On Runge-curved domains in Stein spaces *

Mihnea Colţoiu, Cezar Joiţa

Abstract

We prove the following result: if X is a Stein complex space and $D \subset X$ is an open subset then D is Runge-curved in X if and only if the canonical map $H^1_c(D, \mathcal{F}) \to H^1_c(X, \mathcal{F})$ is injective for every $\mathcal{F} \in Coh(X)$. We also show that a Runge-curved open subset of a Stein manifold is necessarily Stein.

1 Introduction

Let X be a (non-necessarily reduced) Stein space and $D \subset X$ an open subset. D is called a Runge domain if D is Stein and the restriction map $\Gamma(X, \mathcal{O}_X) \to \Gamma(D, \mathcal{O}_X)$ has dense image in the topology of uniform convergence of compact subsets of D. The domain D (non necessarily Stein) is called Runge-curved if for any complex curve $\Gamma \subset X$ (closed complex space of dimension 1) the pair $(\Gamma, \Gamma \cap D)$ is a Runge pair.

For Stein spaces of dimension 1, a complete characterization has been given by N. Mihalache [10]. If $n = \dim X > 1$ the notions of Runge domain and Runge-curved domain do not coincide. G. Stolzenberg [14] has given an example of a domain $D \subset \mathbb{C}^2$ such that D is Runge-curved and D is not Runge.

The main purpose of this paper is to continue the study of Runge-curved domains. As a first step we prove in Theorem 1 that a Runge-curved domain in a Stein manifold is Stein. It is an open question if the same result holds in the singular case. The main result of the paper is Theorem 3 which gives

^{*}Mathematics Subject Classification (2010): 32E15, 32E10, 32C35.

Key words: Stein space, Runge pair, cohomology groups with compact support.

a characterization of Runge-curved domains in Stein spaces using cohomology with compact support. More precisely we prove that the following two conditions are equivalent:

1) D is Runge-curved,

2) The natural map between cohomology groups with compact support $H^1_c(D, \mathcal{F}) \to H^1_c(X, \mathcal{F})$ is injective for every $\mathcal{F} \in Coh(X)$.

The proof is done by induction on $\dim(X)$ and because of this one needs to use complex spaces with nilpotent elements and properties of the torsion of a coherent sheaf defined on them. If one uses only torsion free sheaves the condition 2) is replaced by the weaker condition that $X \setminus D$ has no holes, see [6]. Therefore the use of torsion sheaves on complex spaces with nilpotents is essential for our proof.

2 Steiness of Runge curved domains in Stein manifolds

For the following statement see [1].

Lemma 1. Let X be a Stein manifold of dimension n. Then there exists a finite number of holomorphic maps $\Phi_j : X \to \mathbb{C}^n$ with discrete fibers, j = 1, 2, ..., m, such that if A_j is the branch locus of Φ_j then $\bigcap_{i=1}^m A_j = \emptyset$.

The following statement is part of Theorem 6.8 in [10].

Lemma 2. Let X be a pure 1-dimensional Stein space and $D \subset X$ an open subset. Then the following are equivalent:

1) (X, D) is a Runge pair,

2) For any open neighborhood U of $X \setminus D$ and any irreducible component C of Red(U), $C \setminus D$ is not compact.

3) $H^1_c(D, \mathcal{O}) \to H^1_c(X, \mathcal{O})$ is injective.

The proof of the following Lemma is similar to the proof of Proposition 5.5, page 95, in [12].

Lemma 3. Let D be an open subset of \mathbb{C}^n . We assume that for every closed complex curve $\Gamma \subset \mathbb{C}^n$, biholomorphic to \mathbb{C} we have that $(\Gamma, \Gamma \cap D)$ is a Runge pair. Then D is Stein.

Proof. We may assume, of course, that $D \neq \mathbb{C}^n$ and we denote by $\delta : D \to (0, \infty)$ the distance to the boundary of D which is a continuous function. For every $u \in \mathbb{C}^n$, $u \neq 0$, we define $\delta_u : D \to (0, \infty]$,

$$\delta_u(z) := \sup\{\tau : z + \eta u \in D \text{ for every } \eta \in \mathbb{C}, \ |\eta| \le \tau\}.$$

We have that $\delta = \inf\{\delta_u : u \in \mathbb{C}^n, \|u\| = 1\}$. By Oka's theorem we must prove that $-\log \delta = \sup\{-\log \delta_u : u \in \mathbb{C}^n, \|u\| = 1\}$ is plurisubharmonic. Therefore it suffices to prove that $-\log \delta_u$ is plurisubharmonic for every u. Let $u \in \mathbb{C}^n, \|u\| = 1$. To prove that $-\log \delta_u$ is plurisubharmonic we have to show that if $z \in D, w \in \mathbb{C}^n \setminus \{0\}, r > 0$, and $g : \mathbb{C} \to \mathbb{C}$ is a polynomial function of one complex variable such that

 $-\log \delta_u(z + \lambda w) \leq \operatorname{Re} g(\lambda) \quad \forall \lambda \text{ such that } |\lambda| = r$

then we have

$$-\log \delta_u(z+\lambda w) \le \operatorname{Re} g(\lambda) \quad \forall \lambda \text{ such that } |\lambda| \le r.$$

This is equivalent to proving that if

$$z + \lambda w + \mu e^{-g(\lambda)} u \in D \quad \forall \lambda, \mu \in \mathbb{C} \text{ such that } |\lambda| = r, |\mu| < 1$$

then we have

$$z + \lambda w + \mu e^{-g(\lambda)} u \in D \quad \forall \lambda, \mu \in \mathbb{C} \text{ such that } |\lambda| \leq r, \ |\mu| < 1.$$

Note that if u and w are linearly dependent over \mathbb{C} then this is just a standard 1-dimensional statement. Let's assume that u and w are linearly independent and let's fix $\mu \in \mathbb{C}$ with $|\mu| < 1$. We consider $h : \mathbb{C} \to \mathbb{C}^n$, $h(\lambda) = z + \lambda w + \mu e^{-g(\lambda)} u$. Then h is an embedding and therefore $\Gamma := h(\mathbb{C})$ is a closed complex curve in \mathbb{C}^n , biholomorphic to \mathbb{C} . Therefore $(\Gamma, \Gamma \cap D)$ is a Runge pair. At the same time we have that $\{\lambda \in \mathbb{C} : |\lambda| = r\} \subset h^{-1}(D)$. We deduce that $\{\lambda \in \mathbb{C} : |\lambda| \leq r\} \subset h^{-1}(D)$ and hence $z + \lambda w + \mu e^{-g(\lambda)} u \in D$, $\forall \lambda$ with $|\lambda| \leq r$.

Theorem 1. Let X be a n-dimensional Stein manifold and D an open subset of X. We assume that $(C, C \cap D)$ is a Runge pair for every closed complex curve $C \subset X$. Then D is Stein. Proof. Because X is a Stein manifold, it suffices to show that D is locally Stein in X. Let $x_0 \in \partial D$. By Lemma 1 there exists a holomorphic map with discrete fibers, $\Phi : X \to \mathbb{C}^n$, such that Φ is a locally biholomorphism around x_0 . Let U be a Stein open neighborhood of x_0 and V be an open neighborhood of $y_0 := \Phi(x_0)$ such that $\Phi : U \to V$ is a biholomorphism. Moreover, we choose U to be Runge in X. Replacing V by a small ball $B(y_0, \epsilon)$ centered at y_0 and U by the connected component of $\Phi^{-1}(B(y_0, \epsilon)) \cap U$ that contains x_0 , we may assume that U is Runge in X and V is Runge in \mathbb{C}^n .

In this setting, we would like to show that $U \cap D$ is Stein which is equivalent to $\Phi(D \cap U)$ being Stein. If Γ is a closed complex curve in \mathbb{C}^n then we let $C := \Phi^{-1}(\Gamma)$ which is a closed complex curve in X. Therefore $C \cap D$ is Runge in C. It follows that $C \cap D \cap U$ is Runge in $C \cap U$ and therefore $\Gamma \cap \Phi(D \cap U)$ is Runge in $\Gamma \cap V$. As $\Gamma \cap V$ is Runge in Γ we deduce that $\Gamma \cap \Phi(D \cap U)$ is Runge in Γ . In order to finish the proof, we apply Lemma 3.

Remark 1. We do not know if the above theorem is true if X is a Stein complex space.

Remark 2. If D is a Runge open subset of Stein manifold X, it was proved by A. Cassa in [4] that for every closed irreducible complex curve C in Done can find a sequence of closed irreducible curves $\{C_k\}_{k\geq 1}$ in X such that $C = \lim_{k\to\infty} (C_k \cap D)$. The convergence is the one induced by the currents. See also [5].

It was proved in [7] that if X is an (n-1)-convex irreducible complex space of dim X > 1, $\rho : X \to \mathbb{R}$ is a smooth exhaustion function which is (n-1)-convex on $X_c = \{x \in X : \rho(x) > c\}$ for some $c \in \mathbb{R}$, D is a bordered Riemann surface, and $f : \overline{D} \to X$ is a \mathcal{C}^2 function which is holomorphic in D and satisfies $f(D) \not\subset X_{sing}$ and $f(bD) \subset X_c$, then there is a sequence of proper holomorphic maps $g_{\nu} : D \to X$ converging to f uniformly on compact subsets of D.

Example 1. Suppose that B_1 and B_2 are two balls in \mathbb{C}^n such that $B_1 \not\subset B_2$, $B_2 \not\subset B_1$, and $B_1 \cap B_2 \neq \emptyset$. Then $D := B_1 \cup B_2$ is not Stein. At the same time for every complex affine line, L in \mathbb{C}^n , $L \cap D$ is simply connected because $L \cap B_1$, $L \cap B_2$, $L \cap B_1 \cap B_2$ are connected and simply connected. Therefore $L \cap D$ is Runge in L. According to our theorem there must exist a curve Cin \mathbb{C}^n such that $C \cap D$ is not Runge in C. We are going to exhibit such a curve. For simplicity we assume that n = 2, B_1 is the open ball of radius 3 centered at $(-2,0) \in \mathbb{C}^2$ and B_2 is the open ball of radius 3 centered at (2,0). Let $C = \{(z,w) \in \mathbb{C}^2 : w = z^2 + \sqrt{5}\}$. We choose r > 0 small enough such that

$$r^{3} + [2\sqrt{5}(2\lambda^{2} - 1) + 1]r - 4\lambda < 0 \text{ for all } \lambda \text{ such that } \lambda \in [0, 1].$$
 (*)

Note that this is equivalent to

 $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r + 4\lambda < 0 \text{ for all } \lambda \text{ such that } \lambda \in [-1, 0].$

Then clearly $(0, \sqrt{5}) \in \partial D$ (hence $\notin D$) where $D := B_1 \cup B_2$. At the same time, we have $\{(z, w) \in C : z = re^{i\theta}, \theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]\} \subset B_1$. Indeed, we have to check that for $z = re^{i\theta}, \theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]$, we have that $|z + 2|^2 + |z^2 + \sqrt{5}|^2 < 9$.

We set $\lambda = \cos \theta$ and hence $\lambda \in [-1, 0]$ and $\cos 2\theta = 2\lambda^2 - 1$. We get that $|z+2|^2 = r^2 + 4r\lambda + 4$ and $|z^2 + \sqrt{5}|^2 = r^4 + 2\sqrt{5}(2\lambda^2 - 1)r^2 + 5$. We need to check that $r^2 + 4r\lambda + 4 + r^4 + 2\sqrt{5}(2\lambda^2 - 1)r^2 + 5 < 9$. Which is the same as $r(r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r + 4\lambda) < 0$ and this exactly the above inequality.

Completely the same argument shows that $\{(z,w) \in C : z = re^{i\theta}, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]\} \subset B_2$. It follows then that $\{(z,w) \in C : z = re^{i\theta}\} \subset D$ and we deduce that $C \cap D$ is not Runge in C.

It remains to show that if r > 0 is small enough, then (*) is satisfied. Indeed, let $\delta > 0$ be such that $2\sqrt{5}(2\delta^2 - 1) + 1 < 0$ (e.g $\delta = \frac{1}{2}$). If $\lambda \in [0, \delta]$ then $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r - 4\lambda < 0$ for every r > 0. On the other hand, for r small enough $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r \le 2\delta$ for every $\lambda \in [\delta, 1]$ and therefore $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r - 4\lambda < 0$ for every $\lambda \in [\delta, 1]$.

3 A characterization of Runge-curved domains in Stein spaces

Definition 1. Let X be a complex space, red X its reduction and $\nu : \tilde{X} \to$ red X be the normalization of red X. If $A \subset X$ is a closed set we say that A has no irreducible compact component if $\tilde{A} := \nu^{-1}(A)$ has no compact connected component.

Lemma 4. Let X be a Stein space and $D \subset X$ an open subset. We assume that $(\Gamma, \Gamma \cap D)$ is a Runge pair for every closed complex curve $\Gamma \subset X$. Then $A := X \setminus D$ has no compact irreducible component.

Proof. Let $\nu : \tilde{X} \to \operatorname{red} X$ be the normalization of red X and let $\tilde{A} := \nu^{-1}(A)$, $\tilde{D} := \nu^{-1}(D)$. We assume, by reductio ad absurdum, that \tilde{A} has a compact connected component K_1 . Let $K := \nu(K_1)$.

Let $\Gamma \subset X$ be a closed complex curve such that $\Gamma \cap K \neq \emptyset$ and let $\tilde{\Gamma} := \nu^{-1}(\Gamma)$. Let $U_2 \Subset \tilde{X}$ be an open, relatively compact neighborhood of K_1 such that $\partial U_2 \cap \tilde{A} = \emptyset$. For the existence of U_2 see, for example, Proposition 2, page 112, in [11]. Let U_1 be an open neighborhood of K_1 such that $U_1 \Subset U_2$ and $(U_2 \setminus U_1) \cap \tilde{A} = \emptyset$.

If we put $U := \tilde{\Gamma} \cap U_1$ and $U' = \tilde{\Gamma} \cap (\tilde{X} \setminus \overline{U}_2)$ we have that $U \bigcup U'$ is an open neighborhood of $\tilde{\Gamma} \setminus \tilde{D}$ in $\tilde{\Gamma}$, $U \cap U' = \emptyset$, and $U \setminus (\tilde{\Gamma} \cap \tilde{D})$ is compact. Therefore, for any irreducible component C of U, we have that C is an irreducible component of $U \bigcup U'$ and $C \setminus (\tilde{\Gamma} \cap \tilde{D})$ is compact. By Lemma 2 we deduce that the $(\tilde{\Gamma}, \tilde{\Gamma} \cap \tilde{D})$ is not a Runge pair and therefore $(\Gamma, \Gamma \cap D)$ is not a Runge pair, which contradicts our assumption. \Box

For basic facts regarding the torsion of sheaves on complex spaces we refer to [13].

Suppose that X is a complex space and \mathcal{F} is a coherent analytic sheaf on X. We denote by $t\mathcal{F}$ the torsion sheaf of \mathcal{F} . More precisely, for $x \in X$, $t\mathcal{F}_x$ is the set of all germs $s_x \in \mathcal{F}_x$ for which there exists $g_x \in \mathcal{O}_{X,x}$ such that red g_x is a non zero divisor (g_x is called an active germ) and $g_x s_x = 0$. We have that $t\mathcal{F}$ is also a coherent sheaf and $\operatorname{supp}(t\mathcal{F})$ is a thin analytic subset of X. If $t\mathcal{F} = 0$ the sheaf \mathcal{F} is called torsion free.

For the proof of the following see for example [9], page 67.

Theorem 2. (Rückert Nullstellensatz) Suppose that X is a complex space and S is a coherent analytic sheaf on X. Let $f \in \Gamma(X, \mathcal{O}_X)$ which vanishes on supp(S). Then for each point $x \in X$ there exists an open neighborhood U of x and a positive integer k such that $f^k S_U = 0$.

Lemma 5. Suppose that X is a complex space, \mathcal{F} is a coherent sheaf on X and $s \in \Gamma(X, \mathcal{F})$ is a section. If $\operatorname{supp}(s)$ is a thin analytic subset of X then $s \in \Gamma(X, t\mathcal{F})$.

Proof. Let $S = \operatorname{supp}(s)$ and $x \in S$. We choose $V \subset X$ an open Stein neighborhood of x and $f \in \mathcal{O}_X(U)$ such that $\operatorname{red} f_{|S \cap V} = 0$ and $\operatorname{red} f_x$ is not a zero divisor. Such an f exists because S is thin. Applying Theorem 2 to the subsheaf of \mathcal{F} generated by s we deduce that there exists a positive integer k and an open neighborhood $U \subset V$ of x such that $f^k s_{|U} = 0$. It follows that $s_x \in t\mathcal{F}_x$. \Box **Corollary 1.** If \mathcal{F} is a torsion free coherent sheaf on X and $s \in \Gamma(X, \mathcal{F})$ is a section then supp(s) is a union of irreducible components of red X.

This means that the identity principle holds for torsion free coherent sheaves: if $U \subset X$ is an open subset and $s \in \Gamma(X, \mathcal{F})$ is a section such that $s \equiv 0$ on U then $s \equiv 0$ on every irreducible component of red X that intersects U.

Proposition 1. Suppose that X is a complex space and $A \subset X$ is a closed subset without compact irreducible components. Then, for every torsion free coherent analytic sheaf \mathcal{F} on X, we have $H^0_c(A, \mathcal{F}) = 0$.

Proof. We assume that there exists $s \in H^0_c(A, \mathcal{F})$, $s \neq 0$. We choose a representative of $s, \tilde{s} \in \Gamma(U, \mathcal{F})$ where U is an open neighborhood of A and $\operatorname{supp}(\tilde{s}) \cap A$ is compact and non empty. Because \mathcal{F} is torsion free it follows that $\operatorname{supp}(\tilde{s})$ is an union of irreducible components of red U.

Let $\nu : \tilde{X} \to \operatorname{red} X$ be the normalization map and let $\tilde{U} := \nu^{-1}(U)$, $\tilde{A} := \nu^{-1}(A)$. We consider *B* to be the union of the connected components of \tilde{U} whose images are the irreducible components of $\operatorname{supp}(\tilde{s})$. The intersection $B \cap \tilde{A}$ is compact

It follows that A has compact connected components and therefore A has compact irreducible components, which contradicts our assumption. \Box

The following theorem gives a characterization of Runge-curved domains using cohomology with compact supports. For basic definitions and results for cohomology with compact suports with values in a sheaf on a paracompact topological space, see [8] or [3].

Theorem 3. Let X be a Stein complex space and $D \subset X$ an open subset. Then the following are equivalent:

1) for every closed complex curve $\Gamma \subset X$, we have that $(\Gamma, \Gamma \cap D)$ is a Runge pair,

2) the canonical map $H^1_c(D, \mathcal{F}) \to H^1_c(X, \mathcal{F})$ is injective for every $\mathcal{F} \in Coh(X)$.

Proof. 2) \Longrightarrow 1) is straightforward: By choosing \mathcal{F} to be $\mathcal{O}_X/\mathcal{I}_{\Gamma}$, where \mathcal{I}_{Γ} is the ideal sheaf determined by Γ we obtain that $H^1_c(\Gamma \cap D, \mathcal{O}_{\Gamma}) \to H^1_c(\Gamma, \mathcal{O}_{\Gamma})$ is injective. It follows then from Lemma 2 that $(\Gamma, \Gamma \cap D)$ is a Runge pair.

1) \implies 2) We will prove this implication by induction on dim X. If dim X = 1, the statement follows from Lemma 2. We assume that the statement is true for all Stein complex spaces of dimension $\leq n - 1$ and we let X be a complex space with dim X = n.

Let \mathcal{F} be a coherent sheaf on X and let $A := X \setminus D$. It follows from Lemma 4 that A has no compact irreducible component. We consider the following exact sequence:

$$0 \to t\mathcal{F} \to \mathcal{F} \to \mathcal{F}/t\mathcal{F} \to 0$$

which gives us the following commutative diagram with exact rows and columns, the rows being long exact sequences for the inclusion of an open set.

$$\begin{array}{c} H^0_c(X,\mathcal{F}/t\mathcal{F}) \\ \downarrow \\ 0 \longrightarrow H^0_c(D,t\mathcal{F}) \longrightarrow H^0_c(X,t\mathcal{F}) \longrightarrow H^0_c(A,t\mathcal{F}) \longrightarrow H^1_c(D,t\mathcal{F}) \xrightarrow{\beta} H^1_c(X,t\mathcal{F}) \\ \downarrow \\ 0 \longrightarrow H^0_c(D,\mathcal{F}) \longrightarrow H^0_c(X,\mathcal{F}) \longrightarrow H^0_c(A,\mathcal{F}) \longrightarrow H^1_c(D,\mathcal{F}) \xrightarrow{\alpha} H^1_c(X,\mathcal{F}) \\ \downarrow \\ 0 \longrightarrow H^0_c(D,\mathcal{F}/t\mathcal{F}) \rightarrow H^0_c(X,\mathcal{F}/t\mathcal{F}) \rightarrow H^0_c(A,\mathcal{F}/t\mathcal{F}) \rightarrow H^1_c(D,\mathcal{F}/t\mathcal{F}) \xrightarrow{\gamma} H^1_c(X,\mathcal{F}/t\mathcal{F}) \end{array}$$

Notice now that we have:

- $\operatorname{supp}(t\mathcal{F})$ is a closed analytic subspace of X of dimension $< \dim X$ and $t\mathcal{F}_{|\operatorname{supp}(t\mathcal{F})}$ is a coherent sheaf. On the other hand, we have that $H^1_c(D, t\mathcal{F}) = H^1_c(D \cap \operatorname{supp}(t\mathcal{F}), t\mathcal{F})$ and $H^1_c(X, t\mathcal{F}) = H^1_c(\operatorname{supp}(t\mathcal{F}), t\mathcal{F})$. Hence, according to our induction hypothesis, the map $\beta : H^1_c(D, t\mathcal{F}) \to H^1_c(X, t\mathcal{F})$ is injective,
- because A has no compact irreducible components and $\mathcal{F}/t\mathcal{F}$ has no torsion it follows that $H^0_c(A, \mathcal{F}/t\mathcal{F}) = 0$ and therefore $\gamma : H^1_c(D, \mathcal{F}/t\mathcal{F}) \to H^1_c(X, \mathcal{F}/t\mathcal{F})$ is injective,
- because $\mathcal{F}/t\mathcal{F}$ has no torsion it follows that $H^0_c(X, \mathcal{F}/t\mathcal{F})$ vanishes and therefore the map $\delta: H^1_c(X, t\mathcal{F}) \to H^1_c(X, \mathcal{F})$ is injective.

From the injectivity of β , γ , and δ , it follows that α is injective as well.

Remark 3. It is proved in [2] that X is a Stein space and $D \subset X$ is an open Runge subset then the map $H^i(D, \mathcal{F}) \to H^i(X, \mathcal{F})$ is injective for every $i \ge 0$ and every coherent sheaf \mathcal{F} .

Remark 4. Note that the ideal sheaf that defines $\operatorname{supp}(t\mathcal{F})$ is $\operatorname{Ann}(t\mathcal{F})$ and $\operatorname{supp}(t\mathcal{F})$ might have nilpotent elements even if X is reduced. Hence, even if we wanted to prove Theorem 3 only for reduced complex spaces, in order to use an induction argument we had to consider non-reduced complex spaces as well.

Acknowledgments: Both authors were supported by CNCS grant PN-II-ID-PCE-2011-3-0269.

References

- A. Andreotti; R. Narasimhan: Oka's Heftungslemma and the Levi problem for complex spaces. *Trans. Amer. Math. Soc.* **111** (1964), 345–366.
- [2] C. Bănică; O. Stănăşilă: Méthodes algébriques dans la théorie globale des espaces complexes. Troisième édition. Gauthier-Villars, Paris, 1977
- [3] G. E. Bredon: Sheaf theory. Second edition. Graduate Texts in Mathematics, 170. Springer-Verlag, New York, 1997.
- [4] A. Cassa: A theorem on complete intersection curves and a consequence for the Runge problem for analytic sets. *Compositio Math.* 36 (1978), 189–202.
- [5] A. Cassa: The topology of the space of positive analytic cycles. Ann. Mat. Pura Appl. (4) 112 (1977), 1–12.
- [6] M. Colţoiu; A. Silva: Behnke-Stein theorem on complex spaces with singularities. *Nagoya Math. J.* 137 (1995), 183–194.
- [7] B. Drinovec Drnovšek; F. Forstnerič: Holomorphic curves in complex spaces. Duke Math. J. 139 (2007), 203–253.

- [8] R. Godement: Topologie algébrique et théorie des faisceaux. Actualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13 Hermann, Paris 1958.
- [9] H. Grauert; R. Remmert: Coherent analytic sheaves. Grundlehren der Mathematischen Wissenschaften, 265, Springer-Verlag, Berlin, 1984.
- [10] N. Mihalache: The Runge theorem on 1-dimensional Stein spaces. Rev. Roumaine Math. Pures Appl. 33 (1988), 601–611.
- [11] R. Narasimhan: Complex analysis in one variable. Birkhäuser Boston, Inc., Boston, MA, 1985.
- [12] M. R. Range: Holomorphic functions and integral representations in several complex variables. Graduate Texts in Mathematics, 108. Springer-Verlag, New York, 1986.
- [13] R. Remmert: Local theory of complex spaces. Several complex variables, VII, 7–96, Encyclopaedia Math. Sci., 74, Springer, Berlin, 1994.
- [14] G. Stolzenberg: The analytic part of the Runge hull. Math. Ann. 164 (1966), 286–290.

Mihnea Colţoiu Institute of Mathematics of the Romanian Academy Research Unit 3 P.O. Box 1-764, Bucharest 014700, ROMANIA *E-mail address*: Mihnea.Coltoiu@imar.ro

Cezar Joița Institute of Mathematics of the Romanian Academy Research Unit 3 P.O. Box 1-764, Bucharest 014700, ROMANIA *E-mail address*: Cezar.Joita@imar.ro