Integrating VSE's refinement in HETS

Mihai Codescu

DFKI Laboratory, Bremen

Sinaia School on Formal Verification of Software Systems, 2008

)=

Mihai Codescu Integrating VSE's refinement in HETS



@ General discussion on refinement notion in VSE (Verification
Support Environment);

@ Example - implementation of natural numbers as lists of bits;

@ Using HETS for proving the correctness of the refinement -
sketch and future work.

24

Mihai Codescu Integrating VSE's refinement in HETS



When specifying a system, we ideally begin with an abstract
specification which only describes the requirements, even in an
informal way, but says nothing about the way the system is going
to be implemented. Then, in a stepwise mannner, more and more
design decisions (e.g. the choice of a certain algorithm or some
data structure) are incorporated until we reach a specification
which can be easily translated into a program.

Each of the steps is called a refinement step, and a refinement step
is correct if each model of the more 'concrete’ specification is also
a model of the "abstract’ one.

=<1

Mihai Codescu Integrating VSE's refinement in HETS



VSE

The Verification Support Environment (VSE) is a tool for formally
specifying and verifying complex systems.

The logic underlying its specification language is multi-sorted
first-order logic with equality and induction principles (i.e. allows
restriction of classes of models to term generated or freely
generated ones).

Along with structuring operations like enrichments and sums of
specifications, a notion of refinement is included in the language
constructs. The target logic of refinements is Dynamic Logic.

m
)=
A
Mihai Codescu Integrating VSE's refinement in HETS



Dynamic Logic

Dynamic Logic (DL) extends predicate calculus with formulae of
the form [M]¢ and < M > ¢ where ¢ is a DL-formula and M is a
program written in a Pascal-like language (with skip, abort,
assignments, if then else fi, while do od and mutually recursive
procedures). These formulae allow us to reason about termination
of programs: [[]¢ has the meaning that if the program Il
terminates, the formula ¢ holds after the execution of I1, while

< 1 > ¢ means that the execution of [1 terminates and the
formula ¢ holds after the execution.

m
)=
A
Mihai Codescu Integrating VSE's refinement in HETS



Refinement in VSE

VSE has the notion of mapping, where is defined the way the sorts
and the (function and predicate) symbols of the abstract
specification are implemented by the sorts and procedures of the
concrete DL specification.

24

Mihai Codescu Integrating VSE's refinement in HETS



Natural numbers

We consider the abstract data type of natural numbers with 0,
successor, addition and a predecessor function and we choose to
implement them more efficiently as lists of bits (see DynLogic.het).

m
)=l
A
Mihai Codescu Integrating VSE's refinement in HETS



Using HETS for proving the refinement is correct

Tool available at www.dfki.de/sks/cofi/hets

=
|
A
Mihai Codescu Integrating VSE's refinement in HETS



References

B

B

CoFl (The Common Framework Initiative).
CASL Reference Manual.
LNCS 2960 (IFIP Series). Springer, 2004.

Till Mossakowski.
Heterogeneous specification and the heterogeneous tool set.
Habilitation thesis, University of Bremen, 2005.

Till Mossakowski and Christian Maeder and Klaus Luttich.
The Heterogeneous Tool Set.
Editors: Orna Grumberg and Michael Huth, TACAS 2007.

Dieter Hutter et all.
Verification Support Environment (VSE)
Journal of High Integrity Systems, 1996

David Harel, Dexter Kozen, Jerzy Tyurin.

Dynamic Logic. -«

MIT Press , 2000 -

Mihai Codescu Integrating VSE's refinement in HETS



