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ABSTRACT. In [2] the second author proposed to find a description (or examples) of real-valued
n-variable functions satisfying the following two inequalities:

ifx; <y,i=1,...,n,thenF(zq,...,2,) < F(y1,---,Yn),

with strict inequality if there is an indeksuch thate; < y;; and for0 < z; < 29 < -+ - < @y,
then,

F(x{?,25%, ... 20) < F(af', 252, -+« ,zim).
In this short note we extend in a direction a result of [2] and we prove a theorem that provides
a large class of examples satisfying the two inequalities, Wwitreplaced by any symmetric
polynomial with positive coefficients. Moreover, we find that the inequalities are not specific to
expressions of the form¥, rather they hold for any functiog(x, y) that satisfies some condi-

tions. A simple consequence of this result is a theorem of Hardy, Littlewood and Pblya [1].
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1. INTRODUCTION

In [2], the following problem was proposedind examples of function8 : R} — R with
the properties

if 2, <wyi,i=1,...,n,thenF(zy,...,2,) < F(y1,...,Yn),

11 : o o : .

(3.1) with strict inequality if there is an indexsuch thatz; < v;,

and

(1.2) for0<um <my<--- <y, then, F(a?,25°, ..., xpt) < F(ai, a3?, -+, x0m).

In [2], the following result was proved.

Theorem 1.1. Assume that the permutatiencan be written as a product of disjoint circular
cyclesC; x Cy x -+ x C,,, where eacl; is a cyclic permutation, that i€';(j) = j + t;, for
some fixed;. For any increasing sequenée< z; < --- < x,,, we have

n

n
To(i .
E a;r; " < E a;x;", and
i=1

=1
(1.3) - -
To(s .
[[ e <[ ar
i=1 =1

wherea; > 0 is increasing on the cycles; of o.
(The condition oru; was inadvertently omitted in the final version of [2].)

In this short note we extend in a direction the previous resultlof [2] to any permutation, not
only the permutations which are products of circular cycles, by provVing (1.1)[and (1.2) for
symmetric polynomials with positive coefficients. Finally, we prove that these inequalities are
not specific only to rearrangements of powers, that is, we find other classes of functions of 2-
variables with real values, sayz, y), such that, for any € S,, (the group of permutations),
we have
(1.4) F(g(z1,260)), -, 9(%n, Tow))) < Fg(x1,21), .., 9(Tn, Tn)),
wherefF’ is any symmetric polynomial with positive coefficients.

2. THE RESULTS

Lemma2.1.1f f € R[X;, X,]is a symmetric polynomial with positive coefficients and ) €
R? and (y1,y2) € R? are such thatr;zs < yiye and i + 23 < y? + y%, Vn € N, then
(a1, 22) < flyr, vo).
Proof. We have

1<j

wherea;; € R,. Sincef is symmetrica;; = a;;, and therefore

F(X1,X2) = ay (X{X] + X{X]) + ) auXiX;

1<j
= aXiX5 (X XY + ) aaX(X;,
i<j
It is clear now that the two conditions imposed (@n, z2) and(y;, y2) imply that f(z1, z2) <
f(y17 y2) O
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We will considerA C R and a functiory : A x A — [0, co) with the following property: for
all z1, z2,y1,y2 € R such thatr; < x5 andy; < y, the following two inequalities are satisfied:

(2.1) (1, 92)9(x2,11) < g(@1,91)9(22, Y2)
(2.2) [9(z1,y2)]" + [g(z2,y0)]" < [g(21,y0)]" + [9(22, 92)]", Vn €N

Theorem 2.2.Let (X4, X, ..., X, ) be a symmetric polynomial with positive coefficients and
g as above. Then for any € S,, and anyz,, z», ..., z, € A we have:

F(g(z1,2:0)), 9(%2, Z52))s - - - s §(@ns Tomy)) < F(g(x1,21), 9(T2,22), . .., g(Tn, T2)).

Proof. Considerzy, z», ...,x, € A arbitrary and fixed. Without loss of generality we may
assume that; <z, < --- < z,. Let

m = max{F (g(:z:l, To1))s-- -, (T, xa(n))) o€ S,}
and let
P={oceS,|F (g(xl, To(1))s - 9(Tn, xa(n))) =m}.
We would like to prove that € P wheree is the identity. Letr € P the permutation that has
the minimum number of inversions among all element®and suppose that # e. Sincee
is the only increasing permutation it follows that there exists {1,2,...,n — 1} such that
7(i) > 7(i + 1). Without loss of generality we may assume that 1. Considerr’ € S,
defined as followsr'(1) = 7(2), 7'(2) = 7(1) and7'(j) = 7(j) if 7 > 3. Thent’ has fewer
inversions tham and therefore’ ¢ P, which implies that:
(2.3) F (g(:cl, Tr(1))s - G(Tn, a:T/(n))) < F (g(xl, Tr(1))s -5 G(Tn, xT(n))) )
Considerf(X;, Xy) = F(X1, Xy, 9(73,273)), - - -, 9(%n, 7)) ). It foOllows that f is symmetric
and has positive coefficients. If we $gt= 2,/1) = 2-(2) andy, = z,(2) = x,(1) it follows that
y1 < yo. Using the two properties gfand Lemma 2]1 we deduce th&ly(z1, y2), g(z2, 1)) <
f(g(z1,y1), g(z2,y2)) and therefore
F (g(xh xT(l))7 v 7g($na xT(”))) <F (g(mb xT’(l))v <o ’g(xﬂn xT’(n))) )
which contradicts (2]3). O
If g(x,y) = x¥, then the conditions imposed grare
ZL'lIIZIL'gl S I?{lxéna
xvlzyz + $;yl < x?m + Igyz7

which are equivalent to

1,31/2—311 < x3212_y1

I;L?ﬂ(x?(lﬂ_yl) - 1) < xgyl(xg(yz—yl) . 1)‘
The first inequality is certainly true as < x5 andy; < y,. The second inequality is true if
1 <z < x9andy; < y,. Therefore

Y

Corollary 2.3. The inequalitieqI.T) and (1.2) are satisfied for all-variable symmetric poly-
nomials with positive coefficients, defined[bmo)”.

If F(z1,...,2,) := a1 + - + x,, We can prove a result similar to the one of Theofer 2.2
even if we significantly weaken the assumptiongon

Theorem 2.4.LetA C Randg : Ax A — R be afunction such that, ;,(y) = g(a,y) —g(b,y)
(a > D) isincreasing. Then for any;, xs, ..., x, € A and anyo € S,, we have:

F (g(xl, To1)), 9(T2, To(2)), - - - G(Tn, xg(n))) < F(g(x1,21), g(x2,22), . .., g(Tn, T0)) -
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Proof. We follow the proof of Theoremn 2.2 and the only thing we have to check is that

F (g(:z:l, Tr1))s -5 G(Tn, ZZJT(n))) <F (g(:z:l, Trr(1))s -5 G(Tn, a:T/(n))) .
But this inequality is equivalent to
9(1,271)) + 9(22, Tr2)) < g(T1, (1)) + 9(T2, Trr(2))-
If we sety; = x1) = z,(2) aNdy, = x(2) = 7,1, it follows thaty, < 1, and the previous
inequality can be written as
9(w1,y2) + g(x2, 1) < g(w1,91) + 9(72,92),
which is equivalent to

hxz,m (yl) S hx27x1 (yQ)'
This inequality is satisfied becauge< y, andh,, ., iS increasing. O

Corollary 2.5. Let u,v be increasing functions oR with values in[1,00). The following
inequalities are true for alley, z9,--- , 2, € R

(2.4) Zu(xi)v(xa(i)) < Zu(mz)v(xz),
(2.5) i u(xi)’u(xa(i)) < iu(xi)v(aa),
(2.6) ﬁu(l’i)v(w”“)) < ﬁu@i)v(m).

Proof. It suffices to prove that the following functiongz, y) = u(z)v(y), g(z,y) = u(x)*®,
or g(z,y) = u(y)"™® have the associatdds increasing.

Let g(x,y) = u(z)o(y). Thenh(y) = u(a)u(y) — u(b)u(y) = (u(a) — u(b))u(y) which is
increasing since(a) > u(b) andwv(y) is increasing.

Let g(x,y) = u(z)*@. Thenh(y) = u(a)*¥) — u(b)*®). Sinceu(a) > u(b) > 1, andv(y) is

increasing, by writing
wla)\ W
h(y) = u(b)® ((%) - 1) ,

we see thak is increasing.

We remark that to prove (J.4) we only needed to have positive values. Using the pre-
vious remark, to show the last inequality, apgly [2.4) with= log(u) andv (which are both
increasing). O

Corollary 2.6. If the functionh is decreasing o, then all the inequalities are reversed.
Remark 2.7. We see that Theorem 368 o6f [1] follows frofn (R.4) and Corolfary 2.6.
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