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Abstract

We prove the following result: if X is a Stein complex space and
D C X is an open subset then D is Runge-curved in X if and only
if the canonical map H!(D,F) — H(X,F) is injective for every
F € Coh(X). We also show that a Runge-curved open subset of a
Stein manifold is necessarily Stein.

1 Introduction

Let X be a (non-necessarily reduced) Stein space and D C X an open subset.
D is called a Runge domain if D is Stein and the restriction map I'( X, Ox) —
['(D, Ox) has dense image in the topology of uniform convergence of compact
subsets of D. The domain D (non necessarily Stein) is called Runge-curved
if for any complex curve I' C X (closed complex space of dimension 1) the
pair (I',T'N D) is a Runge pair.

For Stein spaces of dimension 1, a complete characterization has been
given by N. Mihalache [10]. If n = dim X > 1 the notions of Runge domain
and Runge-curved domain do not coincide. G. Stolzenberg [14] has given an
example of a domain D C C? such that D is Runge-curved and D is not
Runge.

The main purpose of this paper is to continue the study of Runge-curved
domains. As a first step we prove in Theorem 1 that a Runge-curved domain
in a Stein manifold is Stein. It is an open question if the same result holds
in the singular case. The main result of the paper is Theorem 3 which gives
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a characterization of Runge-curved domains in Stein spaces using cohomol-

ogy with compact support. More precisely we prove that the following two
conditions are equivalent:

1) D is Runge-curved,

2) The natural map between cohomology groups with compact support H} (D, F) —
H!(X,F) is injective for every F € Coh(X).

The proof is done by induction on dim(X) and because of this one needs
to use complex spaces with nilpotent elements and properties of the torsion
of a coherent sheaf defined on them. If one uses only torsion free sheaves the
condition 2) is replaced by the weaker condition that X \ D has no holes, see
[6]. Therefore the use of torsion sheaves on complex spaces with nilpotents
is essential for our proof.

2 Steiness of Runge curved domains in Stein
manifolds

For the following statement see [1].

Lemma 1. Let X be a Stein manifold of dimension n. Then there exists
a finite number of holomorphic maps ®; : X — C" with discrete fibers,
Jj=1,2...,m, such that if A; is the branch locus of ®; then ﬂ;“:l A;=10.

The following statement is part of Theorem 6.8 in [10].

Lemma 2. Let X be a pure 1-dimensional Stein space and D C X an open
subset. Then the following are equivalent:

1) (X, D) is a Runge pair,

2) For any open neighborhood U of X \ D and any irreducible component C
of Red(U), C'\ D is not compact.

3) HX(D,0) — HX(X, O) is injective.

The proof of the following Lemma is similar to the proof of Proposition
5.5, page 95, in [12].

Lemma 3. Let D be an open subset of C"*. We assume that for every closed
complex curve I' C C", biholomorphic to C we have that (I',TND) is a Runge
pair. Then D s Stein.



Proof. We may assume, of course, that D # C" and we denote by § : D —
(0, 00) the distance to the boundary of D which is a continuous function. For
every u € C", u # 0, we define 9, : D — (0, 00|,

0u(2) :=sup{7 : z+ nu € D for every n € C, |n| < 7}.

We have that 0 = inf{d, : w € C", |ju|| = 1}. By Oka’s theorem we must
prove that —logd = sup{—1logd, : v € C", |lu|]| = 1} is plurisubharmonic.
Therefore it suffices to prove that — logd, is plurisubharmonic for every u.
Let uw € C*, ||u|]| = 1. To prove that —logd, is plurisubharmonic we have to
show that if z € D, w € C"\ {0}, r > 0, and g : C — C is a polynomial
function of one complex variable such that

—log d.(z + Aw) < Re g(\) VA such that |\ =r
then we have
—logd,(z + Aw) < Re g(\) VA such that |\ <r.
This is equivalent to proving that if
24w+ pe Ny e D YA p € Csuch that |A =7, |u| <1
then we have
24w+ pe ' Nu e D VYA p € Csuch that |\ <7, |p| < 1.

Note that if v and w are linearly dependent over C then this is just a
standard 1-dimensional statement. Let’s assume that u and w are linearly
independent and let’s fix p € C with |u| < 1. We consider h : C — C",
h(\) = z + Aw + pe 9Ny, Then h is an embedding and therefore T' := h(C)
is a closed complex curve in C", biholomorphic to C. Therefore (I',I'ND) is a
Runge pair. At the same time we have that {\ € C: |A\| =r} C h=(D). We
deduce that {\ € C : |A\| <7} € h~}(D) and hence z + \w + pe 9Ny € D,
VA with [A| <.

O

Theorem 1. Let X be a n-dimensional Stein manifold and D an open subset
of X. We assume that (C,C N D) is a Runge pair for every closed complex
curve C' C X. Then D 1is Stein.



Proof. Because X is a Stein manifold, it suffices to show that D is locally
Stein in X. Let g € 0D. By Lemma 1 there exists a holomorphic map with
discrete fibers, ® : X — C", such that ® is a locally biholomorphism around
xg. Let U be a Stein open neighborhood of xg and V' be an open neighborhood
of yo := ®(x¢) such that & : U — V is a biholomorphism. Moreover, we
choose U to be Runge in X. Replacing V' by a small ball B(y,€) centered
at yo and U by the connected component of ®~!(B(yo,€)) N U that contains
xo, we may assume that U is Runge in X and V' is Runge in C".

In this setting, we would like to show that U N D is Stein which is equiv-
alent to ®(D N U) being Stein. If I' is a closed complex curve in C" then
we let C':= ®~1(T") which is a closed complex curve in X. Therefore C N D
is Runge in C. It follows that C'N D N U is Runge in C' NU and therefore
I'N®(DNU)is Rungein I'NV. As I' NV is Runge in I' we deduce that
I'N®(DNU)is Runge in I'. In order to finish the proof, we apply Lemma
3. O

Remark 1. We do not know if the above theorem is true if X is a Stein
complex space.

Remark 2. If D is a Runge open subset of Stein manifold X, it was proved
by A. Cassa in [4] that for every closed irreducible complex curve C' in D
one can find a sequence of closed irreducible curves {Cf}r>1 in X such that
C = limy_o(Cx N D). The convergence is the one induced by the currents.
See also [5].

It was proved in [7] that if X is an (n — 1)-convex irreducible complex
space of dim X > 1, p : X — R is a smooth exhaustion function which is
(n — 1)-convex on X. = {z € X : p(x) > ¢} for some ¢ € R, D is a bordered
Riemann surface, and f : D — X is a C? function which is holomorphic in
D and satisfies f(D) ¢ Xgng and f(bD) C X, then there is a sequence of
proper holomorphic maps g, : D — X converging to f uniformly on compact
subsets of D.

Example 1. Suppose that B; and By are two balls in C" such that B; ¢ Bs,
By ¢ By, and By N By # (). Then D := B; U By is not Stein. At the same
time for every complex affine line, L in C", LN D is simply connected because
LN By, LN By, LN By N By are connected and simply connected. Therefore
LN D is Runge in L. According to our theorem there must exist a curve C'
in C" such that C'N D is not Runge in C'. We are going to exhibit such a
curve. For simplicity we assume that n = 2, By is the open ball of radius
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3 centered at (—2,0) € C? and B, is the open ball of radius 3 centered at
(2,0). Let C = {(z,w) € C?*: w = 2> + v/5}. We choose r > 0 small enough
such that

4+ [2V5(202 — 1) 4+ 1]r —4X\ < 0 for all A such that X € [0, 1]. (%)
Note that this is equivalent to
%+ [2V5(20% — 1) + 1]r +4X\ < 0 for all  such that \ € [-1,0].

Then clearly (0,+v/5) € 9D (hence ¢ D) where D := B;UB,. At the same
time, we have {(z,w) € C : z = re,§ € [5,%]} C By. Indeed, we have to
check that for z = re, 6 € [, 2], we have that |z 4 2 + |22 + V/5|? < 9.

We set A = cos@ and hence A € [—1,0] and cos 20 = 2)\* — 1. We get that
|24+22 =72 +4rXA +4 and |22 + /5% = 7 +2v/5(2)% — 1)r2 +-5. We need to
check that 72 4+ 47\ +4 +r* 4+ 2v/5(2X2 — 1)r? +5 < 9. Which is the same as
r(r® 4 [2¢/5(20% — 1) + 1]r +4)) < 0 and this exactly the above inequality.

Completely the same argument shows that {(z,w) € C : z = re?. 0 €
[—%,Z]} C B,. It follows then that {(z,w) € C : z = re} C D and we
deduce that C'N D is not Runge in C.

It remains to show that if » > 0 is small enough, then (x) is satisfied.
Indeed, let § > 0 be such that 2¢/5(202 — 1) +1 < 0 (e.g 6 = 3). If A € [0, 6]
then 73 + [2v/5(2A% — 1) 4+ 1]r — 4X\ < 0 for every r > 0. On the other hand,
for r small enough 73 4 [2¢/5(2)% — 1) + 1]r < 2§ for every A € [6,1] and
therefore 7% + [2¢/5(2A2 — 1) + 1]r — 4\ < 0 for every X € [0, 1].

3 A characterization of Runge-curved domains
in Stein spaces

Definition 1. Let X be a complex space, red X its reduction and v : X —
red X be the normalization of red X. If A C X is a closed set we say that
A has no irreducible compact component if A = v~1(A) has no compact
connected component.

Lemma 4. Let X be a Stein space and D C X an open subset. We assume
that (U, I'N D) is a Runge pair for every closed complex curve I' C X. Then
A:= X\ D has no compact irreducible component.
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Proof. Let v : X — red X be the normalization of red X and let A := v~ 1(A),
D = v~1(D). We assume, by reductio ad absurdum, that A has a compact
connected component K;. Let K = v(K;).

Let ' € X be a closed complex curve such that ' N K # ) and let
[ = v 1{(T). Let U, € X be an open, relatively compact neighborhood
of K, such that 90U, N A = (. For the existence of Us see, for example,
Proposition 2, page 112, in [11]. Let U; be an open neighborhood of K; such
that Uy € Us and (U \ Uy) N A = 0.

If we put U := T'NU; and U' = T'N (X \ U,) we have that uyuv
is an open neighborhood of T\ D in I, UNU’' = (), and U \ (I' N D) is
compact. Therefore, for any irreducible component C' of U, we have that
C' is an irreducible component of U|JU’ and C'\ (I' N D) is compact. By
Lemma 2 we deduce that the (I,T N D) is not a Runge pair and therefore
(I',T'N D) is not a Runge pair, which contradicts our assumption. O

For basic facts regarding the torsion of sheaves on complex spaces we refer
o [13].

Suppose that X is a complex space and F is a coherent analytic sheaf on
X. We denote by tF the torsion sheaf of F. More precisely, for x € X, tF,
is the set of all germs s, € F, for which there exists g, € Ox, such that
red g, is a non zero divisor (g, is called an active germ) and g,s, = 0. We
have that ¢tF is also a coherent sheaf and supp(tF) is a thin analytic subset
of X. If tF = 0 the sheaf F is called torsion free.

For the proof of the following see for example [9], page 67.

Theorem 2. (Riickert Nullstellensatz) Suppose that X is a complex space
and S is a coherent analytic sheaf on X. Let f € I'(X,Ox) which vanishes
on supp(S). Then for each point x € X there exists an open neighborhood U
of x and a positive integer k such that f*Sy = 0.

Lemma 5. Suppose that X is a complex space, F is a coherent sheaf on X
and s € I'(X, F) is a section. If supp(s) is a thin analytic subset of X then
se (X, tF).

Proof. Let S = supp(s) and x € S. We choose V' C X an open Stein
neighborhood of x and f € Ox(U) such that red fisny = 0 and red f, is
not a zero divisor. Such an f exists because S is thin. Applying Theorem 2
to the subsheaf of F generated by s we deduce that there exists a positive
integer £ and an open neighborhood U C V of x such that fks|U =0. It
follows that s, € tF,. O



Corollary 1. If F is a torsion free coherent sheaf on X and s € T'(X, F) is
a section then supp(s) is a union of irreducible components of red X.

This means that the identity principle holds for torsion free coherent
sheaves: if U C X is an open subset and s € I'(X,F) is a section such
that s = 0 on U then s = 0 on every irreducible component of red X that
intersects U.

Proposition 1. Suppose that X is a complex space and A C X 1is a closed
subset without compact irreducible components. Then, for every torsion free
coherent analytic sheaf F on X, we have H (A, F) = 0.

Proof. We assume that there exists s € HY(A,F), s # 0. We choose a
representative of s, § € I'(U, F) where U is an open neighborhood of A and
supp(8) N A is compact and non empty. Because F is torsion free it follows
that supp($§) is an union of irreducible components of red U.

Let v : X — red X be the normalization map and let U := v~ 1(U),
A :=v71(A). We consider B to be the union of the connected components of
U whose images are the irreducible components of supp(§). The intersection
BN A is compact

It follows that A has compact connected components and therefore A has
compact irreducible components, which contradicts our assumption. O

The following theorem gives a characterization of Runge-curved domains
using cohomology with compact supports. For basic definitions and results
for cohomology with compact suports with values in a sheaf on a paracompact
topological space, see [8] or [3].

Theorem 3. Let X be a Stein complex space and D C X an open subset.
Then the following are equivalent:

1) for every closed complex curve I' C X, we have that (I';)T'N D) is a Runge
pair,

2) the canonical map HY(D,F) — HNX,F) is injective for every F €
Coh(X).

Proof. 2) = 1) is straightforward: By choosing F to be Ox /Zr, where Zr is
the ideal sheaf determined by I' we obtain that H}(I'n D, Or) — HX(T', Or)
is injective. It follows then from Lemma 2 that (I','N D) is a Runge pair.



1) = 2) We will prove this implication by induction on dim X. If
dim X = 1, the statement follows from Lemma 2. We assume that the
statement is true for all Stein complex spaces of dimension < n — 1 and we
let X be a complex space with dim X = n.

Let F be a coherent sheaf on X and let A := X \ D. It follows from
Lemma 4 that A has no compact irreducible component. We consider the
following exact sequence:

0—>tF—>F—F/tF—0

which gives us the following commutative diagram with exact rows and
columns, the rows being long exact sequences for the inclusion of an open
set.

HY(X, F/tF)

0 —= HY(D,tF) — HO(X,tF) —= H (A, tF) — HY(D,tF) —2= H (X, tF)

l | | l 6

OHHS(D,f)HHE(X,;F)HH?(A,F)HHE(D,.?.)$H§(X,?)

i | | i

0— HY(D, F/tF) — HYX, F/tF) — H'(A, F/tF) — H-(D, FJtF) > H\(X, F/tF)

Notice now that we have:

. supp(tF) is a closed analytic subspace of X of dimension < dim X
and tF|supp(tF) 18 a coherent sheaf. On the other hand, we have that
HX(D,tF) = H(Dnsupp(tF),tF) and H: (X, tF) = H}(supp(tF), tF).
Hence, according to our induction hypothesis, the map 3 : H}(D,tF) —
H}(X,tF) is injective,

. because A has no compact irreducible components and F/tF has no
torsion it follows that H?(A, F/tF) = 0 and therefore y : H} (D, F /tF) —
HX(X,F/tF) is injective,

. because F/tF has no torsion it follows that H?(X, F/tF) vanishes and
therefore the map § : H} (X, tF) — H}(X,F) is injective.
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From the injectivity of 3, v, and 9, it follows that « is injective as well.
O

Remark 3. Tt is proved in [2] that X is a Stein space and D C X is an open
Runge subset then the map H(D, F) — H* (X, F) is injective for every i > 0
and every coherent sheaf F.

Remark 4. Note that the ideal sheaf that defines supp(tF) is Ann(tF) and
supp(tF) might have nilpotent elements even if X is reduced. Hence, even if
we wanted to prove Theorem 3 only for reduced complex spaces, in order to
use an induction argument we had to consider non-reduced complex spaces
as well.
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