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Abstract

We construct a decreasing sequence of 3-complete open subsets in C® such that
the interior of their intersection is not 3-complete. We also prove that, for every
q > 2 there exists a normal Stein space X with only one isolated singularity and
a decreasing sequence of open sets that are 2-complete, but the interior of their
intersection is not g-complete with corners. In the concave case we show that, for
every integer n > 1, there exists a connected complex manifold M of dimension n
such that M is an increasing union of 1-concave open subsets and M is not weakly
(n — 1)-concave.

1 Introduction

Suppose that {D,} is a sequence of open subsets of C" and let D := Int ([ D,). If each
D, is a domain of holomorphy, then D is also a domain of holomorphy. More generally,
if each D, is Hartogs g-convex (see Definition 6) then D has the same property. However
Hartogs ¢-convexity is not a very useful notion since one does not get vanishing results
for the cohomology groups of a Hartogs ¢g-convex domain with values in a coherent sheaf.
Andreotti and Grauert [1] introduced the notion of g-complete complex spaces and proved
that they are cohomologically g-complete. In their setting, 1-complete spaces are precisely
the Stein spaces. In general the intersection of finitely many g-complete domains is not
g-complete. Therefore, for ¢ > 1, we consider decreasing sequences of g-complete open
subsets of a Stein space and we want to study the convexity properties of the interior of
their intersection.

We prove, by means of a counterexample, that for a decreasing sequence {D,} of ¢-
complete domains in C", Int ([ D,) is not necessarily g-complete (Theorem 5).

On the other hand, because for domains in C”, or more generally in Stein manifolds,
Hartogs g-convexity is equivalent to g-completness with corners (see [15]), it follows that,
in the above setting, Int ([ D,) is ¢g-complete with corners.
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We show that a similar statement does not hold for singular complex spaces. Namely,
for each ¢ > 2, we give an example of a normal Stein X space with only one singular point
and a decreasing sequence {D,} of 2-complete domains in X, such that Int (() D,) is not
g-complete with corners (Theorem 6).

As a dual statement, in the concave case, we show that for every integer n > 1 there
exists a connected complex manifold M of dimension n such that M is an increasing union
of 1-concave open subsets and is not weakly (n — 1)-concave (Theorem 8).

2 Decreasing sequences of g-complete domains

Definition 1. Suppose that D is an open subsgt of C". A smooth function ¢ : D — R is

called weakly g-convex if its Levi form 37, _, %;%(p),fjf i has at least n—g+1 nonnegative
) J

eigenvalues at every point p € D. The function ¢ is called strictly g-convex if its Levi form

has at least n — ¢ + 1 positive eigenvalues at every point p € D.
Using local embeddings these notions can be extended to complex spaces.

Definition 2. Suppose that X is a complex space and ¢ a positive integer:

(a) The space X is called g-convex if there exists a continuous exhaustion function ¢ :
X — R (ie, {r € X :p(x) <c} €X for every ¢ € R) and a compact set K C X such
that ¢ is strictly g-convex on X \ K.

(b) If we can choose K = () in the above definition, X is called g-complete.

Definition 3. If H?(X,F) = 0 for every coherent sheaf F on a complex space X and
every p > ¢, then X is called cohomologically ¢g-complete.

By the results of Andreotti and Grauert [1] we have the following theorem.
Theorem 1. Every q-complete complex space is cohomologically q-complete.

Definition 4.

(a) A continuous function ¢ : X — R defined on a complex space is called g-convex with
corners if, for every x € X, there exists a neighborhood U of x and finitely many strictly
g-convex C* functions ¢, ..., ;, defined on U, such that ¢y = max{ps,..., ¢}

(b) A complex space X is called g-complete with corners if there exists a g-convex with
corners exhaustion function ¢ : X — R.

The next result is a particular case of a theorem due to Diederich and Fornaess [8]. It
was generalized to the singular case in [9].

Theorem 2. If M is an n-dimensional q-complete with corners complex manifold then M
isq=(n— [ﬂ + 1)-complete.

For ¢ > 1 and r > 0, we denote by P9(r) C CY the polydisk centered at the origin with
multiradius (r,--- 7). For the following definition, see, e.g., [18].
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Definition 5.

(a) For 1 < g <mand 0 < r,ry <1, we let H? C C" be defined by H? := P9(1) x
pP~1(ryJ [Pq(l) \ P‘I(rl)] x P"79(1). The pair (HY?, P"(1)) is called a standard Hartogs
g-figure.

(b) If M is an n-dimensional complex manifold and V' C U C M are open subsets, the pair
(V,U) is called a Hartogs g-figure if there exists a standard Hartogs ¢-figure (H?, P™(1))
and a biholomorphism F : P"(1) — U such that F(H?) = V.

Definition 6. Let 2 C C" be an open set. If for every Hartogs g-figure (V,U) we have
that V' C Q implies U C €2, then 2 is called Hartogs g-convex.

As we mentioned in the introduction, it was proved in [15] that a domain in C" is
Hartogs ¢g-convex if and only if it is g-complete with corners.
The following result is Satz 2.3 in [16].

Proposition 3. If X is a complex space and U and V' are open subsets of X such that U
is p-complete and V' is q-complete, then U UV is (p + q)-complete.

Proposition 4 was proved in [19] in the smooth case and in [11] and [14] in the singular
case.

Proposition 4. Suppose that X is a complex space of dimension n. If X is cohomologically
q-complete then H,;(X,C) =0 for everyi > q.

Our first result is the following theorem.

Theorem 5. There exists a sequence {D,} of 3-complete open subsets of C° such that
D,.1 C D, for every v and Int () D,) is not cohomologically 3-complete.

Proof. We consider the following two planes in C5:

Ly ={z = (21,22, 23, 24, 25) € Coray=zn=2= 0},

L2 = {Z = (21,22,23,24725) S (C5 121 =24 = 25 = O}

Let Uy = C°\ Ly, Uy = C5\ Ly. It follows that U; and U, are 3-complete. At the
same time, since L; N Ly = {0}, we have U; U Uy = C® \ {0}. Then we have: Hg(U;,C) =
HS(UQ,C) = Hg(Ul,(C) = HQ(UQ,(C) = 0 and Hg(Ul U UQ,(C) = (C since Hg(Sg,(C) = C.

From the Mayer-Vietoris exact sequence
Hg(Ul, C) D Hg(Ug, (C) — Hg(U1 U UQ, C) — Hg(Ul N UQ, (C) — Hg(Ul, (C) 7] Hg(Uz, C)

it follows that Hg(Ul N UQ, C) =C.
Let W be a relatively compact open subset of U; N Uy such that the inclusion W <
U NU,=C5\ (L U Ly) induces an isomorphism Hg(W,C) — Hg(U; N Uy, C). In fact we
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have an exhaustion {Wy} of U; N Uy such that the inclusion Wy, < U; N Uy induces an
isomorphism at all homology and homotopy groups.

For v > 1 we define:

1

Ly, ={2€C’: 2=~ 2= 23 =0},
v
V2

v

Ly, ={2€C°: 2=,z =2 =0}.

It follows that L;, N L;, = 0 if (i,u) # (j,v). Because W is relatively compact in
C®\ (L1 U Ly), it follows that there exists vy > 1 such that, for v > v, L1, "W = and
Ly, "W = ).

For v > v, let D, = C°\ U;’:VO (L1 ;U La ;). Since L;, N L;, = 0, it follows that D,
are 3-complete. Let D = Int (>, D,). It follows that W € D € C*\ (L; U Ly). Hence
we have

V>

Hg(W,C) — Hg(D,C) — Hg(C®\ (L U Ly),C),

where the morphisms are induced by inclusions. Since Hg(W,C) — Hg(C?\ (L, U L), C)
is surjective, it follows that Hg(D,C) — Hg(C5 \ (L U Ly),C), is surjective as well. In
particular, we have Hg(D,C) # 0 . Proposition 4 implies that D is not cohomologically
3-complete.

[

As we mentioned in the introduction, if {D,} is a decreasing sequence of g-complete
open subsets of C", it follows that Int (( D,) is g-complete with corners. This is not the
case for singular complex spaces, as the following result shows.

Theorem 6. For every integer q > 2, there exists a normal Stein complex space X with
only one isolated singularity, and {D,} a decreasing sequence of open subsets of X such
that each D, is 2-complete and Int () D,)) is not q-complete with corners.

Proof. Let ¢ be an integer, ¢ > 2. Let m : F' — P! be a negative vector bundle of rank
r > 3¢ — 1 and let S be the zero section of F' (hence S is biholomorphic to P!). Let X be
the blow-down of S C F and 7 : F' — X be the contraction map. We let zy = 7(5). We fix
a point a € S and we set U = S\ {a} (hence U is biholomorphic to C) and W = 7 1(U).
We have that 7 : W — U is a trivial holomorphic vector bundle and therefore W is
biholomorphic to U x C" (in particular W is Stein). We consider W, C F' a fundamental
system of Stein open neighborhoods of a and we define

D, =1(WUW,).

Note that D, are open neighborhoods of z in X and, since (W, = {a}, we have
that Int (D,) = 7(W \ S). Hence Int (() D, ) is biholomorphic to W \ S and therefore to
U x (C"\ {0}).



Note the following points:
en=dmX =r+12>3q.

e As W and W, are Stein, by Theorem 3 we have that W U W, is 2-complete. Therefore
D, is 2-convex and since X is Stein, we deduce that D, is 2-complete.

e We have that U x (C" \ {0}) is not cohomologically (n — 2) complete since C" \ {0} is
not cohomologically (n — 2)-complete.

Because n > 3¢, we have that § = n — [ﬂ + 1 < n — 2. Using Theorems 1 and 2 we

deduce that U x (C"\ {0}) is not g-complete with corners.
Hence although each D, is 2-complete, the interior of their intersection is not g-complete
with corners.

]

Next we would like to say a few things about the intersection of Stein open subsets of
a normal Stein space. Let X be a normal Stein complex space, and {D,} be a sequence
of Stein open subsets of X. It is a completely open problem whether the interior of their
intersection is Stein or not, even if X has dimension 2; see [2]. Of course, the problem is
due to singularities. However, we have the following proposition.

Proposition 7. Let X be a normal Stein complex space and {D,} a sequence of Stein
open subsets of X. If D =1Int ([ D,), then we have

(a) Reg(X) NOD is dense in OD.

(b) D is a domain of holomorphy in X.

Proof. (a) Suppose that this is not the case and let o € 0D and W a Stein neighborhood
of z such that 0D N W C Sing(X). As X is normal and therefore locally irreducible, we
have that W \ 0D is connected. Since W\ 0D = (W N D) U (W \ D), we deduce that
W\ 0D = W N D. Therefore W \ Sing(X) C D. Using again the normality of X, the
Riemann Second Extension Theorem, and the fact that each D, is Stein, we deduce that
the inclusion W'\ Sing(X) < D, extends to W (with values in D,) and therefore W C D,
for every v. Hence W C D. In particular xy € D, which contradicts our choice of x;.

(b) Obviuously, D is locally Stein at every point x € 9D N Reg(X). Then for every
sequence {zy}, xx € D, such that z;, — x € 9D N Reg(X) there exists f € O(D) which is
unbounded on {z;}. This was proved for relatively compact domains D € X in [12] and
extended to arbitrary domains in [17]. From this fact and part (a), we deduce that D is a
domain of holomorphy in X. ]

Remark 1. Using the method in [7] it can be proved that, in the same setting, if dim(X) =
2 then D satisfies the disk property. This means that if A = {z € C: |z| < 1} is the closed
unit disk and f, : A — X is a a sequence of holomorphic functions converging uniformly
to a holomorphic function f : A — X and if f,,(A) C D and f(0A) C D, then f(A) C D.



3 Increasing sequences of ¢g-concave domains

We want to discuss a dual question, namely concavity properties of a union of g-concave
open subsets of a complex manifold.
For the next definition, see [1].

Definition 7. A complex space X is called ¢g-concave if there exists a continuous function
¢: X — (0,00) and a compact set K C X such that ¢ is strictly g-convex on X \ K and
{z € X :¢p(x) > c} € X for every ¢ > 0.

By analogy with the notion of weakly ¢-convex space, we introduce the following defi-
nition:

Definition 8. A complex space X is called weakly g-concave if there exists a continuous
function ¢ : X — (0,00) and a compact set K C X such that ¢ is weakly g-convex on
X\ K and {z € X : ¢(x) > ¢} € X for every ¢ > 0.

Remark. A proper modification of a g-concave manifold is weakly g-concave.

Example: The following example appears in [3]. Let a € P? and {z,},>1 be a sequence
in P2\ {a} converging to a, and M be the blow-up of P?\ {a} at this sequence. Then
M is weakly 1-concave but it is not 1-concave. Moreover, M is an increasing sequence of
1-concave open subsets. Indeed, we let My, k > 1, be the blow-up of P?\ ({a} U {x, : n >
k+1}) at z1,...,x,. Then M, is an open subset of M, M), C My and J,~, My = M. It
was noticed in [10] that if {A,} is a countable set of closed, completely pluripolar subsets
of a complex manifold €2 such that A := [J A, is closed in {2 and €’ is an open subset
of Q such that Q' € Q then AN Q' is completely pluripolar in ©'. It follows then that
P2\ ({a}U{z, :n >k +1}) is 1-concave and hence M}, is 1-concave.

Theorem 8. For every integer n > 1 there exists a connected complex manifold M of
dimension n such that M is an increasing union of 1-concave open subsets and M is not
weakly (n — 1)-concave.

Proof. The following construction was used in [5] and [6]. We start with Qg := P™ (or any
compact complex manifold of dimension n) and we choose ag € € to be any point. We
set My := Qo \ {ao} and let po : Q1 — Qg be the blow-up of Qg at ag. Let a; be a point on
the exceptional divisor of py, M; = Q1 \ {a1} and p; : Q5 — O be the blow-up of ; at
a1. Suppose now that we have defined inductively:

o) for j=0,...,k;

o a; €y, pi: Qi — Qand M; =Q;\ {q;} for j =0,...,k—1.

We choose a point a; on the exceptional divisor of p,_1 : Q) — Qx_1 such that a; is
not on the proper transform of the exceptional divisor of pp_o : Q1 — Qr_o. We let
My, = Q. \ {ax} and pryq 0 Q1 — Qi be the blow-up of Q. at ay.

Note that M} is an open subset of My, for every k > 0. We set M := U0 Mk Each
M, is 1-concave since it is the complement of a point in a compact complex manifold. At



the same time, M contains a noncompact connected (n—1)-dimensional complex subspace
X such that all irreducible components of X are compact. This subspace is the union of
the (proper transforms of the) exceptional divisors of all the blow-ups defined above.

If o : M — (0,00) is weakly (n — 1)-convex outside a compact subset K of M, since
each irreducible component of X has dimension n — 1, we have, by the maximum principle,
that ¢ must be constant on each irreducible component of X that does not intersect K.
Therefore it is constant on at least one noncompact connected component of X \ K. Hence
M cannot be weakly (n — 1)-concave. O

Remark 2. It was noticed in [3] that if a complex manifold is an increasing union of
1-concave open subsets then its cohomology with values in any locally free coherent sheaf
is separated. It is an open question raised by R. Hartshorne [13] whether a complex
connected manifold such that its cohomology with values in any locally free coherent sheaf
is finite-dimensional is necessarily a compact manifold.
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