Tense operators on Łukasiewicz-Moisil algebras

Denisa Diaconescu

Sinaia School, 03-10 March 2008

D. Diaconescu, G. Georgescu:

Tense operators on MV-Algebras and Łukasiewicz-Moisil Algebras

Fundamenta Informaticae, 81(4): 379-408, December 2007

1. Preliminaries

- 2. Tense operators on LM_n -algebras
- 3. Tense Moisil logic

Definition 1 Let $n \ge 2$. An *n*-valued Łukasiewicz-Moisil algebra (for short, LM_n -algebra) is a distributive lattice with a first and a last element, $\mathcal{L} = (L, \lor, \land, 0, 1)$, such that:

LM-1) There is a map $\neg : L \rightarrow L$ with the properties:

• $\neg(x \lor y) = \neg x \land \neg y,$

•
$$\neg(x \land y) = \neg x \lor \neg y,$$

•
$$\neg(\neg x) = x$$
.

LM-2) There are (n-1) maps $\varphi_i : L \to L$, i = 1, ..., n-1 (known as **chrysippian endomorphisms**) which have the properties:

1.
$$\varphi_i(0) = 0$$
, $\varphi_i(1) = 1$, for any i=1,...,n-1,
2. $\varphi_i(x \land y) = \varphi_i(x) \land \varphi_i(y)$ and $\varphi_i(x \lor y) = \varphi_i(x) \lor \varphi_i(y)$, for any $x, y \in L$ and i=1,...,n-1,
3. $\varphi_i(x) \lor \neg \varphi_i(x) = 1$ and $\varphi_i(x) \land \neg \varphi_i(x) = 0$, for any $x \in L$ and i=1,...,n-1,
4. $\varphi_h \circ \varphi_k = \varphi_k$, for any h,k=1,...,n-1,
5. $\varphi_1(x) \le \varphi_2(x) \le \ldots \le \varphi_{n-1}(x)$, for any $x \in L$,
6. $\varphi_i(\neg x) = \neg \varphi_j(x)$, where $i + j = n$,
7. If $\varphi_i(x) = \varphi_i(y)$, for any i=1,...,n-1, then $x = y$, for any $x, y \in L$.

Axiom 7 is known as Moisil's determination principle.

Preliminaries - Łukasiewicz-Moisil algebras

Moisil's determination principle.

Example 1 Let $L_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$. We consider the following operations on L_n : $x \lor y = \max(x, y), x \land y = \min(x, y), \neg x = 1 - x$

for any $x, y \in L_n$. We define the maps $\varphi_1, \ldots, \varphi_{n-1} : L_n \to L_n$ by:

 L_n with the operations $\lor, \land, \neg, \varphi_1, \ldots, \varphi_{n-1}$ becomes an *n*-valued Łukasiewicz-Moisil algebra.

Theorem 1 (Moisil's representation theorem) For any LM_n -algebra \mathcal{L} , there exists a nonempty set I and an injective morphism of LM_n -algebras $d: L \to L_n^I$.

Let $\mathcal{B} = (B, \lor, \land, \neg, 0, 1)$ be a Boolean algebra and two maps $G, H : B \to B$. We define $F, P : B \to B$ by $F(x) = \neg G(\neg x)$ and $P(x) = \neg H(\neg x)$, for any $x \in B$.

Definition 2 (\mathcal{B}, G, H) is a **tense Boolean algebra** if the following hold:

Definition 3 A frame is a pair (X, R), where X is a nonempty set and R is a binary relation on X.

Given a frame (X, R), we define $G^*, H^* : L_2^X \to L_2^X$ by: $G^*(p)(x) = \bigwedge \{p(y) \mid y \in X, xRy\}, \quad H^*(p)(x) = \bigwedge \{p(y) \mid y \in X, yRx\},$

for all $p \in L_2^X$ and $x \in X$.

Proposition 1 For any frame (X, R), (L_2^X, G^*, H^*) is a tense Boolean algebra.

The derivate tense operators F^* , P^* are given by:

$$F^*(p)(x) = \bigvee \{ p(y) \, | \, y \in X, \, xRy \}, \quad P^*(p)(x) = \bigvee \{ p(y) \, | \, y \in X, \, yRx \}$$

for all $p \in L_2^X$ and $x \in X$.

Definition 4 For any two tense Boolean algebras (\mathcal{B}, G, H) and (\mathcal{B}', G', H') , a morphism of tense **Boolean algebras** $f : (\mathcal{B}, G, H) \to (\mathcal{B}', G', H')$ is a morphism of Boolean algebras which satisfies f(G(b)) = G'(f(b)) and f(H(b)) = H'(f(b)), for any $b \in B$.

Theorem 2 (The representation theorem for tense Boolean algebras) For any tense Boolean algebra (\mathcal{B}, G, H) , there exists a frame (X, R) and an injective morphism of tense Boolean algebras $d: (\mathcal{B}, G, H) \rightarrow (L_2^X, G^*, H^*).$

1. Preliminaries

2. Tense operators on LM_n -algebras

3. Tense Moisil logic

Definition 5 Let $\mathcal{L} = (L, \vee, \wedge, \neg, \varphi_1, \dots, \varphi_{n-1}, 0, 1)$ be an LM_n -algebra and $G, H : L \to L$ two unary operations on L. We say that (\mathcal{L}, G, H) is a **tense** LM_n -algebra if the following axioms are satisfied:

(a)
$$G(1) = 1$$
 and $H(1) = 1$,

(b)
$$G(x \wedge y) = G(x) \wedge G(y)$$
 and $H(x \wedge y) = H(x) \wedge H(y)$, for any $x \in L$,

(c)
$$G \circ \varphi_i = \varphi_i \circ G$$
 and $H \circ \varphi_i = \varphi_i \circ H$, for any $i = 1, ..., n-1$,

(d) $x \leq GP(x)$ and $x \leq HF(x)$, for any $x \in L$,

where $F, P: L \to L$ are defined by $Fx = \neg G(\neg x), Px = \neg H(\neg x).$

Let (X, R) be a frame. We define $G^*, H^* : L_n^X \to L_n^X$ as follows:

$$G^{*}(p)(x) = \bigwedge \{ p(y) | y \in X, xRy \}, \quad H^{*}(p)(x) = \bigwedge \{ p(y) | y \in X, yRx \},$$

for all $p \in L_n^X$ and $x \in X$.

Proposition 2 For any frame (X, R), (L_n^X, G^*, H^*) is a tense LM_n -algebra.

Definition 6 If (\mathcal{L}, G, H) and (\mathcal{L}', G', H') are two tense LM_n -algebras, then a **morphism of tense** LM_n **algebras** $f : (\mathcal{L}, G, H) \to (\mathcal{L}', G', H')$ is a morphism of LM_n -algebras such that f(G(a)) = G'(f(a)) and f(H(a)) = H'(f(a)), for any $a \in L$.

Proposition 3 Let (\mathcal{L}, G, H) be a tense LM_n -algebra. Then there exists a frame (X, R) and an injective morphism of tense LM_n -algebras

$$\Phi: (\mathcal{L}, G, H) \to (L_n^X, G^*, H^*).$$

1. Preliminaries

2. Tense operators on LM_n -algebras

3. Tense Moisil logic

The alphabet of \mathcal{TM}_n has the following primitive symbols:

- (1) propositional variables p, q, r, ... (the set V of propositional variables will be assumed infinite);
- (2) logical connectives $\lor, \land, \Rightarrow, \neg, \varphi_1, \ldots, \varphi_{n-1}$;
- (3) tense operators G, H;
- (4) parentheses (,).

The set *E* of sentences of \mathcal{TM}_n is defined by the canonical induction.

We shall use the following abbreviations: $\alpha \Leftrightarrow \beta$ for $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$, $F\alpha$ for $\neg G \neg \alpha$ and $P\alpha$ for $\neg H \neg \alpha$.

 \mathcal{TM}_n has the following axioms:

(M0) the axioms of the Moisil logic \mathcal{M}_n ; (M1) $G(\alpha \Rightarrow \beta) \Rightarrow (G\alpha \Rightarrow G\beta); H(\alpha \Rightarrow \beta) \Rightarrow (H\alpha \Rightarrow H\beta);$ (M2) $G\varphi_i(\alpha) \Leftrightarrow \varphi_i G(\alpha)$ and $H\varphi_i(\alpha) \Leftrightarrow \varphi_i H(\alpha)$, for any i = 1, ..., n-1; (M3) $\alpha \Rightarrow GP\alpha; \alpha \Rightarrow HF\alpha.$ The notion of formal proof in \mathcal{TM}_n is defined in terms of the above axioms and the following inference rules:

$$\frac{lpha, lpha \Rightarrow eta}{eta}, \ \frac{lpha}{\phi_1 lpha}, \ \frac{lpha}{G lpha}, \ \frac{lpha}{H lpha}$$

We shall denote by $\vdash_{\mathcal{TM}_n} \alpha$ if α is **provable** in \mathcal{TM}_n .

Let us consider on *E* the following equivalence relation: $\alpha \sim \beta$ iff $\vdash_{\mathcal{TM}_n} \alpha \Leftrightarrow \beta$.

For any sentence $\alpha \in E$ denote by $[\alpha]$ the equivalence class of α .

We can define on the quotient set $E/_{\sim}$ the following operations:

$$\begin{aligned} [\alpha] \lor [\beta] = [\alpha \lor \beta], \quad [\alpha] \land [\beta] = [\alpha \land \beta], \quad \neg[\alpha] = [\neg \alpha] \quad G([\alpha]) = [G\alpha], \quad H([\alpha]) = [H\alpha], \\ \varphi_i([\alpha]) = [\varphi_i \alpha], \text{ for } i = 1, \dots, n-1. \end{aligned}$$

Lemma 1 $\langle E/_{\sim}, \lor, \land, \neg, \varphi_1, \ldots, \varphi_{n-1}, G, H, 0, 1 \rangle$, the Lindenbaum-Tarski algebra of \mathcal{TM}_n , is a tense LM_n -algebra.

Let (X, R) be a frame. An evaluation of \mathcal{TM}_n in (X, R) is a function $I : E \times X \to L_n$ such that, for all $\alpha, \beta \in E$ and $x \in X$, the following equalities hold:

-
$$I(\alpha \Rightarrow \beta, x) = I(\alpha, x) \Rightarrow I(\beta, x),$$

- $I(\alpha \lor \beta, x) = I(\alpha, x) \lor I(\beta, x),$
- $I(\alpha \land \beta, x) = I(\alpha, x) \land I(\beta, x),$
- $I(\neg \alpha, x) = \neg I(\alpha, x),$
- $I(\neg \alpha, x) = \varphi_i I(\alpha, x),$ for any $i = 1, ..., n - 1,$
- $I(G\alpha, x) = \bigwedge_{xRy} I(\alpha, y), I(P\alpha, x) = \bigvee_{yRx} I(\alpha, y).$

A sentence $\alpha \in E$ is **universally valid** in \mathcal{TM}_n ($\models_{\mathcal{TM}_n} \alpha$) if for every frame (X,R) and for any evaluation $I : E \times X \to L_n$ we have $I(\alpha, x) = 1$, for all $x \in X$.

Theorem 3 (Completeness Theorem)

A sentence α is provable in \mathcal{TM}_n if and only if it is universally valid ($\vdash_{\mathcal{TM}_n} \alpha$ iff $\models_{\mathcal{TM}_n} \alpha$).