consider continuous 1-1 paths joining a1
j and

a and for each x ∈ X1
j ∩ A ∩ (K2 \K1) we choose a 1-1 path in X1

j (hence not intersecting K1)
joining x and a1

j . We denote by E1 the (finite) set of all this paths.
Suppose that we have constructed Em and the points amj ∈ (Km+1\Km)∩A, j = 1, . . . , pm and

we will construct Em+1. Let Xm+1
1 , . . . , Xm+1

pm+1
be the connected components of X\Km+1. Without

loss of generality we can assume that if Xm+1
j ∩A 6= ∅ then Xm+1

j ∩ (Km+2 \Km+1)∩A 6= ∅. For
each such j we choose am+1

j ∈ Xm+1
j ∩ (Km+2 \Km+1)∩A and let l(j) ∈ {1, . . . , pm} be such that

am+1
j and aml(j) are in the same connected component of X \Km. We choose a 1-1 path joining
am+1
j and aml(j) that does not intersect Km. For each x ∈ Xm+1

j ∩A ∩ (Km+2 \Km+1) we choose
a 1-1 path in Xm+1

j joining x and am+1
j . We let Em+1 be the set of all these paths.
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We set E =
⋃
m≥0 Em. It is clear that E has the required properties.

3 Connected Stein coverings for irreducible complex spaces

In this section we prove that every irreducible complex space X can be written as a finite union of
contractible Stein open subsets. Let us say first a few words about the idea of the proof. As X is
irreducible, Reg(X) is connected and for it we can apply Fornaess and Stout result (Theorem 2).
This means that we have to cover Sing(X) with finitely many contractible Stein open subsets of X.
For simplicity let’s consider the case in which Sing(X) is smooth. It may have however infinitely
many connected components. Let Sing(X) =

⋃
j∈N Yj be the decomposition of Sing(X) into

connected components. Hence each Yj is a connected complex manifold of dimension < dim(X).
By Theorem 2 each Yj can be written as Yj =

⋃λ
k=1Q

k
j where λ = λ(dim(X) − 1) is the bound

given by Theorem 2 and Qkj are biholomorphic to polydisks. For each fixed k ∈ {1 . . . , λ} we want
to show that there exists a contractible open Stein subset Uk of X such that Uk ⊃

⋃
j∈N Q

k
j . To

do this we construct an countable set {Dk
p} of holomorphic disks is X (see bellow what we mean

by that) such that Zk :=
⋃
j∈N Q

k
j ∪

⋃
p∈N D

k
p is a contractible, locally closed complex subspace

of X. This means that Zk is a closed complex subspace of an open subset Vk of X. Once we
constructed Zk, we can apply Theorem 3 to find Uk, a contractible open Stein subset of X such
that Zk ⊂ Uk ⊂ Vk.

By a holomorphic disk D in a complex space X we will mean a 1-dimensional locally closed and
locally irreducible analytic subset of X whose normalization is the unit disk ∆ in C. In particular
D is contractible.

Lemma 2. Let A ⊂ CN be an analytic subset of pure dimension n and x0 ∈ A. We denote by
π : CN → Cn the projection on the first n coordinates and let P ⊂ CN be an open polydisk with
x0 ∈ P . We assume that:
a) π|P∩A : P ∩A→ Cn is a branched covering;
b) π−1(π(x0)) ∩ P ∩A = {x0}.

Then P ∩A is connected.

Proof. We assume that P ∩A is not connected and therefore P ∩A = A1 ∪A2 where A1 and A2

are disjoint, open and closed subsets of P ∩ A. Then A1 and A2 and closed analytic subsets of
P ∩A. It follows that π(A1) and π(A2) are closed analytic subsets of π(P ) which is a polydisk in
Cn, and hence connected. This implies that π(A1) = π(A2) = π(P ). In particular π(x0) ∈ π(A1)
and π(x0) ∈ π(A2). As π−1(π(x0))∩P ∩A = {x0}, we deduce that x0 ∈ A1∩A2 which contradicts
the fact that A1 and A2 are disjoint.

Remark 7. In the previous Lemma we did not assume A to be irreducible. It follows from the
proof that if a) and b) are satisfied then every irreducible component of P ∩ A passes thorough
x0.

Lemma 3. Suppose that X is a complex space and x0 ∈ X is a point such that dimx0(X) ≥ 1.
Then x0 has an open neighborhood U such that for every point x ∈ U there exists a holomorphic
disk D ⊂ U with x0, x ∈ D.

Proof. The statement is local so we can assume that X is a closed analytic subset of an open
subset W in CN . Also, as it suffices to prove the statement for each irreducible component of X,
we may assume that X is pure dimensional and let n = dim(X)

First we prove that there exist a system of coordinates on CN , a polydisk P centered at x0, and
X1, . . . Xn−1 closed analytic subsets of X such that if we denote by π(j) : CN → Cj the projection
on the first j coordinates and set Xn := X then we have that

1. Xj is of pure dimension j or empty, and if Xj = ∅ then Xk = ∅ for k < j,
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2. If Xj 6= ∅ then x0 ∈ Xj and π
(j)
|P∩Xj : P ∩Xj → Cj is a branched covering,

3. Xj−1 is the branch locus of π(j)
|P∩Xj : P ∩Xj → Cj

4. If Xj 6= ∅, then the fiber of π(j)
|P∩Xj above π(j)

|P∩Xj (x0) is {x0}.

We choose first a system of coordinates on CN and a polydisk P centered at x0 such that the
properties 2 and 4 are satisfied for Xn = X. Let P = P ′×P ′′ where P ′ is a polydisk in Cn and P ′′

is a polydisk in CN−n. Let Xn−1 ⊂ P∩Xn be the branch locus of π(n)
|P∩Xn : P∩Xn → Cn. Then, by

The Purity of Branch Locus Theorem, Xn−1 has pure dimension n−1 and let Yn−1 = π(n)(Xn−1)
which is a closed analytic subset of P ′of pure dimension n − 1. We consider a linear change of
coordinates χ : Cn → Cn and a polydisk P1 centered at π(n)(x0), P1 ⊂ P ′ such that the projection
on the first (n−1) coordinates in this new system induces a branched covering P1∩Yn−1 → Cn−1

and the fiber above the projection of π(n)(x0) is just π(n)(x0).
Note now that χ induces a linear change of coordinates on CN . Namely (χ ◦ π(n), π′′) : CN →

CN where π′′ is the projection on the last N − n coordinates. In this new coordinate system the
projection on the first n coordinates has the same branch locus as π(n), i.e. Xn−1. At the same
time P1 × P ′′ is a polydisk in the new system of coordinates and Xn and Xn−1 satisfy properties
1, 2, 3 and 4. We continue this construction and we obtain Xn−2, . . . , X1. Of course, if at some
step πj is an unbranched covering then Xk = ∅ for k < j.

Note that by Lemma 2 we have that P ∩ Xj is connected for every j and every irreducible
component of P ∩Xj that passes thorough x0.

Let j0 = min{j : Xj 6= ∅}. We will prove by induction on j ≥ j0 that for every point x ∈ P ∩Xj

there exists a holomorphic disk D ⊂ P ∩Xj with x0, x ∈ D.
If j0 = 1 then all we have to do is to work with every irreducible component of P ∩X1 and to

consider its normalization. If j0 ≥ 2 then πj is an unbranched covering and we consider a lifting
of a disk in πj(P ) (which is also a polydisk).

Suppose that we have proved the statement for Xj−1 and we would like to prove it for Xj . Let
x ∈ Xj . If x ∈ Xj−1 then the existence of D follows from the induction hypothesis. Suppose now
that x ∈ Xj \Xj−1.

Let L be the complex line in Cj passing through π(j)(x0) and π(j)(x). Let D0 be a con-
nected and simply connected open subset of L ∩ π(j)(P ) with π(j)(x0), π(j)(x) ∈ D0 and D0 ∩
π(j)(Xj−1) = {π(j)(x0)}. It follows that π(j) induces a unramified covering with finitely many
sheets (π(j))−1(D0 \ {π(j)(x0)}) → D0 \ {π(j)(x0)}. Since a connected finite unramified cov-
ering of a pointed disk is also a pointed disk it follows that every connected component of
(π(j))−1(D0 \ {π(j)(x0)}) is biholomorphic to ∆ \ {0}. Let D∗ be the connected component
that contains x and let f : ∆ \ {0} → D∗ be a biholomorphism. As D∗ ⊂ P which is relatively
compact in CN it follows that f extends to a holomorphic function f : ∆ → X. We have that
π(j)(f(0)) = π(j)(x0) and as (π(j))−1(π(j)(x0)) = {x0} we deduce that f(0) = x0. At the same
time x0 6∈ D∗ and therefore f : ∆ → X is injective. It follows that f(∆) is a holomorphic disk
containing x0 and x.

Proposition 3. Every irreducible complex space X of dimension 1 can be written as the union of
at most 6 contractible Stein open subsets.

Proof. Because X is irreducible, Reg(X) is a connected smooth complex curve. Hence it can be
written as the union of λ(1) = 3 disks, Reg(X) = ∆1 ∪ ∆2 ∪ ∆3 and therefore we have to deal
only with the singular locus.

As dim(X) = 1, we have that Sing(X) is just a discrete set. We write Sing(X) = {xj : j ∈ J},
the index set J being at most countable. Let π : X̃ → X be the normalization of X. For each
j ∈ J we choose aj ∈ π−1(xj) and we denote by {bkj : k ∈ Ij} := π−1(xj) \ {aj}. Note that

Ij is finite and could be empty. For each bkj we choose Dk
j b Ωkj b X̃ open disks such that Ω

k

j ,
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j ∈ J, k ∈ Ij , are pairwise disjoint and the family {Ωkj }j∈J,k∈Ij is locally finite. In particular⋃
j∈J,k∈Ij Ω

k

j is closed in X̃. Note that π|Dkj is a homeomorphism onto an open subset of a local
irreducible component of X at xj . Its image is not however open in X.

We have then that X̃ \
⋃
j∈J,k∈Ij Ω

k

j is a connected smooth complex curve and therefore it can
be written as the union of three disks U1 ∪ U2 ∪ U3. Let A1 := {j ∈ J : aj ∈ U1} and similarly

we define A2 and A3. Let V1 = U1 ∪
(⋃

j∈A1,k∈Ij D
k
j

)
and W1 = π(V1). It is easy to see that W1

is open. Note that W1 is obtained as follows: we start with π(U1) which is homeomorphic to U1

and hence is a contractible complex space, in π(U1) we have a discrete set of points, namely A1,
and at each of these points, aj , we attach a finitely many, pairwise disjoint contractible complex
spaces, namely π(Dk

j ), k ∈ Ij . It clear that in this way we obtain a contractible Stein complex
space.

Similarly we define W2 and W3 and we have that Sing(X) ⊂ W1 ∪ W2 ∪ W3. Therefore
X = ∆1 ∪∆2 ∪∆3 ∪W1 ∪W2 ∪W3.

Theorem 10. For every n ∈ N there exists a positive number µ(n) <∞ such that every irreducible
complex space X with dim(X) = n <∞ can be written as the union of at most µ(n) contractible
Stein open subsets.

Proof. If dim(X) = 1, the statement is the content of Proposition 3. We assume then that
dim(X) ≥ 2.

By Theorem 2, Reg(X) (which is a connected complex manifold) can be written as the union of
λ(n) open sets each one of them biholomorphic to a polydisk, and therefore Stein and contractible.
We have therefore only to cover Sing(X) with finitely many contractible Stein open subsets of X,
their number depending only on dim(X).

We write Sing(X) as Sing(X) = A1 ∪ A2 ∪ · · · ∪ Ak, k ≤ n, where A1 = Reg(Sing(X)),
A2 = Reg(Sing(Sing(X))), and so forth. Note that A1, . . . , Ak are pairwise disjoint complex
manifolds and Ap ∪Ap+1 ∪ · · · ∪Ak is closed in X for each p.

It suffices to cover each Ap with contractible Stein open subsets of X. We fix p ∈ {1, 2, . . . , k}.
We consider {Ap,j}j∈J the connected components of Ap, the index set J being at most countable.
We apply Theorem 2 for each Ap,j which is a connected complex manifold of dimension less than
n and therefore we write Ap,j as Ap,j =

⋃λ(n)
l=1 Qj,l where each Qj,l is biholomorphic to a polydisk.

We fix l and we want to show that there exists Ωl a Stein and contractible open subset of X such
that Ωl ⊃

⋃
j∈J Qj,l. This, of course, will end the proof. Note that

X̃ := X \

⋃
j∈J

(Ap,j \Qj,l)

 ∪Ap+1 ∪Ap+2 ∪ · · · ∪Ak


is a connected open subset of X, X̃ ⊃

⋃
j∈J Qj,l, Qj,l is closed in X̃ and {Qj,l}j∈J is locally finite

in X̃. For each j ∈ J we choose xj ∈ Qj,l. It follows that {xj}j∈J is a discrete subset of X̃.
Note that Reg(X) = Reg(X̃) and therefore X̃ is irreducible. Let π : X̂ → X̃ be a desingu-

larization of X̃. It follows that X̂ is connected. For each j ∈ J we choose yj ∈ X̂ such that
π(yj) = xj . It follows that {yj} is discrete in X̂.

We apply Lemma 1 for this set and X̂ and we obtain a connected graph Ĝ whose vertices
are {yj}j∈J and whose set of edges we denote with Ê . It is easy to see that any two points in
a real analytic connected manifold can be joint be a piecewise real analytic path and therefore
we may assume that the edges of Ĝ are piecewise real analytic. Clearly we may assume no edge
is included in π−1(Sing(X̃)). Let G be the graph in X̃ whose vertices are {xj} and edges are
{γ = π ◦ γ̂ : γ̂ ∈ Ê}. It follows that G is connected, its edges are piecewise real analytic and locally
finite and none of them is included in Sing(X̃). We modify the graph G as follows:
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- For an edge γ, if γ(t0) = γ(t1), 0 ≤ t0 < t1 ≤ 1, we replace γ by the concatenation of γ|[0,t0] and
γ|[t1,1] and we may assume that the edges are one-to-one.
- Note that for each edge γ the set {t ∈ [0, 1] : γ(t) ∈ Sing(X̃)} is finite. If γ(t0) ∈ Sing(X̃) for
some t0 ∈ (0, 1), we add γ(t0) to the set of vertices of G and at the same time we replace γ with
γ′, γ′′ : [0, 1]→ X̃, γ′(s) = γ(st0), γ′′(s) = γ((1− s)t0 + s).
- If for some j ∈ J we have that γ(0), γ(1) ∈ Qj,l, we add γ(1/2) to the set of vertices of G and at
the same time we replace γ with γ′, γ′′ : [0, 1]→ X̃, γ′(s) = γ(s/2), γ′′(s) = γ((1 + s)/2)
- For every two edges γ1, γ2 : [0, 1] → X̃, by real analicity, the set {(t1, t2) ∈ [0, 1] × [0, 1] :
γ1(t1) = γ2(t2)} is finite. If for some t1, t2 ∈ [0, 1], (t1, t2) 6∈ {(0, 0), (0, 1), (1, 0), (1, 1)} we have
that γ1(t1) = γ2(t2) we add γ1(t1) to the set of vertices of G and at the same we replace γ1 with
γ′1, γ

′′
1 : [0, 1]→ X̃ γ′1(s) = γ1(st0), γ′′1 (s) = γ1((1− s)t0 + s) and the same thing for γ2.

- For every two edges γ1, γ2 : [0, 1]→ X̃, we have that #γ1({0, 1})∩ γ2({0, 1}) ≤ 1. Otherwise we
remove one of them.

After all these transformations we obtain a new connected graph, which we denote also with
G that has the following properties:

� its set of vertices is discrete and contains {xj : j ∈ J},

� the set of edges E is locally finite,

� for every edge γ we have that γ((0, 1)) ∩ Sing(X̃) = ∅ and therefore γ((0, 1)) ∩Qj,l = ∅

� for every edge γ and every j ∈ J we have that #γ({0, 1}) ∩Qj,l ≤ 1,

� for every two edges γ1 and γ2 we have that γ1((0, 1)) ∩ γ2((0, 1)) = ∅ and #γ1({0, 1}) ∩
γ2({0, 1}) ≤ 1,

�
(⋃

γ∈E γ([0, 1])
)
∪
(⋃

j∈J Qj,l

)
is connected.

We will construct a subset E ′ of E such that
(⋃

γ∈E′ γ([0, 1])
)
∪
(⋃

j∈J Qj,l

)
is contractible.

We assume that J = N, for J finite the proof being the same.
We will construct inductively Tk =

(⋃
γ∈Ak γ([0, 1])

)
∪
(⋃

j∈Bk Qj,l

)
where Ak ⊂ E and Bk ⊂ N

are finite sets such that Ak ⊂ Ak+1, Bk ⊂ Bk+1 and hence Tk ⊂ Tk+1, Tk is contractible, and⋃
k∈N Bk = J = N. Once we have constructed Tk, k ∈ N with these properties we set E ′ =

⋃
Ak

and we will have that
⋃
k∈N Tk =

(⋃
γ∈E′ γ([0, 1])

)
∪
(⋃

j∈J Qj,l

)
which clearly is connected. Also

it is easy to see that all the homotopy groups of
⋃
k∈N Tk are trivial and therefore by Theorem 8

it is contractible.

We set T0 = Q0,l (i.e A0 = ∅ and B0 = {0}) and obviously T0 satisfies the required conditions.
We assume now that we have constructed Tk, Ak, Bk, and we want to construct Tk+1, Ak+1,
Bk+1.

Let i to be smallest positive integer such that there exists a finite sequence of edges in E ,
γ1, γ2, . . . , γq such that:
- γ1([0, 1]) ∩Qi,l 6= ∅, hence #γ1([0, 1]) ∩Qi,l = 1, and γq([0, 1]) ∩ Tk 6= ∅,
- γs([0, 1]) ∩ γs+1([0, 1]) 6= ∅ for s = 2, . . . , q − 1 and, therefore, #γs([0, 1]) ∩ γs+1([0, 1]) =
#γs({0, 1}) ∩ γs+1({0, 1}) = 1
- for every j ∈ N such that Qj,l 6= Qi,l and Qj,l 6⊂ Tk we have that
(γ1([0, 1]) ∪ · · · ∪ γq([0, 1])) ∩Qj,l = ∅.

Let q1 be the smallest number q with these property.
We set Ak+1 = Ak ∪{γ1, . . . , γq1}, Bk+1 = Bk ∪{i} and therefore Tk+1 = Tk ∪ γ1([0, 1])∪ · · · ∪

γq1([0, 1]) ∪Qi,l. Clearly Tk+1 is connected. Note also the following:
- If 1 ≤ s1 < s2 ≤ q1 and s2−s1 ≥ 2 then γs1([0, 1])∩γs2([0, 1]) = ∅. Otherwise γ1, . . . , γs1 , γs2 , . . . , γq1
will be a shorter sequence of edges connecting Tk and Qi,l, thus contradicting the minimality of
q1.
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- If s ≥ 2 then Tk ∩ γs([0, 1]) = ∅. Otherwise γs, . . . , γq1 will be a shorter sequence of edges
connecting Tk and Qi,l.
- If s ≤ q1 − 1 then Qi,l ∩ γs([0, 1]) = ∅. Otherwise γ1, . . . , γs will be a shorter sequence of edges
connecting Tk and Qi,l.
- #Tk ∩ γ1 = 1. Indeed, if q1 ≥ 2, above, we have that #(Tk ∪ γ2([0, 1])) ∩ γ1([0, 1]) =
#(Tk∪γ2({0, 1}))∩γ1({0, 1}) ≤ 2. At the same time γ1([0, 1])∩γ2([0, 1]) 6= ∅ and γ2([0, 1])∩Tk = ∅.
If q1 = 1 we argue similarly.

All these facts imply that Qi,l∩(Tk ∪ (
⋃q1
s=1 γs([0, 1]))) is just one point and also that γs([0, 1])∩(

Tk ∪
(⋃s−1

r=1 γr([0, 1])
))

consists of one point for 1 ≤ s ≤ q1. As Qi,l and each edge are con-
tractible it follows that Tk+1 has a strong deformation retract onto Tk ∪γ1([0, 1])∪ · · ·∪γq1([0, 1]),
which has a deformation retract onto Tk ∪ γ1([0, 1])∪ · · · ∪ γq1−1([0, 1]) and so forth. We conclude
that Tk+1 has a deformation retract onto Tk which is contractible by the induction hypothesis and
therefore Tk+1 is contractible.

It remains to show that
(⋃

j∈N Qj,l

)
⊂
(⋃

k∈N Tk
)
. Note that if k and m are positive integers

such that Qm,l is not a subset of Tk (and therefore not intersecting Tk) and if there exists a
sequence of edges connecting Qm,l and Tk that do not intersect any other Qj,l which is not a
subset of Tk ∪Qm,l then Qm,l ⊂ Tk+m. Indeed, otherwise all Qj,l that have been added to Tk in
order to obtain Tk+m have indices j < m which is a contradiction. Let now j0 be any positive
integer. Let Qj1,l, . . . , Qjq,l be such that there exists sequences of edges as above joining Qj0,l and

Qj1,l, Qj1,l and Qj2,l, ..., Qjq,l and T0. This is possible because
(⋃

γ∈E γ([0, 1])
)
∪
(⋃

j∈J Qj,l

)
is

connected. Then Qjq,l ⊂ Tjq , ..., Qj0,l ⊂ Tj0+···+jq . This concludes the construction of {Tk}.
For each γ ∈ E ′ we choose {D1

γ , . . . D
k
γ} (k depending on γ) a finite set of holomorphic disks

in X̃ such that γ(0) ∈ D1
γ , γ(1) ∈ Dk

γ , and Dj
γ ∩ Dj+1

γ is non-empty and finite. To do this, if
γ([0, 1]) ⊂ Reg(X̃) we have just to cover it with finitely many open subsets of X biholomorphic to
an open ball in Cn and to choose smooth holomorphic disks in these open sets with the required
property. If γ(0) ∈ Sing(X̃) we apply Lemma 3 and we find a neighborhood of γ(0) and a
holomorphic disk in this neighborhood that contains γ(0) and γ(t0) for t0 > 0 close enough to
0. If γ(1) ∈ Sing(X̃) we do the same thing. Note that we are able to find these disks such that
Dj
γ ∩Dj+1

γ is finite because we have assumed that dim(X) ≥ 2.
By choosing in the construction above small enough open subsets of X̃, and hence analytic

disks Dj
γ included in a small enough neighborhood of γ([0, 1]) we can assume that:

- Dj
γ ∩ Sing(X̃) = ∅ for every j ∈ {2 . . . , k− 1} and if γ(0) 6∈ Sing(X̃) then D1

γ ∩ Sing(X̃) = ∅ and
similarly for γ(1),
- if γ′ is another edge in E ′ and {D1

γ′ , . . . Dk′

γ′}, are the corresponding holomorphic disks, then

Dj
γ ∩D

j′

γ′ = ∅ for 2 ≤ j ≤ k − 1 and 1 ≤ j′ ≤ k′. If γ(0) 6∈ {γ′(0), γ′(1)} then D1
γ ∩D

j′

γ′ = ∅ for
1 ≤ j′ ≤ k′ and similarly for γ(1).

Let zj ∈ Dj
γ ∩Dj+1

γ and let πj : ∆ → Dj
γ the normalization map of Dj

γ . Replacing Dj
γ with

the πj(U) where U is a connected and simply connected open subset of ∆ containing π−1
j (zj)

and π−1
j (zj−1) we can assume that Dj

γ ∩ Dj+1
γ = {yj} and Dj

γ ∩ Di
γ = ∅ if i 6∈ {j − 1, j + 1}.

(Recall that, to start with, Dj
γ ∩Dj+1

γ is finite.) Using the same procedure we can assume that if
γ(0) ∈ Sing(X̃) then D1

γ ∩Sing(X̃) = {γ(0)} and similarly for γ(1). Moreover we can assume that
if γ′ is another edge in E ′ and γ(0) = γ′(0) then D1

γ ∩ D1
γ′ = {γ(0)}. Similarly if γ(0) = γ′(1),

γ(1) = γ′(0), or γ(1) = γ′(1).
Let {Di : i ∈ I} the set of all holomorphic disks constructed above, for all γ ∈ E ′, the index

set I being at most countable. Let

Z =

⋃
j∈J

Qj,l

 ∪(⋃
i∈I

Di

)
.

By shrinking the disks Di we may assume that if i1 6= i2 ∈ I then ∂Di1 ∩Di2 = ∅ where ∂Di1
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denotes the boundary of Di1 in X̃. At the same time we can assume that, for i ∈ I and j ∈ J ,
∂Di ∩Qj,l = ∅. Recall that Qj,l is closed in X̃.

Remark 8. In general the union of two locally closed subsets A and B in a topological space X
is not locally closed. However it is easy to see that if ∂A ∩ B = ∅ and A ∩ ∂B = ∅ then A ∪ B is
locally closed in X.

It follows that Z is locally closed in X̃ and therefore there exists an open set V of X̃ such that
Z is a closed analytic subspace of V . By construction Z is connected. Also Z is Stein because
each irreducible component is Stein.

It follows from the way we constructed the holomorphic disks Di, Theorem 8, and the fact
that

(⋃
γ∈E′ γ([0, 1])

)
∪
(⋃

j∈J Qj,l

)
is contractible that Z is contractible as well.

We apply now Theorem 3 and we obtain Ωl a Stein open subset of X̃ and hence of X such
that Ωl ⊃ Z (and, therefore, Ωl ⊃

⋃
j∈N Qj,l) and Ωl has a strong deformation retract onto Z. By

the invariance under homotopy of the homotopy groups (see, e.g., [9]) and Theorem 8, we have
that Ωl is contractible.

4 Connected Stein coverings for connected complex spaces

In this section we want to prove that every connected complex space X with dim(X) <∞ can be
written as the union of finitely many connected Stein open subsets. The idea of the proof is the
following. For an explicitly defined positive integer N (that depends only on the dimension of X),
and for each j = 1, . . . , N we construct a countable family Kj = {Kj,p}p∈N of compact subsets
of X such that:

⋃N
j=1

⋃
p∈N Kj,p = X, each family Kj is locally finite, for each j = 1, . . . , N we

have that {Kj,p}p∈N are pairwise disjoint, and each Kj,p is a Stein compactum. For each j we
construct Zj , a pure 1-dimensional locally closed complex subspace of X, such that Zj∪

⋃
p∈N Kj,p

is connected. To finish the proof, we prove that, under some supplementary conditions on Zj and
Kj , we have that Zj ∪

⋃
p∈N Kj,p has a Stein neighborhood. Of course, when we construct Kj

and Zj we have to make sure that they satisfy these supplementary conditions. For one compact
set and a closed complex subspace the appropriate setting is given by Theorem 4. For an infinite
sequence of compacts we give such conditions in Proposition 4.

Lemma 4. Suppose that Y is a complex space and X1 and X2 are closed complex subspaces
such that X1 ∩ X2 = {a}. Let X = X1 ∪ X2. Then there exists p ∈ N∗ such that for every
f1, g1 ∈ O(X1) with f1(a) = 0 and every p1 ≥ p we have that the continuous function f : X → C
defined by f|X1 = fp11 g1 and f|X2 = 0 is holomorphic on X.

Notation. We denote by p(X1, X2, a) the smallest such integer.

Proof. The statement being local we can assume that Y = Cn and a = 0. Let {h1
j : j ∈ J1} be

a finite set of generators for I(X1, 0) and {h2
j : j ∈ J2} be a finite set of generators for I(X2, 0).

Let I ⊂ OCn,0 be the ideal generated by {h1
j : j ∈ J1} ∪ {h2

j : j ∈ J2}. We have then Z(I) = {0}
and therefore, by Hilbert Nullstellensatz, rad(I) is the maximal ideal of OCn,0. If we denote by
z1, . . . , zn the coordinate functions in Cn we deduce that there exists q ∈ N∗ such that zq1 , . . . , z

q
n ∈

I. Let p = nq and p1 ≥ p. We let also F1, G1 be holomorphic extensions for f1 and g1 to a
neighborhood of 0 ∈ Cn. We have that F p11 G1 ∈ I and hence F p11 G1 =

∑
j∈J1

a1
jh

1
j +

∑
j∈J2

a2
jh

2
j .

We set
F = F p11 G1 −

∑
j∈J1

a1
jh

1
j =

∑
j∈J2

a2
jh

2
j .

It follows that F|X1 = fp11 g1, F|X2 = 0 and therefore F|X = f . It follows that f is holomorphic on
X.
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Lemma 5. Let X be a Stein space, K ⊂ X a holomorphically convex compact set, A ⊂ X a
closed analytic set such that A ∩ K = ∅, and p ∈ N∗. Then for every holomorphic function f
defined on a neighborhood of K and every ε > 0 there exists g, h ∈ O(X) such that h|A = 0 and
‖f − ghp‖K < ε.

Proof. Since the compact K is holomorphically convex there exists g ∈ O(X) with ‖f−g‖K < ε/2.
Note that it suffices to find h ∈ O(X) such that h|A = 0 and ‖g‖K · ‖hp− 1‖K < ε/2 because then
‖f − ghp‖K ≤ ‖f − g‖K + ‖g − ghp‖K ≤ ‖f − g‖K + ‖g‖K · ‖hp − 1‖K < ε.

Let u ∈ O(X) such that u|A = 0 and u(x) 6= 0 for every x ∈ K. Then
1
u

is holomorphic on a

neighborhood ofK. Let v ∈ O(X) such that ‖v− 1
u
‖K <

1
2p
· 1
‖u‖K

· ε
2

and let h = uv. We have then

that h|A = 0. At the same time, we have that ‖h−1‖K ≤ ‖u‖K · ‖v−
1
u
‖K <

1
2p
· ε
2

. In particular,

if ε is small enough, ‖h‖K ≤ 2. Therefore we get ‖hp−1‖K ≤ ‖h−1‖K(‖h‖p−1
K + · · ·+1) <

ε

2
.

Lemma 6. Let X be a Stein space of pure dimension 1. For each n ∈ N let Xn be an union of
irreducible components of X such that dim(Xm ∩Xn) ≤ 0 for m 6= n. Let Xc

n be the union of the
irreducible components of X that are not irreducible components for Xn. We assume that Xn∩Xc

n

is finite for every n. For each n, let Ωn be an Runge open subset of Xn such that Ωn ∩Xc
n = ∅

(in particular Ωn is open in X). Then {Ωn}n∈N is uniformly Runge in X.

Proof. Let Kn ⊂ Ωn, n ∈ N, be compact sets, εn be positive real numbers, and fn : Ωn → C be
holomorphic functions. We want to find a holomorphic function f : X → C such that ‖f−fn‖Kn <
εn. Clearly we can assume that Kn are holomorphically convex in Ωn and hence in Xn. For each
n ∈ N, let An = Xn ∩Xc

n, which is a finite set. We have that An ∩ Ωn = ∅.
For each a ∈ An, let p(Xn, X

c
n, a) be the number given by Lemma 4. Let pn = max p(Xn, X

c
n, a)

where the maximum is taken over all a ∈ An.
By Lemma 5 we can find gn, hn ∈ O(Xn) such that hn(a) = 0 for every a ∈ An and ‖fn −

gnh
pn
n ‖Kn < εn. Let f : X → C defined by f|Xn = gnh

pn
n . It follows from Lemma 4 that f is

holomorphic on X as a locally finite sum of holomorphic functions.

Proposition 4. Let X be a complex space, Z ⊂ X a closed Stein subspace of X, and {Kn}n≥1 a
locally finite sequence of disjoint compact subsets of X. We assume that the following conditions
are satisfied:

i)
◦
Kn is Stein for every n,

ii) Each Kn has a Stein neighborhood Un such that
◦
Kn is Runge in Un and Kn is holomorphically

convex in Un,

iii) Kn ∩ Z is holomorphically convex in Z and {Kn ∩ Z} is holomorphically separable.

Then Z ∪
(⋃

n≥1Kn

)
has a Stein neighborhood Ω.

Proof. By condition iii), we can apply Proposition 2 and we find an exhaustion of Z with holo-

morphically convex compact subsets {Pn}n≥1 such that
◦
Pn is Runge in Z, Kn ∩ Z ⊂

◦
Pn, for

j > n, we have that Pn ∩ Kj = ∅, and Pn ∪
⋃
j∈S(Kj ∩ Z) is holomorphically convex for every

finite set S ⊂ {n + 1, n + 2 . . . }. We choose Qn compact subsets of Z such that Qn ⊂
◦
Pn and⋃

n≥1Qn = Z.
We will construct inductively a sequence {Fn}n≥1 of compact subsets of X with the following

properties:

�
◦
Fn is Stein and Fn has a Stein neighborhood Vn such that Fn is holomorphically convex in

Vn and
◦
Fn is Runge in Vn,
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� Fn ∩ Z is holomorphically convex in Z and Fn ∩ Z ⊂
◦
Pn,

� Kn ∪Qn ⊂
◦
Fn

� Fn ∩
(⋃

j≥n+1Kj

)
= ∅,

� Fn ⊂
◦
Fn+1, Fn is holomorphically convex in

◦
Fn+1 and

◦
Fn is Runge in

◦
Fn+1.

To construct F1 we apply first Theorem 4 and we find Ω1 a Stein open subset of X such that
Ω1 ⊃ K1 ∪Z and K1 is holomorphically convex in Ω1. It follows from Theorem 5 that we can find

D1, a Runge open subset of Ω1 such that D1 ∩ Z =
◦
P1, D1 ⊃ K1, and D1 ∩ (∪n≥2Kn) = ∅. By

Corollary 1 we can find a holomorphically convex compact subset F1 of D1 such that
◦
F1 is Stein

and Runge in D1, and
◦
F 1 ⊃ K1 ∪Q1. It follows that F1 ∩ Z is holomorphically convex in Z.

Suppose now that we have constructed Fn and we will construct Fn+1. By the hypothesis of the
proposition and by the induction hypothesis, there exist Un+1 and Vn Stein open subsets of X such

that Kn+1 ⊂ Un+1, Fn ⊂ Vn, Kn+1 is holomorphically convex in Un+1,
◦
Kn+1 is Runge in Un+1,

Fn is holomorphically convex in Vn and
◦
Fn is Runge in Vn (and Fn satisfies the other induction

conditions). As Fn ∩Kn+1 = ∅, by shrinking Vn and Un+1, we may assume that Vn ∩ Un+1 = ∅.
Then Fn∪Kn+1 is holomorphically convex in Vn∪Un+1 and its interior is Runge in Vn∪Un+1. At
the same time, because Fn∩Z ⊂ Pn, Fn∩Z is holomorphically convex in Z, and Pn∪ (Kn+1∩Z)
is holomorphically convex in Z it follows that (Fn ∪Kn+1) ∩ Z is holomorphically convex in Z.

By Theorem 4 there exists Ωn+1 a Stein open subset of X such that Ωn+1 ⊃ Fn ∪Kn+1 ∪ Z,
Fn∪Kn+1 is holomorphically convex in Ωn+1 and its interior is Runge in Ωn+1. By Theorem 5 that

we can find Dn+1, a Runge open subset of Ωn+1 such that Dn+1 ∩Z =
◦
Pn+1, Dn+1 ⊃ Fn ∪Kn+1,

and Dn+1 ∩ (∪j≥n+2Kj) = ∅. As before, we apply Corollary 1 and we can find a holomorphically

convex compact subset Fn+1 of Dn+1 such that
◦
Fn+1 is Stein and Runge in Dn+1, and

◦
Fn+1 ⊃

Fn ∪Kn+1 ∪Qn+1. It is easy to see that Fn+1 satisfies all the required conditions.

We set Ω :=
⋃
n≥1

◦
Fn. Because

◦
Fn is Runge in

◦
Fn+1 for every n we deduce that Ω is Stein.

At the same time as
◦
Fn ⊃ Qn and

⋃
n≥1Qn = Z we obtain that Z ⊂ Ω. Clearly

⋃
n≥1Kn ⊂ Ω

and hence Z ∪
(⋃

n≥1Kn

)
⊂ Ω.

Remark 9. Since a compact set in a Stein space is holomorphically convex if and only if it
has a fundamental system of Runge neighborhoods and having in mind Forstnerič’s Theorem, a
natural question is if in the statement of the previous proposition one can assume that

⋃
Kn∩Z has

fundamental system of Runge neighborhoods instead of {Kn∩Z} being holomorphically separable.
It turns out this is not the case. An example can be constructed using Example 1 in [10] as follows.

Let Σn = {(z1, z2) ∈ C2 : z1(z2 + 1
n ) = 1}, n ≥ 1. Note that Σn is biholomorphic, via the

projection on the first coordinate, to C∗. Let {rn} be an increasing sequence of positive real
numbers such that, rn > rn−1 + 1, rn → ∞ and {z2 ∈ C : |z2 + 1

n | ≤
1
rn
} are disjoint disks in C.

Let µn = {(z1, z2) ∈ C2 : z1(z2 + 1
n ) = 1, |z1| = 1}, γn = {(z1, z2) ∈ C2 : z1(z2 + 1

n ) = 1, |z1| = rn}
and σn = {(z1, z2) ∈ C2 : z1(z2 + 1

n ) = 1, 1 ≤ |z1| ≤ rn}. It follows that µn ⊂ F := {(z1, z2) ∈
C2 : |z1| ≤ 1, |z2| ≤ 2}, all γn are holomorphically convex and pairwise disjoint, and σn is
the holomorphically convex hull of µn ∪ γn. Moreover ∪γn has a fundamental system of Runge
neighborhoods, see Remark 3. Let pn = (rn − 1, 1

rn−1 −
1
n ) ∈ Σn. It follows that pn 6∈ F ∪ (

⋃
γn)

but pn ∈ σn. For r > 0, we denote by Dr the disk {z ∈ C : |z| < r}. Let Kn ⊂ C3, Kn = γn×D1.
Let X be an open neighborhood of C2 ∪ (

⋃
Kn) such that {pn} × D 1

n
6⊂ X for any n and let

Z = C2. We have that {Kn} satisfies the first two conditions of Proposition 4 and
⋃

(Kn ∩Z) has
a fundamental system of Runge neighborhoods. If V ⊂ C3 is a Stein neighborhood of Z ∪ (

⋃
Kn)
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then there exists ε > 0 such that F ×Dε ⊂ V and therefore (µn ∪ γn) ×Dε

⋃
σn × {0} ⊂ V for

each n. However (µn ∪ γn) × Dε

⋃
σn × {0} is a Hartogs figure and, as V is Stein, we deduce

that σn × Dε ⊂ V for all n. In particular {pn} × Dε ⊂ V for all n. Because we assumed that
{pn} ×D 1

n
6⊂ X for any n, it follows that V 6⊂ X. We conclude that we cannot find a Stein open

subset of X that contains Z ∪ (
⋃
Kn)

Theorem 11. For every n ∈ N there exists a positive number µ(n) <∞ such that every connected
complex space X with dim(X) = n < ∞ can be written as the union of at most µ(n) connected
open Stein subsets.

Proof. We prove first the following claim.

Claim: If the dimension of each irreducible component of X is at least 2 and A is a discrete
subset of X then X can be written as the union of d(n)(2n + 1) connected Stein open subsets,
each one of them containing A.

Proof of the Claim. Since X has topological dimension 2n, we apply Theorem 9 and we find a
countable covering U of X with relatively compact open subsets such that U = U1 ∪ · · · ∪ U2n+1

and Uj = {Uj,k}k∈N satisfies Uj,k ∩ Uj,l = ∅ for k 6= l. By Theorem 1, each Uj,k can be written
as the union of (at most) d(n) Stein open subsets, Uj,k =

⋃d(n)
s=1 Vj,k,s. Let Vj,s = {Vj,k,s}k∈N and

V =
⋃2n+1
j=1

⋃d(n)
s=1 Vj,s. Note that Vj,k,s ∩ Vj,l,s = ∅ for k 6= l. Replacing each Vj,k,s in Vj,s by its

connected components we can assume that each Vj,k,s is connected, Stein and relatively compact.
Since X is paracompact out of V we can extract a locally finite subcovering.

Summarizing and, for simplicity, changing the indices we have obtained a locally finite open
covering V such that V =

⋃N
j=1 Vj , where N = (2n+1)d(n), Vj = {Vj,p}p∈N, each Vj,p is connected,

Stein and relatively compact, and Vj,p ∩ Vj,q = ∅ for p 6= q.

For each j and p we choose a compact set Kj,p ⊂ Vj,p such that:

�
◦
Kj,p is Stein, connected, and non-empty,

� Kj,p is holomorphically convex in Vj,p and
◦
Kj,p is Runge in Vj,p,

�
⋃N
j=1

⋃
p∈N

◦
Kj,p = X.

We fix now j ∈ {1, . . . , N} and we let Aj = A \
⋃
p∈N Kj,p. Note that, since {Kj,p}p is

locally finite we have that
⋃
p∈N Kj,p is closed. Because A is discrete we can replace Vj,p with

smaller neighborhoods of Kj,p, denoted also with Vj,p and satisfying the same properties, such

that Aj
⋂(⋃

p∈N V j,p

)
= ∅.

Because
⋃
p∈N V j,p is closed in X, for each a ∈ Aj we can find a Stein open neighborhood Vj,a of

a such that Vj,a is relatively compact inX, Vj,a∩Vj,b = ∅ for a 6= b ∈ Aj , and V j,a
⋂(⋃

p∈N V j,p

)
=

∅. Choosing Kj,a ⊂ Vj,a and replacing Vj with Vj ∪ {Vj,a : a ∈ Aj} we can assume from the
beginning that A ⊂

⋃
p∈N Kj,p for each j = 1, 2, . . . , N .

Note now that it suffices to prove that for each j = 1, . . . , N there exists Ωj , a Stein connected
open subset of X such that Ωj ⊃

⋃
p∈N Kj,p. We fix j ∈ {1, 2, . . . , N} and for simplicity we

write Vp for Vj,p and Kp for Kj,p. We choose Dp a connected Stein open subset of X such that

Kp ⊂ Dp b Vp and Dp is Runge in Vp. For each p we pick a point xp ∈
◦
Kp and we apply Lemma

1 for the discrete set {xp : p ∈ N} and the connected complex space X. We obtain the connected
graph G with a locally finite set of edges E .

For each edge γ : [0, 1] → X, γ ∈ E we do the following construction. Because γ([0, 1]) is
compact and the covering V is locally finite it follows that γ([0, 1]) ∩ Dp 6= ∅ for finitely many
indices p. We consider a partition of [0, 1], 0 = a0 < a1 < a2 < a3, · · · , a2k−1 < a2k < a2k+1 = 1
such that:

� for each i ∈ {0, 1, . . . , k} there exists p(i) ∈ N such that a2i, a2i+1 ∈ Vp(i)
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� γ([a2i−1, a2i])
⋂

(
⋃
p∈N Dp) = ∅ for each i ∈ {1, 2, . . . , k}.

For each i ∈ {1, 2, . . . , k} we cover γ([a2i−1, a2i]) with a finite number of connected, relatively
compact, open Stein subsets of X, W 1

i , · · · ,W
q
i , q = q(i) such that

� W s
i

⋂
(
⋃
p∈N Dp) = ∅ for every s = 1, . . . , q,

� W 1
i ∩ Vp(i−1) 6= ∅ and W q

i ∩ Vp(i) 6= ∅,

� W s
i ∩W

s+1
i 6= ∅ for every s = 1, . . . , q − 1.

A particular case of the main result proved by A. Baran in [1] is the following proposition.

Proposition 5. Suppose that X is a connected complex space and x1, x2 are two points in X.
Then there exists a connected closed complex subspace Y of X, of pure dimension 1 such that
x1, x2 ∈ Y .

We apply this proposition and we choose in each W s
i a connected closed subspace Csi , and in

each Vp(i) a connected closed subspace Ci, all of them of pure dimension 1, such that

� Csi
⋂

(
⋃
p∈N Dp) = ∅ for every s and i,

� Cs1i1 ∩C
s2
i2

is finite (or empty) for (i1, s1) 6= (i2, s2) and similarly for Ci1 ∩Ci2 and Csi1 ∩Ci2 ,

� Csi ∩ C
s+1
i 6= ∅ for every s and i,

� C1
i ∩ Ci−1 6= ∅ and Cqi ∩ Ci 6= ∅,

� γ(0) ∈ C0 and γ(1) ∈ Ck.

Let Z be the union of all these 1-dimensional complex spaces Csi and Ci, for all edges in E .
Because the edges in E have locally finite images we can assume that {W s

i }i,s,γ is locally finite. By
shrinking the open sets W s

i and Vp (and therefore the 1-dimensional complex spaces that form Z)
we obtain that for any such two complex spaces C and C ′ we may assume that ∂C ∩C ′ = ∅ where
∂C denotes the boundary of C in X. We deduce that Z is locally closed and therefore there exists
an open set Y of X such that Y ⊃ Z and Z is a closed analytic subspace of Y . It follows from
our construction that we can choose Y such that Dp ⊂ Y for every p. Clearly Z is connected.

For each p ∈ N let Zp be the union of all irreducible components of Z that intersect Dp. Let
also Zcp be the union of the other irreducible components of Z. Note that Zp satisfies the following
properties:

� Dp ∩ Zp is Runge in Zp,

� Dp ∩ Zp b Zp,

� Dp ∩ Zcp = ∅,

� Zp ∩ Zcp is finite.

From Lemma 6 we deduce that {Dp ∩ Zp}p∈N is uniformly Runge in Z. It follows from
Proposition 1 that {Kp ∩ Zp}p∈N is holomorphically separated in Z. At this moment we are in
the settings of Proposition 4 and therefore we deduce that there exists a Stein open Ω set that
contains Z ∪

(⋃
p∈N Kp

)
. Replacing Ω by its connected component that contains Z ∪

(⋃
p∈N Kp

)
,

we can assume that Ω is connected and our Claim is proved.

To finish the proof of the theorem, we let X̃ to be union of all irreducible components of X
of dimension at least 2. Let {X̃j}j∈J be the connected components of X̃ and let {Xl}l∈Λ be the
irreducible components of X of dimension 1. For j ∈ J we set Aj := X̃j ∩

(⋃
l∈ΛXl

)
. It follows

that Aj is a discrete subset of X̃j . We use the Claim proved above and we write each X̃j as
X̃j =

⋃N
p=1 Ωj,p where Ωj,p is open, Stein, connected, and Ωj,p ⊃ Aj for each p.

14



For each l ∈ Λ we choose al, bl ∈ Xl such that al 6= bl and al and bl are not in any other
irreducible component of X. We let Ul = Xl \ {al} and Vl = Xl \ {bl}. By removing these
points, we do not have any compact irreducible component. It follows that Ul and Vl are Stein
and connected and Ul ∩ Ωj,p = Xl ∩ X̃j , Vl ∩ Ωj,p = Xl ∩ X̃j .

We deduce that

Up =

(⋃
l∈Λ

Ul

)
∪

⋃
j∈J

Ωj,p


and

Vp =

(⋃
l∈Λ

Vl

)
∪

⋃
j∈J

Ωj,p


are open, Stein, connected subsets of X and X =

⋃N
p=1(Up ∪ Vp). Hence we have covered X with

2d(n)(2n+ 1) connected Stein open subsets.

The method we used in the proof of the previous theorem, allows us to give a short proof to
the following proposition which is a version for connected complex spaces (instead of irreducible
and locally irreducible complex spaces) of Theorem III.1 in [6].

Theorem 12. For each n ≥ 1 there exists N(n) ∈ N such that for every X, a connected com-
plex space of dimension n, then there exists a connected Stein complex space X̃ and a surjective
holomorphic, locally biholomorphic map π : X̃ → X whose fibers have no more than N points.

Proof. We assume that each irreducible component of X has dimension ≥ 2 because the general
case follows easily from this one, as in the proof of Theorem 11.

Let N = (2n+ 1)d(n) ≥ 3 and let V be the locally finite open covering of X constructed in the
proof of Theorem 11. We have that V =

⋃N
j=1 Vj , Vj = {Vj,p}p∈N. For j = 1, . . . , N let {Kj,p}p∈N

and Z(j) be the sets from the proof of Theorem 11.
Clearly we can assume that (

⋃
p∈N Vj,p) ∪ (

⋃
p∈N Vj+1,p) 6= X for j = 1, . . . , N − 1. We choose

aj ∈ X \ (
⋃
p∈N Vj,p) ∪ (

⋃
p∈N Vj+1,p) such that ai 6= aj for i 6= j. It is not difficult to see that we

can arrange that dim(Z(j)∩Z(j+1)) = 0 and aj ∈ Z(j)∩Z(j+1) (simply, in the construction of
Z = Z(j), we apply Lemma 1 for the discrete set {xp : p ∈ N}∪{aj−1, aj} instead of {xp : p ∈ N}).
Let Fj = Z(j) ∪ (

⋃
p∈N Kj,p) which is connected.

We choose Bj an open neighborhood of aj such that Bj∩Fj∩Fj+1 = {aj}, Bj∩((
⋃
p∈N Kj,p)∪

(
⋃
p∈N Kj+1,p)) = ∅ and Bi ∩Bj = ∅ for i 6= j. For each j, we choose Mj an open and connected

neighborhood of Fj such that ∂Bj ∩Mj ∩Mj+1 = ∅. Let X1 :=
⊔N
j=1Mj/ ∼, where ∼ identifies

Bj ∩Mj ∩Mj+1 viewed as a subset of Mj with Bj ∩Mj ∩Mj+1 viewed as a subset of Mj+1. By
our assumptions, clearly X1 is Hausdorff. Let also π1 : X1 → X be the map whose restriction to
each Mj ⊂ X1 is the inclusion. Then X1 is a connected complex space and π1 is a holomorphic,
locally biholomorphic map whose fibers have no more than N points. Let F̃j , K̃j,p, and Z̃(j)
be the images in X̃1 of Fj , Kj,p, and Z(j) (viewed as subsets of Mj), respectively. Note that
F̃ =

⋃N
j=1 F̃j is connected.

Note also that
⋃N
j=1 Z̃(j) and

⋃N
j=1

⋃
p∈N K̃j,p satisfy the requirements of Proposition 4 and

therefore we can find X̃ ⊂ X1 an open, Stein, connected neighborhood of F̃ . We let π : X̃ → X
be the restriction of π1. What is left to notice is that π is surjective and this holds because⋃N
j=1

⋃
p∈N Kj,p = X.
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