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1 Introduction

Let A ⊂ Pn be a closed analytic subset of pure codimension q. We denote by

q̃ = n−
[

n
q

]
+1 and q̂ = n−

[
n−1

q

]
(here [x] stands for the integer part of the

real number x). Therefore q̂ = q̃ if q|n and q̂ = q̃ − 1 if q 6 |n. It follows from
M. Peternell’s results [16] that Pn \ A is q-complete with corners and from
Diederich and Fornaess approximation theorem [7] that Pn\A is q̃-complete in
the sense of Andreotti-Grauert [1]. In particular for every coherent analytic
sheaf F ∈ Coh(Pn \ A) the cohomology groups H i(Pn \ A,F) are trivial for
i ≥ q̃.

In this paper we will improve this result, in cohomological setting, for
Zariski open subsets of Pn by replacing q̃ with q̂. However we will do this only
for coherent algebraic sheaves F ∈ Coh(Pn). The integer q̂ was introduced by
K. Matsumoto [13] in the study of cohomologic convexity of some open sets in
complex manifolds which are finite intersection of q-complete open sets. The
integer q̃ was introduced by Diederich and Fornaess [7] in connection with the
results of G. Faltings [9]. Moreover the vanishing of cohomology spaces will
be replaced by their finite-dimensionality. Finite dimensionality conditions
for cohomology spaces were considered in some cases in algebraic context
by R. Hartshorne [10], A. Ogus [14] and have as analytic correspondent the
notion of q-convex space [1].

More precisely, we prove:

1The second and third named authors were partial supported by CNCSIS Grant 1185
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Theorem 1. Let A ⊂ Pn be a closed analytic subset of pure codimension q.
Then dimC H i(Pn \ A,F) < ∞ for every F ∈ Coh(Pn) and every i ≥ q̂.

This result is optimal, as Proposition 3 shows and represents an improve-
ment on the previously known results when q 6 |n (hence q̂ = q̃ − 1). It is
not known if, under the assumptions of Theorem 1, Pn \A is q̂-convex in the
sense of Andreotti-Grauert or if at least dimC H i(Pn \ A,F) < ∞ for every
F ∈ Coh(Pn \ A) if i ≥ q̂ (i.e. if Pn \ A is cohomologically q̂-convex).

For small codimension, that is for dim A ≥ n
2
, using Peternell’s compari-

son theorem ([18]) between algebraic and analytic cohomology spaces Hn−2

(the density of the algebraic cohomology in the the analytic one), and the
results of C. Hunecke and G. Lyubeznik [11] regarding the algebraic coho-
mology we deduce the following theorem:

Theorem 2. Let A ⊂ Pn be an irreducible closed analytic subset of codimen-
sion q where q satisfies n − 1 ≥ 2q. Then for every F ∈ Coh(Pn) we have,
for analytic cohomology spaces, Hn−2(Pn \ A,F) = 0.

Cohomology in top degree (i.e. Hn(X,F) for a n-dimensional com-
plex space X) is essentially described, in the algebraic case, in Hartshorne-
Lichtenbaum Theorem [10] (see also G. Chiriacescu [5]) and in analytic con-
text by the results of Y.-T. Siu [20] and T. Ohsawa [15].

2 Results

We recall first a few notions from the theory of analytic q-convexity, theory
initiated by Andreotti and Grauert [1].

A complex space X is called q-convex if there exists ϕ : X → R a smooth
exhaustion function which is strictly q-convex outside a compact set K. If
one could choose K to be the empty set then X is called q-complete. For
example if A ⊂ Pn is a q-codimensional closed complex submanifold then
Pn \ A is q-convex ([3]) and 2q − 1-complete ([17]). In general Pn \ A is not
q-complete. However if A is a complete intersection then Pn\A is q-complete.

For q-convex spaces Andreotti and Grauert [1] have proved the following
result which is fundamental for finite dimensionality of cohomology spaces:
if X is a q-convex complex space then it is cohomologically q-convex, i.e.
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dimC H i(X,F) < ∞ for every coherent analytic sheaf F ∈ Coh(X) and every
integer i ≥ q. For q-complete complex spaces they proved a similar theorem
(a vanishing theorem), replacing finite dimensionality with the vanishing of
cohomology spaces.

A continuous function ϕ : X → R is called q-convex with corners (see
[16], [7]) if locally it is equal to the maximum of a finite set of smooth q-
convex functions. Analogously to the notions of q-convex and q-complete
spaces one can define q-convex with corners and q-complete with corners
spaces. For example, it was proved in [16] that the complement of a closed
analytic subset of Pn of pure codimension q is q-complete with corners. A
fundamental result in the theory of q-convexity with corners is Diederich
and Fornaess approximation theorem [7], [8]. According to this theorem q-
convex functions with corners can be approximated by q̃-convex functions

where q̃ = n−
[

n
q

]
+ 1 and n is the dimension of X, the complex space that

the function is defined on. As a direct consequence of this theorem one gets
that for every closed analytic subset A of Pn (possibly with singularities)
of pure codimension q, its complement Pn \ A is q̃-complete. In particular
it follows from [1] that H i(Pn \ A,F) = 0 for every coherent analytic sheaf
F ∈ Coh(Pn \ A) and every i ≥ q̃.

In [13] K. Matsumoto has studied the vanishing of cohomology groups
for i ≥ q̂ for those open subsets U of a non-compact complex manifold X
that are finite intersection of q-complete open sets. She proved that in this
setting the cohomology groups H i(U,F) vanish for every F ∈ Coh(X) and

every i ≥ q̂ = n−
[

n−1
q

]
.

In what follows we would like to study the finite dimensionality of co-
homology spaces in this range, i ≥ q̂, for Zariski open subsets U ⊂ Pn,
U = Pn \ A where A is a pure q-codimensional analytic subset.

To prove Theorem 1 we will need some preliminary results. Following
[2] and [19] a linear map between two C-vector spaces f : E → F is called
Φ-injective if its kernel is finite dimensional, f is called Φ-surjective if its
cokernel is finite dimensional and Φ-bijective if it is both Φ-injective and
Φ-surjective. If M is a topological space, F is a sheaf of C-vector spaces on
M and D = (D1, D2, . . . , Dt) is a finite (ordered) tuple of open subsets of M
we denote by δj(D,F) : Hj(D1 ∩ · · · ∩ Dt,F) → Hj+t−1(D1 ∪ · · · ∪ Dt,F)
the following composition of boundary maps in corresponding Mayer-Vietoris
sequences:
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Hj(D1 ∩ · · · ∩Dt,F) → Hj+1

(
t−1⋂
s=1

(Ds ∪Dt),F

)
→

Hj+2

(
t−2⋂
s=1

(Ds ∪Dt−1 ∪Dt),F

)
→ · · · → Hj+t−1(D1 ∪ · · · ∪Dt,F)

The proof of the following lemma is identical to that of Proposition 1 in
[13].

Lemma 1. Let p ∈ N be fixed. In the above setting, we assume that for every
k with 1 ≤ k ≤ t − 1 for every i1, . . . , ik ∈ {1, . . . , t} and every j ≥ p the
cohomology groups Hj(Di1 ∩ · · · ∩Dik ,F) are finite dimensional. Then:
1) δj(D,F) : Hj(D1 ∩ · · · ∩Dt,F) → Hj+t−1(D1 ∪ · · · ∪Dt,F) is Φ-bijective
for every j ≥ p
2) δp−1(D,F) : Hp−1(D1 ∩ · · · ∩ Dt,F) → Hp+t−2(D1 ∪ · · · ∪ Dt,F) is Φ-
surjective.

Assume now that X is a compact irreducible complex space of dimension
n, F ∈ Coh(X) and D1, . . . , Dt are open q-complete subsets of X.

Lemma 2. In the above setting the cohomology spaces Hj(D1 ∩ · · · ∩Dt,F)
are finite dimensional for every j ≥ q̂.

The proof of this lemma is identical to that of Lemma 2 of [13] using
Lemma 1 above and the fact that for a compact complex space its cohomology
groups with values in a coherent analytic sheaf are finite dimensional, see [4].
Note that in Lemma 2 if D1 ∪ · · · ∪Dt 6= X (hence it is not compact) then
Hj(D1 ∩ · · · ∩ Dt,F) = 0 for j ≥ q̂ (one uses here a theorem of Y.-T. Siu,
[20], that states that Hn(D1 ∪ · · · ∪Dt,F) = 0).

The following result will play a crucial role in the proof of Theorem 1. It
is due to M. Peternell, [18].

Lemma 3. Let A ⊂ Pn be a closed analytic subset of pure codimension q.
Then there exist:
1) An irreducible algebraic variety X, dim(X) = n, together with a finite
surjective holomorphic mapping φ : X → Pn

2) Closed analytic subsets A1, . . . , Ar of X
3) Ample line bundles L1, . . . , Lr on X and, for each Li, q holomorphic sec-
tions si1 , . . . , siq ∈ Γ(X, Li) such that:
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a) φ−1(A) = A1 ∪ · · · ∪ Ar

b) Ai = {si1 = · · · = siq = 0} for i = 1, . . . , r.

Remarks: i) With the notations of Lemma 3, it follows that each X \Ai is
q-complete as a union of q Stein open subsets
ii) r = deg(A) and if A is connected then φ−1(A) is connected as well, however
we will not need these facts.

Now we are ready to prove:

Theorem 1. Let A ⊂ Pn be a closed analytic subset of pure codimension q.
Then dimC H i(Pn \ A,F) < ∞ for every F ∈ Coh(Pn) and every i ≥ q̂.

Proof. We apply Lemma 3 and we find an irreducible projective variety
X together with a finite surjective holomorphic map φ : X → Pn sat-
isfying the conditions of that lemma. Because φ is finite and surjective
it follows that in order to prove the theorem it is enough to show that
for every coherent analytic sheaf G ∈ Coh(X) and every i ≥ q̂ we have
that dim H i(X \ φ−1(A),G) < ∞. However φ−1(A) = ∪φ−1(Ai) and hence
X \ φ−1(A) is a finite intersection of q-complete domains. The finite dimen-
sionality of H i(X \ φ−1(A),G) follows now from Lemma 2.

Remarks: 1) Let A ⊂ Cn be a closed analytic subset of pure codimension
q and let x0 ∈ A be an arbitrary point. Then there exists a small open
neighborhood U of x0 such that, by a convenient choice of the coordinate
system, the restriction of the canonical projection π : Cn → Cn−q induces a
finite map U ∩ A → V where V is an open subset of Cn−q. Using the same
argument as in the proof of Lemma 3 (see [18]) one deduces that there exists
an irreducible complex space X, dim(X) = n, and a finite and surjective
holomorphic map φ : X → U such that X \ φ−1(A) is a finite intersection
of q-complete open subsets of X (each of them is the union of q open Stein
subsets). We deduce that H i(U \A,F) = 0 for every F ∈ Coh(U) and every
i ≥ q̂. It would be interesting to know if one has this vanishing result for
every F ∈ Coh(U \ A) or, more generally, if U \ A is q̂-complete.
2) If A ⊂ Cn is a closed algebraic subvariety of pure codimension q then
we can choose the coordinate system in Cn such that the restriction to A of
the standard projection π : Cn → Cn−q is finite and surjective. The above
discussion shows that H i(Cn \ A,F) = 0 for every F ∈ Coh(Cn) and every
i ≥ q̂. Hence we have just proved:
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Theorem 1′. Let A ⊂ Cn be a closed algebraic subvariety of pure codimen-
sion q. Then H i(Cn \ A,F) = 0 for every F ∈ Coh(Cn) and every i ≥ q̂.

We will move now to the second main result of this paper. If X is a
complex algebraic variety then there is a complex space, Xan, associated
to X in a natural way and to each coherent (algebraic) sheaf F one can
associate a coherent analytic sheaf Fan on Xan together with a canonical
map αq : Hq(X,F) → Hq(Xan,Fan), called comparison map. The main
theorem of [18] is the following:

Proposition 1. Let X be a Zariski open subset of Pn, F a coherent sheaf
on Pn and α : Hn−2(X,F) → Hn−2(Xan,Fan) := T the comparison map.
Then the image of α is dense in T with respect to the canonical topology of
T . Hence α is surjective if T is finite dimensional.

We will recall now the following important result due to Hunecke and
Lyubeznik ([11], Theorem 5.1) for algebraic cohomology of Pn \A when A is
irreducible.

Proposition 2. Let A ⊂ Pn be an irreducible closed analytic subset of codi-
mension q and F ∈ Coh(Pn). Then we have, for the algebraic cohomology

spaces, H i(Pn \ A,F) = 0 for every i ≥ n−
[

n−1
q

]
.

We can now prove:

Theorem 2. Let A ⊂ Pn be an irreducible closed analytic subset of codimen-
sion q where q satisfies n − 1 ≥ 2q. Then for every F ∈ Coh(Pn) we have,
for analytic cohomology spaces, Hn−2(Pn \ A,F) = 0.

Proof. From Theorem 1 it follows that Hn−2(Pn\A,F) is a finite dimensional

vector space since n−
[

n−1
q

]
≤ n− 2. In particular its topology is separated

(the topology of uniform convergence on compacts). It follows from Propo-
sition 1 that the canonical comparison map in degree n − 2, between the
algebraic and analytic cohomology, is surjective. As A is irreducible, Propo-
sition 2 implies that the algebraic cohomology spaces in degree n− 2 vanish.
We deduce that for the analytic cohomology Hn−2(Pn \ A,F) = 0 as well
and the proof of the theorem is complete.

6



Remark: The vanishing of the cohomology spaces Hn−1(Pn \ A,F) is
studied in detail in [6], where A is a closed analytic subset of Pn of positive
dimension and F ∈ Coh(Pn \ A).

We will show now the optimality of q̂ for every n and q. That means that
for every n and q we will give an example of a closed analytic subset A of Pn

of pure codimension q and such that H q̂−1(Pn \A,F) is infinite dimensional
for some F ∈ Coh(Pn).

Proposition 3. Suppose that n, q ∈ N with n ≥ 1 and 0 ≤ q ≤ n; Let

p =
[

n−1
q

]
and let A1, . . . , Ap+1 be p + 1 closed analytic subsets of Pn of pure

codimension q such that A1 ∩ · · · ∩ Ap+1 = {x} where x is some point in Pn

and let A = A1 ∪ · · · ∪ Ap+1. Then H q̂−1(Pn \ A,O) is infinite dimensional
where O stands for the sheaf of germs of holomorphic functions on Pn.

Proof. For i = 1, . . . , p + 1 let Di = Pn \ Ai. Hence we have to show that
Hn−p−1(∩p+1

i=1 Di,O) is infinite dimensional.
Step 1) We will prove by induction on k = 1, . . . , p + 1 that for every
J ⊂ {k + 1, . . . , p + 1} and every s ≥ n − p + k − 1 the cohomology space

Hs
(
(D1 ∪ · · · ∪Dk) ∩

⋂
j∈J Dj,O

)
is finite dimensional.

For k = 1 we have to show that Hn−p
(⋂

j∈J∪{1} Dj,O
)

is finite dimen-

sional. However
⋂

j∈J∪{1} Dj = Pn \
⋃

j∈J∪{1} Aj and as
⋃

j∈J∪{1} Aj is an
analytic subset of Pn of pure codimension q the statement follows from The-
orem 1.

We assume now that the statement is true for k and we prove it for k +1.
So let s ≥ n− p + k and J ⊂ {k + 2, . . . , p + 1}. We note (D1 ∪ · · · ∪Dk+1)∩⋂

j∈J Dj =
[
(D1 ∪ · · · ∪Dk) ∩

⋂
j∈J Dj

]
∪
[⋂

j∈J∪{k+1} Dj

]
and we write the

Mayer-Vietoris sequence. We get that the sequence:

Hs−1

(D1 ∪ · · · ∪Dk) ∩
⋂

j∈J∪{k+1}

Dj,O

→ Hs

(
(D1 ∪ · · · ∪Dk+1) ∩

⋂
j∈J

Dj,O

)

→ Hs

(
(D1 ∪ · · · ∪Dk) ∩

⋂
j∈J

Dj,O

)
⊕Hs

 ⋂
j∈J∪{k+1}

Dj


is exact. As s− 1 ≥ n− p + k− 1 and s ≥ n− p + k− 1, it follows from the

induction hypothesis that both Hs−1
(
(D1 ∪ · · · ∪Dk) ∩

⋂
j∈J∪{k+1} Dj,O

)
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and Hs
(
(D1 ∪ · · · ∪Dk) ∩

⋂
j∈J Dj,O

)
are finite dimensional. On the other

hand, as before, Theorem 1 implies that Hs
(⋂

j∈J∪{k+1} Dj

)
is finite dimen-

sional as well. We deduce that Hs
(
(D1 ∪ · · · ∪Dk+1) ∩

⋂
j∈J Dj,O

)
is finite

dimensional and the proof by induction is complete.
Step 2) We will prove by descending induction on k = p + 1, p, . . . , 1 that

Hn−p+k−2
(
(
⋃k

j=1 Dj) ∩ (
⋂p+1

j=k+1 Dj),O
)

is infinite dimensional.

For k = p + 1 we get Hn−1(∪p+1
j=1Dj,O) = Hn−1(Pn \ {x},O) which is

infinite dimensional.
We assume now that the statement is true for k + 1 and we will prove it

for k. Using the identity

(
k+1⋃
j=1

Dj) ∩ (

p+1⋂
j=k+2

Dj) =

[
(

k⋃
j=1

Dj) ∩ (

p+1⋂
j=k+2

Dj)

]
∪ (

p+1⋂
j=k+1

Dj)

we write the following Mayer-Vietoris sequence:

Hn−p+k−2

(
(

k⋃
j=1

Dj) ∩ (

p+1⋂
j=k+1

Dj),O

)
→ Hn−p+k−1

(
(
k+1⋃
j=1

Dj) ∩ (

p+1⋂
j=k+2

Dj),O

)

→ Hn−p+k−1

(
(

k⋃
j=1

Dj) ∩ (

p+1⋂
j=k+2

Dj),O

)
⊕Hn−p+k−1(

p+1⋂
j=k+1

Dj,O)

It follows from Step 1) that Hn−p+k−1
(
(
⋃k

j=1 Dj) ∩ (
⋂p+1

j=k+2 Dj),O
)

is fi-

nite dimensional and from Theorem 1 that Hn−p+k−1(
⋂p+1

j=k+1 Dj,O) is fi-
nite dimensional. At the same time, according to our induction hypoth-

esis, Hn−p+k−1
(
(
⋃k+1

j=1 Dj) ∩ (
⋂p+1

j=k+2 Dj),O
)

is infinite dimensional. All

these imply that Hn−p+k−2
(
(
⋃k

j=1 Dj) ∩ (
⋂p+1

j=k+1 Dj),O
)

is infinite dimen-

sional and the induction is complete. For k = 1 we obtain exactly that
Hn−p−1(∩p+1

i=1 Di,O) is infinite dimensional.

Remark: As we mentioned before it follows from [7] that a finite in-
tersection of q-complete open subsets of a complex manifold is q̃-complete.
Matsumoto [13] raised the question of the optimality of q̃ for every q and ev-
ery n. If M is a compact complex manifold of dimension n and X is a closed
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complex subvariety of M such that M \X is (n−p)-complete for some integer
p, 0 ≤ p ≤ n−1 then Hj(M \X, C) vanish for j ≥ 2n−p and then using a du-
ality argument it follows easily that the morphism Hj(M, C) −→ Hj(X, C)
induced by the inclusion X ↪→ M is an isomorphism for every 0 ≤ j ≤ p− 1

and a monomorphism for j = p. We set M = Pn and in Pn we consider
[

n
q

]
+1

linear subspaces of codimension q such that their intersection is empty. Let
A be the union of this linear spaces. It follows from Theorem 10.9 of [12]
that the topological condition mention above fails, hence Pn \A is not q̃ − 1
complete. It turns out that the failure of this topological condition can be
verified in an elementary fashion, without involving étale cohomology, using
an argument similar to the one used in the proof of Proposition 3.

Acknowledgements. The second named author is grateful to the Max
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research.
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