Order Sorted Algebra

Daniel Găină

Japan Advanced Institute of Science and Technology
March 8, 2008

Introduction

■ There are many examples where all items of one sort are necessarily also items of some other sort.

- Every natural number is an integer, and every integer is a rational. We may write this symbolically

$$
\text { Natural } \leq \text { Integer } \leq \text { Rational }
$$

■ Associating to each sort name a meaning, i.e. semantic denotation, the sub-sort relations appear as set-theoretic inclusion.

$$
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}
$$

Introduction

■ Sort names like Natural and Rational are syntactic, formalized with order sorted signatures,
■ while their interpretations \mathbb{N} and \mathbb{Q} are semantic, formalized with order sorted algebras.
■ This area of mathematics is called Order Sorted Algebras (abrev. OSA).

Some Motivation

- A related topic is overloading which allows a single symbol to be used for different operations.
■ we can add $2+2$ (two naturals), or $-2 / 3+-2$ (a rational and a integer), or $2+3 / 25$ (a natural and a rational).
■ The flexibility comes from having both
- an overloaded operation symbol +, and
- a sub-sort relation among naturals, integers and rationals such that we always get the same result for the same arguments (+ is sub-sort polymorphic).

Some Motivation

■ polymorphic express the use of the same operation symbol with different meanings in a programming language.

- One may distinguish several forms of polymorphism based on semantic relationship that holds between the different interpretations of an operation symbol

Some Motivation

■ strong ad hoc polymorphism - an op. sym. has semantically unrelated uses.

- multiple representation - the uses are related semantically, but the representations may be different
■ sub-sort polymorphism - different instances of an op. sym. are related by the subset inclusion s.t. the result does not depend on the instance used.
■ parametric polymorphism - supported in CafeOBJ by parameterized objects, such as LIST[X].

Signatures and Terms

An order sorted signature (S, \leq, F) consists of

- a many sorted signature (S, F)
$■$ a partial ordering \leq on S such that the following monotonicity condition is satisfied

$$
\sigma \in F_{w_{1}, s_{1}} \cap F_{w_{2}, s_{2}} \text { and } w_{1} \leq w_{2} \text { imply } s_{1} \leq s_{2}
$$

The set T_{F} of terms is defines recursively by the following:

- $F_{[], s} \subseteq\left(T_{F}\right)_{s}$
- $s_{1} \leq s_{2}$ implies $\left(T_{F}\right)_{s_{1}} \subseteq\left(T_{F}\right)_{s_{2}}$,
$\square t_{i} \in\left(T_{F}\right)_{s_{i}}$ and $\sigma \in F_{s_{1} \ldots s_{n}, s}$ imply $\sigma\left(t_{1}, \ldots, t_{n}\right) \in\left(T_{F}\right)_{s}$

Example in CafeOBJ

```
mod! LIST {
[ NeList < List]
[ Nat]
op 0:-> Nat
op s_:Nat - > Nat
op nil : -> List.
op cons : Nat List - > NeList .
op car:NeList - > Nat.
op cdr:NeList - > List . }
```


Models and Homomorphisms

Given an order sorted signature (S, \leq, F), an order sorted (S, \leq, F)-algebra is a many sorted (S, F)-algebra M such that
$\square s_{1} \leq s_{2}$ implies $M_{s_{1}} \subseteq M_{s_{2}}$
$\square \sigma \in F_{w_{1}, s_{1}} \cap F_{w_{2}, s_{2}}$ and $w_{1} \leq w_{2}$ imply $M_{\sigma}^{w_{1}, s_{1}}=M_{\sigma}^{w_{2}, s_{2}}$ on $M^{w_{1}}$.

Given order sorted (S, \leq, F)-algebras M, M^{\prime}, an order sorted (S, \leq, F)-homomorphism $h: M \rightarrow M^{\prime}$ is a many sorted
(S, F)-homomorphism $h: M \rightarrow M^{\prime}$ such that
■ $s_{1} \leq s_{2}$ implies $h_{s_{1}}=h_{s_{2}}$ on $M_{s_{1}}$

Regular Signatures and Initiality

An order sorted signature (S, \leq, F) is regular iff for each $\sigma \in F_{w_{1}, s_{1}}$ and each $w_{0} \leq w_{1}$ there is a unique least element in the set $\left\{(w, s) \mid \sigma \in F_{w, s}\right.$, and $\left.w_{0} \leq w\right\}$.

w_{0}

Proposition

If (S, \leq, F) is regular then for each $t \in T_{F}$ there is a least sort $s \in S$ such that $t \in\left(T_{F}\right)_{s}$. This sort is denoted $L S(t)$.

An Example of Non-Regular Signature

$$
\begin{aligned}
& \operatorname{mod!~TEST}\{ \\
& {\left[s_{1}<s_{3}\right]} \\
& {\left[s_{2}<s_{4}\right]} \\
& {\left[s_{5}\right]} \\
& \text { op } a:->s_{1} \\
& \text { op } b:->s_{2} \\
& \text { op } f: s_{1} s_{4}->s_{5} . \\
& \text { op } \left.f: s_{3} s_{2}->s_{5} \cdot\right\}
\end{aligned}
$$

Locally Filtered Signatures and Congruence Relations

$\square s_{1}$ and s_{2} are in the same connected component of S iff $s_{1} \equiv s_{2}$, where \equiv is the least equivalence relation on S that contains \leq.
■ A partial ordering (S, \leq) is filtered iff for all $s_{1}, s_{2} \in S$ there is some $s \in S$ such that $s_{1} \leq s$ and $s_{2} \leq s$.
■ A partial ordering (S, \leq) is locally filtered iff every connected component of it is filtered.
■ An order sorted signature (S, \leq, F) is locally filtered iff (S, \leq) is locally filtered.

Locally Filtered Signatures and Congruence Relations

\square An order sorted (S, \leq, F)-congruence on a (S, \leq, F)-algebra M is a many-sorted (S, F)-congruence such that if $s \leq s^{\prime}$ and $a, a^{\prime} \in M_{s}$ then $a \equiv s a^{\prime}$ iff $a \equiv_{s^{\prime}} a^{\prime}$.
$■$ Constr. of the quotient of M by \equiv. For each C we define:

- $M_{C}=U_{s \in C} M_{s}$
- the equiv. rel. \equiv_{c} by $a \equiv_{c} a^{\prime}$ iff $a \equiv_{s} a^{\prime}$ for some $s \in C$.
$-(M / \equiv)_{s}=q_{C}\left(M_{s}\right)$ where $q_{C}: M_{C} \rightarrow\left(M_{C}\right) / \equiv_{C}, q_{C}(a)=[a]$
$-(M / \equiv)_{\sigma}=\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)=\left[M_{\sigma}\left(a_{1}, \ldots, a_{n}\right)\right]$

Example

```
mod! TEST \{
\(\left[s_{1}<s_{3}\right.\) ]
\(\left[s_{2}<s_{3}\right.\) ]
ops \(a b:->s_{1}\)
op c : \(->s_{3}\)
op \(f: s_{1}->s_{1}\).
eq \(c=a\).
eq \(c=b\).
\}
\([a]_{s_{1}}=[a]_{s_{3}}=\{a, b, c\},[b]_{s_{1}}=[b]_{s_{3}}=\{a, b, c\},[c]_{s_{1}}=\{a, b, c\}\)
\(\left(T_{T E S T} / \equiv\right)_{S_{3}}=\emptyset\)
\(f([a])=[f(a)]=\{f(a), f(b)\}\)
```


Coherent signatures and Equations

\square A signature is coherent iff it is both locally filtered and regular.
\square An order sorted (S, \leq, F)-equation is a triple $\left\langle X, t_{1}, t_{2}\right\rangle$ where X is an S-indexed set and $t_{1}, t_{2} \in T_{F \cup X}$ such that $L S\left(t_{1}\right)$ and $L S\left(t_{2}\right)$ are in the same connected component of (S, \leq). We will write $(\forall X) t_{1}=t_{2}$.
■ A conditional (S, \leq, F)-equation is a quadruple $\left\langle X, t_{1}, t_{2}, C\right\rangle$, where $\left\langle X, t_{1}, t_{2}\right\rangle$ is a (S, \leq, F) equation and C is a (finite) set of pairs $\langle u, v\rangle$ such that $\langle X, u, v\rangle$ is a (S, \leq, F)-equation. We will write $(\forall X) t_{1}=t_{2}$ if C.

System of (Proof) Rules and Entailment Systems

A system of (proof) rules (Sig, Sen, RI) consists of
■ a category of "signatures" Sig,
$■$ a "sentence functor" Sen : Sig \rightarrow Set
■ a family of relations $R I=(R / \Sigma)_{\Sigma \in \mid \text { Sig } \mid}$ between sets of sentences $\vdash_{\Sigma} \subseteq \mathcal{P}(\mathbf{S e n}(\Sigma)) \times \mathcal{P}(\operatorname{Sen}(\Sigma))$ for all $\Sigma \in|\operatorname{Sig}|$.
An entailment system (Sig, Sen, \vdash) is just a systems of rules
s. t. for each $\Sigma \in|\mathbf{S i g}|, \vdash_{\Sigma}$ has the following prop.:
\square anti-monotonicity: $E_{1} \vdash_{\Sigma} E_{2}$ if $E_{2} \subseteq E_{1}$,
■ transitivity: $E_{1} \vdash_{\Sigma} E_{3}$ if $E_{1} \vdash_{\Sigma} E_{2}$ and $E_{2} \vdash_{\Sigma} E_{3}$, and
■ unions: $E_{1} \vdash_{\Sigma} E_{2} \cup E_{3}$ if $E_{1} \vdash_{\Sigma} E_{2}$ and $E_{1} \vdash_{\Sigma} E_{3}$
We call \vdash_{Σ} the entailment relation associated to the signature Σ.

Proof rules for AOSA

■ (R) $\emptyset \vdash t=t$ for each term t
■ (S) $t=t^{\prime} \vdash t^{\prime}=t$ for any terms t, t^{\prime}
■ $(T)\left\{t=t^{\prime}, t^{\prime}=t^{\prime \prime}\right\} \vdash t=t^{\prime \prime}$ for any terms $t, t^{\prime}, t^{\prime \prime}$
$■(F)\left\{t_{i}=t_{i}^{\prime} \mid 1 \leq i \leq n\right\} \vdash \sigma\left(t_{1}, \ldots, t_{n}\right)=\sigma\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ for any $\sigma \in F$

Proposition

For each set E of quantifier free (S, \leq, F)-equations we have that $\left(T_{F}\right) / \equiv_{E}=t=t^{\prime}$ iff $E \vdash t=t^{\prime}$ and AOSA with the above system of proof rules is sound and complete.

Entailment Systems with Implications

An entailment system (Sig, Sen, \vdash) has (finitary) implications if for each set of Σ-sentences E and any Σ-sentence e if C,

$$
E \vdash e \text { if } C \text { iff } E \cup C \vdash e
$$

Proposition

The entailment system with implications freely generated by the systems of rules for AOSA is sound and complete for the quantifier free part of OSA.

Entailment Systems with Universal Quantification

An entailment system (Sig, Sen, \vdash) has universal
\mathcal{D}-quantification, for a sub-category $\mathcal{D} \subseteq$ Sig of signature morphisms if the entailment system satisfies the following property (also called the meta-rule of 'Generalization').

$$
\Gamma \vdash_{\Sigma}(\forall \chi) e^{\prime} \text { iff } \chi(\Gamma) \vdash_{\Sigma^{\prime}} e^{\prime}
$$

for each set of sentences $\Gamma \subseteq \operatorname{Sen}(\Sigma)$ and any sentence $(\forall \chi) e^{\prime} \in \operatorname{Sen}(\Sigma)$, where $\chi: \Sigma \rightarrow \Sigma^{\prime} \in \mathcal{D}$.

Proof Rules for OSA

Theorem

Entailment system for OSA is obtained as the free entailment system

- with universal quantification and
- with implication at the quantifier-free level generated by
- (R) $\emptyset \vdash t=t$ for each term t

■ (S) $t=t^{\prime} \vdash t^{\prime}=t$ for any terms t, t^{\prime}
$\square(T)\left\{t=t^{\prime}, t^{\prime}=t^{\prime \prime}\right\} \vdash t=t^{\prime \prime}$ for any terms $t, t^{\prime}, t^{\prime \prime}$
$\square(F)\left\{t_{i}=t_{i}^{\prime} \mid 1 \leq i \leq n\right\} \vdash \sigma\left(t_{1}, \ldots, t_{n}\right)=\sigma\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ for any $\sigma \in F$
■ (Subst) $(\forall Y) \rho \vdash(\forall X) \theta(\rho)$ for any (S, \leq, F)-sentence $(\forall Y) \rho$ and for any substitution $\theta: Y \rightarrow T_{F}(X)$.

