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Abstract. We give an example of a domain W in C3, biholomorphic to a ball, such
that W is not Runge in any Stein neighborhood of W .

1. Introduction

During the conference “Geometric Function Theory in Higher Dimension”, held in
Cortona in September 2016, Filippo Bracci asked the following question: suppose that W
is a domain in Cn, biholomorphic to a ball. Does there exist a Fatou-Bieberbach domain
U such that W ⊂ U ⊂ Cn and W is Runge in U?

A related (and natural) question is the following: suppose that W is a domain in
Cn which is biholomorphic to a ball. Does there exist a Stein domain U such that
W ⊂ U ⊂ Cn and W is Runge in U? The purpose of this note is to show that the
answer to the second question is negative, by constructing a counter-example. As it can
be seen from our construction, this does not answer Filippo Bracci’s question since we
construct a domain W with a “bad” point x in the boundary ∂W and, according to the
statement of our problem, this point must be in U .

For the basic notions regarding pseudoconvexity we refer, for example, to [1]. For a
complex manifold M we denote by O(M) the ring of holomorphic functions and, if K

is a compact subset of M , K̂M stands for the holomorphically convex hull of K in M ,

K̂M = {x ∈M : |f(x)| ≤ ‖f‖K , ∀f ∈ O(M)}. If M is a Stein manifold and D is a Stein
open subset of M , then D is called Runge in M if the restriction map O(M) → O(D)
has a dense image. This is equivalent to the fact that for every compact set K ⊂ D we

have K̂M = K̂D. It is also a standard fact that if M is a Stein manifold, D is a Stein
open subset of M which is Runge in M and N is a closed complex submanifold of M ,
then N ∩D is Runge in N .
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2. The example

The following map was defined by J. Wermer, [2] and [3]: f : C3 → C3, f(z, w, t) =
(z, zw + t − 1, zw2 − w + 2wt). A direct computation shows that f|C×C×{t:Re(t)< 1

2
} is a

biholomorphism onto its image.

Let 0 < p < 1
4

be a fixed real number and let

B :=

{
(z, w, t) ∈ C3 : p|z|2 + p|w|2 + |t|2 < 1

4

}
.

Then B is biholomorphic to a ball and B ⊂ C × C × {t : |t| < 1
2
}. Hence f(B) is also

biholomorphic to a ball. We would like to show that f(B) is the required example.

Suppose that U is a pseudoconvex neighborhood of f(B). Note that

(
0,−1

2
, 0

)
=

f

(
0, 0,

1

2

)
∈ ∂f(B). Hence, for a sufficiently small r > 0, we have that{

(ξ, η, θ) ∈ C3 : |ξ| ≤ r, |η +
1

2
| ≤ r, |θ| ≤ r

}
⊂ U.

We make the following claim:

Claim: If r is small enough, there exists α ∈ R, −1

2
< α < −1

2
+ r, such that

{ξ ∈ C : |ξ| = r} × {α} × {0} ⊂ f(B).

Proof of the claim:

Note that f

(
ξ,

2α + 1

ξ
,−α

)
= (ξ, α, 0), for every ξ ∈ C\{0}, α ∈ R. Hence it suffices to

show that if r > 0 is sufficiently small, there exists α ∈ R, −1

2
< α < −1

2
+ r, such that(

ξ,
2α + 1

ξ
,−α

)
∈ B for every ξ with |ξ| = r.

In other words, we would like to show that if r > 0 is small enough, there exists α ∈ R,

−1

2
< α < −1

2
+ r, such that

pr2 + p

(
(2α + 1)2

r2

)
+ α2 <

1

4
,
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or:

gr(α) :=

(
4p

r2
+ 1

)
α2 +

4p

r2
α + pr2 +

p

r2
<

1

4
.

Let α0 := − 2p

4p+ r2
> −2p

4p
= −1

2
. We have:

α0 < −
1

2
+ r ⇐⇒ r2

4p+ r2
< 2r ⇐⇒ r < 2(4p+ r2),

which is obviously true for r small enough.
Moreover:

gr(α0) =
4p+ r2

r2

4p2

(4p+ r2)2
− 8p2

r2(4p+ r2)
+
pr4 + p

r2
.

Hence:

gr(α0) <
1

4
⇐⇒ −4p2 + (4p+ r2)(pr4 + p)

r2(4p+ r2)
<

1

4

⇐⇒ pr6 + 4p2r4 + pr2 < pr2 +
r4

4

⇐⇒ pr2 <
1

4
− 4p2.

Since p <
1

4
, we have that

1

4
− 4p2 > 0 and therefore the last inequality is true for r small

enough. Hence our claim is proved. �

We remark now that (0, α, 0) 6∈ f(B) for α > −1

2
. Indeed

(0, α, 0) = f(z, w, t)⇐⇒ (z = w = 0, t = 1 + α) , and then t2 >
1

4
.

To summarize, we found r > 0, sufficiently small, and α such that:
{ξ ∈ C : |ξ| ≤ r} × {α} × {0} ⊂ U,

{ξ ∈ C : |ξ| = r} × {α} × {0} ⊂ f(B),

(0, α, 0) 6∈ f(B).

This shows that (C× {α} × {0})∩f(B) is not Runge in (C× {α} × {0})∩U , and there-
fore f(B) is not Runge in U .
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Remarks. 1. The above example is relatively compact in C3. One can construct an
unbouded example as follows: again we let p be a fixed positive real number, p < 1

4
, and

we set:

S =

{
(z, w, t) ∈ C3 : Re(t) < −p|z|2 − p|w|2 +

1

2

}
.

Then S is unbounded, biholomorphic to a ball, and S ⊂ C× C× {t ∈ C : Re(t) < 1
2
}. A

completely similar argument shows that if U is a Stein neighborhood of f(S), then f(S)
is not Runge in U .

It may be possible to construct a counter-example in C2, using the same procedure,
following a construction of J.Wermer in [4].

2. The following interesting question was raised by the referee. Is there a natural number k
such that a biholomorphic image of the ball which is Ck smooth has a Stein neighbourhood
basis in which the domain is Runge ?
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