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Modeling Specification Verification

Overview I

We present our methodology
• modeling
• specification
• verification

through an example:

Alternating bit protocol

1 we our logical framework is sufficiently expressive to model
dropping of elements in arbitrary positions of the communication
channels

2 the semantics of _ = _ and _⇒ _ is that of equality; the
reduction system consisting of rewriting rules is regarded as a
second reduction system on top of the equational one; it has the
advantage of preserving the termination property during the
verification process
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Modeling Specification Verification

Overview II

we use conditional equations with conditions executable by
matching, which increase the specification operational
expressivity; this allows to handle nondeterminism
successfully at the operational level

3 an order of application of the proof rules is established (this
represents the first step towards automation)

4 a proof rule has the following general form SP1`Prop1...SPn`Propn
SP`Prop ;

In the verification process we identify clearly inconsistent
specifications SPi of the subgoals SPi ` Propi obtained by
applying a proof rule to a specification SP
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Modeling Specification Verification

Alternating Bit Protocol

Two agents, Sender and Receiver that do not share a common memory use two
channels, channel1 and channel2 to communicate
- Sender sends repeatedly pairs of packets and bits, 〈bit1,pn〉, to Receiver
over channel1
- Receiver sends repeatedly bit2 to Sender over channel2

channel1

〈bit1,pnext〉, 〈bit1,pnext〉, . . .
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bit1
next

bit2
list

OO

Sender

channel2

. . . ,bit2,bit2

Receiver
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Modeling Specification Verification

Sender’s diagram

When Sender gets bit1 from the Receiver over
channel2, it is a confirmation from the Receiver that the
packet sent was received. In this case, Sender alternates
bit1 and selects the next packet for sending.
Initially both channels are empty and the Sender’s bit is
different from the Receiver’s bit
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Modeling Specification Verification

Receiver’s diagram

When Receiver gets a pair < b,p > such that b is
different from bit2 it receives p and alternates bit2.
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Modeling Specification Verification

Snapshot I
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Modeling Specification Verification

Snapshot II
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Modeling Specification Verification

Snapshot III
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Modeling Specification Verification

Snapshot IV
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Modeling Specification Verification

Snapshot V
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Modeling Specification Verification

Snapshot VI

〈t , p1〉, . . . , 〈t , p1〉, 〈f , p0〉, . . . , 〈f , p0〉

��

t
1

f
p0

OO

f , . . . , f

Japan Advanced Institute of Science and Technology

12 / 38



Modeling Specification Verification

Snapshot VII
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Modeling Specification Verification

Snapshot VIII
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Modeling Specification Verification

Snapshot IX
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Modeling Specification Verification

Snapshot X

〈t , p1〉, . . . , 〈t , p1〉

��

t
1

t
p0, p1

OO

t , . . . , t

Japan Advanced Institute of Science and Technology

16 / 38



Modeling Specification Verification

Snapshot XI
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Modeling Specification Verification

Safety Property

We assume that the communication channels are unreliable:
- data in the channels may be lost, but not changed or damaged.

Safety Property

If Receiver receives the nth packet then

Receiver has received the n+1 packets p0, ...,pn in this
order,
each pi for i = 0,n has been received only once, and
no other packets have been received

In this case study we check the above property
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Modeling Specification Verification

Data Types used

the Packets are indexed by natural numbers: pac(0),pac(s0), . . . ,pac(sn0)

op pac : Nat -> Packet [ctor]

the bits sent by Sender and Receiver have two values

op t : -> Bit [ctor] and op f : -> Bit[ctor]

The function op not_: Bit -> Bit alternates the bits

The communication channels and the packets received by Receiver are
modeled by sequences.

1 Channel1 consists of sequences of pairs of bits and packets
〈b1,p1〉, . . . , 〈bn,pn〉

2 Channel2 consists of sequences of bits
b1, . . . ,bn

3 List of packets received by Receiver consists of sequences of packets
p1, . . . ,pn
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Modeling Specification Verification

ABP I
fth ABP is inc CHANNEL1 . inc CHANNEL2 . inc PACKET-LIST .
sort Sys .
— — — constructors — — —

op init : -> Sys [ctor] . — — — initial state
op rec1 : Sys -> Sys [ctor] . — — — Sender receives bits
op rec2 : Sys -> Sys [ctor] . — — — Receiver receives pairs of bits & packets
op send1 : Sys -> Sys [ctor] . — — — Sender sends pairs of bits & packets
op send2 : Sys -> Sys [ctor] . — — — Receiver sends bits
op drop1 : Sys -> Sys [ctor] . — — — dropping one element of channel1
op drop2 : Sys -> Sys [ctor] . — — — dropping one element of channel2

— — — observers — — —
op channel1 : Sys -> Channel1 . — — — Sender-to-Receiver channel
op channel2 : Sys -> Channel2 . — — — Receiver-to-Sender channel
op bit1 : Sys -> Bit . — — — Sender’s bit
op bit2 : Sys -> Bit . — — — Receiver’s bit
op next : Sys -> Nat . — — — number of packet sent next by Sender
op list : Sys -> List . — — — lists of packets received by Receiver

— — — underspecified functions — — —
ops x1 y1 : Sys -> Channel1 .
ops x2 y2 : Sys -> Channel2 .
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Modeling Specification Verification

ABP II
— variables — — —
var S : Sys . vars C1 C1’ : Channel1 . vars C2 C2’ : Channel2 .
var B : Bit . var P : Packet . var N : Nat .
— — — receive1 — — —

eq channel1(rec1(S)) = channel1(S) .
ceq [ch2-a] : channel2(rec1(S)) = channel2(S) if empty = channel2(S) .
ceq [ch2-b] : channel2(rec1(S)) = C2 if B,C2 := channel2(S) .
ceq [bit1-a] : bit1(rec1(S)) = bit1(S) if empty = channel2(S) .
ceq [bit1-b] : bit1(rec1(S)) = bit1(S) if B,C2 := channel2(S)

∧
B = not bit1(S) .

ceq [bit1-c] : bit1(rec1(S)) = not bit1(S) if B,C2 := channel2(S)
∧

B = bit1(S) .
eq bit2(rec1(S)) = bit2(S) .
ceq [next-a] : next(rec1(S)) = next(S) if empty = channel2(S) .
ceq [next-b] : next(rec1(S)) = next(S) if B,C2 := channel2(S)

∧
B = not bit1(S) .

ceq [next-c] : next(rec1(S)) = s next(S) if B,C2 := channel2(S)
∧

B = bit1(S) .
eq list(rec1(S)) = list(S) .
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Modeling Specification Verification

ABP III

— — — drop1 — — —
ceq [d1-a] : channel1(drop1(S)) = x1(S),y1(S) if x1(S),< B,P >,y1(S) := channel1(S) .
eq [d1-b] : channel1(drop1(S)) = channel1(S) [owise] .
eq channel2(drop1(S)) = channel2(S) .
eq bit1(drop1(S)) = bit1(S) . eq bit2(drop1(S)) = bit2(S) .
eq next(drop1(S)) = next(S) . eq list(drop1(S)) = list(S) .
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Modeling Specification Verification

Some specification aspects

1 ABP module is declared with loose semantics. Since the sort Sys has seven
constructors, the carrier sets of the ABP models for the sort Sys consist of
interpretations of constructor terms of the form σn(. . . σ1(init)), where
σi ∈ {rec1, . . . ,drop2}. This semantical aspect has a direct implication to the
verification methodology since it allows the use of induction on constructors for
proving properties of ABP.

2 The non-constructor functions x1,y1,x2,y2 are underspecified because there
are no equations to define them, meaning that each model has its own
interpretation of x1,y1,x2,y2. This specification technique in connection with
the associativity of sequences is sufficiently expressive to model the
nondeterminism, in this case, dropping elements in arbitrary positions of the
communication channels. In every model the arguments of these functions are
elements consisting of interpretations of the constructor terms σn(. . . σ1(init)),
where σi ∈ {rec1, . . . ,drop2}, and the values returned are sequences
because the modules corresponding to the communication channels are
imported with protecting. The matching equations used in conditions make the
equational rules executable.
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Modeling Specification Verification

Verification approach

Proofs cannot be automated entirely.
The best approach is the combination between interactive
proof verification and automation.
Push the boundaries of automation.
We have two reduction systems, one given by equations
(_ = _) and the other given by rewrite rules (_⇒ _).
How do they work together?

t →∗ nf (t)⇒ t ′ →∗ nf (t ′)⇒ t ′′ . . .

Japan Advanced Institute of Science and Technology

24 / 38



Modeling Specification Verification

Goal

1 Goal:
goal1 mk(next(S)) = list(S) if bit1(S) = bit2(S)

goal2 mk(next(S)) = pac(next(S)), list(S) if bit1(S) = not bit2(S)

where mk(sn0) = pac(sn0), pac(sn−1), . . . , pac(0)
2 Invariants:

inv5 B⇒ bit2(S) if channel2(S) := Ch2,B,Ch2′
∧

bit2(S) = not bit1(s)

inv6 pac(next(S)) = P if Ch1, < B, P >,Ch1′ := channel1(S)
∧

B1 = bit1(S)

3 Basic Invariants:
inv1 B′1 ⇒ bit1(S) if Ch1, 〈B1, P1〉, Sq1, 〈B′1, P

′
1〉,Ch′1 := channel1(S)

∧
B1 = bit1(S)

inv2 B1⇒ bit1(s) if Ch1, 〈B1, P1〉,Ch1 := channel1(s)
∧

bit1(S) = bit2(S)

inv3 bit1(s) = bit2(s) if Ch2,B2,Ch2′ := channel2(S)
∧

B2 = bit1(S)

inv4 B2′ ⇒ bit1(s) if Ch2,B2, Sq2,B2′,Ch2′ := channel2(S)
∧

B2 = bit1(S)
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Modeling Specification Verification

Invariants

1 In Maude inv1,inv2 and inv4 are written as rewriting rules. As equational
rules the above invariants would cause non-termination: when the simultaneous
induction is applied to the variable S, invi are added as hypotheses to the
specification ABP; then an application of inv1, for example, to reduce a term
implies the evaluation of the condition
Ch1, 〈B1,P1〉,Sq1, 〈B1′,P1′〉,Ch1′ := channel1(S) that requires another
application of inv1, which produces a non-termination process. Since these
hypotheses are needed in the verification process, i.e., they must be executable,
we choose to formalize them as rewrite rules.

2 The use of matching equations over Sequences as conditions of equations
allows to assume an arbitrary structure of the channels of a certain type without
any cost to operational semantics (the underlying conditional equations are
executable).
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Modeling Specification Verification

Order of Application of Proof Rules

The application order of the proof rules is as follows:
Simultaneous Induction (SI)
Case Analysis(CA)
Sequence Case Analysis (CA(X,Y))
Theorem of Constants (TC)
Reduction (red)
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Modeling Specification Verification

Simultaneous Induction I
ABP ` {inv1, inv2, inv3, inv4}

By applying simultaneous induction we obtain

ABP ` invi [S ← init ]

ABP ∗ ιs ∪ {inv1, inv2, inv3, inv4} ` invi[S← act(s)]

ιs : Sig(ABP) ↪→ Sig(ABP)[s :→ Sys]

act ∈ {init, rec1, rec2, send1, send2, drop1, drop2}
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Modeling Specification Verification

Simultaneous Induction II
Maude code for ABP ∗ ιs ∪ {inv1, inv2, inv3, inv4}

th INV is inc ABP .
vars B1 B1’ B2 B2’ : Bit .
vars P P1 P1’ : Packet .
vars Ch1 Sq1 Ch1’ : Channel1 .
vars Ch2 Sq2 Ch2’ : Channel2 .
op s : -> Sys .
crl [inv1]: B1’ => bit1(s) if Ch1,< B1,P1 >,Sq1,< B1’,P1’ >,Ch1’ := channel1(s)

∧
B1 = bit1(s).

crl [inv2]: B1 => bit1(s) if Ch1’,< B1,P1 >,Ch1 := channel1(s)
∧

bit1(s) = bit2(s) .
ceq [inv3]: bit2(s) = bit1(s) if Ch2,B2,Ch2’ := channel2(s)

∧
B2 = bit1(s) .

crl [inv4]: B2’ => bit1(s) if Ch2,B2,Sq2,B2’,Ch2’ := channel2(s)
∧

B2 = bit1(s) .
endth

We present the proof trees for

INV ` inv1[S← rec1(s)]

INV ` inv1[S← drop1(s)]
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Modeling Specification Verification

Diagram - inv1

INV ` inv1[S← act(s)] ; ABP ` inv1[s ← init ]

ABP ` {inv1, inv2, inv3, inv4}

I1-initI1-rec1I1-rec2I1-send1

[SI]
←→

I1-send2I1-drop1I1-drop2
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Diagram - inv1[S←rec1(s)]

I1-rec1

I1-BIT1-A

I1-BIT1-A-Gr

[]

search←−−→

TC←→

I1-BIT1-B

I1-BIT1-B-Gr

[]

search←−−→

TC←→

CA←→

I1-BIT1-C

I1-BIT1-C-Gr

[]

search←−−→

TC←→
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Diagram - inv1[S←drop1(s)]

I1-drop1

I1-D1-A

I1-D1-A1

I1-D1-A1-Gr

[]

search←−−→

TC←→

I1-D1-A2

I1-D1-A2-Gr

[]

search←−−→

TC←→

CA(X ,Y )
←−−−−−→

I1-D1-A3

I1-D1-A3-Gr

[]

search←−−→

TC←→

CA←→

I1-D1-B

I1-D1-B-Gr

[]

search←−−→

TC←→

CA←→
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Modeling Specification Verification

Init

ABP ` B1′ ⇒ bit1(init) if Ch1, 〈B1, P1〉, Sq1, 〈B1′, P1′〉,Ch1′ := channel1(init)
∧

B1 = bit1(init)

red in ABP : bit1(init) .
— — — result Bit: f
red in ABP : channel1(init) .
— — — result Channel1: (empty).Channel1
ABP ` B1′ ⇒ f if Ch1, 〈B1, P1〉, Sq1, 〈B1′, P1′〉,Ch1′ := channel1(init)

∧
B1 = f

th I1-INIT is inc ABP .
ops ch1 ch1’ sq1 : -> Channel1 .
ops b1 b1’ : -> Bit .
ops p1 p1’ : -> Packet .
eq empty = ch1,< b1,p1 >,sq1,< b1’,p1’ >,ch1’ .
eq b1 = f .
endth

I1− INIT ` b1′ ⇒ f

search true =>* false .
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Modeling Specification Verification

Receive1

INV |= B1’ => bit1(rec1(s)) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(rec1(s))∧
B1 = bit1(rec1(s))

red in INV : channel1(rec1(s)) .
— — — result Channel1: channel1(s)

INV ` B1’ => bit1(rec1(s)) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(s)∧
B1 = bit1(rec1(s))
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Modeling Specification Verification

Receive2-A

th I1-BIT1-A is inc INV .
eq channel2(s) = empty .

endth

I1-BIT1-A ` B1’ => bit1(rec1(s)) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(s)∧
B1 = bit1(rec1(s))

red bit1(rec1(s)) .
— — — result Bit: bit1(s)
I1-BIT1-A`B1’⇒bit1(s) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(s)

∧
B1 = bit1(s)

th I1-BIT1-A-Gr is inc I1-BIT1-A .
ops ch1 ch1’ sq1 : -> Channel1 . ops b1 b1’ : -> Bit . ops p1 p1’ : -> Packet .
eq channel1(s) = ch1,< b1,p1 >,sq1,< b1’,p1’ >,ch1’ . eq b1 = bit1(s) .

endth

I1-BIT1-A-Gr ` b1’⇒bit1(s)

search b1’ =>* bit1(s)
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Receive1-B

th I1-BIT1-B is inc INV .
op b : -> Bit . op c2 : -> Channel2 .
eq channel2(s) = b,c2 . eq b = not bit1(s) .

endth

I1-BIT1-B ` B1’ => bit1(rec1(s)) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(s)∧
B1 = bit1(rec1(s))

red bit1(rec1(s)) .
— — — result Bit: bit1(s)
I1-BIT1-B`B1’⇒bit1(s) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(s)

∧
B1 = bit1(s)

th I1-BIT1-B-Gr is inc I1-BIT1-B .
ops ch1 ch1’ sq1 : -> Channel1 . ops b1 b1’ : -> Bit . ops p1 p1’ : -> Packet .
eq channel1(s) = ch1,< b1,p1 >,sq1,< b1’,p1’ >,ch1’ . eq b1 = bit1(s) .

endth

I1-BIT1-B-Gr ` b1’⇒bit1(s)

search b1’ =>* bit1(s)
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Receive-C

th I1-BIT1-C is inc INV .
op b : -> Bit . op c2 : -> Channel2 .
eq channel2(s) = b,c2 . eq b = bit1(s) .

endth

I1-BIT1-C ` B1’ => bit1(rec1(s)) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’ := channel1(s)∧
B1 = bit1(rec1(s))

red bit1(rec1(s)) .
— — — result Bit: not bit1(s)
I1-BIT1-C`B1’⇒not bit1(s) if Ch1,〈B1,P1〉,Sq1,〈B1’,P1’〉,Ch1’:=channel1(s)

∧
B1=not bit1(s)

th I1-BIT1-C-Gr is inc I1-BIT1-C .
ops ch1 ch1’ sq1 : -> Channel1 . ops b1 b1’ : -> Bit . ops p1 p1’ : -> Packet .
eq channel1(s) = ch1,< b1,p1 >,sq1,< b1’,p1’ >,ch1’ . eq b1 = not bit1(s) .

endth

I1-BIT1-B-Gr ` b1’⇒ not bit1(s)

search not bit1(s) =>* bit1(s).
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Conclusions

Specifying the communication channels of the ABP protocol
with sequences is natural and expressive; to our knowledge,
this approach is novel, at least in algebraic specifications. But
this expressiveness comes with a “cost”.

1 at the operational semantics level: we use both equational
and rewriting rules with conditions consisting of matching
equations.

2 at the denotational semantics level: we define new proof
rules to deal with the case analysis on sequences.

Sequences have many applications in communication
protocols, and we believe that the methodology developed here
can be applied successfully to many other important protocols.

Japan Advanced Institute of Science and Technology

38 / 38


	Modeling
	Specification
	Verification

