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Abstract

We give two examples of complex spaces on which global holo-
morphic functions separate points and give local coordinates and they
cannot be realized as open subsets of Stein spaces. At the same time
we notice that these examples are open subsets of Stein schemes, a
notion introduced by H. Grauert in [7]. In the context of complex
schemes we notice that by contracting a Nori string one obtains a
complex scheme and not a complex space. The covering spaces of
1-convex surfaces are divided in two categories: those that have an
envelope of holomorphy and those that do not. More interesting are
those in the second category and they correspond to covering spaces
for singularities which in the desingularization with normal crossings
contain cycles in the exceptional set.

1 Introduction

Let Y be a Stein space and X an open subset of Y. Then X satisfies the
following two properties:

a) the global holomorphic functions on X separate the points of X (i.e., for
any x,y € X, x # y, there exists f € O(X) such that f(z) # f(y));

b) the global holomorphic functions on X give local coordinates on X (i.e.,
for any x € X there exists f : X — C, N = N(z), a holomorphic function,
which is an immersion at x).
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In [2] it was raised the following question, called ”the open immersion
problem”:
Question. Given a complex space X that satisfies the two conditions a) and
b) above, is it possible to realize X as an open subset of a Stein space?

In this paper we give two counter-examples to this question. The first
one is an irreducible complex space of dimension 2 with isolated singularities
and the second example is a complex space of dimension 2 with hypersurface
non-isolated singularities, having infinitely many irreducible components but
which is a covering space of an open subset of a Stein space and, additionally,
we prove that it can be realized as closed analytic subset of an open subset
of C*.

We notice that the two examples are open sets of Stein schemes, a gen-
eralization of Stein complex spaces introduced by Grauert in [7].

We remark that the given examples have non-normal singularities and
therefore the question remains open for normal complex spaces.

Related to the open immersion problem is the existence of envelope of
holomorphy (see [4] for a discussion of this topic). A complex space is said
to have an envelope of holomorphy (or to be precomplete) if there exists a
Stein space Y and a holomorphic map f : X — Y such that the natural map
O(Y) — O(X) is an isomorphism. When X satisfies the conditions a) and
b), the map f is an injective immersion. The first example of open subsets
in Stein spaces of dimension 3 with normal isolated singularities, without
envelope of holomorphy, was obtained by H. Grauert in [7]. Another exam-
ple, satisfying additionally the hypersurface section condition was obtained
by M. Coltoiu and K. Diederich in [3]. Related to the notion of envelope of
holomorphy H. Grauert [7] generalized the notion of complex space to the
notion of complex scheme. A complex scheme might be quite pathological:
not locally compact, with non-noetherian local rings, etc. In Section 3 of
our paper we consider a germ (X, xg) of a two-dimensional normal singular-
ity. The desingularization Y of (X, zg) is a 1-convex manifold which might
contain cycles in its exceptional set Z. In this case, see [5], there exists
coverings Y of Y which contain infinite Nori strings A C Z. (i.e., Ais a con-
nected, non-compact one-dimensional complex space having only compact
irreducible components). We show that Z as above does not have an enve-
lope of holomorphy and blowing-down the Nori string A one gets a complex
scheme instead of a complex space.



2 The counter-examples

Example 1. We consider two complex lines, L; and Ly, in C? such that
0€ Ly, LiNLy = {p} where p # 0. We consider also two sequences, {z;, },>1
and {y, }n>1, such that

-z, € L1\ {0}, y, € Ly for every n > 1 and x; = y; = p,

- Ty # Ty and Yy, # Y, for n £ m,

- limz,, = 0 and lim |y, | = oco.

We define X = C?\ {0}/ ~ where « identifies x, and y, for every
n > 1. Clearly X is an irreducible complex space. Let 7 : C*\ {0} — X be
the canonical projection. We prove, using Cartan’s Theorem B, that global
holomorphic functions separate points and give local coordinates on X.

Let a # b be two points in C? \ {0} such that 7(a) # 7(b). If a & L; U Ly
we consider a holomorphic function f : C? — C such that f(a) # f(b)
and fir,ur, = 0. Then f will induce a holomorphic function fon X and
f(w(a)) # f(x(b). If a,b € Ly we consider a holomorphic function g : L; —
C such that g1(a) # g1(b). Let go : Ly — C be a holomorphic function such
that g2(y,) = g1(x,,) for every n. This is possible because {y, : n > 1} is a
discrete set in L. Then g : LiULy — C, g1, = g1, 9|1, = g2 is a holomorphic
function which can be extended to a holomorphic function on C? which in
turn induces a holomorphic function f on X and f(7(a)) # f(w(b)). The
other remaining cases can be treated in a similar fashion.

To prove that the global holomorphic functions on X give local coordi-
nates we choose a point z € X. We consider the case © = 7(z,,) = 7(Yn,)
for some ng. We consider (g, h;) : Ly — C? a holomorphic function such
that (gi,h;) is a local embedding around x,,, (g2, h2) : Ly — C? a holo-
morphic function such that (g, h2) is a local embedding around y,, and
92(yn) = g1(wn), ho(yn) = hai(,) for every n. Let g : LU Ly — C, g, = 91,
g|L2 = (g2 and h : Ll U L2 — C, h\L1 = hl, h‘LQ = hg. We choose now
fi :C?* - C and f, : C?* — C extensions of g and h, respectively, such that
(f1, f2) : C? — C? is a local biholomorphism around both Ty, and yy,, and
let f1 and fo be the induced functions on X. Then ( fi, fo, f, f2) X —Ct
is a local embedding around x. Again the other cases are simpler and can be
treated in a similar fashion.

To show that X is not biholomorphic to an open subset of a Stein space
we argue again by contradiction and we assume that there exists Z a Stein
space such that X is an open subset of Z. Then the projection 7 takes values
in Z and as Z is Stein it extends to a holomorphic map 7 : C> — Z. Notice



now that m(z,) are isolated singular points in X and hence in Z. On the
other hand because limz, = 0 we have that lim7(z,) = 7(0). All these
contradict the fact that the singular locus of Z is a complex space.

Example 2. Let L; and L, be two complex lines in C? both passing
through the origin. For every k € Z let X}, be a copy of C* and let L, ; and
Ly i, be the corresponding complex lines in Xj. Weset X = | |, ., Xi\{0}/ ~
where ~ identifies Loy \ {0} with L; 441 \ {0} via a linear isomorphism. We
obtain in this way a complex space on which global holomorphic functions
are easy to describe: they are given by {fi}rez where fi : X — C are
holomorphic functions such that fy, Loy = Tr+1) Lyt Moreover, by Cartan’s
Theorem B, any holomorphic function f : || ... Xi \ {0}/ ~ — C can
be extended to a holomorphic function on X. It is clear then that global
holomorphic functions separate points and give local coordinates on X.

We assume that there exists a Stein space Z such that X is an open
subset of Z. If Z; is the union of all two-dimensional irreducible components
of Z then X is in fact an open subset of Z; and therefore we can assume
from the beginning that Z has pure dimension 2. Let f; : X \ {0} — Z
be the inclusion maps. As Z is Stein it follows from the Hartogs theorem
for functions with values in a Stein space that f; extends to a holomorphic
function f; : X — Z. At the same time fk|L2,k = fk+1\L1,k+1 and this implies
that fi(0) = fr41(0) for every k € Z and therefore fi(0) = f,(0) for every
k,p € Z.

As obviously fi is one-to-one on X}, \ {0} we have that 0 is isolated in
fo ' (£:(0)) and so there exists U C Xj a neighborhood of 0 and V' C Z a
neighborhood of f(0) such that f(U) C V and fx: U — V is a finite map.
Then f; maps the germ of X, at 0 onto an irreducible component of the
germ of Z at fi(0). As the images of f; and f; intersect only in one point
for [p — k| > 2 we will have that the germ of Z at f;(0) has infinitely many
irreducible components which is of course a contradiction.

e Now we show that X is a covering of an open subset of a Stein space.
Let M; and M, be two copies of C? and L1y, Loy C My, Ly o, Log C My the
lines that correspond to L; and L,. We define Y = M; U M,/ ~ where ~
identifies Ly with Lq and Ly ; with L;  and we denote by y, the point that
corresponds to the origin of M; (which is identified with the origin of M,).
Clearly Y is a Stein space with two irreducible components. We consider, for
every k € Z, fory1 : Xogr1 — My and for + Xop — My linear isomorphisms



such that fort1(Ligkr1) = L1, forr1(Logkt1) = Loa, for(Lior) = Lo,
for(Lagk) = Lop. Then f: X — Y \ {yo}, defined by fix,,.,\jo} = fort1,
fixo\(0} = fox, is a covering map.

e We prove that X is biholomorphic to a closed analytic subset of C*\
C2% In C* we set e; = (1,0,0,0) and ey = (0,1,0,0) which are orthogonal.
We show that there exists a sequence {ax}rez, ar € C*, with the following
properties:

1) o = 1

2) for every ki, ko, ks, ky € Z, k1 < ko < k3 < kg4, we have that ay,, ax,, a,
and ag, are linearly independent (over C).

3) for every ki, ko € Z, k1 < ko, we have that ag,, ax,,e; and ey are linearly
independent.

4) ||agk+1 — er]| < \k\+1 and |lagr — ea| < for every k € Z

\kH—l
We will do the construction recursively. We set ay = (0,0,1,0). We
assume now that for n € Z, n > 0, we have constructed a_,,a_n,11...,a,

and we will construct a_,_; and a,,;. We denote by S7 the unit sphere in
C* and we let

Al = U Span((:{aklua’kzaa‘]%}; AQ == U Span((:{elae27ak}'

—n<lki<ka<ks<n —n<k<n

As both A; and Aj are finite unions of complex linear spaces of complex
dimension 3 they have 7-dimensional Hausdorff measure equal to 0 and hence
(A1UA5)NST is nowhere dense in S”. We choose a,, 11 € ST\.A;UA; such that
it satisfies Property 4 above. In a completely similar manner we construct
AQ_p—_1.

Let now Xy = Span{ay,app} for k € Z and Y = Span{e;,e;}. We
notice that
- XN Xpy1 =Crappg B
- if |p — k| > 2 then X N X, = {0}
- X, NnY ={0}.

We verify now that X = Usez X\ {0} is a closed analytic subset of
C*\ Y. We will show that (J,-, Xx \ {0} is a closed analytic subset of

C*\ 'Y because a completely similar proof will work for (J, ., Xi \ {0}. Tt is
enough to show that if {k,} is an increasing sequence of positive numbers,
Ty, € ka and lim, .. 7z, = y then y € Y. Passing to a subsequence
we can assume that every k, is odd (the same proof works if every k, is
even). Then lim, ., ay, = e and lim, . ag,+1 = e2. And then, for p large
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since e; and e, are orthogonal. If we set

N[ =

enough, | < ag,,ap,+1 > | <
Tk, = Qpay, + Bpag, 1 then

||$ka2 =< Thy) Ty, >= ’Oép‘2 -+ |ﬁp‘2 + 2§R(C¥pﬁ_p < Ak, s Akpt1 >)

and therefore ||z, > > |ap > +16,* —|apBy] = 5(low*+18,1)- As {l|z,||*} is
bounded it follows that {c,}, and {5,}, are bounded. We choose now {k,, }s
a subsequence of {k,}, such that lim, . a,, = a and lim, . 3,, = 5. We
deduce that y = ae; + [Fey and therefore y € Y.

Obviously X and X are biholomorphic.

Motivated by these two examples we raise the following two problems:

Problem 1. Suppose that X is a complex space of bounded Zariski
dimension such that global holomorphic functions separate points and give
local coordinates on X. Does it follow that X is a closed analytic subset of
an open subset some Euclidean space CV?

Problem 2. Suppose that Y is a normal Stein space and p: X — Y is an
unbranched Riemann domain. We assume that global holomorphic functions
separate points and give local coordinates on X. Does it follow that X is an
open subset of a Stein space?

Remark: It is well-known that global holomorphic functions on X (X
as in Problem 2) might not separate points, see for example [10], Chapter
6. We provide here a very simple example. Let B C C? be the open unit
ball and S® = 9B its boundary. Choose two points p,q € 9B, p # ¢, and
attach a handle to OB inside B. That means that we choose a real analytic
arc vy inside B such that y(0) = p and (1) = ¢. A small enough open
neighborhood Y of yU S® in B can be deformed continuously to v U S* and
therefore m(Y) = Z. In particular 7 (Y) admits subgroups of any finite
index and hence Y admits finite coverings of order v for every v € N. Let
p: X — Y a covering with v sheets, v > 2. Since holomorphic functions
on Y extend uniquely to holomorphic functions on B (by Hartogs’ theorem)
and B is simply connected, it follows from Proposition 1.3 in [6] that the
holomorphic functions on X are pull-backs of holomorphic functions on Y.
In particular they do not separate the points of X.

We would like to show now that the two examples above are actually
open subsets of Stein schemes. For the convenience of the reader we recall
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briefly the basic definitions regarding complex schemes according to Grauert
[7] (see also [9], [11]).

Suppose that X is a normal, reduced complex space and I* C O(X) is a
complex algebra of holomorphic functions with 1 € I*. On X we introduce
the following equivalence relation: x; ~ x5 if and only if f(z;) = f(x2) for
every f € I*. Let Y be the quotient space X/ ~ endowed with the quotient
topology and 7 : X — Y the quotient map. Every function f € I induces
a continuous function on Y, denoted also by f. For any open subset U of Y
let T'yy to be the complex algebra of all continuous functions that locally can
be written as Y a,,..,, fi* -+ f7* with uniform convergence on 7~ (U) where
fi,--, [x € I*. We let Oy to be the sheaf generated by the pre-sheaf {T'y/}.

Definition 1. Then the ringed space (Y,Oy), which is also denoted by
S(X,I*) is called the spectrum of (X, I*).

Definition 2. A complex scheme is a ringed space (Y,O) on a Hausdorff
topological space Y , which locally is isomorphic to a spectrum.

Definition 3. A complex scheme (Y, O) is called holomorphically convex if
for every compact subset K of Y its holomorphically convex hull, defined by
K:={yeY:|f(y)| <sup|f(K),VfeOY)} is compact as well.

Definition 4. A complex scheme (Y, O) is called Stein if it is holomorphically
convezr and for every y1,ys € Y, y1 # yo, there exists f € O(Y) such that

flpn) # f(y2)-

e For Example 1 we consider X; = C? and the following algebra of holo-
morphic functions I* = {f € O(C?) : f(z,) = f(yn) Vn € N}. Let (Y,0Oy)
be the spectrum of (X7, [*) and 7 : X; — Y be the quotient map. Obviously
the space X constructed in this example is an open subset of Y, namely
X =Y \{n(0)}. It is clear that functions in Oy (Y') separate the points of
Y. To show that Y is holomorphically convex, as Y is second countable, it
is enough to prove that for every discrete sequence {ay }ren in Y there exists
f € Oy(Y) such that {|f(ax)|}ren is unbounded. So let {ay }ren be a discrete
sequence in Y and b, € C? be such that m(by) = aj. As 7(z,) — 7(0) we
have that {k € N: 3n € N a; = m(x,)} is finite and hence we can assume
that {by : k € N})N{z, : n € N} U{y, : n € N}) = 0. We choose a
holomorphic function ¢; : L1 — C such that g;(by) = k whenever b, € L,
and then a holomorphic function ¢y : Ly — C such that ga2(y,) = g1(x,,) for



every n and ¢s(br) = k whenever b, € Ly. We use Cartan’s Theorem B to
get a holomorphic function f : C> — C such that on L; one has f = g;, on
Ly one has f = go and f(by) = k. Then f induces a function in Oy (Y') with
the desired property.

We notice that Y is not locally compact. Indeed if V' is any neighborhood
of m(0) we choose z, € 7~ !(V) such that 0 < ||z, — yn|| < 1. We will have
then that 7(z,) € V and the sequence {7 (z,)}nen is discrete in Y.

We also notice that the local ring of Oy () is not Noetherian. Indeed
let A,, be the set of positive integers of the form 2"m where m is a positive
integer. We have that A, D A,;; and, moreover, A, \ A, is infinite for
every n > 0. Let .J, be the ideal of Oy ) that contains all those germs of
functions f € Oy (V') such that f ox vanishes identically on a neighborhood
of y,, for every m € A, and on the intersection of L; with a neighborhood
of 0. Then these ideals form an ascending chain. To show that the chain is
non-stationary we consider Z the coherent sheaf of ideals in O¢2 consisting of
holomorphic functions that vanish on L; U{y,, : m > 1} ({ym} being discrete
Ly U{y, : m > 1} is an analytic subset of C?). Let W, be a connected Stein
neighborhood of 0 and W,, be a connected Stein neighborhood of ,, for
every m > 1 such that W,,, m > 0, are pairwise disjoint and the sequence
{W,.}m>o is uniformly Runge in C?.

We recall (see [8]) that a sequence, {D, },>1 of pairwise disjoint Runge
domains in a Stein space X is called uniformly Runge if for every sequence
of positive real numbers {¢,},>1, every sequence of compact sets { K, },>1,
K,, C D,, and every sequence of holomorphic functions { f,, }»>1, fn € O(D,),
there exist f € O(X) such that for every n > 1 we have ||f — f,.||k, < €,. In
our case we choose h € O(C?) such that 2(0) = 0 and h(y,,) = m for m > 1.
We choose then W, to be Runge in C? and m — 3 < R(hgp, ) <m+ LIt
follows from Propositions 3 and 4 in [8] that {WV,,},,>0 is uniformly Runge.

Let U,, € W,, be such that 0 € Uy and y,,, € Uy, and let U := J,,>q Un
and W :=J,,~o Win. We consider a function f € Z(W) such that f,, =0
for m € A,,1 and fiw,, Z0 form e A, \ Apy1. As {Wp,}m>o0 is uniformly
Runge in C? we have that f can be approximated uniformly on U by func-
tions in Z(C?%). Note now that Z(C?) C I* and that f induces a continuous
functions on an open subset of Y containing 7(0). It follows that f induces
a function in Oy (V') where V' is a neighborhood of 7(0). Clearly its germ
[r©) € Jny1- As Ay \ Ay is infinite we have that fr) € J, as well. There-
fore Oy, (o) is not Noetherian.



e For Example 2 we consider X = |ljez Xeand I* = {f € O(X) : firox =
frixs1}s (Y, Oy) be the spectrum of (X, I*) and 7 : X — Y the quotient
map. We have that X =Y \ {7(0)} where 0 is the origin in any Xj. Clearly
the functions in Oy (Y') separate the points of Y. To show that (Y,Oy) is
holomorphically convex we consider again a discrete sequence {as}sen in Y,
we split the problem in two cases:

- there exists k € Z such that {s € N: a, € 7(Xj)} is infinite

- there exists an infinite set A C Z such that for every k € A there exists
s € N such that ag € 7(X}),

and we use Cartan’s Theorem B.

As for Example 1 the scheme Y is not locally compact (with the same
type of argument) and the local ring Oy (g) is not Noetherian. Here the non-
stationary, ascending chain of ideals is {J,},>1 where J,, consists of those
germs at (0) of functions f € Oy (V') such that f on vanishes identically on

U|k\2n7(Xk:>-

Remark. Note that in both examples the quotient map has 0-dimensional
fibers and still the complex scheme is not a complex space. This shows that
the condition on the connectivity of the fibers required by Grauert in [7],
Satz 2, page 389, is essential.

3 Nori strings and envelopes of holomorphy

We have seen in the previous section that there exist complex spaces that
satisfy the conditions a) and b) but are not open subsets of Stein spaces.
In particular they do not have envelopes of holomorphy. For the first time
Grauert [7] noted the connection between envelopes of holomorphy and com-
plex schemes. We want now to relate the coverings of a desingularization of
a germ of a two-dimensional normal singularity (X, zg) to a complex scheme.
Let 7 : Y — X be a desingularization of (X, zy) with normal crossings and
denote by A the exceptional set of w, i.e., A = 7 (zg). If A contains no
cycles then any covering Y of Y is holomorphically convex, therefore (9(}7) is
a Stein algebra. We are interested in the more difficult case when A contains
cycles. For simplicity we assume that A is a cycle (the proof is the same if
A contains a cycle). As in [5] we can construct a covering space p: Y — Y
such that A := p~'(A) is a Nori string.
The following result is due to A. Brudnyi [1].



Theorem 1. Let X be a 1-convex manifold, D € X a strongly pseudoconvex
domain with smooth boundary, containing the exceptional set A of X. Let
p: X — X be a covering map, D = p~'(D), and A = p~'(A). Then if
z1,29 € D\ A, 71 # 25 and p(x1) = p(xs) there exists f € O(D) such that
f(x1) # f(x2).

Remark. In fact the author shows that the function f can be chosen to
be L? on the covering with respect to the pull-back of a Riemannian metric
on X.

Let I* = O(Y) and let (Z, Oy) be the spectrum of (Y, I*).

Corollary 1. The topological space Z is the (topological) contraction of A
to a point Py and (Oz)iz\(pyy = (O?)D}\A.

We want to prove the following:

Theorem 2. Y has no envelope of holomorphy in the category of complex
spaces and Z is not a complex space.

Proof. Let us assume by reductio ad absurdum that Y has an envelope of
holomorphy 7 : ¥ — W in the category of complex spaces. It follows from
Theorem 1 that on Y \ A the map 7 is an injective immersion. At the same
time since A is connected and all its irreducible components are compact it
follows that 7(A) is just a point.

Let f be a holomorphic function on the germ (X, x¢) such that f(z) =0
and {f = 0} is smooth outside {zy}. On the desingularization Y we let A; be
the union of all non-compact irreducible components of { for = 0}, therefore
the union of those components that do not belong to the decomposition of
the exceptional set A into irreducible components. Let A; = p~'(A;). The
map fomop has a unique extension f; € O(W). Since 7 is injective on Y \ A
and p is infinitely sheeted this would imply that {f; = 0} had infinitely many
local irreducible components at T(A), which is, of course, a contradiction.

Completely the same argument shows that Z is not a complex space. [
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