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Abstract

We prove the following result: if X is a Stein complex space and
D ⊂ X is an open subset then D is Runge-curved in X if and only
if the canonical map H1

c (D,F) → H1
c (X,F) is injective for every

F ∈ Coh(X). We also show that a Runge-curved open subset of a
Stein manifold is necessarily Stein.

1 Introduction

Let X be a (non-necessarily reduced) Stein space and D ⊂ X an open subset.
D is called a Runge domain if D is Stein and the restriction map Γ(X,OX)→
Γ(D,OX) has dense image in the topology of uniform convergence of compact
subsets of D. The domain D (non necessarily Stein) is called Runge-curved
if for any complex curve Γ ⊂ X (closed complex space of dimension 1) the
pair (Γ,Γ ∩D) is a Runge pair.

For Stein spaces of dimension 1, a complete characterization has been
given by N. Mihalache [10]. If n = dimX > 1 the notions of Runge domain
and Runge-curved domain do not coincide. G. Stolzenberg [14] has given an
example of a domain D ⊂ C2 such that D is Runge-curved and D is not
Runge.

The main purpose of this paper is to continue the study of Runge-curved
domains. As a first step we prove in Theorem 1 that a Runge-curved domain
in a Stein manifold is Stein. It is an open question if the same result holds
in the singular case. The main result of the paper is Theorem 3 which gives
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a characterization of Runge-curved domains in Stein spaces using cohomol-
ogy with compact support. More precisely we prove that the following two
conditions are equivalent:
1) D is Runge-curved,
2) The natural map between cohomology groups with compact supportH1

c (D,F)→
H1
c (X,F) is injective for every F ∈ Coh(X).

The proof is done by induction on dim(X) and because of this one needs
to use complex spaces with nilpotent elements and properties of the torsion
of a coherent sheaf defined on them. If one uses only torsion free sheaves the
condition 2) is replaced by the weaker condition that X \D has no holes, see
[6]. Therefore the use of torsion sheaves on complex spaces with nilpotents
is essential for our proof.

2 Steiness of Runge curved domains in Stein

manifolds

For the following statement see [1].

Lemma 1. Let X be a Stein manifold of dimension n. Then there exists
a finite number of holomorphic maps Φj : X → Cn with discrete fibers,
j = 1, 2 . . . ,m, such that if Aj is the branch locus of Φj then

⋂m
j=1Aj = ∅.

The following statement is part of Theorem 6.8 in [10].

Lemma 2. Let X be a pure 1-dimensional Stein space and D ⊂ X an open
subset. Then the following are equivalent:
1) (X,D) is a Runge pair,
2) For any open neighborhood U of X \D and any irreducible component C
of Red(U), C \D is not compact.
3) H1

c (D,O)→ H1
c (X,O) is injective.

The proof of the following Lemma is similar to the proof of Proposition
5.5, page 95, in [12].

Lemma 3. Let D be an open subset of Cn. We assume that for every closed
complex curve Γ ⊂ Cn, biholomorphic to C we have that (Γ,Γ∩D) is a Runge
pair. Then D is Stein.
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Proof. We may assume, of course, that D 6= Cn and we denote by δ : D →
(0,∞) the distance to the boundary of D which is a continuous function. For
every u ∈ Cn, u 6= 0, we define δu : D → (0,∞],

δu(z) := sup{τ : z + ηu ∈ D for every η ∈ C, |η| ≤ τ}.

We have that δ = inf{δu : u ∈ Cn, ‖u‖ = 1}. By Oka’s theorem we must
prove that − log δ = sup{− log δu : u ∈ Cn, ‖u‖ = 1} is plurisubharmonic.
Therefore it suffices to prove that − log δu is plurisubharmonic for every u.
Let u ∈ Cn, ‖u‖ = 1. To prove that − log δu is plurisubharmonic we have to
show that if z ∈ D, w ∈ Cn \ {0}, r > 0, and g : C → C is a polynomial
function of one complex variable such that

− log δu(z + λw) ≤ Re g(λ) ∀λ such that |λ| = r

then we have

− log δu(z + λw) ≤ Re g(λ) ∀λ such that |λ| ≤ r.

This is equivalent to proving that if

z + λw + µe−g(λ)u ∈ D ∀λ, µ ∈ C such that |λ| = r, |µ| < 1

then we have

z + λw + µe−g(λ)u ∈ D ∀λ, µ ∈ C such that |λ| ≤ r, |µ| < 1.

Note that if u and w are linearly dependent over C then this is just a
standard 1-dimensional statement. Let’s assume that u and w are linearly
independent and let’s fix µ ∈ C with |µ| < 1. We consider h : C → Cn,
h(λ) = z + λw + µe−g(λ)u. Then h is an embedding and therefore Γ := h(C)
is a closed complex curve in Cn, biholomorphic to C. Therefore (Γ,Γ∩D) is a
Runge pair. At the same time we have that {λ ∈ C : |λ| = r} ⊂ h−1(D). We
deduce that {λ ∈ C : |λ| ≤ r} ⊂ h−1(D) and hence z + λw + µe−g(λ)u ∈ D,
∀λ with |λ| ≤ r.

Theorem 1. Let X be a n-dimensional Stein manifold and D an open subset
of X. We assume that (C,C ∩D) is a Runge pair for every closed complex
curve C ⊂ X. Then D is Stein.
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Proof. Because X is a Stein manifold, it suffices to show that D is locally
Stein in X. Let x0 ∈ ∂D. By Lemma 1 there exists a holomorphic map with
discrete fibers, Φ : X → Cn, such that Φ is a locally biholomorphism around
x0. Let U be a Stein open neighborhood of x0 and V be an open neighborhood
of y0 := Φ(x0) such that Φ : U → V is a biholomorphism. Moreover, we
choose U to be Runge in X. Replacing V by a small ball B(y0, ε) centered
at y0 and U by the connected component of Φ−1(B(y0, ε)) ∩ U that contains
x0, we may assume that U is Runge in X and V is Runge in Cn.

In this setting, we would like to show that U ∩D is Stein which is equiv-
alent to Φ(D ∩ U) being Stein. If Γ is a closed complex curve in Cn then
we let C := Φ−1(Γ) which is a closed complex curve in X. Therefore C ∩D
is Runge in C. It follows that C ∩ D ∩ U is Runge in C ∩ U and therefore
Γ ∩ Φ(D ∩ U) is Runge in Γ ∩ V . As Γ ∩ V is Runge in Γ we deduce that
Γ ∩ Φ(D ∩ U) is Runge in Γ. In order to finish the proof, we apply Lemma
3.

Remark 1. We do not know if the above theorem is true if X is a Stein
complex space.

Remark 2. If D is a Runge open subset of Stein manifold X, it was proved
by A. Cassa in [4] that for every closed irreducible complex curve C in D
one can find a sequence of closed irreducible curves {Ck}k≥1 in X such that
C = limk→∞(Ck ∩D). The convergence is the one induced by the currents.
See also [5].

It was proved in [7] that if X is an (n − 1)-convex irreducible complex
space of dimX > 1, ρ : X → R is a smooth exhaustion function which is
(n− 1)-convex on Xc = {x ∈ X : ρ(x) > c} for some c ∈ R, D is a bordered
Riemann surface, and f : D → X is a C2 function which is holomorphic in
D and satisfies f(D) 6⊂ Xsing and f(bD) ⊂ Xc, then there is a sequence of
proper holomorphic maps gν : D → X converging to f uniformly on compact
subsets of D.

Example 1. Suppose that B1 and B2 are two balls in Cn such that B1 6⊂ B2,
B2 6⊂ B1, and B1 ∩ B2 6= ∅. Then D := B1 ∪ B2 is not Stein. At the same
time for every complex affine line, L in Cn, L∩D is simply connected because
L∩B1, L∩B2, L∩B1 ∩B2 are connected and simply connected. Therefore
L ∩D is Runge in L. According to our theorem there must exist a curve C
in Cn such that C ∩ D is not Runge in C. We are going to exhibit such a
curve. For simplicity we assume that n = 2, B1 is the open ball of radius
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3 centered at (−2, 0) ∈ C2 and B2 is the open ball of radius 3 centered at
(2, 0). Let C = {(z, w) ∈ C2 : w = z2 +

√
5}. We choose r > 0 small enough

such that

r3 + [2
√

5(2λ2 − 1) + 1]r − 4λ < 0 for all λ such that λ ∈ [0, 1]. (∗)

Note that this is equivalent to

r3 + [2
√

5(2λ2 − 1) + 1]r + 4λ < 0 for all λ such that λ ∈ [−1, 0].

Then clearly (0,
√

5) ∈ ∂D (hence 6∈ D) where D := B1∪B2. At the same
time, we have {(z, w) ∈ C : z = reiθ, θ ∈ [π

2
, 3π

2
]} ⊂ B1. Indeed, we have to

check that for z = reiθ, θ ∈ [π
2
, 3π

2
], we have that |z + 2|2 + |z2 +

√
5|2 < 9.

We set λ = cos θ and hence λ ∈ [−1, 0] and cos 2θ = 2λ2−1. We get that
|z+ 2|2 = r2 + 4rλ+ 4 and |z2 +

√
5|2 = r4 + 2

√
5(2λ2− 1)r2 + 5. We need to

check that r2 + 4rλ+ 4 + r4 + 2
√

5(2λ2− 1)r2 + 5 < 9. Which is the same as
r(r3 + [2

√
5(2λ2 − 1) + 1]r + 4λ) < 0 and this exactly the above inequality.

Completely the same argument shows that {(z, w) ∈ C : z = reiθ, θ ∈
[−π

2
, π

2
]} ⊂ B2. It follows then that {(z, w) ∈ C : z = reiθ} ⊂ D and we

deduce that C ∩D is not Runge in C.
It remains to show that if r > 0 is small enough, then (∗) is satisfied.

Indeed, let δ > 0 be such that 2
√

5(2δ2 − 1) + 1 < 0 (e.g δ = 1
2
). If λ ∈ [0, δ]

then r3 + [2
√

5(2λ2 − 1) + 1]r − 4λ < 0 for every r > 0. On the other hand,
for r small enough r3 + [2

√
5(2λ2 − 1) + 1]r ≤ 2δ for every λ ∈ [δ, 1] and

therefore r3 + [2
√

5(2λ2 − 1) + 1]r − 4λ < 0 for every λ ∈ [δ, 1].

3 A characterization of Runge-curved domains

in Stein spaces

Definition 1. Let X be a complex space, redX its reduction and ν : X̃ →
redX be the normalization of redX. If A ⊂ X is a closed set we say that
A has no irreducible compact component if Ã := ν−1(A) has no compact
connected component.

Lemma 4. Let X be a Stein space and D ⊂ X an open subset. We assume
that (Γ,Γ∩D) is a Runge pair for every closed complex curve Γ ⊂ X. Then
A := X \D has no compact irreducible component.
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Proof. Let ν : X̃ → redX be the normalization of redX and let Ã := ν−1(A),
D̃ := ν−1(D). We assume, by reductio ad absurdum, that Ã has a compact
connected component K1. Let K := ν(K1).

Let Γ ⊂ X be a closed complex curve such that Γ ∩ K 6= ∅ and let
Γ̃ := ν−1(Γ). Let U2 b X̃ be an open, relatively compact neighborhood
of K1 such that ∂U2 ∩ Ã = ∅. For the existence of U2 see, for example,
Proposition 2, page 112, in [11]. Let U1 be an open neighborhood of K1 such
that U1 b U2 and (U2 \ U1) ∩ Ã = ∅.

If we put U := Γ̃ ∩ U1 and U ′ = Γ̃ ∩ (X̃ \ U2) we have that U
⋃
U ′

is an open neighborhood of Γ̃ \ D̃ in Γ̃, U ∩ U ′ = ∅, and U \ (Γ̃ ∩ D̃) is
compact. Therefore, for any irreducible component C of U , we have that
C is an irreducible component of U

⋃
U ′ and C \ (Γ̃ ∩ D̃) is compact. By

Lemma 2 we deduce that the (Γ̃, Γ̃ ∩ D̃) is not a Runge pair and therefore
(Γ,Γ ∩D) is not a Runge pair, which contradicts our assumption.

For basic facts regarding the torsion of sheaves on complex spaces we refer
to [13].

Suppose that X is a complex space and F is a coherent analytic sheaf on
X. We denote by tF the torsion sheaf of F . More precisely, for x ∈ X, tFx
is the set of all germs sx ∈ Fx for which there exists gx ∈ OX,x such that
red gx is a non zero divisor (gx is called an active germ) and gxsx = 0. We
have that tF is also a coherent sheaf and supp(tF) is a thin analytic subset
of X. If tF = 0 the sheaf F is called torsion free.

For the proof of the following see for example [9], page 67.

Theorem 2. (Rückert Nullstellensatz) Suppose that X is a complex space
and S is a coherent analytic sheaf on X. Let f ∈ Γ(X,OX) which vanishes
on supp(S). Then for each point x ∈ X there exists an open neighborhood U
of x and a positive integer k such that fkSU = 0.

Lemma 5. Suppose that X is a complex space, F is a coherent sheaf on X
and s ∈ Γ(X,F) is a section. If supp(s) is a thin analytic subset of X then
s ∈ Γ(X, tF).

Proof. Let S = supp(s) and x ∈ S. We choose V ⊂ X an open Stein
neighborhood of x and f ∈ OX(U) such that red f|S∩V = 0 and red fx is
not a zero divisor. Such an f exists because S is thin. Applying Theorem 2
to the subsheaf of F generated by s we deduce that there exists a positive
integer k and an open neighborhood U ⊂ V of x such that fks|U = 0. It
follows that sx ∈ tFx.
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Corollary 1. If F is a torsion free coherent sheaf on X and s ∈ Γ(X,F) is
a section then supp(s) is a union of irreducible components of redX.

This means that the identity principle holds for torsion free coherent
sheaves: if U ⊂ X is an open subset and s ∈ Γ(X,F) is a section such
that s ≡ 0 on U then s ≡ 0 on every irreducible component of redX that
intersects U .

Proposition 1. Suppose that X is a complex space and A ⊂ X is a closed
subset without compact irreducible components. Then, for every torsion free
coherent analytic sheaf F on X, we have H0

c (A,F) = 0.

Proof. We assume that there exists s ∈ H0
c (A,F), s 6= 0. We choose a

representative of s, s̃ ∈ Γ(U,F) where U is an open neighborhood of A and
supp(s̃) ∩ A is compact and non empty. Because F is torsion free it follows
that supp(s̃) is an union of irreducible components of redU .

Let ν : X̃ → redX be the normalization map and let Ũ := ν−1(U),
Ã := ν−1(A). We consider B to be the union of the connected components of
Ũ whose images are the irreducible components of supp(s̃). The intersection
B ∩ Ã is compact

It follows that Ã has compact connected components and therefore A has
compact irreducible components, which contradicts our assumption.

The following theorem gives a characterization of Runge-curved domains
using cohomology with compact supports. For basic definitions and results
for cohomology with compact suports with values in a sheaf on a paracompact
topological space, see [8] or [3].

Theorem 3. Let X be a Stein complex space and D ⊂ X an open subset.
Then the following are equivalent:
1) for every closed complex curve Γ ⊂ X, we have that (Γ,Γ∩D) is a Runge
pair,
2) the canonical map H1

c (D,F) → H1
c (X,F) is injective for every F ∈

Coh(X).

Proof. 2) =⇒ 1) is straightforward: By choosing F to be OX/IΓ, where IΓ is
the ideal sheaf determined by Γ we obtain that H1

c (Γ∩D,OΓ)→ H1
c (Γ,OΓ)

is injective. It follows then from Lemma 2 that (Γ,Γ ∩D) is a Runge pair.
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1) =⇒ 2) We will prove this implication by induction on dimX. If
dimX = 1, the statement follows from Lemma 2. We assume that the
statement is true for all Stein complex spaces of dimension ≤ n − 1 and we
let X be a complex space with dimX = n.

Let F be a coherent sheaf on X and let A := X \ D. It follows from
Lemma 4 that A has no compact irreducible component. We consider the
following exact sequence:

0→ tF → F → F/tF → 0

which gives us the following commutative diagram with exact rows and
columns, the rows being long exact sequences for the inclusion of an open
set.

H0
c (X,F/tF)

��
0 // H0

c (D, tF) //

��

H0
c (X, tF) //

��

H0
c (A, tF) //

��

H1
c (D, tF)

β //

��

H1
c (X, tF)

δ
��

0 // H0
c (D,F) //

��

H0
c (X,F) //

��

H0
c (A,F) //

��

H1
c (D,F)

α //

��

H1
c (X,F)

��
0 // H0

c (D,F/tF) // H0
c (X,F/tF) // H0

c (A,F/tF) // H1
c (D,F/tF)

γ // H1
c (X,F/tF)

Notice now that we have:

� supp(tF) is a closed analytic subspace of X of dimension < dimX
and tF|supp(tF) is a coherent sheaf. On the other hand, we have that
H1
c (D, tF) = H1

c (D∩supp(tF), tF) andH1
c (X, tF) = H1

c (supp(tF), tF).
Hence, according to our induction hypothesis, the map β : H1

c (D, tF)→
H1
c (X, tF) is injective,

� because A has no compact irreducible components and F/tF has no
torsion it follows thatH0

c (A,F/tF) = 0 and therefore γ : H1
c (D,F/tF)→

H1
c (X,F/tF) is injective,

� because F/tF has no torsion it follows that H0
c (X,F/tF) vanishes and

therefore the map δ : H1
c (X, tF)→ H1

c (X,F) is injective.
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From the injectivity of β, γ, and δ, it follows that α is injective as well.

Remark 3. It is proved in [2] that X is a Stein space and D ⊂ X is an open
Runge subset then the map H i(D,F)→ H i(X,F) is injective for every i ≥ 0
and every coherent sheaf F .

Remark 4. Note that the ideal sheaf that defines supp(tF) is Ann(tF) and
supp(tF) might have nilpotent elements even if X is reduced. Hence, even if
we wanted to prove Theorem 3 only for reduced complex spaces, in order to
use an induction argument we had to consider non-reduced complex spaces
as well.
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