On a Problem of Bremermann Concerning Runge Domains *

Cezar Joita

November 21, 2007

Abstract

In this paper we give an example of a bounded Stein domain in \mathbb{C}^n , with smooth boundary, which is not Runge and whose intersection with every complex line is simply connected.

1 Introduction

In [2] Bremermann asked the following question:

"Suppose that D is a Stein domain in \mathbb{C}^n such that for every complex line l in \mathbb{C}^n , $l \setminus D$ is connected. Is it true that D is Runge in \mathbb{C}^n ?"

The question remained open and was mentioned again in a recent book by T. Ohsawa ([5], page 81). In this paper we will give a negative answer to Bremermann's question. Namely, we will give an example of a bounded, strictly pseudoconvex domain in \mathbb{C}^n with real analytic boundary which is not Runge in \mathbb{C}^n but whose intersection with every complex line is simply connected.

Note that if D is bounded the hypothesis of the problem means simply that for every complex line $l, l \cap D$ is Runge in l. If, in addition, one requires that $l \cap D$ is connected as well then it does follow that D is Runge. See for example [1], page 79, Theorem 3.1.5 or [3], page 309, Theorem 4.7.8.

^{*}This work was supported by Marie Curie International Reintegration Grant no. 013023 and by the Romanian Ministry of Education and Research grant 2-CEx06-11-10/25.07.06

For simplicity our construction will be done in \mathbb{C}^2 but it can be easily adapted to \mathbb{C}^n for $n \geq 2$. To produce our example we will construct first a bounded, strictly pseudoconvex domain $W \subset \mathbb{C}^2$ with smooth, real analytic boundary which is Runge but its closure is not holomorphically convex. (Note that this is not possible in \mathbb{C} .) Next we show that, in fact, we can construct W as above and moreover it has the following geometric property: for every complex line l the set of points where l is tangent to ∂W is at most finite. If this is the case, then one can show that $l \cap \overline{W}$ is polynomially convex, again for every complex line l. Finally, we show that an appropriate neighborhood of \overline{W} is a counterexample to Bremermann's problem.

2 The Example

The construction will be done in several steps.

First we prove that there exists a bounded domain in \mathbb{C}^2 with smooth, real analytic boundary which is strictly pseudoconvex, Runge in \mathbb{C}^2 , and its closure is not polynomially convex. To our knowledge, such an example does not exist in the literature.

J. Wermer [6] proved that there exists a biholomorphic map F from a polydisc $P=\{(z_1,z_2)\in\mathbb{C}^2: |z_1|< a, |z_2|< b\}$ in \mathbb{C}^2 onto an open set F(P) of \mathbb{C}^2 such that F(P) is not polynomially convex. (Wermer's original result was in \mathbb{C}^3 but it can be modified to hold in \mathbb{C}^2 as well; see [4] or [5].) We start with such a map and let $U_n:=\{z\in\mathbb{C}^2: |\frac{z_1}{a}|^n+|\frac{z_2}{b}|^n<1\}$. Since $U_n\subset U_{n+1}\subset P$ and $\cup U_n=P$, it follows that there exists $m\in\mathbb{N}$ such that $F(U_m)$ is not polynomially convex. Set $U=U_m$ and V=F(U). If we define $\varphi:U\to\mathbb{R}$ by $\varphi(z)=\frac{1}{1-|z_1/a|^{2m}-|z_2/b|^{2m}}+|\frac{z_1}{a}|^2+|\frac{z_2}{b}|^2-1$ then φ is a strictly plurisubharmonic real analytic function and has only one critical point. Since F is a biholomorphism, $\varphi\circ F^{-1}:V\to\mathbb{R}$ has the same properties and it is an exhaustion function for V. For $\alpha>0$ let $V_\alpha=\{z\in V: \varphi\circ F^{-1}(z)<\alpha\}$. It follows that there exists $\alpha>0$ such that V_α is not polynomially convex. On the other hand, if $z_0=F(0)$ (this is the minimum point and the only critical point of $\varphi\circ F^{-1}$ and $\varphi\circ F^{-1}(z_0)=0$) and we choose $B\subset V$ a ball centered at z_0 , then there exists $\alpha>0$ such that $V_\alpha\subset B$. It follows that V_α is Runge in B (because $\varphi\circ F^{-1}$ is defined on B) and therefore is polynomially convex. Put $r:=\sup\{\alpha\in\mathbb{R}: V_\alpha \text{ is polynomially convex}\}$. From the above observations we deduce that $0< r<\infty$.

We claim that V_r is the example that we are looking for. Indeed V_r is Runge in \mathbb{C}^2 as an increasing union of Runge domains and it has smooth, real analytic boundary because $\varphi \circ F^{-1}$ has no critical point on the ∂V_r . We only need to convince ourselves that $\overline{V}_r = \{z \in V : \varphi \circ F^{-1}(z) \leq r\}$ is not polynomially convex. If \overline{V}_r were polynomially convex then it would have a Runge (in \mathbb{C}^2) neighborhood W with $W \subset V$. If this were the case then for $\epsilon > 0$ small enough, we would have $V_{r+\epsilon} \subset W$ and $V_{r+\epsilon}$ would be Runge in W and therefore in \mathbb{C}^2 . This would contradict the choice of r.

Let us rephrase what we have done so far. We proved that if V is a domain in \mathbb{C}^2 and $\phi: V \to \mathbb{R}$ is a strictly plurisubharmonic function such that there exist $a_0 < a_1$ real numbers with the following properties:

$$\begin{cases} x \in V : \phi(x) < a_1 \} \subset \subset V, \\ \{x \in V : \phi(x) < a_0 \} \text{ is connected and contains } C(\phi) := \text{the set of critical points of } \phi, \\ \{x \in V : \phi(x) < a'\} \text{ is Runge in } \mathbb{C}^2, \text{ for some } a' > a_0, \\ \{x \in V : \phi(x) < a_1 \} \text{ is not Runge in } \mathbb{C}^2$$

then there exists a unique real number $r = r(\phi) \in [a_0, a_1)$ such that $V_{r(\phi)} := \{x \in V : \phi(x) < r(\phi)\}$ is Runge and $\overline{V}_{r(\phi)} = \{x \in V : \phi(x) \le r(\phi)\}$ is not holomorphically convex. Note that $V_{r(\phi)}$ must be connected since each of its components contains a (minimum) critical point, $V_{r(\phi)}$ contains $\{x \in V : \phi(x) < a_0\}$ which is connected and $\{x \in V : \phi(x) < a_0\} \supset C(\phi)$. We also proved that there exists a real analytic function ϕ satisfying (*). We fix such a ϕ . Shrinking V we can assume that \overline{V} is compact and that ϕ is defined on a neighborhood of \overline{V} .

Next we want to show that there exists ψ , a small perturbation of ϕ , which satisfies (*) and in addition it has the following geometric property: for every complex line l the set $\mathcal{T}(\psi, l) := \{x \in \partial V_{r(\psi)} \cap l : l \text{ is tangent to } \partial V_{r(\psi)} \text{ at } x\}$ is finite.

Indeed: let U be an open and connected set such that $C(\phi) \subset U \subset V_{r(\phi)}$ and let W be an open and relatively compact neighborhood of $\partial V_{r(\phi)}$ and $0 < \delta < \delta' < a_1 - r(\phi)$ two real numbers such that $U \subset \{x \in V : \phi(x) < r(\phi) - \delta\}$ and $\{x \in V : r(\phi) - \delta < \phi(x) < r(\phi) + \delta\} \subset W \subset \{x \in V : \phi(x) < r(\phi) + \delta'\}$.

If $\epsilon > 0$ is small enough then, for every $\psi : V \to \mathbb{R}$, a \mathcal{C}^{∞} function, if the sup norms on \overline{V} of $\psi - \phi$, $\frac{\partial(\psi - \phi)}{\partial x_j}$, $\frac{\partial^2(\psi - \phi)}{\partial x_j \partial x_k}$, j, k = 1, ..., n (here we

denote $z_i = x_{2i-1} + ix_{2i}$ are less than ϵ , then ψ is strictly plurisubharmonic and satisfies (*). Moreover $C(\psi) \subset U$, $r(\psi) \in [r(\phi) - \delta, r(\phi) + \delta]$ and $\partial \{x \in V : \psi < s\} \subset W$ for every $s \in [r(\phi) - \delta, r(\phi) + \delta]$. We claim that there exists a real analytic ψ such that for every complex line l and for every $s \in [r(\phi) - \delta, r(\phi) + \delta]$ the following set $\mathcal{T}(\psi, l, s) := \{x \in \partial \{x \in V : \psi(x) < \delta\}\}$ $s \cap l : l$ is tangent to $\partial \{x \in V : \psi(x) < s\}$ at $x \in V$ is finite. Indeed, suppose that there exists x_0 which is not isolated in some $\mathcal{T}(\psi, l, s)$ (note that s is then $\psi(x_0)$ and l is the complex tangent line at x_0 to $\{\psi=\psi(x_0)\}$). If we denote by $u := \psi_{l}$ then x_0 is not isolated in $\{z \in l : u(z) = u(x_0), \ \nabla u(z) = 0\}$. On the other hand u is real analytic and strictly subharmonic. It follows that around x_0 at least one of the sets $\{z \in l \cap V : \frac{\partial u}{\partial x}(z) = 0\}$ or $\{z \in l \cap V : \frac{\partial u}{\partial x}(z) = 0\}$ $\frac{\partial u}{\partial y}(z) = 0$ is smooth and then the smooth one is contained in the other one. Hence there exists around x_0 a smooth real analytic curve C such that $u_{|C} = \text{constant} = u(x_0)$ and $\nabla u_{|C} = 0$. If $\{f = 0\}$ is a local equation for C and a is any point on C it follows that in a neighborhood of a, u can be written as $u = u(a) + f^2g$. This shows that if

- (*) There exists l and s such that $\mathcal{T}(\psi, l, s)$ is not finite, then
- (**) There exists a complex line L, a constant k, and a germ of smooth real analytic curve C in L such that in a neighborhood of each point of C $\psi_{|L} = k + f^2 g$ where f is a local defining function for C.

Assume that (**) holds.

Let a be any point on C. It follows that L is the complex tangent line at a to $\{\psi = k\}$ and therefore a parametrization for L is

$$\lambda \to \left(\frac{\partial \psi}{\partial z_2}(a)\lambda, -\frac{\partial \psi}{\partial z_1}(a)\lambda\right) + a$$

We write $\lambda = s + it$ and we consider the one complex variable function ψ_1 given by $\psi_1(\lambda) = \psi((\frac{\partial \psi}{\partial z_2}(a)\lambda, -\frac{\partial \psi}{\partial z_1}(a)\lambda + a)$. Then ψ_1 is strictly subharmonic around 0 hence at least one of $\frac{\partial^2 \psi_1}{\partial s^2}(0), \frac{\partial^2 \psi_1}{\partial t^2}(0)$ is positive. Without loss of generality we assume that $\frac{\partial^2 \psi_1}{\partial s^2}(0)$ is positive. Then, around 0, we have: $\psi_1 = \psi_1(0) + \left((2\frac{\partial^2 \psi_1}{\partial s^2}(0))^{-1/2}\frac{\partial \psi_1}{\partial s}\right)^2 g(\lambda)$, where g is a real analytic function with g(0) = 1. It follows that

(1)
$$\det Hess(\psi_1)(0,0) = 0$$

and if we consider the linear change of coordinates $\chi(s,t)=(\sigma,\tau)$ with $\sigma=(2\frac{\partial^2\psi_1}{\partial s^2}(0))^{-1/2}(\frac{\partial^2\psi_1}{\partial s^2}(0)s+\frac{\partial^2\psi_1}{\partial s\partial t}(0)t),\ \tau=t,$ and we set $\psi_2=\psi_1\circ\chi^{-1}$ we also have, at 0,

$$(2) \frac{\partial^3 \psi_2}{\partial \tau^3} (0,0) = 0$$

$$(3) \frac{2}{3} \frac{\partial^4 \psi_2}{\partial \tau^4} (0,0) = \left[\frac{\partial^3 \psi_2}{\partial \sigma \partial \tau^2} (0,0) \right]^2$$

$$(4) \ \ \tfrac{4}{5!} \tfrac{\partial^5 \psi_2}{\partial \tau^5}(0,0) = [\tfrac{1}{6} \tfrac{\partial^4 \psi_2}{\partial \sigma \partial \tau^3}(0,0) - \tfrac{1}{8} \tfrac{\partial^3 \psi_2}{\partial \sigma \partial \tau^2}(0,0) \tfrac{\partial^3 \psi_2}{\partial \sigma^2 \partial \tau}(0,0)] \tfrac{\partial^3 \psi_2}{\partial \sigma \partial \tau^2}(0,0).$$

Note also that all these four relations can be expressed only in terms of ψ , without involving L, s, t, σ or τ .

$$\left(\text{E.g. } \frac{\partial^2 \psi_1}{\partial s^2}(0,0) = \frac{\partial^2 \psi}{\partial z_1^2}(a) \left(\frac{\partial \psi}{\partial z_2}(a) \right)^2 + \frac{\partial^2 \psi}{\partial \overline{z}_1^2}(a) \left(\overline{\frac{\partial \psi}{\partial z_2}(a)} \right)^2 + 2 \frac{\partial^2 \psi}{\partial z_1 \partial \overline{z}_1}(a) \left| \frac{\partial \psi}{\partial z_1}(a) \right|^2 + \frac{\partial^2 \psi}{\partial z_2^2}(a) \left(\frac{\partial \psi}{\partial z_1}(a) \right)^2 + \frac{\partial^2 \psi}{\partial \overline{z}_2^2}(a) \left(\overline{\frac{\partial \psi}{\partial z_1}(a)} \right)^2 + 2 \frac{\partial^2 \psi}{\partial z_2 \partial \overline{z}_2}(a) \left| \frac{\partial \psi}{\partial z_1}(a) \right|^2 - 2 \frac{\partial^2 \psi}{\partial z_1 \partial z_2}(a) \frac{\partial \psi}{\partial z_2}(a) \frac{\partial \psi}{\partial z_1}(a) - 2 \frac{\partial^2 \psi}{\partial \overline{z}_1 \partial \overline{z}_2}(a) \overline{\frac{\partial \psi}{\partial z_1}(a)} - 2 \frac{\partial^2 \psi}{\partial \overline{z}_1 \partial \overline{z}_2}(a) \overline{\frac{\partial \psi}{\partial z_1}(a)} \overline{\frac{\partial \psi}{\partial z_1}(a)} - 2 \frac{\partial^2 \psi}{\partial \overline{z}_1 \partial \overline{z}_2}(a) \overline{\frac{\partial \psi}{\partial z_1}(a)} \overline{\frac{\partial \psi}{\partial z_1}(a)} - 2 \frac{\partial^2 \psi}{\partial \overline{z}_1 \partial \overline{z}_2}(a) \overline{\frac{\partial \psi}{\partial z_1}(a)} \overline{\frac{\partial \psi}{\partial z_1}(a)} - 2 \overline{\frac{\partial \psi}{\partial z_1}(a)} \overline{\frac$$

They are, in fact, four differential equations that must be satisfied by ψ at each point $a \in C$. For a generic real analytic function ψ the intersection of the four real analytic sets defined by this four equations is discrete (ψ is defined on $\mathbb{C}^2 \equiv \mathbb{R}^4$) hence it cannot contain C (the germ of a real analytic curve). As a matter of fact, from $\psi_{|L} = k + f^2 g$ one can come up with as many differential equations as one wants, but their are more and more complicated.

We fix now a ψ which satisfies (*) and the geometrical property mentioned above.

Our next goal will be to show that, for every complex line l in \mathbb{C}^2 , $l \cap \overline{V}_{r(\psi)}$ is polynomially convex (although $\overline{V}_{r(\psi)}$ is not). Note that $(l \cap \overline{V}_{r(\psi)}) \setminus \overline{l \cap V_{r(\psi)}}$ is a finite set (as a subset of $T(\psi, l)$). Hence it suffices to show that $\overline{l \cap V_{r(\psi)}}$ is polynomially convex. Let's assume that it is not. Note that $l \cap V_{r(\psi)}$ is Runge in l (since $V_{r(\psi)}$ is Runge in \mathbb{C}^2) and that it has a smooth boundary except at a finite set of points (the set of points of non-smoothness is also a subset of $T(\psi, l)$). As we assumed that $\overline{l \cap V_{r(\psi)}}$ is not polynomially convex it follows

that there exists a rectifiable loop γ in l such that $\gamma\setminus (l\cap V_{r(\psi)})$ contains only points where the boundary of $l\cap V_{r(\psi)}$ in l is not smooth and therefore is finite and $\widehat{\gamma}\cap (l\setminus (\overline{l\cap V_{r(\psi)}}))\neq\emptyset$ (in fact it has a nonempty interior). Using again the finiteness of $\mathcal{T}(\psi,l)$ it follows that $\widehat{\gamma}\cap (\mathbb{C}^2\setminus \overline{V}_{r(\psi)})\neq\emptyset$. We claim that there exists a \mathcal{C}^∞ family of biholomorphisms $\{f_\epsilon:\mathbb{C}^2\to\mathbb{C}^2\}_{\epsilon\in\mathbb{R}}$ such that f_0 is the identity and for $\epsilon>0$ small enough $f_\epsilon(\gamma)\subset V_{r(\psi)}$. Without loss of generality we can assume that $l=\{z=(z_1,z_2)\in\mathbb{C}^2:z_2=0\}$. We write $\gamma\setminus (l\cap V_{r(\psi)})=:\{(p_1,0),\ldots,(p_s,0)\}$ and we denote by $(0,q_1),\ldots (0,q_s)$ the unit inner normals to $\partial V_{r(\psi)}$. We choose $h:\mathbb{C}\to\mathbb{C}$ a holomorphic function such that $h(p_j)=q_j$ and we define $f_\epsilon(z)=(z_1,z_2+\epsilon h(z_1))$. It is obvious that f_ϵ are biholomorphisms and since $\frac{\mathrm{d}f_\epsilon}{\mathrm{d}\epsilon}(p_j,0)=(0,q_j)$ it follows that f_ϵ have the sought properties. Because $\widehat{\gamma}\cap (\mathbb{C}^2\setminus \overline{V}_{r(\psi)})\neq\emptyset$ and $\{f_\epsilon\}$ is a continuous family we deduce that for ϵ small enough $f_\epsilon(\widehat{\gamma})\neq\emptyset$ and $f_\epsilon(\widehat{\gamma})$ and $f_\epsilon(\gamma)\subset V_{r(\psi)}\cap f_\epsilon(l)$. It follows from here that $V_{r(\psi)}\cap f_\epsilon(l)$ is not Runge in $f_\epsilon(l)$ which is a contradiction since $V_{r(\psi)}$ is Runge in \mathbb{C}^2 and $f_\epsilon(l)$ is a closed analytic submanifold in \mathbb{C}^2 .

We are now ready to produce our example. For $\epsilon > 0$ we set $W_{\epsilon} := \{x \in V : \psi(x) < r(\psi) + \epsilon\}$. It follows from the definition of $r(\psi)$ that W_{ϵ} is not Runge in \mathbb{C}^2 . We wish to prove that there exists $\epsilon > 0$ such that for every complex line l, $W_{\epsilon} \cap l$ is Runge in l.

Suppose that this is not the case. Then for $n \in \mathbb{N}$ large enough there exists a complex line l_n such that $W_{\frac{1}{n}} \cap l_n$ is not Runge in l_n . Note that $\{l_n\}$ is a sequence of lines that intersect a given compact subset of \mathbb{C}^2 . It contains then a convergent subsequence. By passing to this subsequence we can assume that $\{l_n\}$ converges to a line l.

We already proved that $l \cap V_{r(\psi)}$ is holomorphically convex and this implies that there exists Ω a Runge open subset of \mathbb{C}^2 such that $l \cap \overline{V}_{r(\psi)} \subset \Omega \subset V$. As $\cap W_{\frac{1}{n}} = \overline{V}_{r(\psi)}$ and l_n converges to l we deduce that there exists $n_0 \in \mathbb{N}$ such that, for every $n \geq n_0$, $W_{\frac{1}{n}} \cap l_n \subset \Omega$. Hence $W_{\frac{1}{n}} \cap l_n = (W_{\frac{1}{n}} \cap \Omega) \cap l_n$. On the other hand, ψ is a plurisubharmonic function defined on the whole Ω which is Stein and therefore $W_{\frac{1}{n}} \cap \Omega$, which is a level set for $\psi_{|\Omega}$, is Runge in Ω . Since Ω is Runge in \mathbb{C}^2 it follows that $W_{\frac{1}{n}} \cap \Omega$ is also Runge in \mathbb{C}^2 and from here we obtain that $W_{\frac{1}{n}} \cap l_n$ is Runge in l_n . This contradicts our assumption.

In conclusion, we proved that for $\epsilon > 0$ small enough W_{ϵ} is bounded,

strictly pseudoconvex, is not Runge in \mathbb{C}^2 and for every complex line l in \mathbb{C}^2 , $W_{\epsilon} \cap l$ is Runge in l. In the same way as before W_{ϵ} must be connected since each of its components contains a critical point of ψ .

Acknowledgments: I am very grateful to Professor Mihnea Colţoiu for bringing Bremermann's problem to my attention and to Professor Terrence Napier for very useful discussions.

References

- [1] Andersson, M.; Passare, M.; Sigurdsson, R.: Complex convexity and analytic functionals. Progress in Mathematics, 225. Birkhäuser Verlag, Basel, 2004.
- [2] Bremermann, H.J.: Die Charakterisierung Rungescher Gebiete durch plurisubharmonische Funktionen. *Math. Ann.* **136**, 173–186, 1958.
- [3] Hörmander, L.: *Notions of convexity*. Progress in Mathematics, 127. Birkhäuser, 1994.
- [4] Fornæss, J.E.; Stensønes, B.: Lectures on Counterexamples in Several Complex Variables. Mathematical Notes, 33. Princeton University Press, 1987.
- [5] Ohsawa, T.: Analysis of several complex variables. Translations of Mathematical Monographs, 211. American Mathematical Society, 2002.
- [6] Wermer, J.: An example concerning polynomial convexity. *Math. Ann.* **139**, 147–150, 1959.

Cezar Joiţa Institute of Mathematics of the Romanian Academy P.O. Box 1-764, Bucharest 014700 ROMANIA

E-mail address: Cezar.Joita@imar.ro