
Patterns for Maude 

Metalanguage ApplicationsMetalanguage Applications

Georgiana Goriac

Eugen-Ioan Goriac

Sinaia School on Formal Verification of Software Systems

3-10 March 2008

http://www.imar.ro/~diacon/sinaiaschool.html



Topics

• Software patterns

• Maude metalanguage applications

• Case study: a topological sorting system

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
2



Software patterns

• introduced by Christopher Alexander

– urban design and building architecture

• common language used in order to describe :

– a design problem– a design problem

– a context in which the problem occurs

– the core of a solution to solve the problem

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
3



The problem

• specifying and analizing a system

• system examples:

– simulators

– provers– provers

– models of computation

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
4



Maude metalanguage applications

• a particular type of application in which 

Maude is used to define modules for 

specifying:

– a language syntax– a language syntax

– a language parser

– a way of execution

– a manner of printing execution results

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
5



Case study – the TOPO system

Maude>

(poset SIMPLE-POSET is

rel a < b .

rel e < b .

rel b < c .

• special syntax for 

defining a partial order 

set

end)

Maude> tsort c d a b e .

result: a d e b c .

• call of a topological 

sorting command

• system response

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
6



Deeper analysis

• User Interface

– define the communication flow between the user and 
the system under implementation

• System Language Signature

– define the system language signature used in order to – define the system language signature used in order to 
validate system inputs

• System Language Parser

– develop a parser in Full Maude for transforming the 
input matching the system language grammar into a 
semantics in terms of the Maude language

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
7



User Interface

• system loop mode

[ input:QidList, state:State, output:QidList]

• system state structure

– an object characterized by attributes– an object characterized by attributes
input : TermList

output : QidList

defPOSet : Header ...

• user interface rewrite rules
[init], [in], [out]

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
8



System Language Signature

• TOPO grammar
POSet ::= poset Name is Relation* end

Name ::= Identifier

Relation ::= rel LHS < RHS .

LHS ::= Obj

RHS ::= Obj

Obj ::= a | b | ... | z

• declaration of metavariable sorts
sorts @POSet@ @Relation@ .

• declaration of metaexpressions corresponding operators
op poset_is_end : @Token@ List{@Relation@} -> @POSe t@ .

op rel_<_. : @Token@ @Token@ -> @Relation@ .

op tsort_. : @Bubble@ -> @Command@ .

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
9



System Language Parser

• the association of Maude semantics to the user 
input

• example:
( poset ORDER is ( mod ORDER is

including BOOL .including BOOL .
including ITEMS .

rel a < b .         eq a < b = true .
end )                endm)

• steps:
– creating an operator for parsing some input

– creating a rule that calls the parsing operator

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
10



System Language Parser

op parsePOSet : Term Term -> Module .

eq parsePOSet (T, T’) = ... --- make use of the metaParse operation

crl [parseUnit-POSet] :

< O : X@Database | db : DB,

input  : (' poset_is_end[T, T'] ),

output : nil,

Atts

>

=>

< O : X@Database | db : insTermModule(getName(M), M, DB) ,

input  : nilTermList,

output : ('\n 'Introduced 'poset 'specification: ge tName(M) '\n),

Atts

>

if M := parsePOSet (T, T') .

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
11



Applying the patterns

• Maude metalanguage applications can be 
developed by using an iteration-based 
strategy

• The idea is to build the base version of the • The idea is to build the base version of the 
system to be implemented and then, at each 
iteration to add new capabilities to that 
system

• Every time an iteration is performed, the 
enriched system has to be tested for errors

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
12



About the patterns

• The design of these patterns is based on the 

experience acquired by the authors during the 

development of some applications or by 

studying other applicationsstudying other applications

• The greatest achievement is the refactoring of 

the CIRC proving tool, based on the patterns

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
13



References

• Eugen-Ioan Goriac, Georgiana Caltais, Dorel Lucanu,

Oana Andrei and Gheorghe Grigoras

Patterns for Maude Metalanguage Applications

(accepted at WRLA'08, to appear in ENTCS)

• http://circidei.info.uaic.ro/pmma2008/topo.maude• http://circidei.info.uaic.ro/pmma2008/topo.maude

• http://www.imar.ro/~diacon/sinaiaschool.html

Sinaia School on Formal Verification of 

Software Systems, 3-10 March 2008
14


