On the n-concavity of covering spaces with
parameters

Cezar Joita

1 Introduction

We consider the following situation:

X

X —~= T

where X and T are connected complex manifolds of dimensions n + m and
m respectively, 7 is a proper and surjective holomorphic submersion, and o
is a covering map. Thus, X can be regarded as a family of n-dimensional
complex manifolds over T

We will use the same definition of g-convexity as in [1]. For the precise
formulation, see the next section.

R. Green and H. Wu [7] proved that a connected, non-compact complex
manifold is n-complete. In [5] M. Coltoiu and V. Vajaitu proved the follow-
ing:

Theorem In the above situation if for some to the fiber (m o o)~ (to) does
not have compact components then there exists an open neighborhood U of t
such that (m o o)~ (U) is n-complete.

Here we want to prove a similar result in the n-concave case. In [3] M.
Coltoiu proved the following theorem:

Theorem 1. Let X be a connected complex manifold of dimension n. Then
X s n-concave.

Using the same technique as in [5] we will prove the following:
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Theorem 2. In the above situation if for some ty the fiber (m o o)~1(ty)
has at most finitely many compact components then there exists an open
neighborhood U of ty such that m 0 O|zepy-1) = (T 0 0) ' (U) — U is a n-
concave morphism.

Aknowledgements [ would like to express my heartfelt thanks to Professor
Mihnea Coltoiu for suggesting me this work and for his many comments and
to Professor Mohan Ramachandran for his support during the preparation of
this paper.

I would like also to thank Professor Terence Napier for pointing out a
mistake in a preliminary version of this paper.

2 Preliminaries

Definition 1. Let X be a complex manifold. A function ¢ € C*(X,R) is
said to be strictly q-convex if its Levi form
(3228,%

Ly(2,6) = (2)&¢&5, £ € TLX,

3,j=1

has at least n — q + 1 positive eigenvalues for every z € X.

Definition 2. Let X be a complex manifold. X is said to be q-convex if
there exists a compact set K C X and a smooth function ¢ : X — R such
that ¢ is strictly q-conver on X \ K and for every real number « the level set
{¢p < a} is relatively compact in X . If we can choose K = (), then X is said
to be g-complete.

X s said to q-concave if there exists a compact set K C X and a smooth
function ¢ : X — (0,00) such that ¢ is strictly g-convex on X \ K and for
every positive real number « the level set {¢ > a} is relatively compact in X.

Definition 3. Let X be a complex manifold and Y a C°°-manifold. © €
C>®(X,Y) is said to be g-concave if there exists ¢ € C°(X,R,) and F C X,
a closed subset, such that

1)r|p is proper

2) ¢|x\r is strictly q-convex

3)For every € > 0, (s>} 15 proper.



One can state similar definitions for ¢g-convex and g-complete morphisms.
As mentioned in the Introduction the definition of ¢-convexity that we use
here is the one in [1]. For Definition 3 see [8]. Some authors include one
more condition in this definition. Namely they require that F' C {¢ > «} for
some positive number «. This is however inconsequential for the conclusion
of Theorem 2 since once we found a neighborhood of a point ¢y € T" we can
shrink it and then this extra condition will be satisfied.

Definitions 4 and 5, Lemma 1 and Proposition 1 are due to M. Peternell
[11]. We consider X a complex manifold and W an open subset of X. We
denote by T'X the holomorphic tangent bundle of X.

Definition 4. i) A subset M C T'X is said to be a linear set over X if for
every point x € X, M, = MNT, X CT,X is a complex vector subspace.
ii) If M is a linear set over X we define M|w as (M|w). = M, for every
x € W and we put codimy M = sup,cy, codim M.
iit) If Z and X are complex manifolds and w : Z — X is a holomorphic map
we set

P M= () (M)

z€Z

Definition 5. Let X be a complex manifold, W open in X, M a linear set
over W, and ¢ € C>*(W,R).

(a) Let x € W. We say that ¢ is weakly 1-convex with respect to M, if
there is a local chart (21, ...,2,) around x such that Ly(x,&) > 0 for every
EeM,.

We say that ¢ is weakly 1-convex with respect to M if ¢ is weakly 1-convex
with respect to M, for every x € W.

(b) The function ¢ is said to be strictly 1-convex with respect to M if
every point of W admits an open neighborhood U C W such that there exists
a strictly 1-convez function 6 on U with ¢ — 6 weakly 1-convex with respect

to M|U.

Lemma 1. Let Z be a complex manifold, H a hermitian metric on Z, and
M a linear set over Z. Then a function ¢ € C*°(Z,R) is strictly 1-convex
with respect to M if and only if for every compact set K C Z there is § > 0
such that

Ly(2,€) = d1€|I*
for every z € K, £ € M. (||| denotes the norm induced by H.)
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Proposition 1. Let X be a complex manifold and ¢ € C*(X,R) a strictly
g-convex function. Then there is a linear set M over X of codimension
< q — 1 such that ¢ is strictly 1-convex with respect to M.

Definition 7 and Lemmas 2 and 3, and Proposition 2 are due to M. Coltoiu
and V. Vajaitu [4],[5], and [12]. The proofs of Proposition 2 and Lemma 2
are based on the ideas developed in [6].

Definition 6. Let Y be a complex manifold and M a linear set over' Y. We
denote by B(Y, M) the set of all ¢ € C°(Y,R) such that every point of Y
admits an open neighborhood D on which there are functions fi,..., fr €
C>(D,R) which are strictly 1-convex with respect to M, and

Pl =max(fi,..., fr)

Proposition 2. Let M be a linear set over a complex manifold Y and f €
B(Y,M). Then for every n € C°(Y,R), n > 0, there exists ¢ € C*(Y,R)

which s strictly 1-convex with respect to M and

PSP < P+
In particular, if codim M < q—1, then 5 1S q-CONVEL.

Lemma 2. Let X be a complex manifold and {W;}icr a locally finite open
covering of X. Suppose M; are linear sets over Wy, i € I. Then there is a
linear set M over X with the following properties:

a) codimx M < sup;c; codimy, M,.

b) If {Gotaen is an arbitrary family of open subsets of X and f, €
C*®(Gq, R) are such that fo|c.nw, are strictly 1-conver with respect
to M; over G, N W;, then f, are strictly 1-conver with respect to M
over G.

Lemma 3. Let X be a complex manifold. Let {V;}ien and {W;}ien be two
families of open subsets of X such that:

1) {Vi}ien is a locally finite open covering of X with relatively compact con-
nected sets,

2)0+W; CVand W,NV; =0 if i # 5.

Then for every discrete subset A C X there exists a diffeomorphism ® : X —
X with ®(A) C UienW;, and @ is biholomorphic near A.
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The next theorem is Theorem 2.3 in [10]. See also [9].

Theorem 3. Let X and T be complex manifolds and © : X — T be a
holomorphic submersion which is proper and surjective.

Then for everyt, € T and every finitely many points py, ..., ps € X(t,) :=
77 1(t,) there is an open neighborhood U of t, and a smooth diffeomorphism
S:UxX(t,) — X(U), where X(U) := n=Y(U), with the following properties:

1) S(t,X(t,)) = X(t) :=7"¢t) for everyt € U.

2) The mappings from U into X(U) given by t — S(t,z,), x, € X(t,),
are holomorphic sections of m : X(U) — U for every x, € X(t,) and
X(U) is the disjoint union of their images {S(U, o) }z,ex (t,)-

3) The map r : X(U) — X(t,) given by S(w(x),r(x)) = z,z € X(U),
is a C* retraction of X(U) onto X(t,) such that there is an open
neighborhood V' of {p1, ... ,ps} with r|,-1y is holomorphic.

3 The Results

Proposition 3. Let X be a compler manifold, Y a C*° manifold and 7 €
C>®(X,Y). Also let {X,} be a sequence of open subsets of X and F C X1 a
closed subset of X such that 7| is proper, UX,, = X and for every n > 1,
X, C Xny1. We consider M a linear set over X \ F. We suppose that for
every n € N there exists ¢, € C°(X,,,R,) with the following properties:
1)én|x,\F is strictly 1-convex with respect to M
2) For every ¢ > 0 7T|{:ceXn:¢n(x)2e} 1S proper.
Then there exists ¢ € C°(X,R,) a strictly 1-convez function with respect to
M on X \ F and such that T|(zex.p()>e} 5 proper for every e > 0.

Xn\F -

Proof. Let {U,} be a sequence of open subsets of X such that U, CC U,41,
U, CC X, and UU,, = X. Let also {Y,,} be a sequence of compact subsets
of Y such that UY,, =Y and Y,, C Int(Y,41).

We will construct inductively a sequence of functions v, € C*(X,,, R, ) with
the following properties:

Dip, € BIM, X, \ F)

2)¢n =1 on Uy,

3)T | {ze X, wm(z)>e} 15 Proper for every e > 0.



ip, < L on wH(Y,) N (X \ Xpo1)
5)If 2 € m71(Y,) N X, and v, (z) > L then ¢, (z) = 1,1 (2)

Multiplying by a constant we can suppose that ¢; < 1 on 771(Y;) N X;.
Then we put ¢, = ¢y.
Suppose now that we have defined vy, ..., %,_1 and we construct .
Multiplying ¢,, by a constant we can suppose that for every z € U,_q,
On(x) < min{,_1(y) : y € Up_1} and for every z € 77 1(Vy,), ¢n(x) < .
We define:

maz{¢n(z), Yn-1(x)} on X1,
Un(w) = { on(2) on X,\X,1 '

There exists W a neighborhood of 0.X,,_; such that for every z € W, ¢,,(z) >
p_1(z). Indeed:
For every xy € 0X,,_1 we take V an open, relatively compact neighborhood.
Then {z € X,_1 : ¥n_1(x) > ¢ulx)} N7~ Yx(V)) is a compact subset of
X,_1 and it does not contain xo. Let V; C V an open neighborhood of x
such that Vi N{x € X,_1 : ¥u_1(x) > ép(z0)} N7 Y(x(V)) = 0. Thus
Vin{r € X, 1 : Y 1(z) > ¢n(zo)} = 0. Therefore on Vi, ¢p(z9) >
tn_1(x). It follows that ¢, € B(M, X, \ F). On the other hand {z € X, :
UYp(x) > e} C{r € Xy, ou(z) > e U{x € X1 @ Yp1(x) > €}. Thus
| (weXpin(z)>€} 1S PIOpPETL.

Therefore 1), satisfies 1)—5).
_ We define now 5 = lim 4.
¢ € B(M, X \ F) because v, is stationary on compacts.
Let K C Y be a compact subset and let ¢ > 0. Choose n € N such that
KcCY,and e > %
Then 7 (K)N{zx € X : () > e} C 7 (V) N{z € X : p(x) > L1,
4) and 5) = ¥y, < + on 7 1(Y,,) N (X \ X,,—1) for every k > n. And then
YY) N{z e X :p(x) > D =rtY)n{zeX,: o(z) > 11,
Using again 5) we obtain that
YY) N {z € X, : ¢(z) > Ly =7 Y(V,) N{z € X,, : () > L} and this
set is compact. The conclusion follows now from Proposition 2.

O
If Y is a point, one can improve the previous proposition as follows:

Proposition 4. Let X be a complex manifold, M a linear set over X and
{X,} a sequence of open sets such that X, CC X, and UX,, = X. We

6



suppose that for every n > 1 there exists a compact set K,, C X,, and ¢, €
C®(X,,Ry) such that: K, C X,_1, ¢n is strictly 1-convex with respect to
M on X, \ K,, and for every e > 0, {¢, > ¢} CC X,,. Then there exists
¢ € C(X,Ry) such that ¢ is strictly 1- convex with respect to M on X \ K;
and for every e > 0, {¢p > e} CC X.

Proof. The only thing that we have to change in the proof of Proposition 3
is to choose U,, such that K,, C U,. O

Lemma 4. Let X and Y be C* manifolds, h,g : X — (0,00), 71: X =Y
be C* functions such that |g(x)| < 1, and p a positive integer. Then there
ezists a unique C* function 1 : X — (0,00) such that :

h? gP

— +

Yo 14
Moreover if h has the property that 7|(zex:n(z)>e} 95 proper for every e > 0
then v has the same property.

=1

Proof. The above equation is in fact a quadratic equation in 1. This equation
has a unique positive solution, namely:

h2+g" — 1+ /(h? + g» — 1)2 4 4h?

V= 5
It follows then that ¢ is C'*°.
If for some = € X ¢(x) > ¢, since g(z) < 1, we have H(w%p) . It follows
_ ev(z €2
then that (())>1—1—+6—1+ Thus h(z) > 1+6)21+6

Therefore {¢) > e} C {h > O

Vi)

Proposition 5. Let X be a complexr manifold, Y a C*-manifold, © €
C>®(X,Y) and H a hermitian metric on X. Suppose that there exist:
a) i € C*(X,Ry)
b) F and Fy two closed subsets of X, U a relatively compact open subset of
Y, Vi and V, open subsets of X such that Fy C Int(F), ©|g is proper and
VuV, =X
c) My a linear set over Vi \ Fi, a My linear set over Va \ F}

with the following properties:
1) for every real number € > 0, m|y>¢ is proper,
2) 1) is strictly 1-convexr with respect to My on Vi \ Fy
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3) if for every x € Vo \ Fy we set IC; := {{ € My, : (0, &) = 0} then

Ky # Ms, and ) is strictly 1-convex with respect to IC on Vo \ Fi

Let M be the linear set given by the Lemma 2 applied to My and Ms.
Then there exists ¢ € C(n~Y(U),Ry) such that ¢ is strictly 1-convex

with respect to M on 7 Y(U)\ F and {¢ > e} N7 (K) is compact for every

€ > 0 and every compact K C U.

Proof. Set L, := Ms, N{{ €T, X : (0¢Y,&) =0}+

Let V5 be an open subset of X such that V; UV; = X and V3 C V. We will
use Proposition 3.

Since U CC Y, multiplying by a constant we can suppose that |¢(z)| < 1
for x € 7= Y(U). There exists also p € N such that (z) > % for every
re Fna YU).

Let X, =7 ' (U)Nn{z € X : ¢(z) > 2}, n > p. Note that X,, is a relatively
compact subset of X.

Because V3 C Vy , Fy C Int(F) there exist four constants C;, Cy, C3 and C}

such that:

|<3¢z,§>| > Ch1g"],

Lw( ) > Cy ”5/”27 (1)

(Lw(z §.¢") = =Cs||gIllI€" )

Ly(z,8") = =Cull€"|I?
for every x € (V3N X,)\ F, & € Ky, §” € L,. Here | - || is the norm induced
by H.
Let ¢, = (¢ — ) where k is a positive integer.Then:
Lo, (2,6) = k(Y — D) Ly (2,6) + k(k — D@ — 1200, &P (2)

Because v is strictly 1-convex with respect to M; on V; \ F, from (2)
and Lemma 1 it follows that ¢, is strictly 1-convex with respect to M; on
(VinX,)\ F.

Let z € (VsNX,)\Fand{=¢+&" e My, =K, L,.

From (1) and (2) we obtain:

(L¢n(9ff )) >)||k£’|| . DH@= DA =2 = ) CslIE ] 18"+ (k—=1)CF -
" §

If k is large enough
30 = DGl = 24 = DCIEN - 11E7] + (552CF = (¥ = DT> = 0.
Then we have Ly, (z, &) > %CQk( _ )k 1H£/H2 k: 1) Cz( _ %)’“‘2\\5”H2-



And since ¢ and £” are orthogonal:

k
Lo ,6) 2 S (0 = )2 - min{Co(y — ), (5~ DO el

Therefore Lemma 1 and Lemma 2 imply that ¢,, is strictly 1-convex with
respect to M on X, \ F.
In the same time {z € X,, : ¢,(z) > ¢} = {z € X, : ¢(x) > = + e} =
{v € 7 HU) : ¥(z) > = + e} so for every compact K C U we have
{r€X,:n(x) >efNm HK)={z e X :¢(x)> 1+ Ye}nr (K) which
is compact.
[

We will now begin to prove Theorem 2. We will proceed as in [5] and we
will consider a covering {Vi, ..., Vi} of X(ty) = 7 '(¢y) by local charts, each
Vi biholomorphic to an open ball in C", and a set of points {py, ..., ps} such
that p; € V; and p; ¢ V; for i # j. Let W; C V; be open neighborhoods of p;
biholomorphic to open balls in C" such that W; N'V; = () and the retraction
r in theorem 3 is holomorphic on 7~ (U;< ;).

Lemma 5. There exists a Morse function hg - X (to) — Ry and K C X (to)
a compact subset such that

a) {ho > €} is compact for every ¢ > 0

b) A:={z:x is a critical point for ho} \ K is a subset of o~ (U;<sW;)

c) hg is strictly n-convex on a neighborhood of A.

Proof. Since X (to) has at most finitely many compact components there is,
by Theorem 1, a compact subset K; C X (t) and a C* function hy : X (t,) —
R, such that {h; > €} is compact for every € > 0 and h; is strictly n-convex
on X (to)\ K1 . We may also suppose that hy is a Morse function. See in this
sense [2]. Let A; be the set of its critical points that are not in K; (which is
a discrete set).

We put 07 1(V;) = UjenM;; and o= H(W;) = UjenN;; for their decom-
positions into connected components. Then {M,;} and {N;;} satisfy the
conditions of Lemma 3. Let @ : X (t) — X (fo) a diffeomorphism such that
D(A;) C 071 (Uj<sW;) and @ is holomorphic on a neighborhood of A. Then
ho = hq o ® has the required properties. Il

We choose now a simply connected neighborhood of ¢5 and we lift the map
S, given by Theorem 3, to X. We observe then that, in order to complete
the proof of Theorem 2, it suffices to prove the following:
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Proposition 6. Let X be a complex manifold and w: X — T a holomorphic
submersion, where X has dimension n+m, and T = {t € C™; |t| < 1}. Set
X :=mYt),t € T. Assume that there exists a diffeomorphism S : T x Xo —
X with the following properties:

1) S(t, X)) = X; for everyt € T.

2) The map s,, : T — X given by s,,(t) = S(t,xo) is a holomor-
phic section of m for every xo € Xy and X is the disjoint union of
{Swo(T)}ZOGXO'

3) The map r : X — Xg given by S(w(z),r(x)) = z,z € X, defines
a C* retraction of X onto Xo. Moreover there is a Morse function
hg € C*(Xo,Ry), K C Xy a compact set, Vo C Xy an open set,
Vo D A:={x € Xo\ K : x is a critical point for hy}, such that
holv, is n-convex, {ho > €} is compact for every e > 0 and r|.-1(y,) is
holomorphic.

Then for every U an open neighborhood of 0, U CC T, wt|zy: U = U
s a n-concave morphism.
Proof. Let g: X — (0,00), g(x) = %
For r € X let X, = {S(t,r(z)); t € T} and &, = 7~ (7(x)). ¥, and D, are
closed submanifolds of X.

Following [5] we will use:

Definition 7. A hermitian metric H on X is called "special” if for any
point x € X the complex vector subspaces T,(3,) and T,(®,) of T,X are
orthogonal with respect to H .

Lemma 6. There exists a special hermitian metric H on X.

Let h = hgor and F, = h™'(K). Choose V] an open subset of X, such
that Vj > A and VJ C V, and put Vi = r~*(Vg) and Vo = X \ r—1 (V).
Using Proposition 1 we choose N a linear set of codimension < n — 1 such
that hg is strictly 1-convex with respect to N over V; and put M; = r*(N).
Since h does not have critical points in V5 \ Fy, at any point z € V5 \ F, we
have an orthogonal decomposition with respect to H: T, X =17, & I/ where
I is the holomorphic tangent space at x to the real hypersurface {h = h(z)}
and I is its orthogonal complement. Thus I/ is a 1-dimensional complex
vector space and 1,(3,) C I, so I and T,.(3,) are orthogonal (with respect
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to H). Therefore I C T,(®,).
We set My = M}, & ML where M), and MY are linear sets over V, \ Fy given
by ,2,:(: =T,(¥;) and /2,,90 =I7.
Let M be the linear set given by Lemma 2 applied to M; and M.
Since K is compact there exists p € N such that for every x € K, ho(z) > 1—1).
Let X, = {z € X : h(z) > 1}, n > p. Then F, C X,,. Let F and Fy
be two closed X such that F' C X,,, Fy C Int(F), F, C Int(F}) and 7|p is
proper.
We will find for each n > p a function ¢, € C*(X,,,R;) such that ¢,|x,\r
is strictly 1-convex with respect to M|y, \r and {z € X, N7 1 (U) : ¢p(z) >
e}N7~ (L) is compact for every real number ¢ > 0 and every compact L C U.
The conclusion of the proposition will follow then from Proposition 3.
To obtain ¢,, we will use Proposition 5.
Let Y be an open subset of T" such that U cC Y cC T.
(7 1Y) N Vyn X,,) \ Int(F)) is a compact subset of X and for every
r€(m1(Y)NVyonX,) \ Int(Fy) and & € T, (D h,,£") # 0.
Since I"”] depends continuously on z it follows that there exists C' > 0 such
that (0 ha,&")| > C||&"|| for every x € (x=1(Y)NVon X,,) \ Int(F)) and
every " e I'

Let h,, = eon(h=3) _ 1 where a, is a positive real number.
L, (2,€) = e =) (L, (x, €) + | (Oh, €)]%). Choose a, large enough such
that on (77} (Y)NVoN X,) \ Int(Fy), Ly, (") > 0 for every & € MY.
Note that because (0h, ") # 0 we have also (Oh,,&") #0
If & =¢ +¢&" e My ® MY since h is constant on 3, we get (9h, &) = 0 and
Lp(&') = 0. It follows then that (9h,, &) =0 and Ly, (¢') = 0.

A direct computation shows that L,(§) = L,(&) > C1||¢’||* for some
C1 > 0 (see also Lemma 8 in [5]).
Let Cy, C3 be positive constants such that on (7= 1(Y) NV, N X,,) \ Int(F))
we have:
(Ohn, €")| = Col|€"]| and 2Re(Ly, (£,€")) = =Cs[E'][[[€” ]
and choose a positive integer p such that p > 3 and

p—1CC3
4 g(x)

for every z € (m71(Y) N Va N X,,) \ Int(Fy). (Notice that £ < g(z) < 1.)

>C; (3)
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Let ¢, € C*(X,,,R,) such that

2 D
RSEra 0

There exists such v, by Lemma 4 and 7|{zcx,pn(x)>c} 1S proper (the level
sets for h,, are level sets for h).
For z € (m (V) NVonN X,) \ F let K, := {€ € Mo, : (0, &) = 0}

Differentiating (4) once we obtain:

ha g’ _ 2h, p pg” '

Since (Oh,,,&") # 0 and (g, &) # 0 for £ # 0 and £” # 0 it follows that
Ko # Ms,.
Also for € € K, we obtain: (9g,¢') = —én 2k gp, ey (5)

pgP 1 P

— o (09,¢)

Differentiating (4) twice we obtain:

hy, p-1
PLun(€) = S Ly (€) + 2L .

where p, A(€) and B() are given by:

p(p —1)g"? 2
Ly(&) + A(E) + (§)+W|<39,§>|

h2 gP

=G T T

2

A(€) = —{1(0hn, ) - inRe«ahmgxawma) T Z— (O, )2}

2

Re((09, ) 00 &)+ 2|0 )}

{ p( 1)[(9g, )"~ (1+ ¢y)

B(&) =

2pg
1 + 1y, 4 (1+1n)

Notice that A(§) > 0 and B(§) > 0.
For ¢ € K, using the previous inequalities we obtain that:

p—2

2+ Ao 00

2hy,

pLy, () > —%Cgllé 1€+ 1+¢n

12

(09, €')?



And (5) implies that

-1
Cl||€/H2_'_( )(1+,¢n) nC2H§NH2

2h,, Nt bg
PLu(€) = —im i €] + PR

Un L+t

But (3) implies that:

p_l 2hn / 1 n n 1
2 ailel - Zrciglen) + LU B ey o
and therefore
gp—l 1112 ( )(1+¢n) n 21| ¢|2
pLu(€) 2 s alel + B e

Since £ and £” are orthogonal this last inequality implies that 1), is strictly
1-convex with respect to K.

Because 7 is holomorphic on Vj it follows that L;(§) = L(¢") and we
deduce that 1), is strictly 1-convex with respect to My on V;i. Thus all the
conditions of Proposition 5 are fulfilled. n
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