
Falsification with Induction (Proof Scores) 
and Bounded Model Checking (Search)

School of Information ScienceSchool of Information Science 
Japan Adv. Inst. of Sci. & Tech. (JAIST)

Kazuhiro Ogata

1
2nd RJASW, March 01-04, 2011, 

Sinaia, Romania



GistGist

 We can systematically find a counterexample We can systematically find a counterexample 
showing that an observational transition system 
(OTS) does not enjoy an invariant property with(OTS) does not enjoy an invariant property with
 induction (proof scores),

b d d d l h ki ( h) d bounded model checking (search), and
 their combination (induction-guided falsification).

 A simple example is used to describe it.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 2



Outline of TalkOutline of Talk

 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

O Specification of the protocol in CafeOBJ
 Falsification of FMP with induction (proof scores)
 Falsification of FMP with (bounded) model 

checking (search)g ( )
 Falsification of FMP with induction-guided 

falsification (IGF)falsification (IGF)
 Falsification of NSPK by IGF

C l i
2nd RJASW, March 01-04, 2011, Sinaia, Romania 3

 Conclusion



An example: a flawed mutual exclusionAn example: a flawed mutual exclusion 
protocol (FMP)
S ifi ti f th t l i C f OBJ Specification of the protocol in CafeOBJ

 Falsification of FMP with induction (proof scores)
 Falsification of FMP with (bounded) model 

checking (search)
 Falsification of FMP with induction-guided 

falsification (IGF)
 Falsification of NSPK by IGF
 Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 4



Mutual Exclusion ProtocolsMutual Exclusion Protocols

 Computer systems have resources that are shared Computer systems have resources that are shared 
by active entities such as processes.
E.g. storages and printers. 

 Many such resources should be exclusively used, 
namely that at most one process is allowed to use 
such resources. How to achieve this: the mutual 
exclusion (mutex) problem.

 Mutex protocols are a way of achieving this.p y g
E.g. spinlocks with atomic instructions such as 
test&set Dijkstra’s semaphore and Hore’s monitor

2nd RJASW, March 01-04, 2011, Sinaia, Romania 5

test&set, Dijkstra s semaphore and Hore s monitor.



Flawed Mutex Protocol (FMP)Flawed Mutex Protocol (FMP)

 The pseudo code executed by all processes: The pseudo-code executed by all processes:

Loop:  “Remainder Section (RS)”Loop:  Remainder Section (RS)
rs: wait until locked = false;
es: locked := true;es: locked := true;

“Critical Section (CS)”
cs: locked := false;cs: locked := false;

 locked is a Boolean variable shared by all processes, loc ed s a oo ea a ab e s a ed by a p ocesses,
and is used in neither RS nor CS.
 Initially locked is false and all processes are at rs.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 6



Mutex PropertyMutex Property

 One desired property a mutex protocol should One desired property a mutex protocol should 
enjoy is the mutex property:

There exists at most one process in the critical 
ti t i tsection at any given moment.

Good BadGood Bad
CS CS

2nd RJASW, March 01-04, 2011, Sinaia, Romania 7



 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

Specification of the protocol in CafeOBJSpecification of the protocol in CafeOBJ
 Falsification of FMP with induction (proof scores)
 Falsification of FMP with (bounded) model 

checking (search)
 Falsification of FMP with induction-guided 

falsification (IGF)
 Falsification of NSPK by IGF
 Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 8



Formalizing FMP as a State Machine (SM)Formalizing FMP as a State Machine (SM)

 A state: A state: locked: false
…
pc[p]: rsp [p]
… 

 3 transitions for each process p:

locked: false locked: false
tryp…

pc[p]: rs
… 

…
pc[p]: es
… 

yp

Loop:  “Remainder Section (RS)”
rs: wait until locked = false;
es: locked := true;

2nd RJASW, March 01-04, 2011, Sinaia, Romania 9

“Critical Section (CS)”
cs: locked := false;



Formalizing FMP as a SM (cont )Formalizing FMP as a SM (cont.)

 3 transitions for each process p (cont.):
locked: B locked: truelocked: B
…
pc[p]: es

 

locked: true
…
pc[p]: cs

 

enterp

… … 
Loop:  “Remainder Section (RS)”

rs: wait until locked = false;
 l k d  tes: locked := true;

“Critical Section (CS)”
cs: locked := false;

locked: B
…

[ ]  

locked: false
…

[ ]  
exitp

2nd RJASW, March 01-04, 2011, Sinaia, Romania 10

pc[p]: cs
… 

pc[p]: rs
… 



State Transition DiagramState Transition Diagram

locked: falselocked: false
pc[p]: rs
pc[q]: rs

tryp

tryq

locked: false
pc[p]: es locked: false

[ ]  

exitp
enterqpc[p]: es

pc[q]: rs pc[p]: es
pc[q]: es

enter

tryq

enter locked: true
pc[p]: cs
pc[q]: eslocked: true

pc[p]: cs

The mutex property is 
violated at the state.

enterp enterp

exitp
locked: true
pc[p]: cs
pc[q]: cs

pc[p]: cs
pc[q]: rs enterq

p

it exit

2nd RJASW, March 01-04, 2011, Sinaia, Romania 11

exitp exitq



Specifying the SM in CafeOBJSpecifying the SM in CafeOBJ

 Reachable states are specified by one constant Reachable states are specified by one constant 
denoting an arbitrary initial state and three 
transition (action) operators:transition (action) operators:
op init : -> Sys {constr}
op try : Sys Pid > Sys {constr}op try : Sys Pid -> Sys {constr}
op enter : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}p y y { }

 States are characterized by two observation 
operators:operators:
op locked : Sys -> Bool
op pc : Sys Pid -> Label

2nd RJASW, March 01-04, 2011, Sinaia, Romania 12

op pc : Sys Pid -> Label



Specifying the SM in CafeOBJ (cont )Specifying the SM in CafeOBJ (cont.)

 The values returned by the observation operators The values returned by the observation operators 
for each state (and each process ID) are defined 
in equationsin equations. 

eq locked(init) = false .
eq pc(init,I) = rs .

locked: false
…
pc[I]: rs
… 

2nd RJASW, March 01-04, 2011, Sinaia, Romania 13



Specifying the SM in CafeOBJ (cont )Specifying the SM in CafeOBJ (cont.)

l k d(t (S I)) l k d(S)eq locked(try(S,I)) = locked(S) .
ceq pc(try(S,I),J) 
= (if I = J then es else pc(S J) fi)= (if I = J then es else pc(S,J) fi) 
if c-try(S,I) .

ceq try(S I) = S if not c-try(S I)ceq try(S,I)  S if not c try(S,I) .

where c-try(S,I) 
( ( ) d l k d( ))= (pc(S,I) = rs and not locked(S))

locked: false locked: falselocked: false
…
pc[I]: rs

 

locked: false
…
pc[I]: es

 

tryI

2nd RJASW, March 01-04, 2011, Sinaia, Romania 14

… … 



Specifying the SM in CafeOBJ (cont )Specifying the SM in CafeOBJ (cont.)

ceq locked(enter(S,I)) = true 
if c-enter(S,I) .

( t (S I) J)ceq pc(enter(S,I),J) 
= (if I = J then cs else pc(S,J) fi) 
if c enter(S I)if c-enter(S,I) .

ceq enter(S,I) = S if not c-enter(S,I) .

where c-enter(S,I) = (pc(S,I) = es)

locked: B locked: truelocked: B
…
pc[I]: es

 

locked: true
…
pc[I]: cs

 

enterI

2nd RJASW, March 01-04, 2011, Sinaia, Romania 15

… … 



Specifying the SM in CafeOBJ (cont )Specifying the SM in CafeOBJ (cont.)

ceq locked(exit(S,I)) = false 
if c-exit(S,I) .

( it(S I) J)ceq pc(exit(S,I),J) 
= (if I = J then rs else pc(S,J) fi) 
if c exit(S I)if c-exit(S,I) .

ceq exit(S,I) = S if not c-exit(S,I) .

where c-exit(S,I) = (pc(S,I) = cs)

l k d  B l k d  f llocked: B
…
pc[I]: cs

locked: false
…
pc[I]: rs

exitI

2nd RJASW, March 01-04, 2011, Sinaia, Romania 16

… … 



 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

 Specification of the protocol in CafeOBJ Specification of the protocol in CafeOBJ
Falsification of FMP with induction (proof 

scores)scores)
 Falsification of FMP with (bounded) model checking 

(search)(search)
 Falsification of FMP with induction-guided 

falsification (IGF)( )
 Falsification of NSPK by IGF
 Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 17



Proof Attempt of the MP for the SMProof Attempt of the MP for the SM

 The MP (that there does not exist more than one The MP (that there does not exist more than one 
process in the CS at the same time) can be 
rephrased as follows:
If there are processes in the CS, then those 
processes are the same.

 The MP is expressed as the state predicate:
eq inv1(S,I,J) 

= (pc(S,I) = cs and pc(S,J) = cs
implies I = J)implies I = J) .

 What to do is to try to prove that the state predicate
i th t th ( i i t t th SM)

2nd RJASW, March 01-04, 2011, Sinaia, Romania 18

is a theorem wrt the spec (or invariant wrt the SM).



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 The proof attempt is conducted by writing proof The proof attempt is conducted by writing proof 
scores, which consist of proof passages (PPs).

 A typical proof passage looks like
open AModule
-- fresh constants

 The PP corresponds to a 
sub-case of an induction 

ops s s’ -> Sys . …
-- assumptions

case.
 The sub-case is 
characterized by theeq e1 . … eq en .

-- successor state
eq s’ a(s )

characterized by the n
equations e1,…,en.
 The equations areeq s’ = a(s,…) .

-- check
red p(s, ) implies p(s’, ) .

The equations are 
obtained by case analysis.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 19

red p(s,…) implies p(s ,…) .
close



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 The proof attempt that inv1 is invariant wrt the SM by The proof attempt that inv1 is invariant wrt the SM by 
structural induction  on S conjectures the necessary 
lemma:lemma:
eq inv2(S,I,J) 

= not(pc(S,I) = es and pc(S,J) = cs(p ( , ) p ( , )
and not(I = J)) .

This says that there does not exist more than one y
process at es or cs at the same time.

Loop:  “Remainder Section (RS)”Loop:  Remainder Section (RS)
rs: wait until locked = false;
es: locked := true;

“Critical Section (CS)”

2nd RJASW, March 01-04, 2011, Sinaia, Romania 20

Critical Section (CS)
cs: locked := false;



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 A necessary lemma of a state predicate is a A necessary lemma of a state predicate p is a 
state predicate q such that  if q has a 
counterexample then so does or equivalentlycounterexample, then so does p, or equivalently 
if p is invariant wrt a state machine concerned, 
then so isthen so is q.

 If all lemmas used are necessary ones in the 
f h f dcourse of the proof attempt and one necessary 

lemmas has a counterexample, then so does the 
i l ( t t di t )main goal (state predicate).

2nd RJASW, March 01-04, 2011, Sinaia, Romania 21



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 How to conjecture necessary lemmas How to conjecture necessary lemmas
1. A case (typically each induction case) is split into 

multiple sub-cases such that CafeOBJ returns eithermultiple sub cases such that CafeOBJ returns either 
true or false for each sub-case.

2. A necessary lemma is conjectured from each sub-case 
h th t C f OBJ tsuch that CafeOBJ returns false.

Let e1,…,en be all equations characterizing such a sub-
casecase.

3. The equations are conjoined, the formula is negated, 
and fresh constants are replaced with variables.p
￢(e1 ∧ ... ∧ en)[c→ X, …] 
Note that if ei is p = true, p is used, if ei is p = false, 

2nd RJASW, March 01-04, 2011, Sinaia, Romania 22

not p is used, and otherwise, ei is used.



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 How to conjecture inv2: How to conjecture inv2:
eq inv2(S,I,J) = not(pc(S,I) = es and 

pc(S,J) = cs and not(I = J)) .p ( , ) ( ))

open MUTEX-ISTEP
-- assumptions  CafeOBJ returns falseassu pt o s

eq pc(s,k) = es .
eq i = k .
eq (j = k) = false

for the proof passage.
 Note that fresh constants 

eq (j = k) = false .
eq pc(s,j) = cs .

-- successor state
' t ( k)

s, s’, k, i, j are 
declared in MUTEX-ISTEP.

eq s' = enter(s,k) .
-- check

red inv1(s,i,j) 

2nd RJASW, March 01-04, 2011, Sinaia, Romania 23

implies inv1(s',i,j) .
close



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 How to conjecture inv2 (cont ): How to conjecture inv2 (cont.):
eq inv2(S,I,J) = not(pc(S,I) = es and 

pc(S,J) = cs and not(I = J)) .p ( , ) ( ))

 The 4 equations are conjoined, the formula is negated, 
and the fresh constants are replaced with variables.

not(pc(S,K) = es and I = K and not(J = K) (p ( , ) ( )
and pc(S,J) = cs)

 This is equivalent to This is equivalent to

not(pc(S,I) = es and pc(S,J) = cs and 

2nd RJASW, March 01-04, 2011, Sinaia, Romania 24

not(I = J))



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 In the course of the proof attempt 4 more necessary In the course of the proof attempt, 4 more necessary 
lemmas are conjectured. One of them is:
eq inv6(S,I,J)eq inv6(S,I,J) 
= not(pc(S,I) = rs and pc(S,J) = rs

and not(I = J) and not(locked(S))) .

This says that if there exist processes in the RS, then all 
processes are the same (there exists only one process) orprocesses are the same (there exists only one process) or 
locked is true.

 inv6(init,i,j) reduces to false if i is different from j.
 Hence, the lemma does not hold for the SM.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 25



Proof Attempt of the MP for the SM (cont )Proof Attempt of the MP for the SM (cont.)

 Since all lemmas conjectured are necessary wrt the MP we Since all lemmas conjectured are necessary wrt the MP, we 
conclude that the SM does not enjoy the MP.

 A counterexample can be constructed by looking at the p y g
chain of lemma conjectures up to inv6.

i 6 ￢inv5 ￢inv4

locked: false
pc[p]: rs

[ ]  

locked: false
pc[p]: es
pc[q]: rs

locked: false
pc[p]: es
pc[q]: es

tryp tryq
￢inv6 ￢inv5 inv4

pc[q]: rs pc[q]: rs pc[q]: es

l k d  t l k d  t

enterp

locked: true
pc[p]: cs
pc[q]: es

locked: true
pc[p]: cs
pc[q]: cs

enterq

￢inv1
￢inv2

2nd RJASW, March 01-04, 2011, Sinaia, Romania 26

￢inv2



 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

 Specification of the protocol in CafeOBJ Specification of the protocol in CafeOBJ
 Falsification of FMP with induction (proof scores)

F l ifi ti f FMP ith (b d d) d lFalsification of FMP with (bounded) model 
checking (search)

 Falsification of FMP with induction-guided 
falsification (IGF)

 Falsification of NSPK by IGF
 Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 27



Bounded Model Checking (BMC)Bounded Model Checking (BMC)

 The bounded reachable state space (BRSS) up to The bounded reachable state space (BRSS) up to 
some depth d from an initial state init is checked for 
a state predicate p.p p

init If there exists a state such that p

d
does not hold and the state is in 
the BRSS, then BMC can find the 
state or the path to the state fromstate or the path to the state from 
init, namely a counterexample of 
□p.

￢p
p

2nd RJASW, March 01-04, 2011, Sinaia, Romania 28

Note that □p means that p is invariant wrt a state machine.



BMC (cont )BMC (cont.)

 The search functionality can be used to conduct The search functionality can be used to conduct 
BMC:

i i dred init =(n,d)=>* pattern suchThat
cond .

 By setting init to an initial state of a state 
machine and expressing ￢p in pattern & cond.

 To use this functionality, (state) transitions 
should be described in transition rules.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 29



Transitions in Transition Rules (cont )Transitions in Transition Rules (cont.)

 Configuration of states: Configuration of states:
op void : -> Sys {constr}
op : Sys Sys -> Sysop _ _ : Sys Sys > Sys 

{constr assoc comm id: void}

 Operators that hold values characterizing states: Operators that hold values characterizing states:
op (pc[_]:_) : Pid Label -> Obs {constr}

l k d B l > Ob { t }op locked:_ : Bool -> Obs {constr}

 If two processes p1 & p2 participate in the protocol,  t o p ocesses p & p pa t c pate t e p otoco ,
the initial state is expressed as
(pc[p1]: rs) (pc[p2]: rs) (locked: false)

2nd RJASW, March 01-04, 2011, Sinaia, Romania 30

(pc[p1]: rs) (pc[p2]: rs) (locked: false)



Transitions in Transition Rules (cont )Transitions in Transition Rules (cont.)

trans [try] : (pc[I]: rs) (locked: false) 
=> (pc[I]: es) (locked: false) .

trans [enter] : (pc[I]: es) (locked: B) 
=> (pc[I]: cs) (locked: true)

trans [exit] : (pc[I]: cs) (locked: B) 
( [ ] ) (l k d f l )

=> (pc[I]: cs) (locked: true) .

=> (pc[I]: rs) (locked: false) .

Loop:  “Remainder Section (RS)”p ( )
rs: wait until locked = false;
es: locked := true;

“Critical Section (CS)”

2nd RJASW, March 01-04, 2011, Sinaia, Romania 31

( )
cs: locked := false;



Falsification of the MP for FMP by BMCFalsification of the MP for FMP by BMC

 When we have two processes a counterexample (CX) for When we have two processes, a counterexample (CX) for 
MP is found with the search functionality.
red init =(1,*)red init (1, )
=>* (pc[I]: cs) (pc[J]: cs) S .

 The CX is also found by exhaustively traversing the y y g
bounded reachable state space (BRSS) up to depth 4.
red init =(1,4)
=>* (pc[I]: cs) (pc[J]: cs) S .

 But, it is not found by exhaustively traversing the BRSS up 
to depth 3to depth 3.
red init =(1,3)
=>* (pc[I]: cs) (pc[J]: cs) S

2nd RJASW, March 01-04, 2011, Sinaia, Romania 32

>  (pc[I]: cs) (pc[J]: cs) S .



 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

 Specification of the protocol in CafeOBJ Specification of the protocol in CafeOBJ
 Falsification of FMP with induction (proof scores)

F l ifi ti f FMP ith (b d d) d l Falsification of FMP with (bounded) model 
checking (search)
F l ifi ti f FMP ith i d ti id dFalsification of FMP with induction-guided 
falsification (IGF)

 Falsification of NSPK by IGF
 Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 33



Induction Guided Falsification (IGF)Induction Guided Falsification (IGF)

 What if a counterexample (CX) exists outside of the What if a counterexample (CX) exists outside of the 
bounded reachable state space (BRSS) ? 

init

d One option is to increase d. O e op o s o c ease d
But, the BRSS up to d+1 may not 
be exhaustively traversed due to 

￢p

the state explosion problem.

A CX that exists outside of the BRSS that can be 
exhaustively traversed is called a deep CX in the talk. 

2nd RJASW, March 01-04, 2011, Sinaia, Romania 34

y p



IGF (cont )IGF (cont.)

 Another option is to try to prove □p by induction Another option is to try to prove □p by induction, 
conjecturing lemmas □q1,…,□qn, and check the 
bounded reachable state space for each □qi instead 
of □of □p.

If there exists a state s1 s.t. ￢qk and 
init

1 qk
there exists a path from s1 to a state s2
s.t. ￢p, then we find a counterexample d
of □p.

￢qk
s1 IGF alternately uses BMC and induction 

fi d d l
￢p

qk

s2

to find deep counterexamples.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 35

K. Ogata, M. Nakano, W. Kong, K. Futatsugi: Induction-Guided Falsification,
8th ICFEM, LNCS 4260, Springer, pp.114-131 (2006).



IGF (cont )IGF (cont.)

 How to check if there exists a path from s to s How to check if there exists a path from s1 to s2.

init

d
 One option is to use BMC to find a 
state s2 s t ￢p in the bounded

s

state s2 s.t. p in the bounded 
reachable state space from s1 instead 
of init.

￢p

￢qk
s1

s2

 Another option is to use necessary 
lemmas, namely that if a lemma □qk
has a counterexample then so doesp 2 has a counterexample, then so does 
its main goal (□p).

2nd RJASW, March 01-04, 2011, Sinaia, Romania 36



IGF (cont )IGF (cont.)

 IGF can be regarded as a combination of forward & IGF can be regarded as a combination of forward & 
backward reachability analysis methods.
 BMC is a typical forward reachabiity analysis method.BMC is a typical forward reachabiity analysis method.
 Induction can be regarded as a backward reachability
analysis method.y

s s’t
(?)

In the induction case, it is checked that each transition t
preserves a state predicate p.

p p (?)
If p does not hold in s’, the concern is whether s is reachable. 
This can be checked by conjecturing q that does not hold in sThis can be checked by conjecturing q that does not hold in s
and proving □q.
So, one state transition is taken back by induction.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 37

K. Ogata, K. Futatsugi: A combination of Forward & Backward Reachability
Analysis Methods, 12th ICFEM, LNCS 6447, Springer, pp.501-517 (2010).



Falsification of FMP by IGFFalsification of FMP by IGF

 We suppose that the bounded reachable state We suppose that the bounded reachable state 
space (BRSS) up to depth 4 is too large to be 
exhaustively traversedexhaustively traversed.

 Only BMC cannot find any counterexamples for 
SS 3the MP in the BRSS up to depth 3.

 Then, we try to prove the MP by induction, 
conjecturing the necessary lemma inv2.
eq inv2(S,I,J) q ( , , )

= not(pc(S,I) = es and pc(S,J) = cs
and not(I = J)) .

2nd RJASW, March 01-04, 2011, Sinaia, Romania 38



Falsification of FMP by IGF (cont )Falsification of FMP by IGF (cont.)

 BMC finds a counterexample for in 2 in the BMC finds a counterexample for inv2 in the 
BRSS up to depth 3.
red init =(1,3)
=>* (pc[I]: es) (pc[J]: cs) S .

 Since inv2 is a necessary lemma of the MP, we 
conclude that the SM does not enjoy the MP.j y

2nd RJASW, March 01-04, 2011, Sinaia, Romania 39



 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

 Specification of the protocol in CafeOBJ Specification of the protocol in CafeOBJ
 Falsification of FMP with induction (proof scores)

F l ifi ti f FMP ith (b d d) d l Falsification of FMP with (bounded) model 
checking (search)
F l ifi ti f FMP ith i d ti id d Falsification of FMP with induction-guided 
falsification (IGF)
F l ifi ti f NSPK b IGFFalsification of NSPK by IGF

 Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 40



NSPK & Agreement PropertyNSPK & Agreement Property

 NSPK ([Needham&Schroeder 1978]): NSPK ([Needham&Schroeder 1978]):

Principal p
Init: { np, p }k(q)

Principal q

Initiator Responder

Resp: { np, nq }k(p)

Ack: { nq }k(q)

 Agreement Property (AP): Whenever a protocol run is 
successfully completed by p and q

Initiator ResponderAck: { nq }k(q)

successfully completed by p and q,
 AP1: the principal with which p is communicating is really q, and
 AP2: the principal with which q is communicating is really p.p p q g y p

q

talking talking

p

2nd RJASW, March 01-04, 2011, Sinaia, Romania

p qtalking p qtalking

41



Model Checking AP1 & AP2
Init: p→ q {np,p}k(q)

Resp: q→ p {np,nq,q}k(p)Model Checking AP1 & AP2

 The bounded reachable state space (BRSS) up to depth

Ack: p→ q {nq}k(q)

 The bounded reachable state space (BRSS) up to depth 
5 can be exhaustively traversed on a laptop with 2.33GH 
CPU and 3GB RAM, but the BRSS up to depth 6 cannot.CPU and 3GB RAM, but the BRSS up to depth 6 cannot.
 No counterexample of AP1 is found in the BRSS up 
to depth  5.

p

q

qtalking

p

p q

 No counterexample of AP2 is found in the BRSS up 
d hto depth  5.

talking

p

2nd RJASW, March 01-04, 2011, Sinaia, Romania 42

p qtalking



Lemmas for AP1 & AP2
Init: p→ q {np,p}k(q)

Resp: q→ p {np,nq,q}k(p)Lemmas for AP1 & AP2

 A proof attempt of AP1 & AP2 conjectures 5 lemmas

Ack: p→ q {nq}k(q)

 A proof attempt of AP1 & AP2 conjectures 5 lemmas.
 One of them is what is called Nonce Secrecy Property

(NSP) which is as follows:(NSP) which is as follows:

The 2 nonces np,nq generated in a protocol run 
conducted by two non intruder principals p q cannot beconducted by two non-intruder principals p,q cannot be 
obtained by the intruder.

pq np, nq
p qtalking

np, nq

2nd RJASW, March 01-04, 2011, Sinaia, Romania 43



Model Checking NSP
Init: p→ q {np,p}k(q)

Resp: q→ p {np,nq,q}k(p)Model Checking NSP

 A counterexample of NSP is found in the bounded

Ack: p→ q {nq}k(q)

 A counterexample of NSP is found in the bounded 
reachable state space up to depth 5.

 Since NSP is not a necessary lemma of AP1 & AP2 Since NSP is not a necessary lemma of AP1 & AP2, 
however, we cannot conclude that NSPK does not 
enjoy AP immediately.

 Then, we need to find a path from a state in which 
NSP is violated to a state in which AP (precisely 
AP2) i i l t dAP2) is violated.

 Such a path is found and then we conclude that 
NSPK does not enjoy AP (precisely AP2)NSPK does not enjoy AP (precisely AP2).  

 Note that this case study used Maude as a model checker.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 44

K. Ogata, K. Futatsugi: A combination of Forward & Backward Reachability
Analysis Methods, 12th ICFEM, LNCS 6447, Springer, pp.501-517 (2010).



Outline of TalkOutline of Talk

 An example: a flawed mutual exclusion protocol An example: a flawed mutual exclusion protocol 
(FMP)

 Specification of the protocol in CafeOBJ Specification of the protocol in CafeOBJ
 Falsification of FMP with induction (proof scores)

F l ifi ti f FMP ith (b d d) d l Falsification of FMP with (bounded) model 
checking (search)
F l ifi ti f FMP ith i d ti id d Falsification of FMP with induction-guided 
falsification (IGF)
F l ifi ti f NSPK b IGF Falsification of NSPK by IGF

Conclusion

2nd RJASW, March 01-04, 2011, Sinaia, Romania 45



ConclusionConclusion

 Summary Summary
 We have described 3 ways to systematically find a 

counterexample showing that an OTS does not enjoycounterexample showing that an OTS does not enjoy 
an invariant property using a small example: induction, 
BMC, and IGF.BMC, and IGF.

 A case study on falsification of NSPK by IGF has been 
briefly reported.y p

 Effect
 IGF may alleviate the notorious state explosion IGF may alleviate the notorious state explosion 

problem.

2nd RJASW, March 01-04, 2011, Sinaia, Romania 46



Th k h!Thank you very much!

2nd RJASW, March 01-04, 2011, Sinaia, Romania 47


