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1 Introduction

The iterations of real maps represent one of the easiest models of dynami-
cal systems, but, despite its apparent simplicity, this one dimensional case
proved to be rich in structure. Most of the efforts were concentrated to
the understanding of the dynamics of maps from an interval to itself, like
unimodal and S-unimodal cases and to the analysis of the behavior under
iterations of the critical set.

In this paper we will study the dynamics of some rational maps f(x) =
P (x)

Q(x)
where P (x) and Q(x) are polynomials in IR[x]. The dynamics of ra-

tional maps over the complex numbers has been extensively studied. For
an introduction into the subject, one might consult [2]. In [13] J. Milnor
describes the dynamics of quadratic rational maps (deg P , deg Q ≤ 2) both
with real and complex coefficients. In its full generality, the dynamical be-
havior of real rational maps remains an open problem.

As we mentioned before, we will place ourselves in the context of one
dimensional dynamics and therefore we will regard f as a function on IR\A1,
where A1 (assumed 6= ∅) is the set of real zeros of Q. Since we will make use in
an essential way of the order structure of IR we will not pass to S1 = IR∪{∞}.
fn will stand for the n-th iterate of f and the singular set of the system
{f, f 2, . . . }, i.e. the set of all backward iterates of A1 via f , will be denoted
by A. We will denote by Fix(g) the set of fixed points of g and by Per(g) the
set of periodic points of g.

One of our main goals was to decide when f : IR\A → IR\A is Devaney-
chaotic on the entire domain IR \A. One well-known example of such a map

is provided by
1

2
(x − 1

x
) which is treated in [10] by lifting the flow on S1.

In the second section we prove that if f is increasing and deg P > deg Q
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then f is chaotic if and only if A is dense in IR. We also prove that f(x) =

x−
k∑

j=1

dj

(x− aj)2nj+1
, dj > 0, is chaotic.

In the third section we study maps of the form f(x) = cx−∑k
j=1

dj

x2nj+1

with c > 0 and dj > 0 and we prove that such a map is chaotic iff c ≤ 1
(which can be viewed as a generalization of the above-mentioned example).
More than that, we prove that any two maps in this class (with c ∈ (0, 1])
are topologically conjugate. If c > 1 we show that the set of points with
bounded orbit is a Cantor set.

The last section is devoted to functions f(x) = cx − d

x2n
with c, d > 0,

and we show that there are values of c for which the map is S-unimodal,
providing in this way a new example of such maps additional to the well-
known quadratic case.

2 Increasing rational maps

There are several definitions characterizing the chaotic behavior of a map,
but we will refer to the following one (see Devaney [5]):

Definition 2.1. Let (D, d) be a metric space. Then a map g : D → D is
chaotic if and only if the following conditions are fulfilled:
a) the periodic points of g are dense in D;
b) g is topologically transitive (i.e. ∀ U ,V open in D, ∃ n ∈ IN with gn(U)∩
V 6= ∅);

In his initial formulation, Devaney included a third condition (the sensi-
tive dependence on initial conditions), which was later proven to be redun-
dant (see [1]). From now on we will say that a map is Devaney-chaotic (or
simply chaotic) if it satisfies the two conditions from Definition 2.1.

Let us consider now a C∞ map f , with f : IR\A1 → IR, where A1 6= ∅ is a
finite set, such that limx→l |f(x)| = ∞ for all l ∈ A1∪{−∞,∞} and Fix(fn)
is finite for all n ≥ 1. We set An = {x ∈ IR | ∃s ≤ n − 1, f s(x) ∈ A1} and
A = ∪∞n=1An.

Proposition 2.2. If f ′ > 0 and ∀n ≥ 1 Fix(fn) is finite, then:
(i) If Per(f) is dense in IR, so is A.
(ii) If A is dense, then f|IR\Achaotic.
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Proof. Note that the sets An are finite, limx→∞ fn(x) = ∞, limx→−∞ fn(x) =
−∞, and, ∀ l ∈ An, limx→l− fn(x) = ∞ and limx→l+ fn(x) = −∞.
(i) We show first that sup A = ∞ and inf A = −∞. Suppose that m :=
sup A < ∞.

If m ∈ A, then m ∈ An for some n. Since limx→m+ fn(x) = −∞, we have
fn((m,∞)) = IR and therefore there exists y ∈ (m,∞) such that fn(y) ∈ A.
This implies that y ∈ A, which contradicts the definition of m.

If m 6∈ A, we consider two cases. If f(m) ≥ m, then f([m,∞)) ⊂ [m,∞)
and since f is increasing on [m,∞], it follows that Per(f)∩[m,∞) = Fix(f)∩
[m,∞). We assumed that Fix(f) is finite, which implies that Per(f) cannot
be dense in IR. If, however, f(m) < m, then m /∈ A implies that ∃ a ∈ A
with f(m) < a. It follows that we can find b ∈ (m,∞) with f(b) = a, which
implies that b ∈ A and this again contradicts the definition of m. Therefore
sup A = ∞. Similarly inf A = −∞.

We prove now that A is dense. Assume that A is not dense, and let
x0 be a point in the interior of IR \ A. Let α = sup{x ∈ A|x < x0} and
β = inf{x ∈ A|x > x0}. Then −∞ < α < x0 < β < ∞.

If α ∈ A then α ∈ An for some n. From this we get fn((α, x0)) =
(−∞, fn(x0)), and we have fn((α, x0))∩A 6= ∅ because inf A = −∞. There-
fore (α, x0) ∩ A 6= ∅, which contradicts the definition of α. Similarly we
obtain a contradiction if β ∈ A.

Suppose now that α, β 6∈ A. It follows that [α, β]∩A = ∅ and both α and
β are accumulation points for A. Observe also that for each n ≥ 1, either
fn([α, β]) ⊂ [α, β] or fn([α, β]) ∩ [α, β] = ∅. For example, if fn(α) ≤ β <
fn(β), then A ∩ [fn(α), fn(β)] 6= ∅ (since β is an accumulation point for A)
and thus [α, β] ∩ A 6= ∅.

Because [α, β] ∩ Per(f) 6= ∅, it follows that there exists n ≥ 1 such that
[fn(α), fn(β)]∩ [α, β] 6= ∅. Let n0 be the smallest integer with this property.
If n0 = 1, then f([α, β]) ⊂ [α, β], and since f is increasing on [α, β], Per(f)∩
[α, β] = Fix(f) ∩ [α, β]. However, we assumed that Fix(f) is finite, and
this contradicts the density of Per(f). If n0 > 1 then [α, β] ∩ Fix(fn) 6= ∅
implies that n0|n. Therefore Per(f) ∩ [α, β] = Per(fn0) ∩ [α, β]. Now we
observe that, since fn0([α, β]) ⊂ [α, β], fn0 is increasing and A ∩ [α, β] = ∅,
Per(fn0) ∩ [α, β]=Fix(fn0) ∩ [α, β], which is finite, and we obtain again a
contradiction with the density of Per(f).

(ii) Let I, J be two open intervals. We will prove that ∃n ≥ 1 such
that I ∩ Fix(fn) 6= ∅ and fn(I \ A) ∩ (J \ A) 6= ∅. Since A is dense and
{An} is an increasing sequence whose union is A, it follows that ∃n ≥ 1
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such that I ∩ An has at least two elements. Choose such an n and let
a, b ∈ I ∩ An be such that a < b and (a, b) ∩ An = ∅. It follows that
limx→a+ fn(x)− x = −∞, limx→b− fn(x)− x = ∞ and fn((a, b)) = IR. This
implies that (a, b) ∩ Fix(fn) 6= ∅ and fn((a, b)) ∩ (J \ A) 6= ∅. However if
fn(x) 6∈ A, then x 6∈ A. Hence fn((a, b) \ A) ∩ (J \ A) 6= ∅.

As an immediate consequence of this proposition we obtain:

Corollary 2.3. Suppose f(x) =
P (x)

Q(x)
is a rational function with f ′ > 0 and

deg P > deg Q. Then f is Devaney-chaotic if and only if A is dense.

The next result provides an important example of chaotic rational maps
based on the strategy suggested by the above corollary.

Proposition 2.4. If f(x) = x −
k∑

j=1

dj

(x− aj)2nj+1
where aj ∈ IR (not nec-

essarily distinct), dj > 0 and nj ∈ IN, then A is dense (and hence f is
chaotic).

Proof. Let x < y, x, y ∈ IR \ A. We must prove that [x, y] ∩ A 6= ∅. Note
that if [x, y] ∩ A = ∅, then f([x, y]) = [f(x), f(y)] and it follows from the
definition of A that [f(x), f(y)] ∩ A = ∅. Thus it suffices to show that ∃
n ∈ IN such that [fn(x), fn(y)] ∩ A 6= ∅.

Suppose that [fn(x), fn(y)] ∩ A = ∅ for all n ∈ IN. We can assume that
a1 ≤ · · · ≤ ak. Let α ∈ (−∞, a1) be such f(α) = a1, and let β ∈ (ak,∞)
be such that f(β) = ak. Observe now that if x > β for x ∈ IR \ A, then
ak < f(x) < x, and if x < α, then x < f(x) < a1. Since f has no fixed
points it follows that the set Jz = {n ∈ IN|fn(z) ∈ [α, β]} is infinite for any
z ∈ IR \ A . We also have Jx = Jy because α, β ∈ A. If a, b ∈ IR and
[a, b] ∩ A = ∅, then

|f(a)− f(b)| ≥ |a− b| (1)

and if in addition [a, b] ⊂ [α, β], then

|f(a)− f(b)| ≥ ρ|a− b|, (2)

where ρ = inf{f ′(x) : x ∈ [α, β]\A} > 1. Set λn = |fn(x)−fn(y)|. It follows
from our assumption and the previous argument that {λn} is nondecreasing
and, since Jx(= Jy) is infinite and ρ > 1, we deduce that {λn} diverges
to ∞. On the other hand, λn ≤ β − α for n ∈ Jx, which obviously is a
contradiction.
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As we will see later, the strategy of the above proof will be used to prove
the chaotic behavior of other types of rational functions.

3 Maps of the form f (x) = cx−∑k
j=1

dj

x2nj+1

In this section we will discus functions f : IR \ {0} → IR of the form f(x) =

cx −∑k
j=1

dj

x2nj+1
where c, dj (j = 1 . . . k) are positive real numbers. Note

that f ′ > 0 and therefore f is chaotic if and only if the singular set A is dense
according to Corollary 2.3. We will show that A is dense if and only if c ≤ 1.
More than that, we will prove that if this is the case, f has a dense orbit
and any two functions of this form (with c ∈ (0, 1]), when restricted to the
complement of the singular set, are topologically conjugate. We note that it
was proved in [6] that the topological transitivity of a function g : D → D
implies the existence of a dense orbit if D is a complete metric space with a
countable base and g is continuous. In our case D = IR \A which obviously
is not complete.

In order to understand this type of function, we will briefly review a few
facts from the symbolic dynamics theory. Consider the symbol space Σ2 of
all infinite sequences of 0’s and 1’s. If a = a0a1a2 . . . and b = b0b1b2 . . . are
two points in Σ2, one can define a distance:

d(a, b) =
∞∑
i=0

|ai − bi|
2i

,

which transforms the symbol space into a metric space. The shift map, which
is the function σ : Σ2 → Σ2 defined by σ(a0a1a2 . . .) = a1a2 . . ., has some
important dynamical properties: its periodic points are dense, the set of
points which are neither periodic nor eventually periodic is dense in Σ2 and
there is an element of Σ2, namely the Morse sequence, which is determined
by the concatenation of all possible blocks of 0 and 1 of length k with k ≥ 1,
with a dense orbit (see [5], [8], [10]). This suggests that one might want
to find a topological conjugacy with the shift map in order to establish the
chaotic behavior of given function.

Kneading theory is a refined version of symbolic dynamics which was
introduced in order to keep track of the orbits of other elements which char-
acterize a function (like critical points). As a main reference we used [5].
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In our case we will keep track of those points which under iteration reach
the origin; in other words this technique will help describe the set A. For
another recent application of symbolic dynamics to some (planar) systems
with discontinuities, see [7].

Consider three symbols N , P and Z (our notation here differs from the
standard one, but it makes the argument easier to follow). Define the follow-
ing sets:

K1 = {s0 . . . sn−1Z | si ∈ {N, P} for 0 ≤ i < n} ∪ {Z}
K2 = {s0s1 . . . | si ∈ {N, P} for i ≥ 0} , K = K1 ∪K2.

For the function f(x) = cx −
k∑

j=1

dj

x2nj+1
there are two kinds of iterative

sequences of the form a0 = x 6= 0 and an+1 = f(an). Either the sequence is
finite because it eventually reaches the discontinuity at zero, or it is infinite
because fn(x) is defined for all n > 0. Keeping this in mind, let s(x) = N if
x < 0, s(x) = P if x > 0, and s(0) = Z. We construct a function π : IR → K.
Let π(0) = Z. If x 6= 0 and the iterative sequence beginning at x eventually
reaches zero after n iterations, let

π(x) = s(x)s(f(x))s(f 2(x)) . . . s(fn−1(x))Z.

Otherwise, let
π(x) = s(x)s(f(x))s(f 2(x)) . . . .

We will order K with the dictionary order induced by N < Z < P . If c
and d are both positive the next lemma shows that π is increasing.

Lemma 3.1. Suppose f(x) = cx −
k∑

j=1

dj

x2nj+1
with c, dj > 0. If x ≤ y then

π(x) ≤ π(y).

Proof. Consider x, y ∈ IR such that x < y. If π(x) 6= π(y), we must prove
that π(x) < π(y). Let n0 = min{n ∈ IN | s(fn(x)) 6= s(fn(y))}. If n0 = 0
then x ≤ 0 < y or x < 0 ≤ y, which implies that s(x) ∈ {N, Z} and s(y) = P
or s(x) = N and s(y) ∈ {Z, P}. Therefore π(x) < π(y). Suppose now that
n0 ≥ 1. Then, ∀n ∈ IN with n ≤ n0− 1, fn(x) and fn(y) are not 0 and they
have the same sign. The monotonicity of f shows that ∀n ∈ IN, n ≤ n0,
then fn(x) < fn(y). For n = n0 we then must have fn0(x) ≤ 0 < fn0(y),
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or fn0(x) < 0 ≤ fn0(y) which as before implies that s(fn0(x)) ∈ {N, Z} and
s(fn0(y)) ∈ {P} or s(fn0(x)) = N and s(fn0(x)) ∈ {Z, P}. This implies
that π(x) < π(y).

Proposition 3.2. Let f : IR\{0} → IR be defined by f(x) = cx−∑k
j=1

dj

x2nj+1

where c, dj ∈ (0,∞), and nj ∈ ZZ, nj ≥ 0. If 0 < c ≤ 1, then we have:
(i) Let s, t ∈ IR \ A. There exists n ∈ IN such that (fn(s), fn(t)) ∩ A 6= ∅;
(ii) The set A is dense in IR.

If one tries to imitate the proof of Proposition 2.4 one sees that the only
thing that fails is the inequalities (1) and (2). These inequalities will be
replaced by (the less transparent ones) (3) and (4).

Proof. Notice that f|(0,∞) : (0,∞) → IR and f|(−∞,0) : (−∞, 0) → IR are
increasing diffeomorphisms. Therefore ∀ a ∈ IR the equation f(x) = a has
two solutions: a positive one and a negative one. Define a sequence {an}n≥0

as follows: a0 = 0 and for n ≥ 1, an is the positive solution of f(an) = an−1.
Since f(x) < x for x > 0, this sequence is increasing. As f has no fixed points
{an} is not convergent and therefore limn→∞ an = ∞. Obviously, an ∈ A ∀
n, hence sup A = ∞. Similarly, one can also show that inf A = −∞. If
bn ∈ (−∞, 0) is such that f(bn) = an, then bn ∈ A, {bn} is increasing and
limn→∞ bn = 0. Therefore sup (A ∩ (−∞, 0)) = 0. Similarly we can show
that inf (A ∩ (0,∞)) = 0. For this, construct two sequences pn and qn as
follows: pn < 0, p0 = 0 and f(pn) = pn−1 on one hand, and qn > 0 with
f(qn) = pn on the other hand. Then qn ∈ A for all n, qn is decreasing and
limn→∞ qn = 0.

Let ε ∈ (0, a1), ε ∈ A, such that ∀x ∈ (−ε, ε) \ {0}, |f(x)| > a2. Observe
now that for all x ∈ IR \A the set Jx = {n ∈ IN|ε ≤ |fn(x)| ≤ a2} is infinite.
This follows from the fact that f has no fixed point and noticing that if
x > a2, then a1 < f(x) < x, while if x < −a2, then x < f(x) < −a1 (f is an
odd function). Therefore for every x ∈ IR \ A there exists n ∈ IN such that
ε ≤ |fn(x)| ≤ a2.

The following fact is the main ingredient of the proof: if x, y ∈ IR, xy > 0
and f(x) + f(y) 6= 0, then

∣∣∣∣
f(x)− f(y)

f(x) + f(y)

∣∣∣∣ ≥
∣∣∣∣
x− y

x + y

∣∣∣∣ . (3)
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Moreover, if in addition ε ≤ |x| ≤ a2 and ε ≤ |y| ≤ a2, then

∣∣∣∣
f(x)− f(y)

f(x) + f(y)

∣∣∣∣ ≥ ρ

∣∣∣∣
x− y

x + y

∣∣∣∣ , (4)

for some ρ > 1. Indeed,

∣∣∣∣
f(x)− f(y)

f(x) + f(y)

∣∣∣∣ =

∣∣∣∣
x− y

x + y

∣∣∣∣
∣∣∣∣
P (x, y) + Q(x, y)

P (x, y)−Q(x, y)

∣∣∣∣ ,

where

P (x, y) = c +
∑

dj
x2nj−1y + · · ·+ xy2nj−1

x2nj+1y2nj+1
,

Q(x, y) =
∑

dj
x2nj + x2nj−2y2 + · · ·+ y2nj

x2nj+1y2nj+1
.

If xy > 0, then P (x, y) > 0 and Q(x, y) > 0. Therefore |P (x) + Q(x)| ≥
|P (x)−Q(x)|. For the second part we use the following inequality: if a, b > 0

and a 6= b, then

∣∣∣∣
a + b

a− b

∣∣∣∣ ≥ 1+
2 min{a, b}

a + b
, and we observe that if ε ≤ |x| ≤ a2

and ε ≤ |y| ≤ a2, then P (x, y), Q(x, y) ∈ [m,M ] for some real numbers
0 < m < M .

Now suppose that ∀n ∈ IN, (fn(s), fn(t))∩A = ∅ . In particular ∀n ∈ IN,

0 6∈ (fn(s), fn(t)). It follows that the sequence λn =

∣∣∣∣
fn(s)− fn(t)

fn(s) + fn(t)

∣∣∣∣ is

increasing. If n ∈ Js, since ε, β ∈ A and (fn(s), fn(t)) ∩ A = ∅, then n ∈ Jt

and hence ρλn ≤ λn+1. We noticed that Js is infinite. Thus {λn} diverges
to ∞. However fn(s) and fn(t) have the same sign, hence λn < 1,∀n ∈ IN
which is a contradiction.

As in the proof of Proposition 2.4, (ii) follows from (i).

Remark 3.3. If f(x) = cx − ∑k
j=1

dj

(x− aj)2nj+1
and 0 < c < 1, it is not

necessarily true that A is dense. For example, if f(x) =
x

2
− 1

x− 4
, then

f((−∞, α]) ⊂ (−∞, α], where α = 2−√2, and therefore A ∩ (−∞, α] = ∅.
Proposition 3.4. If 0 < c ≤ 1 and dj > 0 ∀j, then π : IR → K is an order
preserving injection onto K1∪K ′

2 ⊂ K, where K ′
2 = {{sk} ∈ K2 | ∀ i ≥ 0, ∃j > i, si 6= sj} .
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Proof. We notice first that it follows from the definition of π that π(IR\A) ⊂
K2 and π(A) ⊂ K1. We prove first that π is one-to-one. Suppose π(s) = π(t)
for s 6= t, say s < t. Since A is dense in IR (Proposition 3.2), there must
be some x ∈ A in the open interval (s, t). Also, because A is countable,
IR \ A is dense in IR and therefore there exists y ∈ (IR \ A) ∩ (s, t). We
have already proved that π is increasing, hence π(s) ≤ π(x) ≤ π(t) and
π(s) ≤ π(y) ≤ π(t). Since π(s) = π(t) we must have π(x) = π(y). This is a
contradiction because π(x) ∈ K1 and π(y) ∈ K2.

We will show now that π(IR \ A) = K ′
2 and π(A) = K1. Let a1 > 0

be such that f(a1) = 0. We have that π(0) = Z and π(a1) = PZ. Also
π(−a1) = NZ. As we noticed before, ∀ y ∈ IR, the equation f(x) = y
has exactly two real solutions, one positive and the other negative, so, by
induction, for each τ = s0 . . . sn−1Z in K1, there is an x ∈ IR such that
π(x) = τ . This proves that π(A) = K1.

Now let x be a value such that fn(x) is never zero, that is, π(x) =
s0s1 . . . ∈ K2. Suppose there exists some n so that si = P for all i > n. Since
f(y) < y for any y > 0, the sequence fn+1(x), fn+2(x), . . . would then be a
decreasing sequence of positive numbers, which must converge, contradicting
the fact that f has no fixed points. In like manner, since f(y) > y for any
y < 0, there cannot exist any n such that si = N for all i > n. Therefore,
π(x) ∈ K ′

2.
Let τ ∈ K ′

2. There are two cases: τ = P p1Nn1P p2 . . . or τ = Nn1P p1Nn2 . . . ,
where pi, ni ≥ 1 for all i ≥ 1 (here Nn and P n stand for n copies of the
symbol N , respectively P ). It suffices to consider only the first case. De-
fine a sequence {ai} by ai = P p1Nn1P p2 . . . Nni−1Z and a sequence {bi} by
bi = P p1Nn1P p2 . . . Nni−1P piZ. It follows that for every i ≥ 1, ai, bi ∈ K1,
ai < ai+1 < τ < bi+1 < bi and τ is the only element of K with this last
property. Let αi, βi ∈ A be such that π(αi) = ai and π(βi) = bi. They
exist because π(A) = K1. Since π is increasing and one-to-one, {αi} is in-
creasing, {βi} is decreasing and αi < βi. Let x ∈ ∩ (αi, βi). Then ∀ i ≥ 1,
ai < π(x) < bi. From here we deduce that π(x) = τ .

Remark 3.5. Note that the density of A was used only to prove that π|IR\A
is 1-1.

This result can be strengthened in the following way. Notice first that the
shift map has two fixed points α = (000 . . .) and β = (111 . . .). Define the
set Ω of all negative trajectories of these two fixed points or, equivalently,
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the set of all sequences which become eventually constant. In other words,

Ω = {a ∈ Σ2 | ∃ k ∈ IN such that ∀n ≥ k, an = an+1}.

Notice that Ω is dense in Σ2. Define ε : IR \ {0} → {0, 1} with ε(x) = 0
if x < 0 and ε(x) = 1 if x > 0. The restriction and corestriction of f to
IR \ A will also be denoted by f (i.e. we consider f : IR \ A → IR \ A).
Let: φ : IR \ A −→ Σ2, φ(x)n = ε(fn(x)) ∀ n ≥ 0. Notice that, using the
notation of Proposition 3.4, Σ2 is nothing else than the set K2, Σ2 \Ω is K ′

2

and φ is π. Then we have the following result.

Theorem 3.6. The map φ : IR\A −→ Σ2 \Ω defines a topological conjugacy
between f : IR \ A −→ IR \ A and σ : Σ2 \ Ω −→ Σ2 \ Ω.

Proof. The commutativity φ ◦ f = σ ◦ φ is obvious, so we only have to show
that φ is a homeomorphism. From Proposition 3.4 it follows that φ is a
bijection.
φ is continuous. Let φ(x) = a. It suffices to show that there is an interval I
such that x ∈ I and φ(I \ A) ⊂ B

(
a, 1

2n

)
. Choose I containing x such that

I ∩ An+1 = ∅ and y ∈ I \ A. If there is a digit in position k ≤ n for which
φ(x) and φ(y) differ, fk(x) and fk(y) will have different signs according to
the definition of φ and hence there is a zero of fk between x and y, which
contradicts the choice of I. Hence the first n + 1 digits of φ(x) = a and φ(y)
are the same which implies the conclusion.
φ−1 is continuous. We show that if {xk}k≥0 is a sequence such that φ(xk) →
φ(x), then xk → x. Assume there is a sequence for which this is not true and
hence by passing to a subsequence we may assume that there is a neighbor-
hood of x which does not contain any element of {xk}. Since A is dense and
{An} is an increasing sequence, there is an n ∈ IN and a, b ∈ An such that
a < x < b, a · b > 0 and (a, b) does not contain any element of the sequence
{xk}. Suppose we choose y not in (a, b), for example y < a < x (the case
y > b is similar). If f j(x) · f j(y) were positive for every j ≤ n, the restric-
tion of f to the interval (f j(x), f j(y)) would be monotone, so ∀j ≤ n + 1,
f j(y) < f j(a) < f j(x). But the definition of An implies that there is j0 ≤ n
with f j0(a) = 0 and hence f j0(y) · f j0(x) < 0, which is a contradiction.
Hence there is j ≤ n such that for any y which is not in (a, b), ε(f j(x))
and ε(f j(y)) are not equal, which in particular implies that for any k ∈ IN,
d(φ(xk), φ(x)) ≥ 1

2j ≥ 1
2n , contradicting the convergence of φ(xk) to φ(x).
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Since Ω does not contain either periodic orbits (of order greater than or
equal to 2) or the Morse sequence described at the beginning of this section,
we have:

Corollary 3.7. For any n ≥ 1, the map f has 2n − 2 periodic orbits of
order n. The set of all periodic orbits is dense in IR and there is a dense
non-periodic orbit, hence f is chaotic.

The approach based on kneading sequences has the advantage that also
works if c > 1. On the other hand, Theorem 3.6 establishes an identical dy-
namical behavior between f and the shift map. In fact it shows the following
not obvious pattern:

Corollary 3.8. For any 0 < c ≤ 1 and dj > 0, any two maps in the family

of functions f = cx−∑k
j=1

dj

x2nj+1
are topological conjugate when restricted

to IR without the discontinuity set.

We will consider now functions of the form f(x) = cx − ∑k
j=1

dj

x2nj+1

where c, dj ∈ (0,∞), c > 1. In this case we have two repelling fixed points
for f . It is again the structure of the set A and the period orbits which
present most of the interest. In fact, we will show that there are periodic
orbits of any order. In what follows we denote by |M | the cardinal of some
set M . First we determine |Fix(fn)|.

Lemma 3.9. Let f : IR \ {0} → IR be defined by f(x) = cx −∑k
j=1

dj

x2nj+1

where c, dj ∈ IR and nj ∈ IN. If c > 1 and dj > 0, then |Fix(fn)| = 2n.

Proof. We compute first the cardinality of An. Since the equation f(x) = a
has exactly two solutions for any a, it follows that |An+1| = |An|+2|An\An−1|
for n ≥ 2. As |A1| = 1 and |A2| = 3, we obtain |An| = 2n − 1.

Consider now two consecutive elements u and v of An (consecutive in
the sense that u < v and (u, v) ∩ An = ∅). Since (fn)′(x) > 1 for every
x ∈ IR \An, limx→u+ fn(x)−x = −∞ and limx→v− fn(x)−x = ∞, it follows
that |Fix(fn) ∩ (u, v)| = 1. If we denote α = min An and β = max An, since
limx→∞ fn(x)−x = ∞, limx→−∞ fn(x)−x = −∞, limx→β+ fn(x)−x = −∞,
limx→α− fn(x)−x = ∞, then |Fix(fn)∩ (−∞, α)| = 1, |Fix(fn)∩ (β,∞)| =
1. We conclude that |Fix(fn)| = |An|+ 1 = 2n.

Proposition 3.10. The map f has periodic orbits of any order n ≥ 2.

11



Proof. Notice that the function has two fixed points. Using Lemma 3.9,
we conclude that the number of solutions of fn(x) = x is greater than the
number of fixed points of f which guarantees the existence of a periodic
orbit of order n if n is prime. Consider now n ∈ IN that is not prime. Let
{d1, ..., dq} be the set of all proper divisors of n. To prove that f has an orbit
of order n we must prove that Orbn 6⊂ ∪q

i=1Orbdi
(Orbi stands for the set of

points which determine an orbit of order i). From Lemma 3.9 it is sufficient
to prove that 2n >

∑q
i=1 2di . This can be easily seen, for example using the

inequalities di ≤ [n
2
], q ≤ [n

3
].

There is certainly no chaos for this case as the following proposition shows.

Proposition 3.11. Let f : IR \ {0} → IR be defined by f(x) = cx −
∑k

j=1

dj

x2nj+1
where c and dj are real numbers and nj are integers, nj ≥ 0. If

c > 1 and dj > 0 then the periodic orbits of f are all repelling and they are
uniformly bounded by the two repelling fixed points.

Proof. Let xP > 0 and xN < 0 be such that f(xP ) = xP , f(xN) = xN (note
that xN = −xP ). If O is a periodic orbit of f we show that O ⊂ [xN , xP ]. Let
a = min O and b = max O. Since f(a) ∈ O and f(b) ∈ O we have a ≤ f(a)
and b ≥ f(b). These two inequalities imply that xN ≤ a ≤ b ≤ xP . Indeed:
if b ≤ 0 obviously b ≤ xP . Suppose that b > 0. Since f(x) − x is increasing
in (0,∞) it follows that f(x) < x if x ∈ (0, xP ) and f(x) > x if x ∈ (xP ,∞).
Then b ≥ f(b) implies that b ≤ xP . The proof of xN ≤ a is completely
similar. Notice that, since f ′(x) > c > 1, if p is a periodic point of period n
we have from the chain rule that (fn)′(p) > cn, hence the periodic orbits are
repelling.

Remark 3.12. Note that since [xP ,∞) and (−∞, xN ] are invariant under
f , A∩ ((−∞, xN ]∪ [xP ,∞)) = ∅, and since f(x) > x ∀x > xP and f(x) < x
∀ x < xN , we have ∀x > xP , {fn(x)} diverges to ∞ and ∀x < xN , {fn(x)}
diverges to −∞.

The strategy based on kneading sequences can be also applied in this case
and it leads to the following:

Proposition 3.13. If c > 1 and dj > 0, then π : IR → K is an order pre-
serving surjection. Moreover, π|π−1(K′

2), where K ′
2 is defined as in Proposition

3.4, is injective.
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Proof. It follows in the same way as in the Proposition 3.4 (see Remark 3.5)
that π|A : A → K1 is bijective and K ′

2 ⊂ π(IR). Notice that π(xP ) = P and
π(xN) = N (the bar indicates infinite repetition of the symbol). For x > xP

or x < xN , the iteration sequence fn(x) diverges monotonically, so π(x) = P
for all x > xP and π(x) = P for all x < xN .

As we noted earlier, for any real number t, the equation f(x) = t has
exactly two solutions, one positive and the other negative. It follows by
induction that ∃x such that π(x) = τNP and ∃x such that π(x) = τPN ,
where τ is any finite sequence of characters N and P . This proves that π is
surjective.

Now suppose π(x) = π(y) ∈ K ′
2 for x 6= y. Then fn(x) and fn(y) have

the same sign for all n. Thus, since f ′(t) > c for all t 6= 0, we have |fn(x)−
fn(y)| > cn|x − y| > 2xP for sufficiently large n, producing a contradiction.
Therefore, π(x) = π(y) ∈ K ′

2 implies x = y.

Note that π−1(K ′
2) is the set of all points with bounded orbits. This

enables us to improve the result in Proposition 3.11:

Corollary 3.14. The set of points with bounded orbits is compact and totally
disconnected, hence is a Cantor set.

Proof. If fn(x) is defined for all n and {fn(x)} is unbounded, then there
exists an n for which |fn(x)| > xP , so there exists an open interval about
fn(x), and thus an open interval about x of points that diverge under itera-
tion. Therefore, the set of points with unbounded orbits is an open set and
the set of points with bounded orbits is a closed subset of [xN , xP ] and thus
compact.

Now suppose x and y both have bounded orbits and x < y. It follows
from Proposition 3.13 that points with bounded orbits have distinct kneading
sequences, so π(x) < π(y). Thus there exists a positive integer n and a
sequence τ of length n consisting of symbols N and P so that π(x) ≤ τNP
and τPN ≤ π(y). Let a be the unique value such that π(a) = τNP and
fn+1(a) = xP and let b be the unique value such that π(b) = τPN and
fn+1(b) = xN . Then x ≤ a < b ≤ y and there are no points with bounded
orbits in the open interval (a, b). Therefore the set of points with bounded
orbits is totally disconnected.

The reader might compare Corollary 3.14 with the example in Section I.8
in [2].
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4 Maps of the form f (x) = cx− d

x2k

So far we have completely described the dynamics of all functions of the

form f(x) = cx − d

xn
for c > 0, d > 0 and n a positive odd integer. The

next natural step would be the analysis of the case when the exponent n is
a positive even integer. The main distinction between the two situations is
that in this second case f has a critical point and hence the requirements of
Proposition 2.2 are not satisfied.

Theorem 4.1. Let f(x) = cx − dx−2k, c, d > 0 and consider the sequence

an+1 = f(an). For c 6= 1, define L =
(

d
c−1

)1/(2k+1)
. Assume that a0 is chosen

such that an 6= 0 ∀n. Then we have:

(i) If c < 1, L is the only fixed point. If we define m =
(−2kd

c

)1/(2k+1)

and M = f(m), then either an → L, or ∃n0 such that, for all n ≥ n0,
an ∈ [f(M),M ].
(ii) If c = 1, f has no fixed points and an decreases, diverging to −∞, hence
there are no periodic orbits.
(iii) If c > 1, L is the unique (repelling) fixed point, and an →∞ if a0 > L
or an → −∞ if a0 < L, hence there are no periodic orbits in this case, as
well.

Proof. (i) We start with three observations:
Observation 1. For any x ∈ (−∞, 0), f(x) < 0 and for any x ∈ (0,∞),
∃n ∈ N such that either fn(x) = 0 or fn(x) < 0. This shows that we need to
prove our claim only for x < 0, and such is the subsequent goal of the proof.
Observation 2. The function f is increasing on (−∞,m] and decreasing on
(m, 0).
Observation 3. If x < L, then x < f(x), and if x > L, then x > f(x).

Observe that the equation f(x) = L has at most two negative solutions, α
and L (α = L if and only if f ′(L) = 0). We consider separately the following
two cases:

Case 1. Assume
2k

2k + 1
≤ c < 1. It follows that L ≤ m ≤ α. (L is an

attractor in this case, as 0 ≤ f ′(L) < 1.) If x < L, then x < f(x) < L (by
Observations 2, 3) and the sequence fn(x) is increasing and bounded from
above by L. Therefore it is convergent and its limit must be L. If x > α,
then f(x) < L (by Observation 2) and the above applies. If L < x < α,
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then L < f(x) < x < α (by Observations 2, 3) and the sequence fn(x) is
decreasing and bounded from below by L. Therefore it is convergent and its
limit must be L.

Case 2. Assume 0 < c <
2k

2k + 1
. It follows that α < m < L < M and

f(M) < L.
First, observe that [f(M),M ] is invariant under f . Indeed, if x ∈ [f(M), L]
then f(x) ≥ x and therefore f(M) ≤ x ≤ f(x) ≤ M . If x ∈ [L, M ] then,
since on [L, 0) f is decreasing, we get f(M) ≤ f(x) ≤ f(L) = L. Second,
∀ x ∈ (−∞, 0), ∃n ∈ IN such that fn(x) ∈ [f(M),M ]. If x < f(M), then
∃n1 ∈ IN such that fn1(x) > α. Otherwise, fn(x) < fn+1(x) < α for all
n ∈ IN, which will imply that fn(x) is convergent to a limit ≤ α < L. That
is a contradiction. If fn1(x) > α, then either fn1(x) > L and therefore
f(M) < L < fn1(x) ≤ M , or α < fn1(x) < L and therefore fn1+1(x) > L,
which implies, as before, fn1+1(x) ∈ [f(M),M ]. If x > M , then obviously
f(x) < f(M) and the above applies.
(ii) This case follows from the fact that f(x) < x.
(iii) In this situation f(x) > x if x > L and f(x) < x if x < L and it is
straightforward that L is the unique fixed point from which the conclusion
follows.

Remark 4.2. Notice that for
2k − 1

2k + 1
< c < 1, L is a global attractor. Indeed,

if
2k

2k + 1
≤ c < 1, this follows from case 1 of the above proof. On the

other hand, if
2k − 1

2k + 1
< c <

2k

2k + 1
, notice that if x < L we have that

−1 < f ′(L) < f ′(x) < c < 1 hence the interval [f(M), L] is in the basin

of attraction and for x > L, f(x) < x. For c =
2k − 1

2k + 1
a double-period

bifurcation occurs since f ′(L) = −1 and the Schwarzian derivative is negative
at L.

Compared to the odd case, the structure of the set A is easy to describe
in this one. Notice that the equation f(x) = 0 has a unique positive solution.
Also, if α is a positive number, the equation f(x) = α has a unique solution
which is also positive because the above equation is equivalent to the poly-
nomial equation F (x) = cx2k+1 − αx2k − d = 0. If c > 1, because F (0) < 0
and F (L) > 0 for any α < L and since f(x) < x for 0 < x < L, an easy
induction shows that the pull-backs of the origin form an ascending sequence
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an in (0, L), hence An = {0, a1, . . . , an} with an → L. Similar arguments
show that for c ≤ 1 the sequence an diverges to ∞. Notice also that, if we
denote by P the point at infinity, the system undergoes at c = 1 a bifurcation
which resembles the features of a transcritical bifurcation: P repelling and

L attracting for
2k

2k + 1
< c < 1, P degenerate at c = 1 (meaning that there

is a repelling direction from P and an attracting one towards P ) and then P
attracting and L repelling for c > 1. This exchange of stability is associated
with a change in the structure of A, from unbounded when c ≤ 1 to bounded
in the case c > 1.

But case (i) in Theorem 4.1 can be described in much more detail. We
first recall the definition of an unimodal and S-unimodal function as they are
presented in [4].

Definition 4.3. Suppose f : [−1, 1] → [−1, 1] is a continuous map. We will
say that f is unimodal if the following conditions are fulfilled:
(i) f(0) = 1;
(ii) f is strictly increasing on [−1, 0] and strictly decreasing on [0, 1].

For recent results regarding unimodal maps see for example [3].

Definition 4.4. Suppose f : [−1, 1] → [−1, 1] is a unimodal function. We
will say that f is S-unimodal if:
(i) f is C3;

(ii) f has negative Schwarzian derivative, i.e. Sf(x) = f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

<

0, for all x 6= 0 (at x = 0 we allow Sf to be −∞);
iii) f maps J(f) = [f(1), 1] onto itself.

The dynamics of S-unimodal maps are quite well understood (see, for
example, [4] or [9]). The connection with the case described in this section
is given by:

Proposition 4.5. Suppose f(x) = cx − d/x2k with 0 < c < c1 =
2k

2k + 1
and k ≥ 1. Then there is a value c0 < c1 (depending on k) such that for all
0 < c < c0 the function f|[f(M),M ] is S-unimodal.

Proof. Since we already showed in Theorem 4.1 that [f(M),M ] is invariant
and that for c < c1, m < M , we have to determine first a value c0 of c such
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that f(M) < m for all 0 < c < c0. It is not hard to see that this condition
is equivalent to P (c) > 0, c < c1, where

P (x) = (2k + 1)2k+1x2k+1 − 2k(2k + 1)2kx2k−1 + (2k)2k.

For x > 0, this polynomial has a unique critical point x1 =

√
(2k − 1)2k

2k + 1
,

decreases on (0, x1) and increases on (x1,∞), it has a root
2k

2k + 1
> x1 and

P (0) > 0. Hence, one can choose c0 as the other positive root of P .
For c < c0 determined above, the map f : [f(M),M ] → [f(M),M ] is onto.
Indeed, we have that f(M) < m < L < M . Hence if y ∈ [f(M), f(L) = L],
∃ x ∈ [L,M ] with f(x) = y. If y ∈ [f(L) = L, f(m) = M ], ∃ x ∈ [m,L] with
f(x) = y. The only other condition to be checked is the negativity of the
Schwarzian derivative. A direct computation shows that this is equivalent
(for x 6= m) to (cx2k+1 + 2kd)(2k + 2) < 3k(2k + 1)d, which is obvious for
x < 0 and k ≥ 1.

As a final remark, we mention that the same ideas can be applied to some

other rational functions. For example if f(x) = cx− d

xn
, n is odd, −1 ≤ c < 0

and d < 0 one can prove that f : IR \ A → IR \ A is topologically conjugate
to π : Σ2 \ Ω′ → Σ2 \ Ω′, where Ω′ = {a ∈ Σ2 | ∃ k ∈ IN ∀n ≥ k, an 6= an+1}.
Acknowledgments. The authors would like to thank the anonymous referee
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