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Abstract

Diederich and Ohsawa proved that in P° there exists a locally
hyperconvex, Stein open subset which is not hyperconvex. In this
paper we generalize their results.

1 Introduction

In [1] Diederich and Ohsawa proved that if M is a complex manifold and N
is a complex submanifold, then any locally hyperconvex, Stein open subset
of N is the trace of a locally hyperconvex, Stein open subset of M. In [4]
it was proved that if Y is a closed complex subspace of X and Y is Stein,
then Y has a Stein neighborhood. Also, it has been proved in [5] that if Y
is hyperconvex then Y has a hyperconvex neighborhood.

Using the methods of Demailly [2] we will set up a general framework for
the above theorems and we will generalize Diederich and Ohsawa’s results
for reduced complex spaces.

2 The Results

If M is a topological space we will denote by C(M) the set of continuous real
functions defined on M, and by Open(M) the set of open subsets of M.

Let A be the class of reduced complex spaces and let BC A be such that
for every M € B, Open(M) C B. We assume also that for every x € M,
{z} € B. For each M € B we consider P(M) a subset of C(M) such that the
following conditions are satisfied:
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1) For every M € B and U an open subset of M, if ¢ € P(M) then
¢ € P(U). Furthermore P|open(ar) is a subsheaf of sets of Cjopen(ar) and
if M is just a point P(M) = R.

2) For every f,g € P(M), a > 0, U an open subset of R containing f(M)
and xy : U — R a smooth, convex, and non-decreasing function, we have
af +xog € P(M) and maz{f,g} € P(M).

3) For every N C M, a closed subspace, N, M € B, every continuous func-
tion A : N — (0,00), and every f € P(N) there exists V' C M an open
neighborhood of N and f € P(V) such that |fiy — f| < A.

4) For every N C M a closed subspace, N, M € B, there exists V' an open
neighborhood of N and a continuous function f : V — [—o00,00) such that
f71(—o0) = N and f has the following property : for every x € V and every
¢ € P, there exist k > 0 and an open neighborhood of x, U, contained both
in V and in the domain of ¢, such that f + k¢ € P(U\ N). A function with
this property will be called almost P

Definition 1. Let M € B

1. M 1is said to be P-complete if there exists ¢ € P(M) such that for every
ceR, {xeM:¢(x)<ctCC M.

2. M is said to be hyper P-complete if there exists ¢ € P(M), ¢ : M —
(—00,0), such that for every ¢ <0 {x € M : ¢(x) < c} CC M.

3. An open subset D of M is said to be locally hyper P-complete if for every
x € D there exists B, an open neighborhood of x such that B N D is hyper
P-complete.

Observation: It follows from the properties of P that every point of
M € B has a hyper P-complete neighborhood.

We consider N,M € B, N a closed subspace of M. The proofs of the
following two propositions are similar to the proof of Theorem 1 in [2]. Only
the proof of Proposition 2 will be given here.

Proposition 1. If N is P-complete then N has a P-complete neighborhood
mn M.

Proposition 2. If N is hyper P-complete then N has a hyper P-complete
neighborhood in M.

Proof. Let U be an open neighborhood of N and v : U — [—00, 00) a contin-
uous function such that v=}(—oc0) = N and v is almost P on U. Shrinking U
we may suppose that there exists ¢ € P(U), such that ¢ < 0 and for every
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ceR, {z e N:¢(x) <c)CC N. Let W be an open subset of M such that
OW\ N CU, NCW and for every ¢ < 0, {x € W : ¢(x) < ¢} is compact.
Let o = v+ x 0 ¢ where x : (—00,0) — R is a smooth, convex and increasing
function. If x increases fast enough © € P(W \ N). To see that one sets
F, = ¢ ([ =5)) and Fy := ¢~'(—o0, —1]. For every j € N, F} is com-
pact and therefore there exists a neighborhood U; of Fj and k; > 0 such that
v+kj¢ € P(U;j\N). We then requier that x{_,, ;/,,1 > k;. The condition
v € P(W\ N) is a local condition and UF; D W. On a neighborhood of
F;, 9 =v+kj¢+ xj 0 ¢ where x;(t) = x(t) — k;t is a convex and increasing
function on a neighborhood of ¢(F;). And that implies that o € P(W \ N).
In the same way we can choose x such that 0jsp\n > 0.
We set V :={z € W :9(z) < 0}. Then V O N and ¢ := maz{¢,v} is a
negative exhaustion for V. Also since in a neighborhood of N, ¢ = ¢, we
have also ¢ € P(V)

O

Proposition 3. If D is an open, P-complete, and locally hyper P-complete
subset of N, then there exists () an open, P-complete, and locally hyper P-
complete subset of M such that QNN = D.

Proof. We denote by 0D the boundary of D in N.
For every z € 9D we consider ), an open neighborhood of z in N such that
W, = Q, N D is hyper P-complete.
Let {Q; : j € N} be a countable subset of {Q, : x € 9D} such that UQ; D
0D . Using Proposition 2 we choose Wj open hyper P-complete subsets of
M such that Wj NN = W; and we set W = U/I/I7j.
Let D; be an open subset of D such that D; C D and (D \ D;) C w.
For every j € N let R; be an open subset of M such that Fj NN C Qj,
UR; D 0D, R;N Dy = 0 and {R;} is locally finite.
For each z € D\ D; we choose I, an open neighborhood in M such that
I.N N C D and for each j € N we have:

if 2 € R; then I, C W,

if 2¢ Rjthen I, N R; =10
This is possible because {R;} is locally finite and R; N D C /V[\?j Note that
because { R;} is locally finite UR; is closed. For z € D; we choose J, an open
neighborhood in M such that J, N (UR;) =0 and J,N N C D.

Put
v=(J nucly

z€D\ D1 ze€Dq



Then U is open in M and U NN = D. Also for every j € N, (R; NU) C
(/1/17J NU). Using Proposition 1 we choose U; C U a P-complete open subset
of U such that Uy " N = D and 9U; \ N C U. Let ¢ € P(U;) be an
exhaustion function and v : U; — [—00,00) an almost P function such that
v} (—o00) = D. We can assume of course that ¢ > 1. Set h = v+ y 0 ¢
where y : R — R is a smooth, convex and increasing function such that
h € P(Uy \ D). We define Q := {z € U; : h(z) < 0}. Then € is P-complete
since max{¢, (1 — e")~1} is an exhaustion.

2 is also hyper P-complete. Indeed: if x € 9Q\ N it follows directly from
the definition that ) is hyper P-complete around z. If x € QNN = 9D
we choose j € N such that x € R; and let B := R; U V~VJ Then B is an
open neighborhood of z and BNQ = W, N Q. If p: W; — (—00,0) is an
exhaustion function for W; and p € P(W;) then ¢ := max{h, p} is a bounded
exhaustion function for B and ¢ € P(U). O

Two examples

I) B=A and for a reduced complex space X, P(X) = the set of strictly
plurisubharmonic functions. It follows from [2] that P satisfies all the re-
quired properties.

In this case Proposition 1 is the Main Theorem in [4] and Proposition 2 is
Theorem 4 in [5]. Proposition 3 becomes:

Proposition 4. Let Y be a complex subspace of X. If D is an open, Stein,
locally hyperconvexr subset of X, then there exists € an open, Stein, locally
hyperconvexr subset of X such that QNY = D.

It was proved in [1] that for every n > 5 there exists 2 an open subset of
P which is Stein, locally hyperconvex but not hyperconvex.
If Y is a projective algebraic variety of dimension n >4 let 7 : Y — P" be a
proper, surjective and finite holomorphic map and let Q; := 77(€2). Since
7 is finite, € is Stein and locally hyperconvex (see in this sense [5]).
Suppose 21 is hyperconvex. Let ¢ : 1 — (—00,0) be a plurisubharmonic
exhaustion function and let m,¢ the unique continuous function that outside
the branching set satisfies: m.¢(z') = 32, ) ¢(2).
By Varouchas [6], 7.¢ is plurisubharmonic. If p is the maximal number
of points in the fiber of 7 and € > 0 then {m.¢ < —€} C 7({¢ < =°}).
Therefore m,¢ is a bounded plurisubharmonic exhaustion function for 2. But
a Stein domain that has a bounded plurisubharmonic exhaustion function is
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hyperconvex and this is a contradiction. Combining this last observation and
Proposition 4 we obtain:

Theorem 1. Let X be a complex space. If X has a complex subspace Y
which is a projective algebraic variety with dim(Y') > 5 then there exists
Q C X open Stein subset which is locally hyperconvexr but not hyperconvex.

IT) Let (X,w) be a Kéhler manifold and set B := U{Open(Y) : Y is
a closed submanifold of X}. Every M € B is a Kéhler manifold with the
induced metric from X. Definition 2 and Proposition 5 are due to H.Wu [7].

Definition 2. 1) Let M be a Kdhler manifold, x € M and G the hermi-
tian inner product on T,M given by the Kdhler metric. A set of q vec-
tors {Z1,Zs, ..., Z,} is e-normal, for e > 0, if |G(Z;,Z;) — ;] < € for
,j=1,2,..,q

2) If f is a continuous function defined near x and L is a 1-dimensional
complex submanifold of M passing though x we choose a coordinate sys-

tem {z1, 2, ..., 2n} such that z;(x) = 04 = 1,....,n and such that near x,
L =A{z =2 =..=2z,=0. Furthermore, assume |0/0z |(x) = 1. Then we
define
9 2 )
Pf(z,L) = liminf —2</ f(re®,0,...,0)do — 27Tf(0)>.
r—0 wr 0

If Z € T,M, also define Pf(x,Z) = |Z|?infy, Pf(z, L) where L runs through
all the 1-dimensional complex submanifolds of M tangent to spang{Z, JZ}
and defined near x.

3)If U is an open subset of M we define W(q;U) to be those continuous
functions f defined on U with the following property: for every xq € U there
exists a neighborhood W of xoy and positive constants €, and n such that if
reU and {Z,...,Z,} is an e-orthonormal set in T, M then

ZPf(QZ,Zj) 277'

If fis a C? function we denote by Lf the Levi form of f.

Proposition 5. On a Kdhler manifold M the class V,(M) enjoys the fol-
lowing properties:
a) A real-valued C* function, f, belongs to W, (M) if and only if for each
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set of vector fields {Zi,...,Z,} which are orthonormal with respect to G,
;1:1 Lf(ZZ> ZJ) > 0.

b) W, (M) is a cone in the space of continuous functions, i.e., if fi, fo are in

U, (M) then so is any positive combination thereof.

c) V(M) has the mazimum-closure property, i.e., if fi, fo are in U, (M)

then so is max{ fi, fo}.

d) C* NV, (M) is dense in ¥, (M) is the C° topology.

Then P := ¥, satisfies properties 1), 2) and 4). P satisfies also 3).
This follows from the density of C* N ¥, (M) in ¥, (M) and from the next
proposition:

Proposition 6. Let M be a m-dimensional Kahler manifold, N C M a

closed n-dimensional complex submanifold, and ¢ € U,(N)NC*®. Then
there exist V' a neighborhood of N in M and ¢ € U, (V)N C>™ such that

Oy = b.

Proof. We consider ¢’ an arbitrary C'™ extension of ¢ to a neighborhood
of N and {Q,, 2z} a locally finite covering of N with coordinate patches
zx : Q) — C™ in which N N Q, is given by 2} = (2xn+1s .- 2am) = 0. Let
{0,} be C* functions with compact support in 2, such that > 60, = 1 on
N. Set

b= ¢ (x)+ ZH,\ log(1 + €, |25 ]?)

Then q~5|N = ¢ and for x € N N supp(b,), Lo > L¢ + QMEM*1L|ZL|2 and
therefore if we choose {€x} to be small enough it follows that ¢ € ¥, (V) for
some neighborhood V' of N. n
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