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@ General discussion on refinement notion in VSE (Verification
Support Environment);

@ Example - implementation of natural numbers as lists of bits;

@ Using HETS for proving the correctness of the refinement -
sketch and future work.
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When specifying a system, we ideally begin with an abstract
specification which only describes the requirements, even in an
informal way, but says nothing about the way the system is going
to be implemented. Then, in a stepwise mannner, more and more
design decisions (e.g. the choice of a certain algorithm or some
data structure) are incorporated until we reach a specification
which can be easily translated into a program.

Each of the steps is called a refinement step, and a refinement step
is correct if each model of the more 'concrete’ specification is also
a model of the "abstract’ one.
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VSE

The Verification Support Environment (VSE) is a tool for formally
specifying and verifying complex systems.

The logic underlying its specification language is multi-sorted
first-order logic with equality and induction principles (i.e. allows
restriction of classes of models to term generated or freely
generated ones).

Along with structuring operations like enrichments and sums of
specifications, a notion of refinement is included in the language
constructs. The target logic of refinements is Dynamic Logic.
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Dynamic Logic

Dynamic Logic (DL) extends predicate calculus with formulae of
the form [M]¢ and < M > ¢ where ¢ is a DL-formula and M is a
program written in a Pascal-like language (with skip, abort,
assignments, if then else fi, while do od and mutually recursive
procedures). These formulae allow us to reason about termination
of programs: [[]¢ has the meaning that if the program Il
terminates, the formula ¢ holds after the execution of I1, while

< 1 > ¢ means that the execution of [1 terminates and the
formula ¢ holds after the execution.
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Refinement in VSE

VSE has the notion of mapping, where is defined the way the sorts
and the (function and predicate) symbols of the abstract
specification are implemented by the sorts and procedures of the
concrete DL specification.
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Natural numbers

We consider the abstract data type of natural numbers with 0,
successor, addition and a predecessor function and we choose to
implement them more efficiently as lists of bits (see DynLogic.het).
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Using HETS for proving the refinement is correct

Tool available at www.dfki.de/sks/cofi/hets
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