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Mihnea Colţoiu, Cezar Joiţa

Abstract

We construct a decreasing sequence of 3-complete open subsets in C5 such that
the interior of their intersection is not 3-complete. We also prove that, for every
q ≥ 2 there exists a normal Stein space X with only one isolated singularity and
a decreasing sequence of open sets that are 2-complete, but the interior of their
intersection is not q-complete with corners. In the concave case we show that, for
every integer n > 1, there exists a connected complex manifold M of dimension n
such that M is an increasing union of 1-concave open subsets and M is not weakly
(n− 1)-concave.

1 Introduction

Suppose that {Dν} is a sequence of open subsets of Cn and let D := Int (
⋂
Dν). If each

Dν is a domain of holomorphy, then D is also a domain of holomorphy. More generally,
if each Dν is Hartogs q-convex (see Definition 6) then D has the same property. However
Hartogs q-convexity is not a very useful notion since one does not get vanishing results
for the cohomology groups of a Hartogs q-convex domain with values in a coherent sheaf.
Andreotti and Grauert [1] introduced the notion of q-complete complex spaces and proved
that they are cohomologically q-complete. In their setting, 1-complete spaces are precisely
the Stein spaces. In general the intersection of finitely many q-complete domains is not
q-complete. Therefore, for q > 1, we consider decreasing sequences of q-complete open
subsets of a Stein space and we want to study the convexity properties of the interior of
their intersection.

We prove, by means of a counterexample, that for a decreasing sequence {Dν} of q-
complete domains in Cn, Int (

⋂
Dν) is not necessarily q-complete (Theorem 5).

On the other hand, because for domains in Cn, or more generally in Stein manifolds,
Hartogs q-convexity is equivalent to q-completness with corners (see [15]), it follows that,
in the above setting, Int (

⋂
Dν) is q-complete with corners.
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We show that a similar statement does not hold for singular complex spaces. Namely,
for each q ≥ 2, we give an example of a normal Stein X space with only one singular point
and a decreasing sequence {Dν} of 2-complete domains in X, such that Int (

⋂
Dν) is not

q-complete with corners (Theorem 6).
As a dual statement, in the concave case, we show that for every integer n > 1 there

exists a connected complex manifold M of dimension n such that M is an increasing union
of 1-concave open subsets and is not weakly (n− 1)-concave (Theorem 8).

2 Decreasing sequences of q-complete domains

Definition 1. Suppose that D is an open subset of Cn. A smooth function ϕ : D → R is
called weakly q-convex if its Levi form

∑n
j,k=1

∂2ϕ
∂zj∂zk

(p)ξjξk has at least n−q+1 nonnegative

eigenvalues at every point p ∈ D. The function ϕ is called strictly q-convex if its Levi form
has at least n− q + 1 positive eigenvalues at every point p ∈ D.

Using local embeddings these notions can be extended to complex spaces.

Definition 2. Suppose that X is a complex space and q a positive integer:
(a) The space X is called q-convex if there exists a continuous exhaustion function ϕ :
X → R (i.e., {x ∈ X : ϕ(x) < c} b X for every c ∈ R) and a compact set K ⊂ X such
that ϕ is strictly q-convex on X \K.
(b) If we can choose K = ∅ in the above definition, X is called q-complete.

Definition 3. If Hp(X,F) = 0 for every coherent sheaf F on a complex space X and
every p ≥ q, then X is called cohomologically q-complete.

By the results of Andreotti and Grauert [1] we have the following theorem.

Theorem 1. Every q-complete complex space is cohomologically q-complete.

Definition 4.
(a) A continuous function ϕ : X → R defined on a complex space is called q-convex with
corners if, for every x ∈ X, there exists a neighborhood U of x and finitely many strictly
q-convex C∞ functions ϕ1, . . . , ϕl, defined on U , such that ϕ|U = max{ϕ1, . . . , ϕl}.
(b) A complex space X is called q-complete with corners if there exists a q-convex with
corners exhaustion function ϕ : X → R.

The next result is a particular case of a theorem due to Diederich and Fornaess [8]. It
was generalized to the singular case in [9].

Theorem 2. If M is an n-dimensional q-complete with corners complex manifold then M

is q̃ = (n−
[
n
q

]
+ 1)-complete.

For q ≥ 1 and r > 0, we denote by P q(r) ⊂ Cq the polydisk centered at the origin with
multiradius (r, · · · , r). For the following definition, see, e.g., [18].
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Definition 5.
(a) For 1 ≤ q < n and 0 < r, r1 < 1, we let Hq ⊂ Cn be defined by Hq := P q(1) ×
P n−q(r)

⋃[
P q(1) \ P q(r1)

]
× P n−q(1). The pair (Hq, P n(1)) is called a standard Hartogs

q-figure.
(b) If M is an n-dimensional complex manifold and V ⊂ U ⊂M are open subsets, the pair
(V, U) is called a Hartogs q-figure if there exists a standard Hartogs q-figure (Hq, P n(1))
and a biholomorphism F : P n(1)→ U such that F (Hq) = V .

Definition 6. Let Ω ⊂ Cn be an open set. If for every Hartogs q-figure (V, U) we have
that V ⊂ Ω implies U ⊂ Ω, then Ω is called Hartogs q-convex.

As we mentioned in the introduction, it was proved in [15] that a domain in Cn is
Hartogs q-convex if and only if it is q-complete with corners.

The following result is Satz 2.3 in [16].

Proposition 3. If X is a complex space and U and V are open subsets of X such that U
is p-complete and V is q-complete, then U ∪ V is (p+ q)-complete.

Proposition 4 was proved in [19] in the smooth case and in [11] and [14] in the singular
case.

Proposition 4. Suppose that X is a complex space of dimension n. If X is cohomologically
q-complete then Hn+i(X,C) = 0 for every i ≥ q.

Our first result is the following theorem.

Theorem 5. There exists a sequence {Dν} of 3-complete open subsets of C5 such that
Dν+1 ⊂ Dν for every ν and Int (

⋂
Dν) is not cohomologically 3-complete.

Proof. We consider the following two planes in C5:

L1 = {z = (z1, z2, z3, z4, z5) ∈ C5 : z1 = z2 = z3 = 0},

L2 = {z = (z1, z2, z3, z4, z5) ∈ C5 : z1 = z4 = z5 = 0}.

Let U1 = C5 \ L1, U2 = C5 \ L2. It follows that U1 and U2 are 3-complete. At the
same time, since L1 ∩ L2 = {0}, we have U1 ∪ U2 = C5 \ {0}. Then we have: H8(U1,C) =
H8(U2,C) = H9(U1,C) = H9(U2,C) = 0 and H9(U1 ∪ U2,C) = C since H9(S

9,C) = C.
From the Mayer-Vietoris exact sequence

H9(U1,C)⊕H9(U2,C)→ H9(U1 ∪ U2,C)→ H8(U1 ∩ U2,C)→ H8(U1,C)⊕H8(U2,C)

it follows that H8(U1 ∩ U2,C) = C.
Let W be a relatively compact open subset of U1 ∩ U2 such that the inclusion W ↪→

U1 ∩ U2 = C5 \ (L1 ∪ L2) induces an isomorphism H8(W,C)→ H8(U1 ∩ U2,C). In fact we
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have an exhaustion {Wk} of U1 ∩ U2 such that the inclusion Wk ↪→ U1 ∩ U2 induces an
isomorphism at all homology and homotopy groups.

For ν ≥ 1 we define:

L1,ν = {z ∈ C5 : z1 =
1

ν
, z2 = z3 = 0},

L2,ν = {z ∈ C5 : z1 =

√
2

ν
, z4 = z5 = 0}.

It follows that Li,µ ∩ Lj,ν = ∅ if (i, µ) 6= (j, ν). Because W is relatively compact in
C5 \ (L1 ∪ L2), it follows that there exists ν0 ≥ 1 such that, for ν ≥ ν0, L1,ν ∩W = ∅ and
L2,ν ∩W = ∅.

For ν ≥ ν0, let Dν = C5 \
⋃ν
j=ν0

(L1,j ∪ L2,j). Since Li,µ ∩ Lj,ν = ∅, it follows that Dν

are 3-complete. Let D = Int
(⋂

ν≥ν0 Dν

)
. It follows that W ⊂ D ⊂ C5 \ (L1 ∪ L2). Hence

we have
H8(W,C)→ H8(D,C)→ H8(C5 \ (L1 ∪ L2),C),

where the morphisms are induced by inclusions. Since H8(W,C)→ H8(C5 \ (L1 ∪ L2),C)
is surjective, it follows that H8(D,C) → H8(C5 \ (L1 ∪ L2),C), is surjective as well. In
particular, we have H8(D,C) 6= 0 . Proposition 4 implies that D is not cohomologically
3-complete.

As we mentioned in the introduction, if {Dν} is a decreasing sequence of q-complete
open subsets of Cn, it follows that Int (

⋂
Dν) is q-complete with corners. This is not the

case for singular complex spaces, as the following result shows.

Theorem 6. For every integer q ≥ 2, there exists a normal Stein complex space X with
only one isolated singularity, and {Dν} a decreasing sequence of open subsets of X such
that each Dν is 2-complete and Int (

⋂
Dν) is not q-complete with corners.

Proof. Let q be an integer, q ≥ 2. Let π : F → P1 be a negative vector bundle of rank
r ≥ 3q − 1 and let S be the zero section of F (hence S is biholomorphic to P1). Let X be
the blow-down of S ⊂ F and τ : F → X be the contraction map. We let x0 = τ(S). We fix
a point a ∈ S and we set U = S \ {a} (hence U is biholomorphic to C) and W = π−1(U).
We have that π : W → U is a trivial holomorphic vector bundle and therefore W is
biholomorphic to U × Cr (in particular W is Stein). We consider Wν ⊂ F a fundamental
system of Stein open neighborhoods of a and we define

Dν = τ(W ∪Wν).

Note that Dν are open neighborhoods of x0 in X and, since
⋂
Wν = {a}, we have

that Int (
⋂
Dν) = τ(W \ S). Hence Int (

⋂
Dν) is biholomorphic to W \ S and therefore to

U × (Cr \ {0}).
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Note the following points:

• n = dimX = r + 1 ≥ 3q.

• As W and Wν are Stein, by Theorem 3 we have that W ∪Wν is 2-complete. Therefore
Dν is 2-convex and since X is Stein, we deduce that Dν is 2-complete.

• We have that U × (Cr \ {0}) is not cohomologically (n − 2) complete since Cr \ {0} is
not cohomologically (n− 2)-complete.

Because n ≥ 3q, we have that q̃ = n −
[
n
q

]
+ 1 ≤ n − 2. Using Theorems 1 and 2 we

deduce that U × (Cr \ {0}) is not q-complete with corners.
Hence although each Dν is 2-complete, the interior of their intersection is not q-complete

with corners.

Next we would like to say a few things about the intersection of Stein open subsets of
a normal Stein space. Let X be a normal Stein complex space, and {Dν} be a sequence
of Stein open subsets of X. It is a completely open problem whether the interior of their
intersection is Stein or not, even if X has dimension 2; see [2]. Of course, the problem is
due to singularities. However, we have the following proposition.

Proposition 7. Let X be a normal Stein complex space and {Dν} a sequence of Stein
open subsets of X. If D = Int (

⋂
Dν), then we have

(a) Reg(X) ∩ ∂D is dense in ∂D.
(b) D is a domain of holomorphy in X.

Proof. (a) Suppose that this is not the case and let x0 ∈ ∂D and W a Stein neighborhood
of x0 such that ∂D ∩W ⊂ Sing(X). As X is normal and therefore locally irreducible, we
have that W \ ∂D is connected. Since W \ ∂D = (W ∩ D) ∪ (W \ D), we deduce that
W \ ∂D = W ∩ D. Therefore W \ Sing(X) ⊂ D. Using again the normality of X, the
Riemann Second Extension Theorem, and the fact that each Dν is Stein, we deduce that
the inclusion W \Sing(X) ↪→ Dν extends to W (with values in Dν) and therefore W ⊂ Dν

for every ν. Hence W ⊂ D. In particular x0 ∈ D, which contradicts our choice of x0.

(b) Obviuously, D is locally Stein at every point x ∈ ∂D ∩ Reg(X). Then for every
sequence {xk}, xk ∈ D, such that xk → x ∈ ∂D ∩ Reg(X) there exists f ∈ O(D) which is
unbounded on {xk}. This was proved for relatively compact domains D b X in [12] and
extended to arbitrary domains in [17]. From this fact and part (a), we deduce that D is a
domain of holomorphy in X.

Remark 1. Using the method in [7] it can be proved that, in the same setting, if dim(X) =
2 then D satisfies the disk property. This means that if ∆ = {z ∈ C : |z| ≤ 1} is the closed
unit disk and fn : ∆ → X is a a sequence of holomorphic functions converging uniformly
to a holomorphic function f : ∆→ X and if fn(∆) ⊂ D and f(∂∆) ⊂ D, then f(∆) ⊂ D.
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3 Increasing sequences of q-concave domains

We want to discuss a dual question, namely concavity properties of a union of q-concave
open subsets of a complex manifold.

For the next definition, see [1].

Definition 7. A complex space X is called q-concave if there exists a continuous function
ϕ : X → (0,∞) and a compact set K ⊂ X such that ϕ is strictly q-convex on X \K and
{x ∈ X : ϕ(x) > c} b X for every c > 0.

By analogy with the notion of weakly q-convex space, we introduce the following defi-
nition:

Definition 8. A complex space X is called weakly q-concave if there exists a continuous
function ϕ : X → (0,∞) and a compact set K ⊂ X such that ϕ is weakly q-convex on
X \K and {x ∈ X : ϕ(x) > c} b X for every c > 0.

Remark. A proper modification of a q-concave manifold is weakly q-concave.

Example: The following example appears in [3]. Let a ∈ P2 and {xn}n≥1 be a sequence
in P2 \ {a} converging to a, and M be the blow-up of P2 \ {a} at this sequence. Then
M is weakly 1-concave but it is not 1-concave. Moreover, M is an increasing sequence of
1-concave open subsets. Indeed, we let Mk, k ≥ 1, be the blow-up of P2 \ ({a} ∪ {xn : n ≥
k+ 1}) at x1, . . . , xk. Then Mk is an open subset of M , Mk ⊂Mk+1 and

⋃
k≥1Mk = M . It

was noticed in [10] that if {An} is a countable set of closed, completely pluripolar subsets
of a complex manifold Ω such that A :=

⋃
An is closed in Ω and Ω′ is an open subset

of Ω such that Ω′ b Ω then A ∩ Ω′ is completely pluripolar in Ω′. It follows then that
P2 \ ({a} ∪ {xn : n ≥ k + 1}) is 1-concave and hence Mk is 1-concave.

Theorem 8. For every integer n > 1 there exists a connected complex manifold M of
dimension n such that M is an increasing union of 1-concave open subsets and M is not
weakly (n− 1)-concave.

Proof. The following construction was used in [5] and [6]. We start with Ω0 := Pn (or any
compact complex manifold of dimension n) and we choose a0 ∈ Ω0 to be any point. We
set M0 := Ω0 \ {a0} and let p0 : Ω1 → Ω0 be the blow-up of Ω0 at a0. Let a1 be a point on
the exceptional divisor of p0, M1 = Ω1 \ {a1} and p1 : Ω2 → Ω1 be the blow-up of Ω1 at
a1. Suppose now that we have defined inductively:
• Ωj for j = 0, . . . , k;
• aj ∈ Ωj, pj : Ωj+1 → Ωj and Mj = Ωj \ {aj} for j = 0, . . . , k − 1.

We choose a point ak on the exceptional divisor of pk−1 : Ωk → Ωk−1 such that ak is
not on the proper transform of the exceptional divisor of pk−2 : Ωk−1 → Ωk−2. We let
Mk = Ωk \ {ak} and pk+1 : Ωk+1 → Ωk be the blow-up of Ωk at ak.

Note that Mk is an open subset of Mk+1 for every k ≥ 0. We set M̃ :=
⋃
k≥0Mk. Each

Mk is 1-concave since it is the complement of a point in a compact complex manifold. At

6



the same time, M̃ contains a noncompact connected (n−1)-dimensional complex subspace
X such that all irreducible components of X are compact. This subspace is the union of
the (proper transforms of the) exceptional divisors of all the blow-ups defined above.

If ϕ : M → (0,∞) is weakly (n − 1)-convex outside a compact subset K of M , since
each irreducible component of X has dimension n−1, we have, by the maximum principle,
that ϕ must be constant on each irreducible component of X that does not intersect K.
Therefore it is constant on at least one noncompact connected component of X \K. Hence
M cannot be weakly (n− 1)-concave.

Remark 2. It was noticed in [3] that if a complex manifold is an increasing union of
1-concave open subsets then its cohomology with values in any locally free coherent sheaf
is separated. It is an open question raised by R. Hartshorne [13] whether a complex
connected manifold such that its cohomology with values in any locally free coherent sheaf
is finite-dimensional is necessarily a compact manifold.
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Simion Stoilow Institute of Mathematics of the Romanian Academy
Research Unit 3
P.O. Box 1-764, Bucharest 014700, ROMANIA
E-mail address : Cezar.Joita@imar.ro

8


