
Minors in Weighted Graphs ∗
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Abstract

We define a notion of minor for weighted graphs. We prove that

with this minor relation, the set of weighted graphs is directed. We

also prove that given any two weights on a connected graph with

the same total weight, we can transform one into the other using a

sequence of edge subdivisions and edge contractions.

1 Introduction

The notion of minor is a central one in Graph Theory. Of course, the study of
minor-closed classes of graphs culminated with the proof by Robertson and
Seymour [2] of Wagner’s conjecture. For an excellent survey, see L. Lovász’s
paper [1].

In this paper we define the notion of minor for weighted graphs. Since
given any connected network it is not desirable to disconnect it, we will work
only with connected graphs. And since when defining a weight, one has to
choose a unit, we can restrict ourselves to graphs of total weight 1. This is
the same as identifying two weights if one of them is a multiple of the other.
The two operations used to define a minor, for weighted graphs, are the two
standard ones: edge contraction and edge deletion. One has to define what
happens to the flow through a deleted or contracted edge. The definition
that we adopt here is, we think, the most natural one. Namely, the flow is
distributed proportionally to the adjacent edges. It can be seen easily that
with this definition, Wagner’s conjecture does not hold.
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Our first theorem states that with this minor relation, the set of weighted
graphs is directed. This is not obvious since a subgraph is not anymore a
minor. In fact, we prove that for any two weighted graphs, we can find
another one which has them both as minors and subgraphs.

In the second part of the paper we show that given any two weights on a
connected graph with the same total weight we can transform one into the
other using a sequence of edge subdivisions and edge contractions. However,
in general, we cannot perform all the edge subdivisions at the beginning and
then the edge contractions. All proofs are constructive.

2 Results

In what follows we will work with simple (without loops or multiple edges),
undirected and connected graphs. By a weighted graph, we understand a pair
(G, c) where G is a graph, whose set of vertices and edges will be denoted by
V (G) and E(G) respectively, and c : E(G) → (0,∞) is the weight function.
If H is a subgraph of G, we denote by c(H) the total weight of H , i.e.
c(H) =

∑
e∈E(H) c(e). If A is a vertex of G, we denote by c(A) the sum of

the weights of all edges at A.

Definition 1. Given two weighted graphs (G1, c1) and (G2, c2) we say that
they are equivalent and we write (G1, c1) ∼ (G2, c2), if (G1,

1
c1(G1)

c1) and

(G2,
1

c2(G2)
c2) are isomorphic. We denote by [(G, c)] the equivalence class of

(G, c).

Definition 2.

For a weighted graph (G, c) we define the following two operations:
(1) Deleting an edge. This operation is allowed only if the resulting graph
is connected, i.e. the edge is not a bridge. The weight of the deleted edge is
redistributed proportionally to the adjacent edges. This means: if the deleted
edge is e and its adjacent edges are e1, e2, , ..., ek then their new weights will
be ce(ej) = c(ej)+

c(e)c(ej)

c(e1)+c(e2)+...+c(ek)
. The weight of an edge not adjacent with

e remains unchanged. The resulted graph is denoted by (G − e, ce).
(2) Contracting an edge e. The new weights are defined as follows:

a) The weight of an edge not adjacent with the one that is contracted
remains unchanged.

b) The weight of the contracted edge is redistributed proportionally to the
adjacent edges.
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c) If the contraction gives rise to multiple edges, they are identified and
their weights are added together.
If e is the edge that is contracted the resulting graph is denoted by (G/e, c/e).

A weighted graph (G1, c1) is called a minor of (G, c) if (G1, c1) can be obtained
from (G, c) after a sequence of deleting or contracting edges.

Remarks:

1. If (G, c) is a weighted graph and e is an edge which is not a bridge then
ce(G − e) = c(G).
2. If (G, c) is a weighted graph and e is an edge then c/e(G/e) = c(G).
3. If G is a graph, e is an edge and c and c̃ are two weight functions such that
(G, c) ∼ (G, c̃) then (G − e, ce) ∼ (G − e, c̃e) and (G/e, c/e) ∼ (G/e, c̃/e).

This last property allows us to define the notion of minor for ∼-equivalence
classes. The subgraph relation for equivalence classes is obviously well-
defined.

Definition 3. a) Given two weighted graphs (G1, c1) and (G2, c2), we say
that [(G1, c1)] is a minor of [(G2, c2)] if (G1, c1) is equivalent to a minor of
(G2, c2).
b) Given two weighted graphs (G1, c1) and (G2, c2) we say that [(G1, c1)] is a
subgraph of [(G2, c2)] if (G1, c1) is equivalent to a subgraph of (G2, c2).

Other remarks:

5. The minor relation is an order relation on the set of equivalence classes of
weighted graphs.
6. The minor relation is not a well-quasi-ordering on the set of equivalence
classes of weighted graphs: e.g. let G = K3, denote by A, B, C the vertices of
G and for k ∈ N

∗ define ck : E(G) → (0,∞) by ck({A, B}) = ck({A, C}) = 1,
ck({B, C}) = k. Then {[(G, ck)]} is an infinite antichain.
7. The equivalence class of a weighted subgraph is not necessarily a minor
of the equivalence class of the weighted graph. E.g. if (G, c) and (G1, c1) are
the graphs below then [(G1, c1)] is a subgraph of [(G, c)] but not a minor.
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8. If (G, c) is a weighted graph, e is an edge which is not a bridge and e1 and

e2 are edges adjacent with e then
ce(e1)

ce(e2)
=

c(e1)

c(e2)
.

9. If (G, c) is a weighted graph, e is an edge which will not produce mul-
tiple edges by contraction and e1 and e2 are edges adjacent with e then
c/e(e1)

c/e(e2)
=

c(e1)

c(e2)
.

Proposition 1. Suppose that (G, c) is a weighted graph. Let Ĝ be the cone
on G, i.e. V (Ĝ) = V (G) ∪ {X} where X 6∈ V (G) and E(Ĝ) = E(G) ∪⋃

A∈V (G){{A, X}}. Then there exists ĉ : E(Ĝ) → (0,∞) a weight function

for Ĝ such that
a) [(G, c)] is a subgraph of [(Ĝ, ĉ)],
b) [(G, c)] is a minor of [(Ĝ, ĉ)],
c) ĉ(Ĝ) = 9ĉ(G).

Proof. Assume that the vertices of G are A1, A2, ..., An. We define the graphs
G1, G2, ..., Gn as follows. For 1 ≤ j ≤ n: V (Gj) = V (Ĝ) = {X, A1, ..., An}

and E(Gj) = E(G) ∪ {{X, A1}, ..., {X, Aj}}. Hence Gn = Ĝ. For j =
1, 2 . . . , n we will define inductively the weight cj on Gj such that G is a
minor of G1 and Gj is a minor of Gj+1 for j = 1, 2..., n − 1. We define first
c1:
- we set c1({X, A1}) = 2

3
c(A1)

- if e is an edge of G such that A1 is not an end of e, we set c1(e) = c(e)
- if A1 is an end of e, we set c1(e) = 1

3
c(e).

Contracting the edge {X, A1} of G1 one obtains the graph G. The weight
of an edge e which is not an edge at A1 remains unchanged i.e. its weight is
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c1(e) = c(e) and the weight of an edge e at A1 will be

c1(e)+
c1(e)c1({X, A1})

c1(A1) − c1({X, A1})
=

1

3
c(e)+

1
3
c(e)2

3
c(A1)

c(A1) −
2
3
c(A1)

=
1

3
c(e)+

2

3
c(e) = c(e)

This means that (G, c) is a minor of (G1, c1).
We assume now that we have defined the weights c1, ..., cj and we will

define cj+1:
- cj+1({X, Aj+1}) = 2

3
(cj(Aj+1 + cj(X))

- if the edge e is not adjacent with {X, Aj+1} then cj+1(e) = cj(e)
- if e is adjacent with {X, Aj+1} then cj+1(e) = 1

3
cj(e).

A computation similar to the one above shows that deleting {X, Aj+1} one
obtains (Gj, cj) i.e (Gj, cj) is a minor of (Gj+1, cj+1).

We set ĉ = cn. It follows that [(G, c)] is a minor of [(Ĝ, ĉ)].
It remains to note that when we define cj , the weight of an edge of G

which is not an edge at Aj remains constant and the weight of an edge at Aj

is multiplied by 1
3
. Since an edge has two vertices, its weight in Gn will be 1

9

of its initial weight. In other words, for each e ∈ E(G), ĉ(e) = 1
9
c(e). This

means that [(G, c)] is a sugraph of [(Ĝ, ĉ)]. At the same time ĉ(Ĝ) = c(G),
hence ĉ(Ĝ) = 9ĉ(G).

Theorem 1. For any two connected weighted graphs (G1, c1) and (G2, c2)
there exists a connected weighted graph (G, c) such that [(G1, c1)] and [(G2, c2)]
are both minors and subgraphs of [(G, c)].

Proof. Multiplying each weight by a constant (which will not change their
equivalence class), we can assume that c1(G1) = c2(G2) = 9. Let’s assume
that V (G1) = {A1, ..., As} and V (G2) = {B1, ..., Bp}. We consider the cones

on G1 and G2, V (Ĝ1) = {X1, A1, ..., As} and V (Ĝ2) = {X2, B1, ..., Bp} re-

spectively. We define the weights ĉ1 and ĉ2 on Ĝ1 and Ĝ2 as in the previous
proposition. Hence ĉ1(G1) = ĉ2(G2) = 1, ĉ1(Ĝ1) = ĉ2(Ĝ2) = 9. Consider the
graph G given by:

- V (G) = V (Ĝ1) ∪ V (Ĝ2)
- E(G) = E(Ĝ1) ∪ E(Ĝ2) ∪ {{X1, X2}}

We define a weight c on G as follows:
- if e1 ∈ E(G1), we set c(e1) := ĉ1(e1) and if e2 ∈ E(G2), c(e2) := ĉ2(e2)
- c({X1, Ai}) := 1

8
ĉ1({X1, Ai}) and c({X2, Bj}) := 1

8
ĉ2({X2, Bj})

- c({X1, X2}) := 5.
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Note that c(Ĝ1) = c(Ĝ2) = 2 and hence c(G) = 9. It is clear that
[(G1, c1)] and [(G2, c2)] are subgraphs of [(G, c)]. It remains to be checked
that they are also minors. We will show it only for G1, the proof for G2 being
obviously the same.

We contract one by one all edges of Ĝ2. This will have no effect on the
weight of Ĝ1. As the total weight remains unchanged, at the end of the
process, the weight of {X1, X2} will be 5 + c(Ĝ2) = 7. Then, if we contract
the edge {X1, X2} we obtain Ĝ1. The weight of an edge of G1 does not
change. Since the sum of the weights of all edges adjacent with {X1, X2} is
1
8
ĉ1(X1) = 1, the weight of an edge {X1, Aj} will be

c({X1, Aj}) +
c({X1, Aj})c({X1, X2})

1
=

1

8
c1({X1, Aj}) +

1
8
c1({X1, Aj}) · 7

1

= c1({X1, Aj})

Therefore, contracting {X1, X2} we obtain exactly (Ĝ1, ĉ1). In other
words, (Ĝ1, ĉ1) is a minor of (G, c). As (G1, c1) is a minor of (Ĝ1, ĉ1), it
follows that (G1, c1) is a minor of (G, c).

Next we will introduce another operation for weighted graphs. As before,
this operation is a familiar one for (non-weighted) graphs.

(3) Subdividing an edge by a new node. This means that given a weighted
graph (G, c), an edge {A, B} of G and a number k ∈ (0, 1), we define the
weighted graph (GA,B,k, cA,B,k) by: V (GA,B,k) = V (G) ∪ {X} where X 6∈
V (G), E(GA,B,k) = (E(G) \ {{A, B}}) ∪ {{A, X}, {X, B}}, cA,B,k(e) = c(e)
if e ∈ E(G) \ {{A, B}} and cA,B,k({A, X}) = kc({A, B}), cA,B,k({B, X} =
(1 − k)c({A, B}).

A natural question is then the following: Given a graph G and c and d,
two weights on G, is it possible to perform a sequence of operations of type
(3) on (G, c) such that, denoting by (G̃, c̃) the resulting graph, [(G, d)] is a
minor of [(G̃, c̃)]? And, if the answer is yes, what is the minimum number of
edge-subdivisions that is needed?

It turns out that the answer is no, as the following example shows:
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Indeed, given a vertex A of a graph G let us call an A-straight path to a
terminal vertex a path of the form AA1 . . . An where An is a terminal vertex
and each Aj , for 1 ≤ j ≤ n − 1 has degree 2. If (G, c) is a weighted graph
by sdegc(A) we denote the sum of total weights of all A-straight paths to a
terminal vertex and all edges at A that are not part of a A-straight path to
a terminal vertex. Note that if e is a edge of G then sdegc(A) ≤ sdegc/e(A).
(If e is of the form {A, B}, the vertex obtained by the identification of A and
B is still denoted by A).

For the above example, suppose that (G̃, c̃) is a graph obtained from (G, c)
using a finite number of edge-subdivisions. It is clear that sdegc̃(A) ≥ 12.

If H is any tree and f is an edge of H then H/f is also a tree. Since G̃
is a tree, when defining minors of (G̃, c̃), deleting an edge is not an allowed
operation (according to our definition). Suppose that (G, c1) is a minor of
(G̃, c̃). It follows that (G, c1) is obtained from (G̃, c̃) using a sequence of
edge-contractions. Note that the only two vertices of G̃ of degree ≥ 3 are A
and B. This implies that none of these contractions will identify A and B. It
follows that sdegc1(A) ≥ 12 > 9 = sdegd(A). In other words, (G, d) cannot
be a minor of (G̃, c̃).

On the positive side, we can show that there exists a sequence of edge-
subdivisions and edge-contractions that will transform (G, c) in (G, d) pro-
vided that c(G) = d(G). Moreover, this can be done using at most |E(G)|−1
edge-subdivisions.

Notation: For a graph G, we denote by rd(G) the number 2|E(G)| −
|V (G)| =

∑
v∈V (G)(deg(v) − 1).

By a terminal vertex we understand a vertex of degree 1.

Definition 4. Suppose that G is a graph, A ∈ V (G) and {A, B1}, ..., {A, Bk}
are the edges at A. We call the blow-up of G at A, the graph G̃A defined as
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follows:
- V (G̃A) = (V (G) \ {A}) ∪ {A1, ..., Ak} where A1, A2, ..., Ak 6∈ V (G)
- E(G̃A) = (E(G) \ {{A, B1}, ..., {A, Bk}}) ∪ {{A1, B1}, ..., {Ak, Bk}}.

Remarks:
If A is a vertex of G with deg(A) = k, then rd(G̃A) = rd(G) − (k − 1).
2) A weight on G induces a weight on G̃A and viceversa (simply put c({Aj, Bj}) =
c({A, Bj})).

Lemma 1. Suppose that G is a graph such that V (G) = {X, A1, ...., An} and
E(G) = {{X, A1}, ..., {X, An}} and c and d are two weight functions on G
such that c(G) = d(G). Then there exists a sequence of edge-subdivisions and
edge-contractions that will transform (G, c) in (G, d). Moreover, this can be
done using at most n−1 edge-subdivisions and the edge-contractions will not
involve the terminal vertices A1, A2, ..., An.

Proof. We introduce first a notation. If H is a graph with E(H) = {e1, . . . , ep}

and u and v two weight functions on H such that u(e1)
v(e1)

= · · · = u(ek)
v(ek)

<
u(ej)

v(ej)

for every j > k, we set m(u, v) := n − k. Note that 0 ≤ m(u, v) ≤ n − 1.
We will prove by induction on m(c, d) that we can transform c into d

using at most m(c, d) edge-subdivisions and the contractions do not involve
terminal vertices.

If m(c, d) = 0, i.e. all ratios
cj

dj
are equal, since

∑
cj =

∑
dj it follows

that cj = dj for all j and there is nothing to prove.
We assume that the statement is true for m(c, d) = p− 1 and we prove it

for m(c, d) = p. Let k = n− p, put c({X, Ai}) = ci and d({X, Ai}) = di and
assume that c1

d1
= c2

d2
= · · · = ck

dk
< ck+1

dk+1
≤ ck+2

dk+2
≤ cn

dn
.

We add the vertex Pk+1 on the edge {X, Ak+1} such that:

c({Ak+1, Pk+1}) =
c1 · dk+1

d1
, c({X, Pk+1}) = ck+1 −

c1 · dk+1

d1

Note that since c1
d1

<
ck+1

dk+1
the weight of {X, Pk+1} will be positive. We

denote by c̃ the weight obtained after the contraction of {X, Pj}. Since this
contraction will not create multiple edges, the ratios of those edges that are
adjacent to {X, Pk+1} will not change. The vertex obtained by identifying
X and Pk+1 will be denoted by X as well. Hence we have:

- for j ≤ k,
c̃({X,Aj})

c̃({X,A1})
=

cj

c1
=

dj

d1

- c̃({X,Ak+1})
c̃({X,A1})

= c({A1,P1})
c1

= c1·dk+1

d1
· 1

c1
= dk+1

d1
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- for j > s > k + 1 from
c̃({X,Aj})

c̃({X,A1})
=

cj

c1
and c̃({X,As})

c̃({X,A1})
= cs

c1
we deduce that

c̃({X,Aj})

dj
≥ c̃({X,As})

ds
> c̃({X,A1})

d1

This means that if c̃j := c̃({X, Aj}) then

c̃1

d1
= · · · =

c̃k+1

dk+1
<

c̃k+2

dk+2
≤

c̃k+3

dk+3
≤ · · · ≤

c̃n

dn
.

This shows that m(c̃, d) = p− 1 and we can apply the induction hypoth-
esis. As we used only one edge-subdivision to transform c into c̃, the proof
is complete.

Remark: In general we cannot transform c into d using n − 2, or less,
edge-subdivisions. For example, if di = 1 for all i and ci 6= cj for all i, j
with i 6= j and if we use at most n − 2 edge-subdivisions then (at least) two
edges are not subdivided. They cannot be contracted either since this will
decrease the degree of X. It follows that the quotient of their weights will
remain constant and it cannot be transformed into 1.

Theorem 2. If G is a graph with n edges and c and d are two weights on G
such that c(G) = d(G) then there exists a sequence of edge-subdivisions and
edge-contractions that will transform (G, c) in (G, d). Moreover, this can be
done using at most n − 1 edge-subdivisions.

Proof. For technical reason, we will prove that in fact it is possible to trans-
form c in d such that no contraction will affect a terminal vertex. The proof
will be by induction on rd(G).

If rd(G) = 0, as G is connected, G is just a single edge and there is
nothing to prove.

Assume that the statement is true for rd(G) ≤ k and we will prove it for
rd(G) = k + 1. We choose a vertex X of G whose degree is at least 2. Let
A1, ..., Am be the neighbors of X. Let G̃X be the blow-up of G at X and let
X1, ..., Xm be the new vertices introduced by the blow-up.

Let G1, G2, .., Gs be the connected components of G̃X and let nj be the
number of edges of Gj (it follows that

∑
nj = n). Note that rd(Gj) ≤ k.

Assume that c(Gj) > d(Gj) for j ≤ q and c(Gj) ≤ d(Gj) for q + 1 < j ≤ s.
We will do the construction in three steps:
Step 1.
Let j ≤ q be a fixed index and let {Xj,1, ..., Xj,r} = V (Gj) ∩ {X1, . . . , Xm}.
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We define the following weight on Gj:
- if e is an edge such that e ∩ {Xj,1, ..., Xj,r} = ∅ then dj(e) = d(e),

- if e such that e ∩ {Xj,1, ..., Xj,r} 6= ∅ then dj(e) = d(e) +
c(Gj)−d(Gj)

r
.

Note that since c(Gj) > d(Gj), the weights dj(e) defined as such are
positive and dj(Gj) = c(Gj). We apply the induction hypothesis for Gj and
the weights c and dj and we deduce that we can transform the weight c into
dj by a sequence of edge-subdivisions and edge-contractions, using at most
nj − 1 edge-subdivisions and such that the contractions will not involve the
terminal vertices of Gj. In particular, they will not involve Xj,1, ..., Xj,r.

This last condition guarantees that we can perform all these operations
in the original graph G (with {Aj , X} instead of {Aj , Xj}) without changing
the weight of an edge that is not in the subgraph corresponding to Gj .
Step 2.
After applying the transformations from Step 1, for j = 1, . . . , q, on (G, c)
we denote by c̃ the new weight. For each graph Gj with q + 1 ≤ j ≤ s we
choose an edge {Alj , Xj}. We partition the edges of G at X in three subsets:
- U = ∪q

j=1{{Al, X} : Al ∈ V (Gj)}
- V = {{Alj , Xj} : j = q + 1, . . . , s}
- W = {{X, A1}, {X, A2}, . . . , {X, Am}} \ (U ∪ V)
Note that at this moment

∑

e∈U

c̃(e) =
∑

e∈U

d(e) +

q∑

j=1

(c(Gj) − d(Gj)) =
∑

e∈U

d(e) +

s∑

j=q+1

(d(Gj) − c(Gj)).

We consider the graph H given by: V (H) = {X, A1, ..., Am}, E(H) =
{{X, A1},..., {X, Am}} and on H we consider two weights, c̃ and c1 where c1

is defined as follows:
- c1(e) = d(e) if e ∈ U
- c1(e) = c̃(e) if e ∈ W
- c1({Alj , X}) = c̃({Alj , X}) + d(Gj) − c(Gj) for every j, q + 1 ≤ j ≤ s.
Note that all these weights are positive numbers and

c1(H) =
∑

e∈U

d(e) +
∑

e∈V∪W

c̃(e) +

s∑

j=q+1

(d(Gj) − c(Gj)) =

∑

e∈U

c̃(e) +
∑

e∈V∪W

c̃(e) = c̃(H)
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Hence, we can apply Lemma 1 and after a sequence of edge-subdivisions
and edge-contractions we will transform c̃ into c1. We do this using at most
m− 1 edge-subdivisions and the contractions will not involve A1, ..., Am. As
before, this guarantees that we can do the same operations in G without
changing anything in the remaining of the graph.

After this step the weight function of each Gj for j ≤ q will be exactly d
and for every j > q, the total weight of Gj will be d(Gj).
Step 3.
We apply the induction hypothesis for each Gj, q + 1 ≤ j ≤ s.

What is left to be done now is to notice that during the entire process
the contractions did not involve terminal vertices of G (they were terminal
vertices of Gj as well) and to count the number edge-subdivisions that were
used.
- At Step 1 we used, for each j ≤ q at most nj − 1 edge-subdivisions, hence
altogether

∑q
j=1(nj − 1).

- At Step 2 we used at most s − 1 edge-subdivisions.
- At Step 3 we used, for each j > q at most nj − 1 edge-subdivisions, hence
altogether

∑s
j=q+1(nj − 1).

Adding everything together we used at most:∑s
j=1(nj − 1) + s − 1 =

∑s
j=1 nj − 1 = n − 1 edge-subdivisions.
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