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Abstract

Diederich and Ohsawa proved that in P5 there exists a locally
hyperconvex, Stein open subset which is not hyperconvex. In this
paper we generalize their results.

1 Introduction

In [1] Diederich and Ohsawa proved that if M is a complex manifold and N
is a complex submanifold, then any locally hyperconvex, Stein open subset
of N is the trace of a locally hyperconvex, Stein open subset of M . In [4]
it was proved that if Y is a closed complex subspace of X and Y is Stein,
then Y has a Stein neighborhood. Also, it has been proved in [5] that if Y
is hyperconvex then Y has a hyperconvex neighborhood.

Using the methods of Demailly [2] we will set up a general framework for
the above theorems and we will generalize Diederich and Ohsawa’s results
for reduced complex spaces.

2 The Results

If M is a topological space we will denote by C(M) the set of continuous real
functions defined on M , and by Open(M) the set of open subsets of M .

Let A be the class of reduced complex spaces and let B⊂ A be such that
for every M ∈ B, Open(M) ⊂ B. We assume also that for every x ∈ M ,
{x} ∈ B. For each M ∈ B we consider P(M) a subset of C(M) such that the
following conditions are satisfied:
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1) For every M ∈ B and U an open subset of M , if φ ∈ P(M) then
φ|U ∈ P(U). Furthermore P|Open(M) is a subsheaf of sets of C|Open(M) and
if M is just a point P(M) = R.
2) For every f, g ∈ P(M), a > 0, U an open subset of R containing f(M)
and χ : U → R a smooth, convex, and non-decreasing function, we have
af + χ ◦ g ∈ P(M) and max{f, g} ∈ P(M).
3) For every N ⊂ M , a closed subspace, N, M ∈ B, every continuous func-
tion λ : N → (0,∞), and every f ∈ P(N) there exists V ⊂ M an open
neighborhood of N and f̃ ∈ P(V ) such that |f̃|V − f | < λ.
4) For every N ⊂ M a closed subspace, N,M ∈ B, there exists V an open
neighborhood of N and a continuous function f : V → [−∞,∞) such that
f−1(−∞) = N and f has the following property : for every x ∈ V and every
φ ∈ Px there exist k > 0 and an open neighborhood of x, U , contained both
in V and in the domain of φ, such that f + kφ ∈ P(U \N). A function with
this property will be called almost P
Definition 1. Let M ∈ B
1. M is said to be P-complete if there exists φ ∈ P(M) such that for every
c ∈ R, {x ∈ M : φ(x) < c} ⊂⊂ M .
2. M is said to be hyper P-complete if there exists φ ∈ P(M), φ : M →
(−∞, 0), such that for every c < 0 {x ∈ M : φ(x) < c} ⊂⊂ M .
3. An open subset D of M is said to be locally hyper P-complete if for every
x ∈ ∂D there exists B, an open neighborhood of x such that B ∩D is hyper
P-complete.

Observation: It follows from the properties of P that every point of
M ∈ B has a hyper P-complete neighborhood.

We consider N, M ∈ B, N a closed subspace of M . The proofs of the
following two propositions are similar to the proof of Theorem 1 in [2]. Only
the proof of Proposition 2 will be given here.

Proposition 1. If N is P-complete then N has a P-complete neighborhood
in M .

Proposition 2. If N is hyper P-complete then N has a hyper P-complete
neighborhood in M .

Proof. Let U be an open neighborhood of N and v : U → [−∞,∞) a contin-
uous function such that v−1(−∞) = N and v is almost P on U . Shrinking U
we may suppose that there exists φ ∈ P(U), such that φ < 0 and for every
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c ∈ R, {x ∈ N : φ(x) < c) ⊂⊂ N . Let W be an open subset of M such that
∂W \N ⊂ U , N ⊂ W and for every c < 0, {x ∈ W : φ(x) ≤ c} is compact.
Let ṽ = v +χ ◦φ where χ : (−∞, 0) → R is a smooth, convex and increasing
function. If χ increases fast enough ṽ ∈ P(W \ N). To see that one sets
Fn := φ−1([−1

n
, −1

n+1
]) and F0 := φ−1(−∞,−1]. For every j ∈ N, Fj is com-

pact and therefore there exists a neighborhood Uj of Fj and kj > 0 such that
v+kjφ ∈ P(Uj \N). We then requier that χ′|[−1/n,−1/n+1] > kj. The condition

ṽ ∈ P(W \ N) is a local condition and ∪Fj ⊃ W . On a neighborhood of
Fj, ṽ = v + kjφ + χj ◦ φ where χj(t) = χ(t)− kjt is a convex and increasing
function on a neighborhood of φ(Fj). And that implies that ṽ ∈ P(W \N).
In the same way we can choose χ such that ṽ|∂W\N > 0.
We set V := {x ∈ W : ṽ(x) < 0}. Then V ⊃ N and ψ := max{φ, ṽ} is a
negative exhaustion for V . Also since in a neighborhood of N , ψ = φ, we
have also ψ ∈ P(V )

Proposition 3. If D is an open, P-complete, and locally hyper P-complete
subset of N , then there exists Ω an open, P-complete, and locally hyper P-
complete subset of M such that Ω ∩N = D.

Proof. We denote by ∂D the boundary of D in N .
For every x ∈ ∂D we consider Qx an open neighborhood of x in N such that
Wx := Qx ∩D is hyper P-complete.
Let {Qj : j ∈ N} be a countable subset of {Qx : x ∈ ∂D} such that ∪Qj ⊃
∂D . Using Proposition 2 we choose W̃j open hyper P-complete subsets of

M such that W̃j ∩N = Wj and we set W̃ = ∪W̃j.

Let D1 be an open subset of D such that D1 ⊂ D and (D \D1) ⊂ W̃ .
For every j ∈ N let Rj be an open subset of M such that Rj ∩ N ⊂ Qj,
∪Rj ⊃ ∂D, Rj ∩D1 = ∅ and {Rj} is locally finite.
For each z ∈ D \ D1 we choose Iz an open neighborhood in M such that
Iz ∩N ⊂ D and for each j ∈ N we have:

if z ∈ Rj then Iz ⊂ W̃j

if z /∈ Rj then Iz ∩Rj = ∅
This is possible because {Rj} is locally finite and Rj ∩D ⊂ W̃j. Note that
because {Rj} is locally finite ∪Rj is closed. For z ∈ D1 we choose Jz an open
neighborhood in M such that Jz ∩ (∪Rj) = ∅ and Jz ∩N ⊂ D.

Put
U := (

⋃

z∈D\D1

Iz) ∪ (
⋃

z∈D1

Jz)
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Then U is open in M and U ∩ N = D. Also for every j ∈ N, (Rj ∩ U) ⊂
(W̃j ∩ U). Using Proposition 1 we choose U1 ⊂ U a P-complete open subset
of U such that U1 ∩ N = D and ∂U1 \ N ⊂ U . Let φ ∈ P(U1) be an
exhaustion function and v : U1 → [−∞,∞) an almost P function such that
v−1(−∞) = D. We can assume of course that φ > 1. Set h = v + χ ◦ φ
where χ : R → R is a smooth, convex and increasing function such that
h ∈ P(U1 \D). We define Ω := {x ∈ U1 : h(x) < 0}. Then Ω is P-complete
since max{φ, (1− eh)−1} is an exhaustion.

Ω is also hyper P-complete. Indeed: if x ∈ ∂Ω\N it follows directly from
the definition that Ω is hyper P-complete around x. If x ∈ ∂Ω ∩ N = ∂D
we choose j ∈ N such that x ∈ Rj and let B := Rj ∪ W̃j. Then B is an
open neighborhood of x and B ∩ Ω = W̃j ∩ Ω. If ρ : W̃j → (−∞, 0) is an
exhaustion function for W̃j and ρ ∈ P(W̃j) then ψ := max{h, ρ} is a bounded
exhaustion function for B and ψ ∈ P(U).

Two examples

I) B=A and for a reduced complex space X, P(X) = the set of strictly
plurisubharmonic functions. It follows from [2] that P satisfies all the re-
quired properties.
In this case Proposition 1 is the Main Theorem in [4] and Proposition 2 is
Theorem 4 in [5]. Proposition 3 becomes:

Proposition 4. Let Y be a complex subspace of X. If D is an open, Stein,
locally hyperconvex subset of X, then there exists Ω an open, Stein, locally
hyperconvex subset of X such that Ω ∩ Y = D.

It was proved in [1] that for every n ≥ 5 there exists Ω an open subset of
Pn which is Stein, locally hyperconvex but not hyperconvex.
If Y is a projective algebraic variety of dimension n ≥ 4 let π : Y → Pn be a
proper, surjective and finite holomorphic map and let Ω1 := π−1(Ω). Since
π is finite, Ω1 is Stein and locally hyperconvex (see in this sense [5]).

Suppose Ω1 is hyperconvex. Let φ : Ω1 → (−∞, 0) be a plurisubharmonic
exhaustion function and let π∗φ the unique continuous function that outside
the branching set satisfies: π∗φ(x′) =

∑
π(x)=x′ φ(x).

By Varouchas [6], π∗φ is plurisubharmonic. If p is the maximal number
of points in the fiber of π and ε > 0 then {π∗φ ≤ −ε} ⊂ π({φ ≤ −ε

p
}).

Therefore π∗φ is a bounded plurisubharmonic exhaustion function for Ω. But
a Stein domain that has a bounded plurisubharmonic exhaustion function is
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hyperconvex and this is a contradiction. Combining this last observation and
Proposition 4 we obtain:

Theorem 1. Let X be a complex space. If X has a complex subspace Y
which is a projective algebraic variety with dim(Y ) ≥ 5 then there exists
Ω ⊂ X open Stein subset which is locally hyperconvex but not hyperconvex.

II) Let (X,ω) be a Kähler manifold and set B := ∪{Open(Y ) : Y is
a closed submanifold of X}. Every M ∈ B is a Kähler manifold with the
induced metric from X. Definition 2 and Proposition 5 are due to H.Wu [7].

Definition 2. 1) Let M be a Kähler manifold, x ∈ M and G the hermi-
tian inner product on TxM given by the Kähler metric. A set of q vec-
tors {Z1, Z2, ..., Zq} is ε-normal, for ε > 0, if |G(Zi, Zj) − δij| < ε for
i, j = 1, 2, .., q
2) If f is a continuous function defined near x and L is a 1-dimensional
complex submanifold of M passing though x we choose a coordinate sys-
tem {z1, z2, ..., zn} such that zi(x) = 0 i = 1, ..., n and such that near x,
L = {z2 = z3 = ... = zn = 0. Furthermore, assume |∂/∂z1|(x) = 1. Then we
define

Pf(x, L) = lim inf
r→0

2

πr2

( ∫ 2π

0

f(reiθ, 0, ..., 0)dθ − 2πf(0)
)
.

If Z ∈ TxM , also define Pf(x, Z) = |Z|2 infL Pf(x, L) where L runs through
all the 1-dimensional complex submanifolds of M tangent to spanR{Z, JZ}
and defined near x.
3)If U is an open subset of M we define Ψ(q; U) to be those continuous
functions f defined on U with the following property: for every x0 ∈ U there
exists a neighborhood W of x0 and positive constants ε, and η such that if
x ∈ U and {Z1, ..., Zq} is an ε-orthonormal set in TxM then

q∑
j=1

Pf(x, Zj) ≥ η.

If f is a C2 function we denote by Lf the Levi form of f .

Proposition 5. On a Kähler manifold M the class Ψq(M) enjoys the fol-
lowing properties:
a) A real-valued C2 function, f , belongs to Ψq(M) if and only if for each
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set of vector fields {Z1, ..., Zq} which are orthonormal with respect to G,∑q
i=1 Lf(Zi, Zj) > 0.

b) Ψq(M) is a cone in the space of continuous functions, i.e., if f1, f2 are in
Ψq(M) then so is any positive combination thereof.
c) Ψq(M) has the maximum-closure property, i.e., if f1, f2 are in Ψq(M)
then so is max{f1, f2}.
d) C∞ ∩Ψq(M) is dense in Ψq(M) is the Co topology.

Then P := Ψq satisfies properties 1), 2) and 4). P satisfies also 3).
This follows from the density of C∞ ∩ Ψq(M) in Ψq(M) and from the next
proposition:

Proposition 6. Let M be a m-dimensional Kähler manifold, N ⊂ M a
closed n-dimensional complex submanifold, and φ ∈ Ψq(N) ∩ C∞. Then
there exist V a neighborhood of N in M and φ̃ ∈ Ψq(V ) ∩ C∞ such that
φ̃|Y = φ.

Proof. We consider φ′ an arbitrary C∞ extension of φ to a neighborhood
of N and {Ωλ, zλ} a locally finite covering of N with coordinate patches
zλ : Ωλ → Cm in which N ∩ Ωλ is given by z′λ = (zλ,n+1, ..., zλ,m) = 0. Let
{θλ} be C∞ functions with compact support in Ωλ such that

∑
θλ = 1 on

N . Set
φ̃ = φ′(x) +

∑
θλ log(1 + ε−1

λ |z′λ|2)
Then φ̃|N = φ and for x ∈ N ∩ supp(θµ), Lφ̃ ≥ Lφ′ + θµεµ

−1L|z′µ|2 and

therefore if we choose {ελ} to be small enough it follows that φ̃ ∈ Ψq(V ) for
some neighborhood V of N .
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