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1 Introduction

We consider the following situation:

X̃

σ

y
X

π−−−→ T
where X and T are connected complex manifolds of dimensions n + m and
m respectively, π is a proper and surjective holomorphic submersion, and σ
is a covering map. Thus, X̃ can be regarded as a family of n-dimensional
complex manifolds over T .

We will use the same definition of q-convexity as in [1]. For the precise
formulation, see the next section.

R. Green and H. Wu [7] proved that a connected, non-compact complex
manifold is n-complete. In [5] M. Colţoiu and V. Vâjâitu proved the follow-
ing:

Theorem In the above situation if for some t0 the fiber (π ◦ σ)−1(t0) does
not have compact components then there exists an open neighborhood U of t0
such that (π ◦ σ)−1(U) is n-complete.

Here we want to prove a similar result in the n-concave case. In [3] M.
Colţoiu proved the following theorem:

Theorem 1. Let X be a connected complex manifold of dimension n. Then
X is n-concave.

Using the same technique as in [5] we will prove the following:
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Theorem 2. In the above situation if for some t0 the fiber (π ◦ σ)−1(t0)
has at most finitely many compact components then there exists an open
neighborhood U of t0 such that π ◦ σ|(π◦σ)−1(U) : (π ◦ σ)−1(U) → U is a n-
concave morphism.

Aknowledgements I would like to express my heartfelt thanks to Professor
Mihnea Colţoiu for suggesting me this work and for his many comments and
to Professor Mohan Ramachandran for his support during the preparation of
this paper.

I would like also to thank Professor Terence Napier for pointing out a
mistake in a preliminary version of this paper.

2 Preliminaries

Definition 1. Let X be a complex manifold. A function φ ∈ C∞(X,R) is
said to be strictly q-convex if its Levi form

Lφ(z, ξ) =
n∑

i,j=1

∂2φ

∂zi∂z̄j

(z)ξiξ̄j, ξ ∈ TzX,

has at least n− q + 1 positive eigenvalues for every z ∈ X.

Definition 2. Let X be a complex manifold. X is said to be q-convex if
there exists a compact set K ⊂ X and a smooth function φ : X → R such
that φ is strictly q-convex on X \K and for every real number α the level set
{φ < α} is relatively compact in X. If we can choose K = ∅, then X is said
to be q-complete.

X is said to q-concave if there exists a compact set K ⊂ X and a smooth
function φ : X → (0,∞) such that φ is strictly q-convex on X \K and for
every positive real number α the level set {φ > α} is relatively compact in X.

Definition 3. Let X be a complex manifold and Y a C∞-manifold. π ∈
C∞(X,Y ) is said to be q-concave if there exists φ ∈ C∞(X,R+) and F ⊂ X,
a closed subset, such that
1)π|F is proper
2) φ|X\F is strictly q-convex
3)For every ε > 0, π|{φ≥ε} is proper.
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One can state similar definitions for q-convex and q-complete morphisms.
As mentioned in the Introduction the definition of q-convexity that we use
here is the one in [1]. For Definition 3 see [8]. Some authors include one
more condition in this definition. Namely they require that F ⊂ {φ > α} for
some positive number α. This is however inconsequential for the conclusion
of Theorem 2 since once we found a neighborhood of a point t0 ∈ T we can
shrink it and then this extra condition will be satisfied.

Definitions 4 and 5, Lemma 1 and Proposition 1 are due to M. Peternell
[11]. We consider X a complex manifold and W an open subset of X. We
denote by TX the holomorphic tangent bundle of X.

Definition 4. i) A subset M ⊂ TX is said to be a linear set over X if for
every point x ∈ X, Mx := M∩ TxX ⊂ TxX is a complex vector subspace.
ii) If M is a linear set over X we define M|W as (M|W )x = Mx for every
x ∈ W and we put codimWM = supx∈W codim Mx.
iii) If Z and X are complex manifolds and π : Z → X is a holomorphic map
we set

π∗M :=
⋃
z∈Z

(π∗,z)−1(Mπ(z))

Definition 5. Let X be a complex manifold, W open in X, M a linear set
over W , and φ ∈ C∞(W,R).

(a) Let x ∈ W . We say that φ is weakly 1-convex with respect to Mx if
there is a local chart (z1, ..., zn) around x such that Lφ(x, ξ) ≥ 0 for every
ξ ∈My.

We say that φ is weakly 1-convex with respect to M if φ is weakly 1-convex
with respect to Mx for every x ∈ W .

(b) The function φ is said to be strictly 1-convex with respect to M if
every point of W admits an open neighborhood U ⊂ W such that there exists
a strictly 1-convex function θ on U with φ − θ weakly 1-convex with respect
to M|U .

Lemma 1. Let Z be a complex manifold, H a hermitian metric on Z, and
M a linear set over Z. Then a function φ ∈ C∞(Z,R) is strictly 1-convex
with respect to M if and only if for every compact set K ⊂ Z there is δ > 0
such that

Lφ(z, ξ) ≥ δ‖ξ‖2

for every z ∈ K, ξ ∈Mz. (‖ · ‖ denotes the norm induced by H.)
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Proposition 1. Let X be a complex manifold and φ ∈ C∞(X,R) a strictly
q-convex function. Then there is a linear set M over X of codimension
≤ q − 1 such that φ is strictly 1-convex with respect to M.

Definition 7 and Lemmas 2 and 3, and Proposition 2 are due to M. Colţoiu
and V. Vâjâitu [4],[5], and [12]. The proofs of Proposition 2 and Lemma 2
are based on the ideas developed in [6].

Definition 6. Let Y be a complex manifold and M a linear set over Y . We
denote by B(Y,M) the set of all φ ∈ Co(Y,R) such that every point of Y
admits an open neighborhood D on which there are functions f1, . . . , fk ∈
C∞(D,R) which are strictly 1-convex with respect to M|D and

φ|D = max(f1, . . . , fk).

Proposition 2. Let M be a linear set over a complex manifold Y and f ∈
B(Y,M). Then for every η ∈ Co(Y,R), η > 0, there exists φ̃ ∈ C∞(Y,R)
which is strictly 1-convex with respect to M and

φ ≤ φ̃ < φ + η.

In particular, if codim M≤ q − 1, then φ̃ is q-convex.

Lemma 2. Let X be a complex manifold and {Wi}i∈I a locally finite open
covering of X. Suppose Mi are linear sets over Wi, i ∈ I. Then there is a
linear set M over X with the following properties:

a) codimXM≤ supi∈I codimWi
Mi.

b) If {Gα}α∈Λ is an arbitrary family of open subsets of X and fα ∈
C∞(Gα,R) are such that fα|Gα∩Wi

are strictly 1-convex with respect
to Mi over Gα ∩Wi, then fα are strictly 1-convex with respect to M
over Gα.

Lemma 3. Let X be a complex manifold. Let {Vi}i∈N and {Wi}i∈N be two
families of open subsets of X such that:
1) {Vi}i∈N is a locally finite open covering of X with relatively compact con-
nected sets,
2) ∅ 6= Wi ⊂ Vi and Wi ∩ Vj = ∅ if i 6= j.
Then for every discrete subset A ⊂ X there exists a diffeomorphism Φ : X →
X with Φ(A) ⊂ ∪i∈NWi, and Φ is biholomorphic near A.
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The next theorem is Theorem 2.3 in [10]. See also [9].

Theorem 3. Let X and T be complex manifolds and π : X → T be a
holomorphic submersion which is proper and surjective.

Then for every to ∈ T and every finitely many points p1, . . . , ps ∈ X(to) :=
π−1(to) there is an open neighborhood U of to and a smooth diffeomorphism
S : U×X(to) → X(U), where X(U) := π−1(U), with the following properties:

1) S(t, X(to)) = X(t) := π−1(t) for every t ∈ U .

2) The mappings from U into X(U) given by t 7→ S(t, xo), xo ∈ X(to),
are holomorphic sections of π : X(U) → U for every xo ∈ X(to) and
X(U) is the disjoint union of their images {S(U, xo)}xo∈X(to).

3) The map r : X(U) → X(to) given by S(π(x), r(x)) = x, x ∈ X(U),
is a C∞ retraction of X(U) onto X(to) such that there is an open
neighborhood V of {p1, . . . , ps} with r|r−1(V ) is holomorphic.

3 The Results

Proposition 3. Let X be a complex manifold, Y a C∞ manifold and π ∈
C∞(X,Y ). Also let {Xn} be a sequence of open subsets of X and F ⊂ X1 a
closed subset of X such that π|F is proper, ∪Xn = X and for every n ≥ 1,
Xn ⊂ Xn+1. We consider M a linear set over X \ F . We suppose that for
every n ∈ N there exists φn ∈ C∞(Xn,R+) with the following properties:
1)φn|Xn\F is strictly 1-convex with respect to M|Xn\F .
2) For every ε > 0 π|{x∈Xn:φn(x)≥ε} is proper.
Then there exists φ ∈ C∞(X,R+) a strictly 1-convex function with respect to
M on X \ F and such that π|{x∈X:φ(x)≥ε} is proper for every ε > 0.

Proof. Let {Un} be a sequence of open subsets of X such that Un ⊂⊂ Un+1,
Un ⊂⊂ Xn and ∪Un = X. Let also {Yn} be a sequence of compact subsets
of Y such that ∪Yn = Y and Yn ⊂ Int(Yn+1).
We will construct inductively a sequence of functions ψn ∈ C∞(Xn,R+) with
the following properties:
1)ψn ∈ B(M, Xn \ F )
2)ψn = ψn−1 on Un−1

3)π|{x∈Xn:ψn(x)≥ε} is proper for every ε > 0.
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4)ψn ≤ 1
n

on π−1(Yn) ∩ (Xn \Xn−1)
5)If x ∈ π−1(Yn) ∩Xn and ψn(x) > 1

n
then ψn(x) = ψn−1(x)

Multiplying by a constant we can suppose that φ1 < 1 on π−1(Y1) ∩X1.
Then we put ψ1 = φ1.
Suppose now that we have defined ψ1, ..., ψn−1 and we construct ψn.
Multiplying φn by a constant we can suppose that for every x ∈ Un−1,
φn(x) < min{ψn−1(y) : y ∈ Un−1} and for every x ∈ π−1(Yn), φn(x) < 1

n
.

We define:

ψn(x) =

{
max{φn(x), ψn−1(x)} on Xn−1,
φn(x) on Xn \Xn−1

.

There exists W a neighborhood of ∂Xn−1 such that for every x ∈ W , φn(x) >
ψn−1(x). Indeed:
For every x0 ∈ ∂Xn−1 we take V an open, relatively compact neighborhood.
Then {x ∈ Xn−1 : ψn−1(x) ≥ φn(x0)} ∩ π−1(π(V )) is a compact subset of
Xn−1 and it does not contain x0. Let V1 ⊂ V an open neighborhood of x0

such that V 1 ∩ {x ∈ Xn−1 : ψn−1(x) ≥ φn(x0)} ∩ π−1(π(V )) = ∅. Thus
V 1 ∩ {x ∈ Xn−1 : ψn−1(x) ≥ φn(x0)} = ∅. Therefore on V 1, φn(x0) >
ψn−1(x). It follows that ψn ∈ B(M, Xn \ F ). On the other hand {x ∈ Xn :
ψn(x) ≥ ε} ⊂ {x ∈ Xn : φn(x) ≥ ε} ∪ {x ∈ Xn−1 : ψn−1(x) ≥ ε}. Thus
π|{x∈Xn:ψn(x)≥ε} is proper.

Therefore ψn satisfies 1)−5).

We define now φ̃ = lim ψn.
φ̃ ∈ B(M, X \ F ) because ψn is stationary on compacts.
Let K ⊂ Y be a compact subset and let ε > 0. Choose n ∈ N such that
K ⊂ Yn and ε > 1

n
.

Then π−1(K) ∩ {x ∈ X : φ̃(x) ≥ ε} ⊂ π−1(Yn) ∩ {x ∈ X : φ̃(x) ≥ 1
n
}.

4) and 5) =⇒ ψk ≤ 1
n

on π−1(Yn) ∩ (Xk \Xn−1) for every k ≥ n. And then

π−1(Yn) ∩ {x ∈ X : φ̃(x) ≥ 1
n
} = π−1(Yn) ∩ {x ∈ Xn : φ̃(x) ≥ 1

n
}.

Using again 5) we obtain that

π−1(Yn) ∩ {x ∈ Xn : φ̃(x) ≥ 1
n
} = π−1(Yn) ∩ {x ∈ Xn : ψn(x) ≥ 1

n
} and this

set is compact. The conclusion follows now from Proposition 2.

If Y is a point, one can improve the previous proposition as follows:

Proposition 4. Let X be a complex manifold, M a linear set over X and
{Xn} a sequence of open sets such that Xn ⊂⊂ Xn+1 and ∪Xn = X. We

6



suppose that for every n ≥ 1 there exists a compact set Kn ⊂ Xn and φn ∈
C∞(Xn,R+) such that: Kn ⊂ Xn−1, φn is strictly 1-convex with respect to
M on Xn \ Kn and for every ε > 0, {φn > ε} ⊂⊂ Xn. Then there exists
φ ∈ C∞(X,R+) such that φ is strictly 1- convex with respect to M on X \K1

and for every ε > 0, {φ > ε} ⊂⊂ X.

Proof. The only thing that we have to change in the proof of Proposition 3
is to choose Un such that Kn ⊂ Un.

Lemma 4. Let X and Y be C∞ manifolds, h, g : X → (0,∞), π : X → Y
be C∞ functions such that |g(x)| ≤ 1, and p a positive integer. Then there
exists a unique C∞ function ψ : X → (0,∞) such that :

h2

ψ
+

gp

1 + ψ
= 1

Moreover if h has the property that π|{x∈X:h(x)≥ε} is proper for every ε > 0
then ψ has the same property.

Proof. The above equation is in fact a quadratic equation in ψ. This equation
has a unique positive solution, namely:

ψ =
h2 + gp − 1 +

√
(h2 + gp − 1)2 + 4h2

2

It follows then that ψ is C∞.
If for some x ∈ X ψ(x) ≥ ε, since g(x) ≤ 1, we have g(x)p

1+ψ(x)
≤ 1

1+ε
. It follows

then that h2(x)
ψ(x)

≥ 1− 1
1+ε

= ε
1+ε

. Thus h(x) ≥ εψ(x)
1+ε

≥ ε2

1+ε
.

Therefore {ψ ≥ ε} ⊂ {h ≥ ε√
1+ε
}.

Proposition 5. Let X be a complex manifold, Y a C∞-manifold, π ∈
C∞(X,Y ) and H a hermitian metric on X. Suppose that there exist:
a) ψ ∈ C∞(X,R+)
b) F and F1 two closed subsets of X, U a relatively compact open subset of
Y , V1 and V2 open subsets of X such that F1 ⊂ Int(F ), π|F is proper and
V1 ∪ V2 = X
c) M1 a linear set over V1 \ F1, a M2 linear set over V2 \ F1

with the following properties:
1) for every real number ε > 0, π|{ψ≥ε} is proper,
2) ψ is strictly 1-convex with respect to M1 on V1 \ F1
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3) if for every x ∈ V2 \ F1 we set Kx := {ξ ∈ M2,x : 〈∂ψ, ξ〉 = 0} then
Kx 6= M2,x and ψ is strictly 1-convex with respect to K on V2 \ F1

Let M be the linear set given by the Lemma 2 applied to M1 and M2.
Then there exists φ ∈ C∞(π−1(U),R+) such that φ is strictly 1-convex

with respect to M on π−1(U) \F and {φ ≥ ε}∩π−1(K) is compact for every
ε > 0 and every compact K ⊂ U .

Proof. Set Lx := M2,x ∩ {ξ ∈ TxX : 〈∂ψ, ξ〉 = 0}⊥
Let V3 be an open subset of X such that V1 ∪ V3 = X and V 3 ⊂ V2. We will
use Proposition 3.
Since U ⊂⊂ Y , multiplying by a constant we can suppose that |ψ(x)| ≤ 1
for x ∈ π−1(U). There exists also p ∈ N such that ψ(x) > 1

p
for every

x ∈ F ∩ π−1(U).
Let Xn = π−1(U) ∩ {x ∈ X : ψ(x) > 1

n
}, n ≥ p. Note that Xn is a relatively

compact subset of X.
Because V 3 ⊂ V2 , F1 ⊂ Int(F ) there exist four constants C1, C2, C3 and C4

such that:
|〈∂ψx, ξ〉| ≥ C1‖ξ′′‖,
Lψ(z, ξ′) ≥ C2‖ξ′‖2,
Re(Lψ(z, ξ′, ξ′′)) ≥ −C3‖ξ′‖‖ξ′′‖
Lψ(z, ξ′′) ≥ −C4‖ξ′′‖2





(1)

for every x ∈ (V3 ∩Xn) \F , ξ′ ∈ Kx, ξ′′ ∈ Lx. Here ‖ · ‖ is the norm induced
by H.
Let φn = (ψ − 1

n
)k where k is a positive integer.Then:

Lφn(z, ξ) = k(ψ − 1
n
)k−1Lψ(z, ξ) + k(k − 1)(ψ − 1

n
)k−2|〈∂ψ, ξ〉|2 (2)

Because ψ is strictly 1-convex with respect to M1 on V1 \ F , from (2)
and Lemma 1 it follows that φn is strictly 1-convex with respect to M1 on
(V1 ∩Xn) \ F .
Let x ∈ (V3 ∩Xn) \ F and ξ = ξ′ + ξ′′ ∈M2,x = Kx ⊕ Lx.
From (1) and (2) we obtain:
Lφn(x, ξ) ≥ k(ψ− 1

n
)k−2{(ψ− 1

n
)C2‖ξ′‖2−2(ψ− 1

n
)C3‖ξ′‖·‖ξ′′‖+((k−1)C2

1−
(ψ − 1

n
)C4)‖ξ′′‖2}

If k is large enough
1
2
(ψ − 1

n
)C2‖ξ′‖2 − 2(ψ − 1

n
)C3‖ξ′‖ · ‖ξ′′‖+ (k−1

2
C2

1 − (ψ − 1
n
)C4)‖ξ′′‖2 ≥ 0.

Then we have Lφn(x, ξ) ≥ 1
2
C2k(ψ − 1

n
)k−1‖ξ′‖2 + k(k−1)

2
C2

1(ψ − 1
n
)k−2‖ξ′′‖2.
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And since ξ′ and ξ′′ are orthogonal:

Lφn(x, ξ) ≥ k

2
(ψ − 1

n
)k−2 ·min{C2(ψ − 1

n
), (k − 1)C2

1}‖ξ‖2.

Therefore Lemma 1 and Lemma 2 imply that φn is strictly 1-convex with
respect to M on Xn \ F .

In the same time {x ∈ Xn : φn(x) ≥ ε} = {x ∈ Xn : ψ(x) ≥ 1
n

+ k
√

ε} =
{x ∈ π−1(U) : ψ(x) ≥ 1

n
+ k
√

ε} so for every compact K ⊂ U we have
{x ∈ Xn : φn(x) ≥ ε} ∩ π−1(K) = {x ∈ X : ψ(x) ≥ 1

n
+ k
√

ε} ∩ π−1(K) which
is compact.

We will now begin to prove Theorem 2. We will proceed as in [5] and we
will consider a covering {V1, ..., Vs} of X(t0) = π−1(t0) by local charts, each
Vi biholomorphic to an open ball in Cn, and a set of points {p1, ..., ps} such
that pi ∈ Vi and pi /∈ V j for i 6= j. Let Wi ⊂ Vi be open neighborhoods of pi

biholomorphic to open balls in Cn such that Wi ∩ Vj = ∅ and the retraction
r in theorem 3 is holomorphic on r−1(∪i≤sWi).

Lemma 5. There exists a Morse function h0 : X̃(t0) → R+ and K ⊂ X̃(t0)
a compact subset such that
a) {h0 ≥ ε} is compact for every ε > 0
b) A := {x : x is a critical point for h0} \K is a subset of σ−1(∪i≤sWi)
c) h0 is strictly n-convex on a neighborhood of A.

Proof. Since X̃(t0) has at most finitely many compact components there is,

by Theorem 1, a compact subset K1 ⊂ X̃(t0) and a C∞ function h1 : X̃(t0) →
R+ such that {h1 ≥ ε} is compact for every ε > 0 and h1 is strictly n-convex

on X̃(t0)\K1 . We may also suppose that h1 is a Morse function. See in this
sense [2]. Let A1 be the set of its critical points that are not in K1 (which is
a discrete set).

We put σ−1(Vi) = ∪j∈NMi,j and σ−1(Wi) = ∪j∈NNi,j for their decom-
positions into connected components. Then {Mi,j} and {Ni,j} satisfy the

conditions of Lemma 3. Let Φ : X̃(t0) → X̃(t0) a diffeomorphism such that
Φ(A1) ⊂ σ−1(∪i≤sWi) and Φ is holomorphic on a neighborhood of A. Then
h0 = h1 ◦ Φ has the required properties.

We choose now a simply connected neighborhood of t0 and we lift the map
S, given by Theorem 3, to X̃. We observe then that, in order to complete
the proof of Theorem 2, it suffices to prove the following:
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Proposition 6. Let X be a complex manifold and π : X → T a holomorphic
submersion, where X has dimension n + m, and T = {t ∈ Cm ; |t| < 1}. Set
Xt := π−1(t), t ∈ T . Assume that there exists a diffeomorphism S : T×X0 →
X with the following properties:

1) S(t, X0) = Xt for every t ∈ T .

2) The map sxo : T → X given by sx0(t) = S(t, x0) is a holomor-
phic section of π for every x0 ∈ X0 and X is the disjoint union of
{sx0(T )}x0∈X0.

3) The map r : X → X0 given by S(π(x), r(x)) = x, x ∈ X, defines
a C∞ retraction of X onto X0. Moreover there is a Morse function
h0 ∈ C∞(X0,R+), K ⊂ X0 a compact set, V0 ⊂ X0 an open set,
V0 ⊃ A := {x ∈ X0 \ K : x is a critical point for h0}, such that
h0|Vo is n-convex, {h0 ≥ ε} is compact for every ε > 0 and r|r−1(V0) is
holomorphic.

Then for every U an open neighborhood of 0, U ⊂⊂ T , π|π−1(U) : U → U
is a n-concave morphism.

Proof. Let g : X → (0,∞), g(x) = |π(x)|2+1
2

.
For x ∈ X let Σx = {S(t, r(x)) ; t ∈ T} and Φx = π−1(π(x)). Σx and Φx are
closed submanifolds of X.

Following [5] we will use:

Definition 7. A hermitian metric H on X is called ”special” if for any
point x ∈ X the complex vector subspaces Tx(Σx) and Tx(Φx) of TxX are
orthogonal with respect to H.

Lemma 6. There exists a special hermitian metric H on X.

Let h = h0 ◦ r and F2 = h−1(K). Choose V ′
0 an open subset of X0 such

that V ′
0 ⊃ A and V ′

0 ⊂ V0 and put V1 = r−1(V0) and V2 = X \ r−1(V ′
0).

Using Proposition 1 we choose N a linear set of codimension ≤ n − 1 such
that h0 is strictly 1-convex with respect to N over V0 and put M1 = r∗(N ).
Since h does not have critical points in V2 \ F2, at any point x ∈ V2 \ F2 we
have an orthogonal decomposition with respect to H: TxX = Γ′x⊕ Γ′′x where
Γ′x is the holomorphic tangent space at x to the real hypersurface {h = h(x)}
and Γ′′x is its orthogonal complement. Thus Γ′′x is a 1-dimensional complex
vector space and Tx(Σx) ⊂ Γ′x, so Γ′′x and Tx(Σx) are orthogonal (with respect

10



to H). Therefore Γ′′x ⊂ Tx(Φx).
We set M2 = M′

2⊕M′′
2 where M′

2 and M′′
2 are linear sets over V2 \F2 given

by M′
2,x = Tx(Σx) and M′′

2,x = Γ′′x.
Let M be the linear set given by Lemma 2 applied to M1 and M2.
Since K is compact there exists p ∈ N such that for every x ∈ K, h0(x) > 1

p
.

Let Xn = {x ∈ X : h(x) > 1
n
}, n ≥ p. Then F2 ⊂ Xn. Let F and F1

be two closed X such that F ⊂ Xp, F1 ⊂ Int(F ), F2 ⊂ Int(F1) and π|F is
proper.
We will find for each n ≥ p a function φn ∈ C∞(Xn,R+) such that φn|Xn\F
is strictly 1-convex with respect to M|Xn\F and {x ∈ Xn ∩ π−1(U) : φn(x) ≥
ε}∩π−1(L) is compact for every real number ε > 0 and every compact L ⊂ U .
The conclusion of the proposition will follow then from Proposition 3.

To obtain φn we will use Proposition 5.
Let Y be an open subset of T such that U ⊂⊂ Y ⊂⊂ T .
(π−1(Y ) ∩ V 2 ∩ Xn) \ Int(F1) is a compact subset of X and for every
x ∈ (π−1(Y ) ∩ V 2 ∩Xn) \ Int(F1) and ξ′′ ∈ Γ′′x, 〈∂ hx, ξ

′′〉 6= 0.
Since Γ′′x depends continuously on x it follows that there exists C > 0 such
that |〈∂ hx, ξ

′′〉| ≥ C‖ξ′′‖ for every x ∈ (π−1(Y ) ∩ V 2 ∩ Xn) \ Int(F1) and
every ξ′′ ∈ Γ′′x

Let hn = eαn(h− 1
n

) − 1 where αn is a positive real number.
Lhn(x, ξ) = αne

αn(h− 1
n

)(Lh(x, ξ)+αn|〈∂h, ξ〉|2). Choose αn large enough such
that on (π−1(Y ) ∩ V2 ∩Xn) \ Int(F1), Lhn(ξ′′) ≥ 0 for every ξ′′ ∈M′′

2.
Note that because 〈∂h, ξ′′〉 6= 0 we have also 〈∂hn, ξ

′′〉 6= 0
If ξ = ξ′ + ξ′′ ∈M′

2 ⊕M′′
2 since h is constant on Σx we get 〈∂h, ξ′〉 = 0 and

Lh(ξ
′) = 0. It follows then that 〈∂hn, ξ

′〉 = 0 and Lhn(ξ′) = 0.
A direct computation shows that Lg(ξ) = Lg(ξ

′) ≥ C1‖ξ′‖2 for some
C1 > 0 (see also Lemma 8 in [5]).
Let C2, C3 be positive constants such that on (π−1(Y ) ∩ V2 ∩Xn) \ Int(F1)
we have:
|〈∂hn, ξ

′′〉| ≥ C2‖ξ′′‖ and 2Re(Lhn(ξ′, ξ′′)) ≥ −C3‖ξ′‖‖ξ′′‖
and choose a positive integer p such that p ≥ 3 and

p− 1

4

C1C
2
2

g(x)
≥ C2

3 (3)

for every x ∈ (π−1(Y ) ∩ V2 ∩Xn) \ Int(F1). (Notice that 1
2
≤ g(x) ≤ 1.)
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Let ψn ∈ C∞(Xn,R+) such that

h2
n

ψn

+
gp

1 + ψn

= 1 (4)

There exists such ψn by Lemma 4 and π|{x∈Xn:ψn(x)≥ε} is proper (the level
sets for hn are level sets for h).
For x ∈ (π−1(Y ) ∩ V2 ∩Xn) \ F let Kx := {ξ ∈M2,x : 〈∂ψn, ξ〉 = 0}.
Differentiating (4) once we obtain:

(
h2

n

ψ2
n

+
gp

(1 + ψn)2
)〈∂ψn, ξ〉 =

2hn

ψn

〈∂hn, ξ′′〉+
pgp−1

1 + ψn

〈∂g, ξ′〉

Since 〈∂hn, ξ′′〉 6= 0 and 〈∂g, ξ′〉 6= 0 for ξ′ 6= 0 and ξ′′ 6= 0 it follows that
Kx 6= M2,x.
Also for ξ ∈ Kx we obtain: 〈∂g, ξ′〉 = − 1+ψn

pgp−1
2hn

ψn
〈∂hn, ξ′′〉 (5)

Differentiating (4) twice we obtain:

ρLψn(ξ) =
2hn

ψn

Lhn(ξ) +
pgp−1

1 + ψn

Lg(ξ) + A(ξ) + B(ξ) +
p(p− 1)gp−2

4(1 + ψn)
|〈∂g, ξ〉|2

where ρ, A(ξ) and B(ξ) are given by:

ρ = (
h2

n

ψ2
n

+
gp

(1 + ψn)2
)

A(ξ) =
2

ψn

{|〈∂hn, ξ〉|2 − 2hn

ψn

Re(〈∂hn, ξ〉〈∂ψn, ξ〉) +
h2

n

ψ2
n

|〈∂ψn, ξ〉|2}

B(ξ) =
gp−2

1 + ψn

{3

4
p(p−1)|〈∂g, ξ〉|2− 2pg

(1 + ψn)
Re(〈∂g, ξ〉〈∂ψn, ξ〉)+ 2g2

(1 + ψn)2
|〈∂ψn, ξ〉|2}

Notice that A(ξ) ≥ 0 and B(ξ) ≥ 0.
For ξ ∈ Kx using the previous inequalities we obtain that:

ρLψn(ξ) ≥ −2hn

ψn

C3‖ξ′‖‖ξ′′‖+
pgp−1

1 + ψn

C1‖ξ′‖2 +
p(p− 1)gp−2

4(1 + ψn)
|〈∂g, ξ′〉|2
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And (5) implies that

ρLψn(ξ) ≥ −2hn

ψn

C3‖ξ′‖‖ξ′′‖+
pgp−1

1 + ψn

C1‖ξ′‖2 +
(p− 1)(1 + ψn)

pgp

h2
n

ψ2
n

C2
2‖ξ′′‖2

But (3) implies that:

pgp−1

2(1 + ψn)
C1‖ξ′‖2 − 2hn

ψn

C3‖ξ′‖‖ξ′′‖+
(p− 1)(1 + ψn)

2pgp

h2
n

ψ2
n

C2
2‖ξ′′‖2 ≥ 0

and therefore

ρLψn(ξ) ≥ pgp−1

2(1 + ψn)
C1‖ξ′‖2 +

(p− 1)(1 + ψn)

2pgp

h2
n

ψ2
n

C2
2‖ξ′′‖2

Since ξ′ and ξ′′ are orthogonal this last inequality implies that ψn is strictly
1-convex with respect to K.

Because r is holomorphic on V1 it follows that Lh(ξ) = Lh(ξ
′′) and we

deduce that ψn is strictly 1-convex with respect to M1 on V1. Thus all the
conditions of Proposition 5 are fulfilled.

References

[1] A. Andreotti and H. Grauert : Théorèmes de finitude pour la cohomolo-
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Institute of Mathematics of the Romanian Academy

and
Lehigh University, Department of Mathematics,
Bethlehem, PA 18015, U.S.A.
E-mail address : cej3@lehigh.edu

14


