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Introduction

There are many examples where all items of one sort are
necessarily also items of some other sort.
Every natural number is an integer, and every integer is a
rational. We may write this symbolically

Natural ≤ Integer ≤ Rational

Associating to each sort name a meaning, i.e. semantic
denotation, the sub-sort relations appear as set-theoretic
inclusion.

N⊆ Z⊆Q



Introduction

Sort names like Natural and Rational are syntactic,
formalized with order sorted signatures,
while their interpretations N and Q are semantic,
formalized with order sorted algebras.
This area of mathematics is called Order Sorted Algebras
(abrev. OSA).



Some Motivation

A related topic is overloading which allows a single
symbol to be used for different operations.
we can add 2 + 2 (two naturals), or −2/3 +−2 (a rational
and a integer), or 2 + 3/25 (a natural and a rational).
The flexibility comes from having both
- an overloaded operation symbol +, and
- a sub-sort relation among naturals, integers and rationals
such that we always get the same result for the same
arguments (+ is sub-sort polymorphic).



Some Motivation

polymorphic express the use of the same operation
symbol with different meanings in a programming
language.
One may distinguish several forms of polymorphism based
on semantic relationship that holds between the different
interpretations of an operation symbol



Some Motivation

strong ad hoc polymorphism - an op. sym. has
semantically unrelated uses.
multiple representation - the uses are related
semantically, but the representations may be different
sub-sort polymorphism - different instances of an op.
sym. are related by the subset inclusion s.t. the result does
not depend on the instance used.
parametric polymorphism - supported in CafeOBJ by
parameterized objects, such as LIST[X].



Signatures and Terms

An order sorted signature (S,≤,F ) consists of
a many sorted signature (S,F )

a partial ordering ≤ on S such that the following
monotonicity condition is satisfied

σ ∈ Fw1,s1 ∩Fw2,s2 and w1 ≤ w2 imply s1 ≤ s2

The set TF of terms is defines recursively by the following:
F[],s ⊆ (TF )s

s1 ≤ s2 implies (TF )s1 ⊆ (TF )s2 ,
ti ∈ (TF )si and σ ∈ Fs1...sn,s imply σ(t1, . . . , tn) ∈ (TF )s



Example in CafeOBJ

mod! LIST {
[ NeList < List ]
[ Nat ]
op 0 : −> Nat
op s_ : Nat −> Nat
op nil : −> List .
op cons : Nat List −> NeList .
op car : NeList −> Nat .
op cdr : NeList −> List . }



Models and Homomorphisms

Given an order sorted signature (S,≤,F ), an order sorted
(S,≤,F )-algebra is a many sorted (S,F )-algebra M such that

s1 ≤ s2 implies Ms1 ⊆Ms2

σ ∈ Fw1,s1 ∩Fw2,s2 and w1 ≤ w2 imply Mw1,s1
σ = Mw2,s2

σ on
Mw1 .

Given order sorted (S,≤,F )-algebras M,M ′, an order sorted
(S,≤,F )-homomorphism h : M →M ′ is a many sorted
(S,F )-homomorphism h : M →M ′ such that

s1 ≤ s2 implies hs1 = hs2 on Ms1



Regular Signatures and Initiality

An order sorted signature (S,≤,F ) is regular iff for each
σ ∈ Fw1,s1 and each w0 ≤ w1 there is a unique least element in
the set {(w ,s) | σ ∈ Fw ,s, and w0 ≤ w}.

w1
σ // s1

w σ // s

w0

Proposition

If (S,≤,F ) is regular then for each t ∈ TF there is a least sort
s ∈ S such that t ∈ (TF )s. This sort is denoted LS(t).



An Example of Non-Regular Signature

mod! TEST {
[ s1 < s3 ]
[ s2 < s4 ]
[s5]
op a : −> s1
op b : −> s2
op f : s1 s4 −> s5 .
op f : s3 s2 −> s5 . }



Locally Filtered Signatures and Congruence Relations

s1 and s2 are in the same connected component of S iff
s1 ≡ s2, where ≡ is the least equivalence relation on S that
contains ≤.
A partial ordering (S,≤) is filtered iff for all s1,s2 ∈ S there
is some s ∈ S such that s1 ≤ s and s2 ≤ s.
A partial ordering (S,≤) is locally filtered iff every
connected component of it is filtered.
An order sorted signature (S,≤,F ) is locally filtered iff
(S,≤) is locally filtered.



Locally Filtered Signatures and Congruence Relations

An order sorted (S,≤,F )-congruence on a
(S,≤,F )-algebra M is a many-sorted (S,F )-congruence
such that if s ≤ s′ and a,a′ ∈Ms then a≡s a′ iff a≡s′ a′.
Constr. of the quotient of M by ≡. For each C we define:
- MC =

⋃
s∈C Ms

- the equiv. rel. ≡C by a≡C a′ iff a≡s a′ for some s ∈ C.
- (M/≡)s = qC(Ms) where qC : MC → (MC)/≡C , qC(a) = [a]
- (M/≡)σ = ([a1], . . . , [an]) = [Mσ(a1, . . . ,an)]



Example

mod! TEST {
[ s1 < s3 ]
[ s2 < s3 ]
ops a b : −> s1
op c : −> s3
op f : s1 −> s1 .
eq c = a .
eq c = b .
}
[a]s1 = [a]s3 = {a,b,c}, [b]s1 = [b]s3 = {a,b,c}, [c]s1 = {a,b,c}
(TTEST /≡)s3 = /0

f ([a]) = [f (a)] = {f (a), f (b)}



Coherent signatures and Equations

A signature is coherent iff it is both locally filtered and
regular.
An order sorted (S,≤,F )-equation is a triple 〈X , t1, t2〉
where X is an S-indexed set and t1, t2 ∈ TF∪X such that
LS(t1) and LS(t2) are in the same connected component
of (S,≤). We will write (∀X )t1 = t2.
A conditional (S,≤,F )-equation is a quadruple
〈X , t1, t2,C〉, where 〈X , t1, t2〉 is a (S,≤,F ) equation and C
is a (finite) set of pairs 〈u,v〉 such that 〈X ,u,v〉 is a
(S,≤,F )-equation. We will write (∀X )t1 = t2ifC.



System of (Proof) Rules and Entailment Systems

A system of (proof) rules (Sig,Sen,Rl) consists of
a category of "signatures" Sig,
a "sentence functor" Sen : Sig→ Set
a family of relations Rl = (RlΣ)Σ∈|Sig| between sets of
sentences `Σ⊆ P (Sen(Σ))×P (Sen(Σ)) for all Σ ∈ |Sig|.

An entailment system (Sig,Sen,`) is just a systems of rules
s. t. for each Σ ∈ |Sig|, `Σ has the following prop.:

anti-monotonicity: E1 `Σ E2 if E2 ⊆ E1,
transitivity: E1 `Σ E3 if E1 `Σ E2 and E2 `Σ E3, and
unions: E1 `Σ E2∪E3 if E1 `Σ E2 and E1 `Σ E3

We call `Σ the entailment relation associated to the signature
Σ.



Proof rules for AOSA

(R) /0 ` t = t for each term t
(S)t = t ′ ` t ′ = t for any terms t , t ′

(T ){t = t ′, t ′ = t ′′} ` t = t ′′ for any terms t , t ′, t ′′

(F ){ti = t ′i |1≤ i ≤ n} ` σ(t1, ..., tn) = σ(t ′1, ..., t
′
n) for any σ ∈ F

Proposition

For each set E of quantifier free (S,≤,F )-equations we have
that (TF )/≡E |= t = t ′ iff E ` t = t ′ and AOSA with the above
system of proof rules is sound and complete.



Entailment Systems with Implications

An entailment system (Sig,Sen,`) has (finitary) implications if
for each set of Σ-sentences E and any Σ-sentence e if C,

E ` e if C iff E ∪C ` e

Proposition

The entailment system with implications freely generated by the
systems of rules for AOSA is sound and complete for the
quantifier free part of OSA.



Entailment Systems with Universal Quantification

An entailment system (Sig,Sen,`) has universal
D-quantification, for a sub-category D ⊆ Sig of signature
morphisms if the entailment system satisfies the following
property (also called the meta-rule of ’Generalization’).

Γ `Σ (∀χ)e′ iff χ(Γ) `Σ′ e′

for each set of sentences Γ⊆ Sen(Σ) and any sentence
(∀χ)e′ ∈ Sen(Σ), where χ : Σ→ Σ′ ∈D.



Proof Rules for OSA

Theorem

Entailment system for OSA is obtained as the free entailment
system

with universal quantification and
with implication at the quantifier-free level

generated by

(R) /0 ` t = t for each term t
(S)t = t ′ ` t ′ = t for any terms t , t ′

(T ){t = t ′, t ′ = t ′′} ` t = t ′′ for any terms t , t ′, t ′′

(F ){ti = t ′i |1≤ i ≤ n} ` σ(t1, ..., tn) = σ(t ′1, ..., t
′
n) for any σ ∈ F

(Subst)(∀Y )ρ ` (∀X )θ(ρ) for any (S,≤,F )-sentence (∀Y )ρ

and for any substitution θ : Y → TF (X ).


