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1 Introduction

Approximation of holomorphic functions on compact sets in Cn (or in a Stein
manifold or a Stein space) with polynomials (or globally defined functions)
is a basic and well studied subject in Complex Analysis. However sometime
in order to construct holomorphic functions with nice global properties one
has to approximate on non-compact sets. Among other places where such
phenomena appear see for example [2], [3] or [5].

In dimension one we have the following nice and useful result of R.
Narasimhan [7]:
If Dn, n ∈ N, are open sets in an open Riemann surface, R, such that
- Dn are pairwise disjoint
- {Dn}n≥1 is locally finite
- ∪Dn is Runge in R
then for every sequence of holomorphic functions fn ∈ O(Dn), every sequence
of compacts Kn ⊂ Dn and every sequence of positive numbers εn > 0 there
exists f ∈ O(R) such that ‖f − fn‖Kn < εn for every n.

The purpose of this note is to give an example showing that Narasimhan’s
result does not hold in higher dimension. We will give in fact two examples.
For the first one we will use a sequence of complex curves in C3 that are
perturbations of the curve given by z1z2 = 1, (z1 − 1)z3 = 1. This curve is
smooth and has three ends. It was used by E. Kallin in [4] to construct three
disjoint polydiscs with non-polynomially convex union. It turns out that
in this first construction one cannot choose the Runge domains {∆n} to be
polydiscs. The second example is not so clean from the computational point
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of view. We will use also a sequence of smooth complex curves with three
ends in C3 however this sequence will not be convergent. The main point
of this second example is that we obtain actually a locally finite sequence
of disjoint polydiscs such that their union is Runge in C3 but the uniform
approximation does not hold.

One more remark: it was proved in [3] that if one has a locally finite
sequence of disjoint polydiscs such that their centers are on the same real
line (in [3] this configuration is called a ray of polydiscs) then one has uniform
approximation.

2 Preliminaries

We state all the results and definitions in this section for subsets of Cp but
obviously everything can be done in any reduced Stein space.

If K is a compact subset of Cp we denote by K̂ its holomorphically convex
hull. Namely K̂ = {z ∈ Cp : |f(z)| ≤ supK |f |,∀f ∈ O(Cp)}. K is called

holomorphically convex if K = K̂.

Definition 1.
1) If D is an open subset of Cp, D is called Runge if it is Stein and for every

compact set K ⊂ D, every f ∈ O(D) and every ε > 0 there exist f̃ ∈ O(Cp)

such that supK |f − f̃ | < ε.
2) A sequence, {Dn}n≥1, of Runge domains in Cp is called uniformly Runge
if for every sequence of positive real numbers {εn}n≥1, every sequence of com-
pact sets {Kn}n≥1, Kn ⊂ Dn, and every sequence of holomorphic functions
{fn}n≥1, fn ∈ O(Dn), there exists f ∈ O(Cp) such that for every n ≥ 1 we
have ‖f − fn‖Kn < εn.

The terminology ”uniformly Runge” was used in [5].

Definition 2. A sequence {Kn}n≥1 of compact sets in Cp is called holomor-
phically separated if there exist f ∈ O(Cp) and an increasing sequence of
real numbers {αn}n≥0 such that lim αn = ∞ and for each n ≥ 1 one has
αn−1 < <(f|Kn) < αn.

The following lemma was proved in [6] (see also [1]):

Lemma 1. Let K1 and K2 be disjoint holomorphically convex compact sub-
sets of Cp. Then K1∪K2 is holomorphically convex if and only if there exists
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a holomorphic function f on Cp such that <(f) < 0 on K1 and <(f) > 0 on
K2. (<(f) stands for the real part of f .)

Proposition 1. A sequence {Kn}n≥1 of holomorphically convex compact sets
in Cp is holomorphically separated if and only if there exists an exhaustion
{Pn}n≥1 of Cp with holomorphically convex compact subsets such that
a) Kn ⊂ Pn for all n
b) For every j and n, j > n, Pn ∩Kj = ∅
c) For every finite set S ⊂ {n+1, n+2 . . . }, Pn∪

⋃
j∈S Kj is holomorphically

convex.

Proof. Suppose that {Kn} is holomorphically separated and let f ∈ O(Cp)
and {αn} as in the definition. Let {Pn} be an exhaustion of Cp with holomor-
phically convex compact subsets such that Kn ⊂ Pn and Pn ⊂ {<(f) < αn}.
Note that it is possible to find such an exhaustion because, on one hand
{<(f) < αn} is Runge in Cp and, on the other hand, as lim αn = ∞,
∪{<(f) < αn} = Cp. Now Lemma 1 guarantees that for every finite set
S ⊂ {n + 1, n + 2 . . . }, Pn ∪

⋃
j∈S Kj is holomorphically convex.

Conversely, let’s assume the existence of {Pn} with the three properties.
We can construct inductively a sequence {gn} of holomorphic functions, gn ∈
O(Cp) such that ‖gn‖Pn−1 < (1

2
)n+1 and ‖g1 + g2 · · ·+ gn−n‖Kn < 1

4
. We set

f :=
∑

gn. It is easy to see that f ∈ O(Cp) and n− 1
2

< <(f|Kn) < n+ 1
2
.

Proposition 2. Suppose that {Dn}n≥1 is a sequence of Runge domains in
Cp. The following are equivalent:
i) {Dn}n≥1 is uniformly Runge
ii) Every sequence of compact sets {Kn}n≥1, Kn ⊂ Dn, is holomorphically
separated.

Proof.
i) ⇒ ii) Let {Kn}n≥1 be a sequence of compact sets, Kn ⊂ Dn. Because
{Dn}n≥1 is uniformly Runge we can find f ∈ O(Cp) such that ‖f−2n‖Kn < 1.
Then we can choose αn = 2n + 1.
ii) ⇒ i) We consider a sequence of compact sets {Kn}n≥1, Kn ⊂ Dn, a
sequence of positive numbers {εn}n≥1, and a sequence of holomorphic func-

tions {fn}n≥1, fn ∈ O(Dn). Since K̂n is a compact subset of Dn, replacing

Kn by K̂n we can assume that Kn are holomorphically convex in Cp. We use
then Proposition 1 and we choose the sequence {Pn}n≥1 satisfying a), b) and
c). We construct inductively a sequence of holomorphic functions {gn}n≥1,
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gn ∈ O(Cp), that satisfy, for every n ≥ 1 the following two inequalities:
‖gn‖Pn−1 < (1

2
)n min{ε1, · · · , εn−1} and ‖g1 + g2 · · · + gn − fn‖Kn < εn

2
. We

set f =
∑∞

n=1 gn.

Remark 1. Because the proof of i) ⇒ ii) uses only the constant sequence
{εn = 1} our notion of ”uniformly Runge” is equivalent to the apparently
weaker one in which we replace ”any sequence of positive real numbers {εn}”
by ”any constant sequence of positive real numbers {εn}”.

Proposition 3. If {Dn}n≥1 is a uniformly Runge sequence of pairwise dis-
joint open subsets of Cp then for every sequence of holomorphically convex
compact subsets of Cp, {Kn}, Kn ⊂ Dn, and every holomorphically convex
compact subset K ⊂ Cp there exists n0 ∈ N such that, for every n ≥ n0,
K ∪⋃n

j=n0
Kj is holomorphically convex.

Proof. Let {Kn} be a sequence of holomorphically convex compact subsets
of Cp with Kn ⊂ Dn, and K ⊂ Cp be a holomorphically convex compact
set. According to Proposition 2 the sequence {Kn}n≥1 is holomorphically
separated. Then there exists {αn} an increasing and unbounded sequence of
real numbers and f ∈ O(Cp) such that αn−1 < <(fKn) < αn for every n. We
choose n0 such that <(f|K) ≤ αn0−1. The conclusion follows from Lemma
1.

3 The Examples

Example 1:
We consider in C3 the following sequence of Riemann surfaces:

Σk = {(z1, z2, z3) : z1(z2 +
1

k
) = 1, z3(z1 − 1) = 1}, k ≥ 2

In Σk we consider:
γk = {(z1, z2, z3) : |z1| = 4k2},
ηk = {(z1, z2, z3) : |z1 − 1| = 1

4
},

µk = {(z1, z2, z3) : |z1| = 1
4
}.

Let πj : C3 → C be the projection πj(z1, z2, z3) = zj.
Obviously γk are pairwise disjoint and {γk} is locally finite. At the same

time Σk is isomorphic to C \ {0, 1} via π1. As π1(γk) = {ζ ∈ C : |ζ| = 4k2}
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which is holomorphically convex in C \ {0, 1} it follows that γk is holomor-
phically convex in Σk and therefore in C3. Also π2(γk) ⊂ {ζ ∈ C : |ζ + 1

k
| <

1
4k2−1

} which are disjoint discs.
We choose for every k, ∆k disjoint Runge open subset of C3 such that:

• ∆k ⊃ γk,
• {∆k} is locally finite
• π2(∆k) ⊂ {ζ ∈ C : |ζ + 1

k
| < 1

4k2−1
}.

Since the real part of π2 separates ∆k, from Lemma 1 it follows then that
∪∆k is Runge in C3.

Notice that ηk ∪ µk is bounded. Indeed, if z ∈ ηk ∪ µk it follows that
1
4
≤ |z1| ≤ 2, |z2| ≤ 5, |z3| ≤ 4 and so ηk ∪ µk ⊂ B := {z ∈ C3 : |z| ≤ 7}.

On the other hand (γk∪ηk∪µk)̂ contains the point (2k2,− 1
k
+ 1

2k2 ,
1

2k2−1
) 6∈ B

since the holomorphically convex hull of π1(γk ∪ ηk ∪ µk) in C \ {0, 1} is
{ζ ∈ C : |ζ| ≤ 4k2} \ ({ζ ∈ C : |ζ| < 1

4
} ∪ {ζ ∈ C : |ζ − 1| < 1

4
}).

Therefore γk ∪ B is not holomorphically convex for any k ≥ 2 and then
Proposition 3 implies that {∆n} is not uniformly Runge.

Remark 2. This example shows also that the necessity of the condition
lim αn = ∞ in Definition 2.

Example 2:
For s ∈ Z, s ≥ 1 we consider the following two sequences of integers: ks = 5s

and αs = 4k2
s . We define two sequences of points in C3, two sequences of

polyradii and the associated polydiscs (P (a, r) stands for the polydisc of
center a and polyradius r) as follows:

zs = (0,
1

ks

, ks) ∈ C3, rs = (αs + 1,
2

αs

,
1

2
) ∈ (R>0)

3, Fs = P (zs, rs)

ws = (ks,
2

ks

, ks) ∈ C3, ρs = (
2

αs

,
1

αs

, αsk
2
s + 1) ∈ (R>0)

3, Gs = P (ws, ρs).

Let P2s = Fs, P2s−1 = Gs. We will show that Ps are pairwise disjoint, {Ps}
is locally finite, ∪Ps is Runge in C3 and {Ps} is not uniformly Runge.

It follows from the way we defined {ks} and {αs} that

2

ks+1

+
1

αs+1

<
2

ks+1

+
2

αs+1

<
1

ks

− 2

αs

and
1

ks

+
2

αs

<
1

ks

+
3

αs

<
2

ks

− 1

αs
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This shows that

<(z2|Gs+1) <
2

ks+1

+
2

αs+1

< <(z2|Fs) <
1

ks

+
3

αs

< <(z2|Gs)

It follows on one hand that Ps are pairwise disjoint and on the other hand,
using Lemma 1, that ∪Ps is Runge in C3.

Since π3(Fs) = D(ks,
1
2
) and π1(Gs) = D(ks,

2
αs

) it follows that {Ps} is
locally finite.

It remains to be proved that {Ps} is not uniformly Runge. For that we
consider the following sequence of Riemann surfaces: {Γs},

Γs = {z = (z1, z2, z3) ∈ C3 : z1(z2 − 1

ks

) = 1 and (z1 − ks)(z3 − ks) = k2
s}.

Each Γs is isomorphic, via π1, to C \ {0, ks}. Let γs, µs, ηs ⊂ Γs,

γs = {z ∈ Γs : |z1| = αs}, µs = {z ∈ Γs : |z1| = 1}, ηs = {z ∈ Γs : |z1−ks| = 1

αs

}

Using the isomorphism π2 : Γs
∼−→ C\{0, ks} and the inequality αs > ks + 1

αs

it is clear that γs ∪ µs ∪ ηs is not holomorphically convex (in Γs and hence
in C3) and in fact {(γs ∪ µs ∪ ηs)

∧ \ (γs ∪ µs ∪ ηs)}s is unbounded. We will
show that γs ⊂ Fs, ηs ⊂ Gs and µs ⊂ P (0, (2, 2, 2)). All these together with
Proposition 3 will imply, as before that {Ps} is not uniformly Runge.

- γs ⊂ Fs: if z ∈ γs then

|z1| = αs < αs + 1, |z2 − 1

ks

| = 1

αs

<
2

αs

,

|z3 − ks| = k2
s

|z1 − ks| ≤
k2

s

αs − ks

=
k2

s

4k2
s − ks

<
1

2

- ηs ⊂ Gs: if z ∈ ηs then

|z1 − ks| = 1

αs

<
2

αs

, |z3 − ks| = αsk
2
s < αsk

2
s + 1,

|z2 − 2

ks

| =
∣∣∣∣
1

zs

− 1

ks

∣∣∣∣ =
|z1 − ks|
|z1ks| ≤

1
αs(

ks − 1
αs

)
ks

<
1

αs
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- µs ⊂ P (0, (2, 2, 2)): if z ∈ µs then

|z1| = 1 < 2, |z2| = | 1
z1

+
1

ks

| ≤ 1 +
1

ks

< 2,

|z3| = |ks +
k2

s

z1 − ks

| = | z1ks

z1 − ks

| ≤ ks

ks − 1
< 2
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