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AN INTERPOLATION PROBLEM FOR COMPLETELY POSITIVE MAPS

ON MATRIX ALGEBRAS: SOLVABILITY AND PARAMETRISATION

CĂLIN AMBROZIE AND AURELIAN GHEONDEA

Abstract. We present certain existence criteria and parameterisations for an interpola-
tion problem for completely positive maps that take given matrices from a finite set into
prescribed matrices. Our approach uses density matrices associated to linear functionals on
∗-subspaces of matrices, inspired by the Smith-Ward linear functional and Arveson’s Hahn-
Banach type Theorem. We perform a careful investigation on the intricate relation between
the positivity of the density matrix and the positivity of the corresponding linear functional.
A necessary and sufficient condition for the existence of solutions and a parametrisation of
the set of all solutions of the interpolation problem in terms of a closed and convex set of an
affine space are obtained. Other linear affine restrictions, like trace preserving, can be in-
cluded as well, hence covering applications to quantum channels that yield certain quantum
states at prescribed quantum states.

1. Introduction

The most general mathematical model of state changes in quantum mechanics, including
the evolution of an open system or the state change due to a measurement, is provided by
the concept of ”quantum operation”, that is, a linear, completely positive, trace preserving
map, cf. K. Kraus [14] and [15]. Letting Mn denote the unital C∗-algebra of all n×n complex
matrices, recall that a matrix A ∈ Mn is positive semidefinite if all its principal determinants
are nonnegative. A linear map ϕ : Mn → Mk is completely positive if, for all m ∈ N, the
linear map Im⊗ϕ : Mm⊗Mn → Mm⊗Mk is positive, in the sense that it maps any positive
semidefinite element from Mm ⊗Mn into a positive semidefinite element in Mm ⊗Mk. By
CP(Mn,Mk) we denote the cone of all completely positive maps ϕ : Mn → Mk. An equivalent
notion, cf. W.F. Stinespring [21], is that of positive semidefinite map ϕ, that is, for all m ∈ N,
all h1, . . . , hm ∈ Cn, and all A1, . . . , Am ∈ Mn, we have

(1.1)
m∑

i,j=1

〈ϕ(A∗

jAi)hj, hi〉 ≥ 0.

A quantum channel is a completely positive linear map that is trace preserving.
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A natural question related to these mathematical objects refers to finding a quantum chan-
nel that can take certain given quantum states from a finite list into some other prescribed
quantum states. Thus, P.M. Alberti and A. Uhlmann [1] find a necessary and sufficient
condition for a pair of qubits (quantum states in M2) to be mapped under the action of
a quantum channel onto another given pair of qubits. For larger sets of pure states, the
problem has been considered from many other perspectives, see A. Chefles, R. Jozsa, A.
Winter [4] and the bibliography cited there.

In this article we consider the following

Interpolation Problem. Given matrices Aν ∈ Mn and Bν ∈ Mk for ν = 1, . . . , N ,
determine ϕ ∈ CP(Mn,Mk) subject to the conditions

(1.2) ϕ(Aν) = Bν , for all ν = 1, . . . , N.

The meaning of ”determine” is rather vague so we have to make it clear: firstly, one should
find necessary and/or sufficient conditions for the existence of such a solution ϕ, secondly,
one should find an explicit parametrisation of all solutions and, lastly, but not the least, one
should find techniques (numerical, computational, etc.) to determine (approximate) solu-
tions. Other conditions like trace preserving may be required as well, with direct applications
to quantum operations. In this general formulation, these problems have been considered by
C.-K. Li and Y.-T. Poon in [16], where solutions have been obtained in case when the given
states (more generally, Hermitian matrices) commute. More general criteria for existence
of solutions have been considered by Z. Huang, C.-K. Li, E. Poon, and N.-S. Sze in [10],
while T. Heinosaari, M.A. Jivulescu, D. Reeb, and M.M. Wolf obtain in [8] other criteria of
existence of solutions as well as techniques to approximate solutions in terms of semidefinite
programming, in the sense of Y. Nesterov and A. Nemirovsky [17] and L. Vanderberghe and
S. Boyd [22].

The purpose of this article is to approach, from a general perspective, existence criteria
and parametrisations of solutions of the Interpolation Problem. The solvability of the Inter-
polation Problem is characterised in Theorem 3.4 from which an explicit parametrisation of
the set of all solutions in terms of a closed and convex set of an affine space follows.

In order to briefly describe our approach and results, let us denote A = (A1, . . . , AN) and
call it the input data and, similarly, B = (B1, . . . , BN) and call it the output data, as well as

(1.3) CA,B := {ϕ ∈ CP(Mn,Mk) | ϕ(Aν) = Bν , for all ν = 1, . . . , N}.
Clearly, the set CA,B is convex and closed, but it may or may not be compact. Since the maps
ϕ ∈ CP(Mn,Mk) are, by definition, linear, without loss of generality one can assume that the
set {A1, . . . , AN} is linearly independent, otherwise some linear dependence conditions on the
output data B are necessary. On the other hand, since any ϕ ∈ CP(Mn,Mk) is Hermitian, in
the sense that ϕ(A∗) = ϕ(A)∗ for all A ∈ Mn, it follows that, without loss of generality, one
can assume that all matrices A1, . . . , AN , B1, . . . , BN are Hermitian. In particular, letting
SA denote the linear span of A1, . . . , AN , it follows that SA is a ∗-subspace of Mn, that is, it
is a linear subspace stable under taking adjoints, and then, letting ϕA,B : SA → Mk be the
linear map uniquely determined by the conditions

ϕA,B(Aν) = Bν , ν = 1, . . . , N,
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it follows that any ϕ ∈ CP(Mn,Mk) satisfying the constraints (1.2) should necessarily be
an extension of ϕA,B. Thus, the Interpolation Problem may require certain ”positivity”
properties of the map ϕA,B but the ∗-subspace SA may not be linearly generated by S+

A
, the

collection of its positive semidefinite matrices or, it may happen that SA may contain no
nontrivial positive semidefinite matrix at all.

If the ∗-subspace SA contains the identity matrix In (e.g. if we are interested in solutions
ϕ that are unital, that is, ϕ(In) = Ik), making it an operator system [18], then SA is
linearly generated by the cone of its positive semidefinite matrices. In this case, there is the
celebrated Arveson’s Hahn-Banach Type Theorem [3], see the equivalence of (a) and (d) in
Theorem 2.6, saying that the Interpolation Problem has a solution if and only if ϕA,B has
a certain ”complete positivity” property. The original proof in [3] of this extension theorem
was simplified by R.R. Smith and J.D. Ward [20] who introduced a certain linear functional,
that we call the Smith-Ward functional, and then reducing the problem to finding positive
extensions of it. In the case of the Interpolation Problem, letting sA,B denote the Smith-Ward
linear functional associated to ϕA,B, see (3.4), one can go further and associate a ”density
matrix” DA,B, see (3.6), to the Smith-Ward linear functional and then get, see Theorem 3.7,
that the solvability of the Interpolation Problem is equivalent with three assertions: firstly,
with the complete positivity of ϕA,B, secondly, with the positivity of the Smith-Ward linear
functional sA,B and, finally, with the fact that the affine space DA,B + Mk ⊗ S⊥

A
contains

positive semidefinite matrices.

On the other hand, a careful inspection of Theorem 3.7 shows that, actually, the Arveson’s
Hahn-Banach Theorem and the Smith-Ward linear functional sA,B, seem to rather play the
role of the hidden catalysts of the ”reaction” but do not seem to play the major role. Indeed,
the restrictive assumption that SA is generated by S+

A
can be dropped and in Theorem 3.4

we show that the solvability of the Interpolation Problem is equivalent with the fact that the
affine subspace DA,B+Mk⊗S⊥

A
contains positive semidefinite matrices, in the full generality.

In addition, Theorem 3.4 yields, as a by-product, a parametrisation of the set of all solutions
of the Interpolation Problem by the closed convex subset PA,B := {P ∈ (Mk ⊗ S⊥

A
)h | P ≥

−DA,B}, through an affine isomorphism. In case SA is a ∗-subspace congruent to an operator
system, then the parameterising convex subset PA,B is compact as well.

The density matrix DA,B plays the major role in our approach to the Interpolation Problem
and it is a simple observation, see Remarks 3.6, that the positive semidefiniteness of DA,B is
sufficient for the existence of solutions to the Interpolation Problem but, in general, this is not
a necessary condition. We perform a careful investigation on this issue in Subsection 2.4 and
we provide examples and counter-examples illustrating the complexity of this phenomenon.
In addition, in Theorem 2.12 we show that, in case an operator system S is generated
by matrix units, then the density matrix of any positive linear functional on S is positive
semidefinite if and only if S is an algebra. Therefore, it is the additional assumption that
the ∗-subspace is an algebra that ensures the fact that the solvability of the Interpolation
Problem is equivalent to the positive definiteness of DA,B, even though exotic cases of ∗-
subspaces that are not algebras but when this equivalence happens may occur as well, see
Examples 2.10.

In Subsection 3.2 we show that, if the input data A is orthonormalised with respect to
the Hilbert-Schmidt inner product, then the density matrix is easily calculable as DA,B =∑N

ν=1B
T
ν ⊗Aν and this considerably simplifies the criterion of solvability of the Interpolation



4 CĂLIN AMBROZIE AND AURELIAN GHEONDEA

Problem, see Theorem 3.13. Also, we observe that the Gram-Schmidt orthonormalisation
does not affect the other assumptions.

Another important observation on the density matrix DA,B is that, one might think that
it is the Choi matrix [5] that plays the major role in getting criteria of existence of solutions
of the Interpolation Problem, but this seems not to be the case: firstly, in order to define
the Choi matrix, see Subsection 2.1, we have to use all the matrix units, but the subspace
SA might not contain any of them and, secondly, the Choi matrix does not relate well with
the ”action” of the linear map that it represents, while the density matrix does. Actually,
once we explicitly show the relation between the density matrix and the Choi matrix of a
given map ϕ ∈ CP(Mn,Mk), see Proposition 2.8, we can define a ”partial Choi matrix”, see
(2.29), for linear maps on subspaces.

Finally, in Subsection 3.3 we consider the Interpolation Problem for a single interpolation
pair, that is, N = 1, consisting of Hermitian matrices. By using techniques from indefinite
inner product spaces, e.g. see [7], we derive criteria of existence of solutions of the Interpo-
lation Problem with only one operation element, get a necessary and sufficient condition of
solvability in terms of the definiteness characteristics of the data, and estimate the minimal
number of the operation elements of the solutions.

We thank Eduard Emelyanov for providing useful information on ordered vector spaces and
especially for providing the bibliographical data on Kantorovich’s Theorem. We also thank
David Reeb for drawing our attention on [8], soon after a first version of this manuscript has
been circulated as a preprint, which also provided to us more information on literature on
more or less special cases of the Interpolation Problem, that we were not aware of.

2. Notation and Preliminary Results

2.1. The Choi Matrix and the Kraus Form. For n ∈ N let {e(n)i }ni=1 be the canonical
basis of Cn. As usually, the space Mn,k of n × k matrices is identified with B(Ck,Cn), the
vector space of all linear transformations Ck → Cn. For n, k ∈ N we consider the matrix

units {E(n,k)
l,i | l = 1, . . . , n, i = 1, . . . , k} ⊂ Mn,k of size n × k, that is, E

(n,k)
l,i is the n × k

matrix with all entries 0 except the (l, i)-th entry which is 1. In case n = k, we denote

simply E
(n)
l,i = E

(n,n)
l,i . Recall that Mn is organized as a C∗-algebra in a natural way and

hence, positive elements, that is, positive semidefinite matrices in Mn, are well defined.

Given a linear map ϕ : Mn → Mk define an kn× kn matrix Φϕ by

(2.1) Φϕ = [ϕ(E
(n)
l,m)]nl,m=1.

This transformation appears more or less explicitly at J. de Pillis [19], A. Jamio lkowski
[11], R.D. Hill [9], and M.D. Choi [5]. In the following we describe more explicitly the

transformation ϕ 7→ Φϕ. We use the lexicographic reindexing of {E(n,k)
l,i | l = 1, . . . , n, i =

1, . . . , k}, more precisely

(2.2)
(
E

(n,k)
1,1 , . . . , E

(n,k)
1,k , E

(n,k)
2,1 , . . . , E

(n,k)
2,k , . . . , E

(n,k)
n,1 , . . . , E

(n,k)
n,k

)
=

(
E1, E2, ...., Enk

)

An even more explicit form of this reindexing is the following

(2.3) Er = E
(n,k)
l,i where r = (l − 1)k + i, for all l = 1, . . . , n, i = 1, . . . , k.
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The formula

(2.4) ϕ(l−1)k+i,(m−1)k+j = 〈ϕ(E
(n)
l,m)e

(k)
j , e

(k)
i 〉, i, j = 1, . . . , k, l,m = 1, . . . , n,

and its inverse

(2.5) ϕ(C) =

nk∑

r,s=1

ϕr,sE∗

rCEs, C ∈ Mn,

establish a linear and bijective correspondence

(2.6) B(Mn,Mk) ∋ ϕ 7→ Φϕ = [ϕr,s]
nk
r,s=1 ∈ Mnk.

The formulae (2.4) and its inverse (2.5) establish an affine and order preserving isomorphism

(2.7) CP(Mn,Mk) ∋ ϕ 7→ Φϕ ∈ M+
nk.

Given ϕ ∈ B(Mn,Mk) the matrix Φϕ as in (2.1) is called the Choi matrix of ϕ.

Let ϕ : Mn → Mk be a completely positive map. Then, cf. K. Kraus [14] and M.D. Choi
[5], there are n× k matrices V1, V2, . . . , Vm with m ≤ nk such that

(2.8) ϕ(A) = V ∗

1 AV1 + V ∗

2 AV2 + · · · + V ∗

mAVm for all A ∈ Mn.

The representation (2.8) is called the Kraus representation of ϕ and the matrices V1, . . . , Vm

are called the operation elements. Note that the representation (2.8) of a given completely
positive map ϕ is highly non-unique, not only with respect to its operation elements but
also with respect to m, the number of these elements. Concerning the minimal number of
the operation elements in the Kraus form representation of completely positive maps on full
matrix algebras, the following statement, which is implicit in the original article of M.D. Choi
[5], holds.

Proposition 2.1. Let ϕ ∈ CP(Mn,Mk) be a completely positive map and let Φ be its Choi
matrix. Then, rank(Φ) is the minimal number of the operation elements of ϕ.

Proof. Let V = [vl,i], with l = 1, . . . , n and i = 1, . . . , k, be a nontrivial n × k matrix such
that ϕ(A) = V ∗AV for all A ∈ Mn. Then, for all l, m = 1, . . . , n and all i, j = 1, . . . , k, by
(2.4) we have

(2.9) ϕ(l−1)k+i,(m−1)k+j = 〈ϕ(E
(n)
l,m)e

(k)
j , e

(k)
i 〉 = 〈E(n)

l,mV e
(k)
j , V e

(k)
i 〉 = vm,jvl,i.

We take into account that the reindexing r = r(l, i) = (l− 1)k + i is a one-to-one correspon-
dence between {r | 1 ≤ r ≤ nk} and {(l, i) | 1 ≤ l ≤ n, 1 ≤ i ≤ k}, hence (2.9) is equivalent
with

(2.10) ϕr,s = fsfr, r, s = 1, . . . , nk,

where fr = vl,i whenever r = r(l, i) = (l − 1)k + i. This proves that the Choi matrix Φ has
rank 1.

From the particular case proved before, since the correspondence between Choi matrices
and completely positive maps is bijective and affine, it follows that, if ϕ has the representation
(2.8), rank(Φ) ≤ m. On the other hand, if m = rank(Φ), then Φ = Φ1 + Φ2 + · · · + Φm

with positive matrices Φj , rank(Φj) = 1 for all j = 1, . . . , m. Then, from the particular case
proved before, for each j = 1, . . . , m, it follows that Φj(A) = V ∗

j AVj for some Vj ∈ Mk,n and
all A ∈ Mn, hence Φ has the Kraus representation (2.8). �
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2.2. ∗-Subspaces. For a fixed natural number m, S ⊆ Mm is called a ∗-subspace if it is a
linear subspace of Mm that is stable under taking adjoints. Note that, both the real part
and imaginary part of matrices in S are in S and hence S is linearly generated by the real
subspace Sh of all its Hermitian matrices. Also, S+ = {A ∈ S | A ≥ 0} is a cone in Sh but,
in general, S+ may fail to linearly generate Sh. Recall [18] that a ∗-subspace S in Mm is
called an operator system if the identity matrix Im ∈ S. Any operator system S is linearly
generated by S+, e.g. observing that any Hermitian matrix B ∈ S can be written

B =
1

2
(‖B‖Im + B) − 1

2
(‖B‖Im −B),

hence a difference of two positive semidefinite matrices in S. The next proposition provides
different characterisations of those ∗-subspaces S of matrices that are linearly generated by
S+, as well as a model that points out the distinguished role of operator systems. We need
first to recall a technical lemma.

Lemma 2.2. Given two matrices A,B ∈ M+
m, we have B ≤ αA, for some some α > 0, if

and only if Ran(B) ⊆ Ran(A).

Proof. A folklore result in operator theory, e.g. see [6], says that for two matrices A,B ∈
Mm, the inequality BB∗ ≤ αAA∗, for some α > 0, is equivalent with Ran(B) ⊆ Ran(A).
Consequently, if A,B ∈ M+

m then B ≤ A if and only if Ran(B1/2) ⊆ Ran(A1/2). From
here the statement follows since we have Ran(P ) = Ran(P 1/2) for any positive semidefinite
matrix P . �

Proposition 2.3. Let S be a ∗-space in Mm. The following assertions are equivalent:

(i) S is linearly generated by S+.
(ii) There exists A ∈ S+ such that for any B ∈ Sh we have B ≤ αA for some α > 0.
(iii) For any B ∈ Sh there exists A ∈ S+ with B ≤ A.
(iv) There exists T ∈ Mm a matrix of rank r, with Ran(T ) = Cr ⊕ 0 ⊆ Mm, and an

operator system T ⊆ Mr such that

(2.11) S = T ∗(T ⊕ 0m−r)T,

where 0m−r denotes the (m− r) × (m− r) null matrix.

Proof. (i)⇒(ii). Assuming that S is linearly generated by S+, let A be a matrix in S+ of
maximal rank. We first show that, for any B ∈ S+ we have B ≤ αA for some α > 0. To this
end, assume that this is not true hence, by Lemma 2.2, Ran(B) 6⊆ Ran(A) hence, Ran(A) is
a proper subspace of Ran(A) + Ran(B). Since A,B ≤ A+B, again by Lemma 2.2 it follows
Ran(B) + Ran(A) ⊆ Ran(A + B). But then, A + B ∈ S+ has bigger rank than A, which
contradicts the choice of A.

Let now B ∈ Sh be arbitrary. By assumption, B = B1 − B2 with Bj ∈ S+ for j = 1, 2
hence, by what has been proven before, there exist α > 0 such that B1 ≤ αA, hence
B ≤ B1 ≤ αA.

(ii)⇒(iii). This implication is obvious.

(iii)⇒(i). Since S is a ∗-subspace, in order to prove that S is linearly generated by S+, it
is sufficient to prove that Sh is (real) linearly generated by S+. To see this, let B ∈ Sh be
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arbitrary. By assumption, there exist Aj ∈ S+, j = 1, 2, such that B ≤ A1 and −B ≤ A2

hence, letting A = A1 + A2 ∈ S+, we have

B =
1

2
(A−B) − 1

2
(A + B),

where A− B,A + B ∈ S+.

(ii)⇒(iv). Let A ∈ S+ be a matrix having the property that for any B ∈ Sh there
exists α > 0 such that B ≤ αA. By Lemma 2.2, it follows that for any B ∈ S+ we have
Ran(B) ⊆ Ran(A) hence, since S is linearly generated by S+, it follows that for any B ∈ S
we have Ran(B) ⊆ Ran(A), in particular, Ran(A) reduces B and

B =

[
B0 0
0 0

]
, w. r. t. C

m = Ran(A) ⊕ Null(A).

Letting r denote the rank of A, observe now that A0 is positive semidefinite and invertible
as a linear transformation in Ran(A), hence

T0 = {A−1/2
0 B0A

−1/2
0 | B ∈ S}

is an operator system in B(Ran(A)). Then consider a unitary transformation V in Mm such
that it maps Ran(A) to Cr and Null(A) to Cm−r, letting

T = V T0V
∗ and T = V A1/2

the conclusion follows.

(iv)⇒(i). This implication is clear. �

Corollary 2.4. If the ∗-subspace S of Mm contains a positive definite matrix, then S is
linearly generated by S+.

Proof. Indeed, if P ∈ S is positive definite, then T = P−1/2SP−1/2 is an operator system
and then S = P 1/2T P 1/2 is linearly generated by S+. �

In the following we will use a particular case of the celebrated theorem of L. Kantorovich
[13], see also Theorem I.30 in [2], of Hahn-Banach type.

Lemma 2.5. Let S be an ∗-subspace of Mm that is linearly generated by S+, and let f : S →
C be a positive linear map, in the sense that it maps any element A ∈ S+ to a nonnegative

number f(A). Then, there exists a positive linear functional f̃ : Mm → C that extends f .

Proof. Briefly, the idea is to consider the R-linear functional fh = f |Sh and note that fh
is positive. By Proposition 2.3, there exists A ∈ S+ such that for all B ∈ Sh there exists
α > 0 with B ≤ αA. By Lemma 2.2, we have Ran(B) ⊆ Ran(A) for all B ∈ Sh. Let
p : B(Ran(A))h → R be defined by

(2.12) p(C) = inf{fh(B) | C ≤ B ∈ Sh}, C ∈ B(Ran(A))h.

Then p is a sublinear functional on the R-linear space B(Ran(A))h and f(B) = p(B) for all
B ∈ Sh. By the Hahn-Banach Theorem, there exists a linear functional g : B(Ran(A))h → R

that extends fh and such that g(B) ≤ p(B) for all B ∈ B(Ran(A))h. Then, for any B ∈ M+
m,

since −B ≤ 0 it follows −g(B) = g(−B) ≤ p(−B) ≤ fh(0) = 0, hence g(B) ≥ 0. Then, let

f̃ be the canonical extension of g to B(Ran(A)) = B(Ran(A))h + iB(Ran(A))h, in the usual
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way, and finally extend f̃ to Mm by letting f̃(B) = f̃(PRan(A)B|Ran(A)) for all B ∈ Mm,
where PRan(A) denotes the orthogonal projection of Cm onto Ran(A). �

2.3. The Smith-Ward Functional. In the following we recall a technical concept intro-
duced by R.R. Smith and J.D. Ward, cf. the proof of Theorem 2.1 in [20], and there used
to provide another proof to the Arveson’s Hahn-Banach Theorem [3] for completely positive
maps, see also Chapter 6 in [18]. Consider S a subspace of Mn. Note that, for any k ∈ N,
Mk(S), the collection of all k × k block-matrices with entries in S, canonically identified
with Mk ⊗ S, is embedded into the C∗-algebra Mk(Mn) = Mk ⊗ Mn and hence it inherits
a natural order relation, in particular, positivity of its elements is well-defined. If S is a ∗-
subspace then Mk(S) is a ∗-subspace as well and if, in addition, the ∗-subspace S is linearly
generated by the cone of its positive semidefinite matrices, the same is true for Mk(S), e.g.
by Proposition 2.3. Thus, a linear map ϕ : S → Mk, is called positive if it maps any positive
semidefinite matrix from S to a positive semidefinite matrix in Mk. Moreover, for m ∈ N,
letting ϕm = Im ⊗ ϕ : Mm ⊗ S → Mm ⊗ Mk, by means of the canonical identification of
Mm⊗S with Mm(S), the C∗-algebra of all m×m block-matrices with entries elements from
S, it follows that

ϕm([ai,j]
m
i,j=1) = [ϕ(ai,j)]

m
i,j=1, [ai,j ]

m
i,j=1 ∈ Mm(S).

Then, ϕ is called m-positive if ϕm is a positive map, and it is called completely positive if it
is m-positive for all m ∈ N. However, positive semidefiniteness in the sense of (1.1) cannot
be defined, at this level of generality.

To any linear map ϕ : S → Mk, where S ⊆ Mn is some linear subspace, one associates a
linear functional sϕ : Mk(S) → C, via the canonical identification of Mk(S) ≃ Mk ⊗ S, by

sϕ([Ai,j ]
k
i,j=1) =

k∑

i,j=1

〈ϕ(Ai,j)e
(k)
j , e

(k)
i 〉Ck(2.13)

= 〈(Ik ⊗ ϕ([Ai,j ]
k
i,j=1))e

(k), e(k)〉
Ck2

= 〈[ϕ(Ai,j)]
k
i,j=1e

(k), e(k)〉
Ck2

where [Ai,j]
k
i,j=1 ∈ Mk(S), that is, it is a k × k block-matrix, in which each block Ai,j is an

n× n matrix from S, and e(k) is defined by

(2.14) e(k) = e
(k)
1 ⊕ · · · ⊕ e

(k)
k ∈ C

k2 = C
k ⊕ · · · ⊕ C

k.

The formula (2.13) establishes a linear isomorphism

(2.15) B(S,Mk) ∋ ϕ 7→ sϕ ∈ (Mk ⊗ S)∗ ≃ B(Mk ⊗ S,C),

with the inverse transformation

(2.16) (Mk ⊗ S)∗ ≃ B(Mk ⊗ S,C) ∋ s 7→ ϕs ∈ B(S,Mk)

given by the formula

(2.17) ϕs(A) = [s(E
(k)
i,j ⊗ A)]ki,j=1, A ∈ S.

The importance of the Smith-Ward functional relies on the facts gathered in the following
theorem: the equivalence of (a) and (d) is a particular case of the Arveson’s Hahn-Banach
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Theorem [3], while the equivalence of (a), (b), and (d) is essentially due to R.R. Smith and
J.D. Ward [20] as another proof of Arveson’s result.

Theorem 2.6. Let S be a ∗-subspace of Mn that is linearly generated by S+ and let ϕ : S →
Mk be a linear map. The following assertions are equivalent:

(a) ϕ is completely positive.
(b) ϕ is k-positive.
(c) sϕ is a positive functional.
(d) There exists ϕ̃ ∈ CP(Mk,Mn) that extends ϕ.

Proof. Clearly (a) implies (b), the fact that (b) implies (c) follows from the definition of sϕ
as in (2.13), while (d) implies (a) is clear as well. The only nontrivial part is (c) implies
(d). Briefly, following the proofs of Theorem 6.1 and Theorem 6.2 in [18], the idea is to use
Kantorovich’s Theorem as in Lemma 2.5 in order to extend sϕ to a positive functional s̃ on
Mk ⊗Mn ≃ Mk(Mn) ≃ Mkn then, in view of (2.17), let ϕ̃ : Mk → Mn be defined by

(2.18) ϕ̃(A) = [s̃(E
(k)
i,j ⊗ A)]ki,j=1, A ∈ Mn,

and note that ϕ̃ extends ϕ. Finally, in order to prove that ϕ̃ is completely positive it
is sufficient to prove that it is positive semidefinite, see (1.1). To see this, let m ∈ N,
A1, . . . , Am ∈ Mn, and h1, . . . , hm ∈ Ck be arbitrary. Then, letting

hj =
k∑

l=1

λk,le
(k)
l , j = 1, . . . , m,

we have

m∑

i,j=1

〈ϕ̃(A∗

iAj)hj , hi〉Ck =
m∑

i,j=1

k∑

l,p=1

λj,lλi,p〈ϕ̃(A∗

iAj)e
(k)
l , e(k)p 〉Ck

=
m∑

i,j=1

k∑

l,p=1

λj,lλi,ps̃(A
∗

iAj ⊗E
(k)
p,l )

then, for each i = 1, . . . , m, letting Bi denote the k×k matrix whose first row is λi,1, . . . , λi,k

and all the others are 0, hence B∗

i Bj =
∑k

l,p=1 λj,lλi,pE
(k)
p,l , we have

=

m∑

i,j=1

s̃(A∗

iAj ⊗B∗

i Bj)

= s̃((
m∑

i=1

Ai ⊗Bi)
∗(

m∑

j=1

Aj ⊗ Bj)) ≥ 0. �

Actually, once the facts described in Theorem 2.6 are settled, it is easy to observe that
(2.13) and (2.17) establish an affine and order preserving bijection between the cone CP(S,Mk)
and the cone {s : Mk(S) → C | s linear and positive}.
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2.4. The Density Matrix. We consider Mm as a Hilbert space with the Hilbert-Schmidt
inner product, that is, 〈C,D〉HS = tr(D∗C), for all C,D ∈ Mm. Thus, to any linear functional
s : Mm → C, by the Representation Theorem for (bounded) linear functionals on a Hilbert
space, in our case Mm with the Hilbert-Schmidt inner product, one associates uniquely a
matrix Ds ∈ Mm, such that

(2.19) s(C) = tr(D∗

sC), C ∈ Mm.

Clearly, s 7→ Ds is a conjugate linear bijection between the dual space of Mm and Mm.

Remark 2.7. Using the properties of the trace, it follows that s is a positive functional
if and only if the matrix Ds is positive semidefinite. Indeed, if Ds is positive semidefinite,
then for all positive semidefinite matrix in Mm, we have tr(DsC) = tr(C1/2DsC

1/2) ≥ 0.
Conversely, if tr(DsC) ≥ 0 for all positive semidefinite m×m matrix C, then for any vector
v of length m we have 0 ≤ tr(Dsvv

∗) = tr(v∗Dsv) = v∗Dsv, hence Ds is positive semidefinite.

From the previous remark, if s is a state on Mm, that is, a unital positive linear functional
on Mm, then Ds becomes a density matrix, that is, a positive semidefinite matrix of trace
one. Slightly abusing this fact, we call Ds the density matrix associated to s, in general.

On the other hand, since the correspondence between linear maps ϕ : Mn → Mk and Choi
matrices Φϕ ∈ Mkn is a linear isomorphism and, via the Smith-Ward linear functional sϕ, the
correspondence between ϕ and the density matrix Dsϕ is a conjugate linear isomorphism, it
is natural to ask for an explicit relation between the Choi matrix Φϕ and Dsϕ. In order to do
this, we first recall the definition of the canonical shuffle operators. Briefly, this comes from
the two canonical identifications of Cn⊗Ck with Ckn, more precisely, for each l ∈ {1, . . . , n}
and each i ∈ {1, . . . , k}, we let

(2.20) Ue
(kn)
(i−1)n+l = e

(kn)
(l−1)k+i.

It is clear that U is a unitary operator C
kn → C

kn, hence an orthogonal kn × kn matrix.
Also, for a matrix X , out of the adjoint matrix X∗, we consider its transpose XT as well as
its entrywise complex conjugate X .

Proposition 2.8. For any linear map ϕ : Mn → Mk and letting Φ denote its Choi matrix,
cf. (2.1), the density matrix D associated to the Smith-Ward linear functional sϕ, cf. (2.19)
and (2.13), is

(2.21) D = U∗ΦU,

where U is the canonical shuffle unitary operator defined at (2.20).

Proof. We first note that {E(k)
i,j ⊗ E

(n)
l,m | i, j = 1, . . . , k, l,m = 1, . . . , n} is an orthonormal

basis of Mk ⊗Mn with respect to the Hilbert-Schmidt inner product, and that, with respect
to the canonical identification of Mk ⊗Mn ≃ Mk(Mn), that is, when viewed as block k × k
matrices with each entry an n× n matrix, with Mkn, we have

E
(k)
i,j ⊗E

(n)
l,m = E

(kn)
(i−1)n+l,(j−1)n+m, i, j = 1, . . . , k, l,m = 1, . . . , n.

Fix i, j ∈ {1, . . . , k} and l, m ∈ {1, . . . , n}. Then,

sϕ(E
(k)
i,j ⊗ E

(n)
l,m) = sϕ(E

(kn)
(i−1)n+l,(j−1)n+m)

= tr(D∗E
(kn)
(i−1)n+l,(j−1)n+m) = d(i−1)n+l,(j−1)n+m,(2.22)
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where D = [dr,s]
kn
r,s=1 is the matrix representation of D, more precisely,

D =
kn∑

r,s=1

dr,sE
(kn)
r,s .

On the other hand, from (2.4) we have

(2.23) sϕ(E
(k)
i,j ⊗ E

(n)
l,m) = 〈ϕ(E

(n)
l,m)e

(k)
j , e

(k)
i 〉Ck = ϕ(l−1)k+i,(m−1)k+j .

Therefore, in view of (2.22), (2.23) we have

d(i−1)n+l,(j−1)n+m = sϕ(E
(k)
i,j ⊗ E

(n)
l,m) = ϕ(l−1)k+i,(m−1)k+j ,

hence, taking into account of the definition of the canonical shuffle operator U as in (2.20),
the equality in (2.21) follows. �

We now come back to the general case of a ∗-subspace S in Mm. By analogy with the
particular case of the operator system of full matrix algebra Mm described before, with
respect to the Hilbert-Schmitd inner product on Mm, hence on its subspace S, to any linear
functional s : S → C one uniquely associates an m×m matrix Ds ∈ S ⊆ Mm such that

(2.24) s(C) = tr(D∗

sC), C ∈ S,

and we continue to call Ds the density matrix associated to s. Clearly, this establishes a
conjugate linear isomorphism between the dual space of S and S. In view of Theorem 2.6,
we may ask whether the positivity of the linear functional s is equivalent with the positive
semidefiniteness of its density matrix, as in the case of the full matrix algebra Mn. Clearly,
if the density matrix Ds is positive semidefinite then s is a positive linear functional but, as
the following remarks and examples show, the converse may or may not hold.

Remarks 2.9. (1) If the S is a ∗-subspace of Mn and the linear functional s : S → C is

Hermitian, that is, s(C∗) = s(C) for all C ∈ S, then its density matrix D is Hermitian.
Indeed, for any C ∈ S we have

s(C) = s(C∗) = tr(D∗C∗) = tr(CD) = tr((D∗)∗C),

hence, D∗ is also a density matrix for s. Since the density matrix is unique, it follows that
D = D∗.

(2) If S is a C∗-subalgebra of Mm, not necessarily unital, then for any positive functional
s : S → C, its density matrix D is positive semidefinte. Indeed, in this case D = D+ −D−

with D± ∈ S+ and D+D− = 0 hence 0 ≤ s(D−) = tr(DD−) = − tr(D2
−

) hence D− = 0 and
consequently D ∈ S+.

Examples 2.10. (1) We consider the following operator system S in M3

(2.25) S =
{
C =




a 0 b
0 a 0
c 0 d



 | a, b, c, d ∈ C
}
,
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and note that S+ consists on those matrices C as in (2.25) with c = b, a, d ≥ 0, and |b|2 ≤ ad.
Let

D =




1 0
√

2
0 1 0√
2 0 1


 ,

and note that D ∈ S is Hermitian but it is not positive semidefinite: more precisely, its
eigenvalues are 1 −

√
2, 1, and 1 +

√
2. On the other hand, for any C ∈ S+, that is, with

the notation as in (2.25), c = b, a, d ≥ 0, and |b|2 ≤ ad, we have

tr(DC) = a +
√

2 b + a +
√

2 b + d = 2a + d + 2
√

2 Re b

≥ 2a + d− 2
√

2|b| ≥ 2a + d− 2
√

2
√
ad = (

√
2a−

√
d)2 ≥ 0,

hence the linear functional S ∋ C 7→ tr(DC) ∈ C is positive.

(2) In M2 we consider the Pauli matrices

(2.26) σ0 =

[
1 0
0 1

]
, σ1 =

[
0 −i
i 0

]
, σ2 =

[
0 1
1 0

]
, σ3 =

[
1 0
0 −1

]
,

that makes an orthogonal basis of M2 with respect to the Hilbert-Schmidt inner product.
We consider S the linear span of σ0, σ1, and σ2, more precisely,

(2.27) S = {C =

[
α β
γ α

]
| α, β, γ ∈ C}.

Note that S is an operator system but not an algebra. However, we show that, an arbitrary
matrix D ∈ S is positive semidefinite if and only if tr(D∗C) ≥ 0 for all C ∈ S+.

To this end, note that a matrix C as in (2.27) is positive semidefinite if and only if γ = β,
α ≥ 0, and |β|2 ≤ α2. Let D ∈ S, that is,

D =

[
a b
c a

]
,

such that tr(D∗C) ≥ 0 for all C ∈ S+. From Remark 2.9 it follows that D is Hermitian,
hence a is real and c = b, and the condition tr(D∗C) ≥ 0 can be equivalently written as

(2.28) aα + Re(βb) ≥ 0 whenever α ≥ 0 and |β|2 ≤ α2.

Letting β = 0 implies that a ≥ 0. We prove that |b|2 ≥ a2. If a = 0 then from (2.28) it
follows that b = 0. If a > 0 and |b|2 > a2 then letting α = a and β = −a|b|/b, we obtain
0 ≤ aα + Re(βb) = a2 − a|b| = a(a − |b|) < 0, a contradiction. Hence |b|2 ≥ a2 must hold,
and we have proven that D is positive semidefinite.

The concept of density matrices associated to linear functionals on ∗-subspaces opens
the possibility of generalising the concept of a Choi matrix for linear maps with domains
∗-subspaces. Note that the definition of the Choi matrix, see (2.1), involves essentially the
matrix units which, generally, are not available in operator systems. However, in view of
Proposition 2.8 we can proceed as follows. First consider the Smith-Ward functional sϕ
defined as in (2.13), then consider the density matrix Dϕ associated to sϕ as in (2.24), and
finally define Φϕ by

(2.29) Φϕ = U Dϕ U
∗,
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where the bar denotes the entrywise complex conjugation and U denotes the canonical shuffle
unitary operator as in (2.20). Clearly Φϕ is an kn× kn matrix and, in case ϕ ∈ CP(S,Mk),
the Choi matrix Cϕ defined as in (2.29) is Hermitian but, at this level of generality, depending
on the ∗-subspace S, its positive definiteness is not guaranteed. However, if the Choi matrix
Φϕ is positive semidefinite, then ϕ ∈ CP(S,Mk).

2.5. Operator Systems Generated by Matrix Units. For a fixed natural number m
let S be an operator system in Mm. We are interested by the special case when S is linearly
generated by a subset of matrix units in Mm, that is, there exists a subset S ⊆ {1, . . . , m}2
such that S = Lin{E(m)

s | s ∈ S}.

Remarks 2.11. In the following we use the interpretation of subsets S ⊆ {1, . . . , m}2 as

relations on the set {1, . . . , m}. Let S be a relation on {1, . . . , m} and let S = Lin{E(m)
s |

s ∈ S} be the linear subspace in Mm generated by the matrix unit indexed in S.

(1) The linear space S is an operator system in Mm if and only if S is reflexive and
symmetric.

(2) The linear space S is a unital ∗-subalgebra of Mm if and only if S is an equivalence
relation.

Theorem 2.12. Let S be an operator system in Mm linearly generated by matrix units. The
following assertions are equivalent:

(a) Any positive linear functional s : S → C has a positive semidefinite density matrix.
(b) S is an algebra (and hence a unital ∗-subalgebra of Mm).

Proof. (a)⇒(b). We divide the proof in three steps:

Step 1. First observe that for m = 1 or m = 2 any operator system S ⊆ Mm generated
by a set of matrix units is an algebra hence, in view of Remark 2.9.(2), there is nothing to
prove.

Step 2. We consider m = 3 so let S be an operator system in M3 that is linearly generated
by a reflexive and symmetric relation S ⊆ {1, 2, 3}2. Then S necessarily contains all the
diagonal Sd = {(1, 1), (2, 2), (3, 3)}. On the other hand, due to the symmetry condition on
S, it may contain only 3, 5, 7, or 9 elements. If S contains either 3, 5, or 9 elements it is easy
to see that S is an algebra. Thus, we are left only with the investigation of the case when
S has exactly 7 elements, and these are the cases when S = Sd ∪ {(1, 2), (2, 1), (1, 3), (3, 1)},
S = Sd ∪ {(1, 2), (2, 1), (3, 2), (2, 3)}, S = Sd ∪ {(2, 3), (3, 2), (1, 3), (3, 1)}. Note that these
three cases correspond to a circular permutation of one of them and hence the proof for any
one of these would be sufficient.

Let S = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)}. In the following we prove that the
corresponding operator system S = LinS, that is not an algebra, has at least one (actually
we prove that there are infinitely many) positive linear functional whose density matrix is
not positive semidefinite. To see this, first note that

(2.30) S = {C =




a b c
f d 0
g 0 e



 | a, b, c, d, e, f, g ∈ C},
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and that S+ is the collection of all matrices C as in (2.30) subject to the following conditions

(2.31) a ≥ 0, d ≥ 0, e ≥ 0, f = b, g = c, |b|2 ≤ ad, |c|2 ≤ ae, |b|2e + |c|2d ≤ ade.

For each 1/
√

2 < ρ ≤ 1 consider the Hermitian matrix

(2.32) Dρ =




1 ρ ρ
ρ 1 0
ρ 0 1


 .

It is easy to see that Dρ is indefinite for each 1/
√

2 < ρ ≤ 1.

We prove that the corresponding functional sρ = tr(Dρ·) is positive for each 1/
√

2 < ρ ≤ 1.
To see this, let C ∈ S+ be arbitrary, that is, with the notation as in (2.30), the conditions
(2.31) must hold. Then

sρ(C) = tr(DρC) = a + d + e + 2ρRe(b + c)

≥ a + d + e− 2ρ(|b| + |c|)

and, taking into account that |b|+ |c| has its maximal value
√
a(e + d) when the constraints

(2.31) hold, it follows that

≥ a + d + e− 2ρ
√
a(e + d)

≥ a + d + e− 2
√
a(e + d) = (

√
a−

√
e + d)2 ≥ 0.

Step 3. Assume now that m > 3 and assume that S is an operator system in Mm that
is not an algebra. By Remark 2.11.(2), there exist distinct i, j, l ∈ {1, . . . , m} such that
(i, j), (j, l) ∈ S but (i, l) 6∈ S. Modulo a reindexing, without loss of generality we can assume
that i = 2, j = 1, and l = 3. For each 1/

√
2 < ρ ≤ 1 we consider the matrix Dρ as in

(2.32) and let D̃ρ = Dρ ⊕ 0 ∈ Mm. From what has been proven in Step 3 it follows that

the functional sρ = tr(D̃ρ·) on Mm is positive but its density matrix D̃ρ is not positive
semidefinite.

(b)⇒(a). This is a consequence of Remark 2.9.(2). �

3. Main Results

3.1. The General Case. Let now A1, . . . , AN ∈ Mn and B1, . . . , BN ∈ Mk be the given
interpolation data with respect to the Interpolation Problem, see the Introduction. We recall
the notation A = (A1, . . . , AN), called the input data and, similarly, B = (B1, . . . , BN),
called the output data. Since we are looking for ϕ ∈ CP(Mn,Mk), hence for Hermitian maps
ϕ : Mn → Mk, such that the interpolation condition holds

(3.1) ϕ(Aν) = Bν , for all ν = 1, . . . , N,

without loss of generality we can assume that all Aν and all Bν are Hermitian, otherwise we
may increase the number of the data by splitting each entry into its real and its imaginary
parts, respectively. Also, without loss of generality, we can assume that A1, . . . , AN are lin-
early independent, otherwise some linearly dependence consistency conditions on B1, . . . , BN
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should be imposed. On the other hand, since the required maps ϕ should be linear, the con-
straint (3.1) actually determines ϕ on the space

(3.2) SA = Lin{A1, . . . , AN},
which is a ∗-subspace due to the fact that all Aν are Hermitian matrices. In conclusion,
without loss of generality, we work under the following hypotheses on the data:

(a1) All matrices A1, . . . , AN ∈ Mn and B1, . . . , BN ∈ Mk are Hermitian.
(a2) The set of matrices {A1, . . . , AN} is linearly independent.

Thus, SA is ∗-subspace of Mn for which A1, . . . , AN is a linear basis. Having in mind the
approach of the Interpolation Problema through the Arveson’s Hahn-Banach Theorem and
Smith-Ward linear functional, SA might be required to be linearly generated by S+

A
. Thus,

we will also consider special cases when, in addition to the hypotheses (a1) and (a2), the
following condition might be imposed on the data:

(a3) SA is linearly generated by S+
A
.

Remark 3.1. Recalling the definition of CA,B as in (1.3), the set of solutions of the Inter-
polation Problem, observe that CA,B is convex and closed. If SA contains a positive definite
matrix of rank n, in particular, if SA is an operator system, then CA,B is bounded as well,
hence compact. Indeed, if SA is an operator system, this follows from the fact, e.g. see
Proposition 3.6 in [18], that ‖ϕ‖ = ‖ϕ(In)‖ and, since In ∈ SA, the positive semidefinite
matrix ϕ(In) is fixed and independent of ϕ ∈ CA,B. The general case follows now by Propo-
sition 2.3. However, the same Proposition 2.3 shows that assuming that SA is generated by
S+
A

is not sufficient for the compactness of CA,B.

In order to approach the Interpolation Problem, it is natural to associate a linear map
ϕA,B : SA → Mk to the data A and B by letting

(3.3) ϕA,B(Aν) = Bν , ν = 1, . . . , N,

and then uniquely extending it by linearity to the whole ∗-subspace SA. Then, having in
mind the Smith-Ward linear functional (2.13), let

(3.4) sA,B(E
(k)
i,j ⊗ Aν) = 〈Bνe

(k)
j , e

(k)
i 〉Ck = bi,j,ν, i, j = 1, . . . , N, ν = 1, . . . , N,

where

(3.5) Bν =
k∑

i,j=1

bi,j,νE
(k)
i,j , ν = 1, . . . , N.

Since {E(k)
i,j ⊗ Aν | i, j = 1, . . . k, ν = 1, . . . , N} is a basis for Mk ⊗ SA, it follows that sA,B

admits a unique extension to a linear functional sA,B on Mk(SA). Note that, with respect
to the transformations (2.13) and (2.16), the functional sA,B corresponds to the map ϕA,B,
and vice-versa.

To the linear functional sA,B one also uniquely associates its density matrix DA,B as in
(2.24), more precisely,

(3.6) sA,B(C) = tr(D∗

A,BC), C ∈ SA,

that can be explicitly calculated in terms of input-output data A and B, as follows.
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Proposition 3.2. Let the data A1, . . . , AN and B1, . . . , BN satisfy the assumptions (a1) and
(a2). Then, the density matrix DA,B of the linear functional sA,B is

(3.7) DA,B =

N∑

ν=1

k∑

i,j=1

di,j,νE
(k)
i,j ⊗ Aν ,

where, for each pair i, j = 1, . . . , k, the numbers di,j,1, . . . , di,j,N are the unique solutions of
the linear system

(3.8)
N∑

µ=1

di,j,µ tr(AµAν) = bi,j,ν, ν = 1, . . . , N,

and the numbers bi,j,ν are defined at (3.5).

Proof. Clearly, the density matrix DA,B can be represented in terms of the basis {E(k)
i,j ⊗Aν |

i, j = 1, . . . , k, ν = 1, . . . , N} as in (3.7), so we only have to show that (3.8) holds. To this
end, note that

D∗

A,B =

k∑

i,j=1

N∑

ν=1

di,j,νE
(k)
j,i ⊗ Aν ,

recalling that Aν are Hermitian matrices, by assumption. Then, in view of (3.4), for each
i, j = 1, . . . , k and each ν = 1, . . . , N , we have

bi,j,ν = sA,B(E
(k)
i,j ⊗ Aν) = tr(D∗

A,B(E
(k)
i,j ⊗ Aν))

= tr(
k∑

i′,j′=1

N∑

µ=1

di′,j′,µ(E
(k)
j′,i′E

(k)
i,j ⊗AµAν))

then, taking into account that E
(k)
j′,i′E

(k)
i,j = δi′,iE

(k)
j′,j, we have

=
N∑

µ=1

k∑

j′=1

di,j′,µ tr(E
(k)
j′,j) tr(AµAν)

and, since tr(E
(k)
j′,j) = δj′,j, we have

=

N∑

µ=1

di,j,µ tr(AµAν).

Finally, observe that the matrix [tr(AµAν)]Nµ,ν=1 is the Gramian matrix of the linearly inde-
pendent system A1, . . . , AN with respect to the Hilbert-Schmidt inner product, hence positive
definite and, in particular, nonsingular. Therefore, the system (3.8) has unique solution. �

Lemma 3.3. Let S be a ∗-subspace in Mn and let S⊥ be the orthogonal complement space
associated to S with respect to the Hilbert-Schmidt inner product

(3.9) S⊥ = {E ∈ Mn | tr(C∗E) = 0, for all C ∈ S}.
Then:

(a) S⊥ is a ∗-subspace of Mn, hence linearly generated by its Hermitian matrices.



INTERPOLATION FOR COMPLETELY POSITIVE MAPS 17

(b) (Mk ⊗ S)⊥ = Mk ⊗ S⊥, in particular, (Mk ⊗ S)⊥ is a ∗-subspace of Mk ⊗Mn.

(c) If S is an operator system then any matrix C ∈ S⊥ has zero trace, in particular
S⊥ ∩M+

n = {0}.
(d) If S is an operator system then any matrix in (Mk ⊗ S)⊥ has zero trace, hence

(Mk ⊗ S)⊥ does not contain nontrivial positive semidefinite matrices.

Proof. (a) Clearly, S⊥ is a subspace of Mn. Let E ∈ S⊥, hence tr(E∗C) = 0 for all C ∈ S.

Then, 0 = tr(E∗C) = tr(C∗E) = tr(EC∗) = tr((E∗)∗C∗) for all C ∈ S and, since S is stable
under taking adjoints, this implies that E∗ ∈ S⊥.

(b) A moment of thought shows that Mk ⊗ S⊥ ⊆ (Mk ⊗ S)⊥. On the other hand,
dim((Mk ⊗S)⊥) = k2n2 − k2 dim(S) = k2(n2 − dim(S)) = dim(Mk ⊗S⊥), hence the desired
conclusion follows.

(c) This is a consequence of the fact that In ∈ S and the fact that the trace is faithful.

(d) This is a consequence of the statements (b) and (c). �

Theorem 3.4. Let the data A1, . . . , AN ∈ Mn and B1, . . . , BN ∈ Mk be given and subject
to the assumptions (a1) and (a2), let ϕA,B be the linear map defined at (3.3), let sA,B be
the linear functional defined at (3.4) and the density matrix DA,B associated to sA,B as in
(2.24). Also, let S⊥

A
be the orthogonal complement space associated to SA with respect to the

Hilbert-Schmidt inner product, see (3.9).

The following assertions are equivalent:

(i) There exists ϕ ∈ CP(Mn Mk) such that ϕ(Aν) = Bν for all ν = 1, . . . , N .

(ii) The affine space DA,B + Mk ⊗S⊥

A
contains at least one positive semidefinite matrix.

Proof. (i)⇒(ii). Let ϕ ∈ CP(Mn Mk) be such that ϕ(Aν) = Bν for all ν = 1, . . . , N , hence ϕ
extends the linear map ϕA,B, and let sϕ : Mk(Mn) → C be the Smith-Ward linear functional
associated to ϕ as in (2.13). Since ϕ is completely positive, it follows that sϕ is positive.
Further, let Dϕ ∈ Mkn be the density matrix of sϕ, cf. (2.19), hence, by Remark 2.7, Dϕ is
positive semidefinite. On the other hand, since ϕ extends ϕA,B, it follows that sϕ extends
sA,B, hence Dϕ = DA,B + P for some P ∈ (Mk ⊗ SA)⊥ = Mk ⊗ S⊥

A
.

(ii)⇒(i). Let D = DA,B+P be positive semidefinite, for some P ∈ (Mk⊗SA)⊥ = Mk⊗S⊥

A
.

Then

tr(D∗C) = tr((D∗

A,B + P ∗)C) = tr(D∗

A,BC) = sA,B(C), C ∈ SA,

hence, letting s : Mkn → C be the linear functional associated to the density matrix D, it
follows that s is positive and extends sA,B. Further, let ϕs : Mn → Mk be the linear map
associated to s as in (2.17). Then ϕ is completely positive and extends ϕA,B. �

Corollary 3.5. Under the assumptions and the notation of Theorem 3.4, suppose that one
(hence both) of the equivalent conditions (i) and (ii) holds. Then, the formula

(3.10) ϕ(A) =
[
tr(DA,B + P )(E

(k)
i,j ⊗ A)

]k
i,j=1

, A ∈ Mn,

establishes an affine isomorphism between the closed convex sets

(3.11) CA,B := {ϕ ∈ CP(Mn,Mk) | ϕ(Aν) = Bν , for all ν = 1, . . . , N},



18 CĂLIN AMBROZIE AND AURELIAN GHEONDEA

and

(3.12) PA,B := {P ∈ (Mk ⊗ S⊥

A
)h | P ≥ −DA,B}.

Proof. It is clear that both sets CA,B and PA,B are closed and convex.

The fact that the formula (3.10) establishes an affine isomorphism between these two
convex sets follows, on the one hand, from the affine isomorphism properties of the Smith-
Ward functional and of the density matrix and, on the other hand, from the proof of Theo-
rem 3.4. �

Remarks 3.6. Let the assumptions and the notation of Theorem 3.4 hold.

(1) In order for the set CA,B to be nonempty, a necessary condition is, clearly, that for
arbitrary ν = 1, . . . , N , if Aν is semidefinite, then Bν is semidefinite of the same type.

(2) If the density matrix DA,B is positive semidefinite, as a consequence of Corollary 3.5,
the set CA,B is nonempty, more precisely, the map ϕ : Mn → Mk defined by

(3.13) ϕ(A) =
[
tr(DA,B(E

(k)
i,j ⊗ A))

]n
i,j=1

, A ∈ Mn,

is completely positive and ϕ(Aν) = Bν for all ν = 1, . . . , N . We stress the fact that this
sufficient condition is, in general, not necessary, see Examples 2.10.

(3) According to Corollary 3.2 in [16], for any A ∈ M+
n and B ∈ M+

k there exists
ϕ ∈ CP(Mn,Mk) such that ϕ(A) = B. This can be obtained, in our setting, by observing
that, in this case, DA,B = BT ⊗ A is positive semidefinite and then apply the previous
statement.

The following theorem considers the special case when the ∗-space SA is generated by
its positive cone S+

A
. This assumption, for example, becomes natural if we are looking for

solutions ϕ of the Interpolation Problem that are unital, that is, ϕ(In) = Ik, or if we assume
that the data A and B consist of quantum states. The equivalence of assertions (1) and (2),
which is based on Arveson’s Hahn-Banach Theorem, has been also observed in a different
setting but equivalent formulation by A. Jenčová, cf. Theorem 1 in [12], and by T. Heinosaari,
M.A. Jivulescu, D. Reeb, M.M. Wolf, cf. Theorem 4 and Corollary 2 in [8] (our Corollary 2.4
and Corollary 2 in [8] explains that the two cited theorems are actually equivalent).

Theorem 3.7. With the assumptions and the notation as in Theorem 3.4 assume, in addi-
tion, that (a3) holds as well. The following assertions are equivalent:

(1) There exists ϕ ∈ CP(Mn Mk) such that ϕ(Aν) = Bν for all ν = 1, . . . , N .

(2) The linear map ϕA,B defined at (3.3) is k-positive.

(3) The linear functional sA,B : Mk ⊗ SA → C defined by (3.4) is positive.

(4) The affine space DA,B + Mk ⊗S⊥

A
contains at least one positive semidefinite matrix.

Proof. (1)⇒(2). Let ϕ : Mn → Mk be a completely positive map such that ϕ(Aν) = Bν for
all ν = 1, . . . , N . Then ϕ|SA : SA → Mk is completely positive, in the sense specified at
the beginning of Subsection 2.3, that is, ϕA,B = ϕ|SA is completely positive, in particular
k-positive.
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(2)⇒(3). Assume that ϕA,B is k-positive. With notation as in (2.14), a moment of thought
shows that, for each i, j = 1, . . . , N and each ν = 1, . . . , N , we have

〈(Ik ⊗ ϕA,B)(E
(k)
i,j ⊗ Aν)e(k), e(k)〉

Ck2 = ϕA,B(Aν) = Bν = sA,B(E
(k)
i,j ⊗ Aν),

hence

(3.14) 〈(Ik ⊗ ϕA,B)(C)e(k), e(k)〉
Ck2 = sA,B(C), C ∈ Mk ⊗ SA,

and, consequently, sA,B maps any positive semidefinite matrix from Mk⊗SA to a nonnegative
number.

(3)⇒(1). Assume that the linear functional sA,B : Mk ⊗ SA → C defined by (3.4) is
positive, in the sense that it maps any positive element in Mk ⊗SA = Mk(SA) into R+. By
Arveson’s Hahn-Banach Theorem [3], see the implication (c)⇒(d) in Theorem 2.6 and the
argument provided there, there exists a completely positive map ϕ̃ : Mk → Mn extending
ϕA,B, hence ϕ̃ satisfies the same interpolation constraints as ϕA,B.

(1)⇔(4). Proven in Theorem 3.4 �

Remark 3.8. Under the assumptions and notation as in Theorem 3.7, if SA contains a
positive definite matrix, then the set CA,B is convex and compact, see Remark 3.1. Then the
set PA,B, see Corollary 3.5, is convex and compact as well.

Corollary 3.9. If the ∗-subspace SA is an algebra, then the set CA,B is nonempty if and
only if DA,B is positive semidefinite, more precisely, in this case (3.13) provides a solution
ϕ ∈ CA,B of the Interpolation Problem.

Proof. This is a consequence of Theorem 3.7, the second statement of Remark 2.9, and the
second statement of Remark 3.6. �

Example 2.10.(2) shows that the statement in the previous corollary may be true without
the assumption that the ∗-space SA is an algebra.

Remark 3.10. Trace Preserving. Recall that a linear map ϕ : Mn → Mk is trace preserving
if tr(ϕ(A)) = tr(A) for all A ∈ Mn. With the notation as in Theorem 3.4, let

(3.15) QA,B := {ϕ ∈ CA,B | ϕ is trace preserving},
and we want to determine, with respect to the affine isomorphism established in Corollary 3.5,
how the corresponding parameterising subset PA,B can be singled out and, implicitly, to get
a characterisation of the solvability of the Interpolation Problem for quantum channels.
So let P = [p(i,l),(j,m)] be an arbitrary matrix in PA,B, where (i, l) = (i − 1)n + l and
(j,m) = (j−1)n+m, for i, j = 1, . . . , k and l, m = 1, . . . , n, equivalently, in tensor notation,

P =

k∑

i,j=1

n∑

l,m=1

p(i,l),(j,m)E
(k)
i,j ⊗E

(n)
(l,m).

In view of (3.10), a map ϕ ∈ CA,B is trace invariant if and only if

(3.16) tr(ϕ(E
(n)
l,m)) = tr(E

(n)
l,m) = δl,m, l, m = 1, . . . , n,
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which, taking into account of Proposition 3.2, is equivalent with the conjunction of the
following affine constraints

(3.17)

k∑

i=1

p(i,m),(i,l) = δl,m −
N∑

ν=1

am,l,ν

( k∑

i=1

di,i,ν
)
, l, m = 1, . . . , n.

Remark 3.11. Assume that SA is an operator system. By Theorem 3.4, if the Interpolation

Problem has a solution then there exists a positive semidefinite matrix D̃ in DA,B+Mk⊗S⊥

A

hence, by Lemma 3.3 we have 0 ≤ tr(D̃) = tr(DA,B). Therefore, under these assumptions,
a necessary condition of solvability of the Interpolation Problem is tr(DA,B) ≥ 0.

3.2. Orthonormalisation of the Input Data. Theorem 3.4 gives the necessary and suf-
ficient condition of solvability of the Interpolation Problem in terms of the density matrix
DA,B but, in order to precisely get it one might solve the system of linear equations (3.8),
with the Gramian matrix [tr(A∗

µAν)]µ,ν as the principal matrix of the system. If the matri-
ces A1, . . . , AN are mutually orthogonal with respect to the Hilbert-Schmidt inner product,
this Gramian matrix is just the identity matrix IN . Observe that, if this is not the case,
the Gram-Schmidt orthonormalisation algorithm yields an orthonormal system of matrices
that preserves the assumptions (a1)–(a3), due to the fact that the trace of a product of
two Hermitian matrices is always real. More precisely, if A′

1, . . . , A
′

N is the Gram-Schmidt
orthogonalisation of the sequence of linearly independent Hermitian matrices A1, . . . , AN

then

A′

1 =
1√

tr(A2
1)
A1,

Uν+1 = Aν+1 −
ν∑

µ=1

tr(A′

µAµ)Aµ, A′

ν+1 =
1√

tr(U2
ν+1)

Uν+1, ν = 1, . . . , N − 1.

Then, we can change, accordingly, the sequence B1, . . . , BN to B′

1, . . . , B
′

N

B′

1 =
1√

tr(A2
1)
B1, B′

ν+1 =
1√

tr(U2
ν+1)

(
Bν+1 −

ν∑

µ=1

tr(A′

µAµ)Bµ

)
, ν = 1, . . . , N − 1,

and observe that a linear map ϕ : Mn → Mk satisfies the constraints ϕ(Aν) = Bν , ν =
1, . . . , N , if and only if ϕ(A′

ν) = B′

ν , ν = 1, . . . , N . Therefore, without loss of generality, we
can replace the assumption (a2) with the assumption

(a2’) The set of matrices {A1, . . . , AN} is orthonormal with respect to the Hilbert-Schmidt
inner product, that is, tr(AµAν) = δµ,ν for all µ, ν = 1, . . . , N .

Lemma 3.12. Under the assumptions (a1) and (a2’), the density matrix DA,B of the linear
functional sA,B defined at (3.4) is

(3.18) DA,B =

N∑

ν=1

BT
ν ⊗ Aν .

Proof. Under the assumption (a2’), the Gramian matrix of A1, . . . , AN is the identity matrix
IN hence the system of linear equations (3.8) is simply solvable as di,j,ν = bi,j,ν = bj,i,ν for
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all i, j = 1, . . . , k and all ν = 1, . . . , N , where we have taken into account that Bν are all
Hermitian matrices. Thus, by (3.7), we have

DA,B =
N∑

ν=1

k∑

i,j=1

bj,i,νE
(k)
i,j ⊗Aν =

N∑

ν=1

BT
ν ⊗Aν . �

Note that under the assumptions (a1) and (a2’) we can always find an orthonormal basis
A1, . . . , AN , AN+1, . . . , An2 of Mn, with respect to the Hilbert-Schmidt inner product, whose
first elements are exactly the elements of the input data A and such that all its matrices
are Hermitian. Indeed, this basically follows from the fact that S⊥

A
is a ∗-space, and the

remark we made before on the Gram-Schmidt orthonormalisation of a sequence of linearly
independent Hermitian matrices.

Theorem 3.13. Assume that the data A1, . . . , AN and B1, . . . , BN satisfy the assumptions
(a1) and (a2’). Let AN+1, . . . , An2 be a sequence of Hermitian matrices in Mn such that
A1, . . . , An2 is an orthonormal basis of Mn with respect to the Hilbert-Schmidt inner product.
The following assertions are equivalent:

(1) There exists ϕ ∈ CP(Mn,Mk) such that ϕ(Aν) = Bν for all ν = 1, . . . , N .

(2) There exist numbers pi,j,ν, i, j = 1, . . . , k and ν = N+1, . . . , n2, such that pj,i,ν = pi,j,ν
and

(3.19)

N∑

ν=1

BT
ν ⊗ Aν +

k∑

i,j=1

n2∑

ν=N+1

pi,j,νE
(k)
i,j ⊗ Aν ≥ 0.

Proof. We use Theorem 3.4, by means of Lemma 3.12 and Lemma 3.3, taking into account
that in order to get a positive semidefinite matrix in the affine space DA,B + Mk ⊗ S⊥

A
we

actually look for a Hermitian element P ∈ Mk ⊗ S⊥

A
, more precisely

P =

k∑

i,j=1

n2∑

ν=N+1

pi,j,νE
(k)
i,j ⊗ Aν ,

such that DA,B + P ≥ 0. �

Remarks 3.14. Assume that the data A1, . . . , AN and B1, . . . , BN satisfy the assumptions
(a1) and (a2’).

(i) If the set CA,B is nonempty, then, as a consequence of Lemma 3.12 and Remark 3.6, the
following conditions are necessary:

(a) For arbitrary ν = 1, . . . , N , if Aν is semidefinite then Bν is semidefinite of the same
type.

(b) If SA is an operator system, then
∑N

ν=1 tr(Bν) tr(Aν) ≥ 0.

(ii) On the other hand, from Lemma 3.12 and Remark 3.6.(2), if

(3.20)
N∑

ν=1

BT
ν ⊗ Aν ≥ 0,
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then the linear map ϕ : Mn → Mk defined by

(3.21) ϕ(C) =
[ N∑

ν=1

bi,j,ν tr(AνC)
]k
i,j=1

, C ∈ Mn,

where bi,j,ν are the entries of the matrix Bν , see (3.5), is completely positive and satisfies the
interpolation constraints ϕ(Aν) = Bν for all ν = 1, . . . , N .

3.3. A Single Interpolation Pair. For fixed n, k ∈ N, consider completely positive maps
ϕ : Mn → Mk in the minimal Kraus representation, that is, ϕ(A) = V ∗AV , for some V ∈
Mk,n and all A ∈ Mn. By Proposition 2.1, this corresponds to the case when the rank of
the Choi matrix Φ of ϕ is 1. For given Hermitian matrices A ∈ Mn and B ∈ Mk, we are
interested to determine under which conditions on A and B there exists a completely positive
maps ϕ in the minimal Kraus representation such that ϕ(A) = B.

If A is a Hermitian n×n matrix, we consider the decomposition A = |A|1/2SA|A|1/2, where
|A| = (A∗A)1/2 is its absolute value, while SA = sgn(A) is a Hermitian partial isometry,
where sgn is the usual sign function: sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0, and
sgn(0) = 0. Note that, with this notation, A = SA|A| is the polar decomposition of A. Let
HA = Cn ⊖ Null(A) and, further, consider the decomposition HA = H+

A ⊕H−

A, where H±

A is
the spectral subspace of SA (and of A, as well) corresponding, respectively, to the eigenvalue
±1. Then, with respect to the decomposition

(3.22) C
n = H+

A ⊕H−

A ⊕ Null(A),

we have

(3.23) A =




A+ 0 0
0 −A− 0
0 0 0


 , SA =




I+A 0 0
0 −I−A 0
0 0 0


 ,

where A± act in H±

A, respectively, are positive operators, and I±A are the identity operators
in H±

A, respectively.

With this notation, we consider the signatures κ±(A) = dim(H±

A) = rank(A±) and
κ0(A) = dim(Null(A)). The triple (κ−(A), κ0(A), κ+(A)) is called the inertia of A. Note
that κ±(A) is the number of positive/negative eigenvalues of the matrix A, counted with
their multiplicities, as well as the number of negative/positive squares of the quadratic form
C

n ∋ x 7→ 〈Ax, x〉. In this respect, the space C
n has natural structure of indefinite inner

product with respect to

(3.24) [x, y]A = 〈Ax, y〉, x, y ∈ C
n.

Then, κ±(A) coincides with the dimension of any A-maximal positive/negative subspace:
here, a subspace L ∈ Cn is called positive if [x, x]A > 0 for all nonnull x ∈ L.

Lemma 3.15. Let A ∈ Mn and B ∈ Mk be two Hermitian matrices. Then, there exists a
completely positive map ϕ with minimal Kraus (Choi) rank equal to 1 and such that ϕ(A) = B
if and only if κ±(B) ≤ κ±(A).

Proof. Assume that B = V ∗AV for some V ∈ Mk,n and note that for all nonnull x ∈ H+
B we

have
0 < [x, x]B = 〈Bx, x〉 = 〈V ∗AV x, x〉 = 〈AV x, V x〉 = [V x, V x]A,
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hence, the subspace VH+
B is A-positive, and this implies that κ+(B) ≤ κ+(A). Similarly, we

have κ−(B) ≤ κ−(A).

Conversely, let assume that κ±(B) ≤ κ±(A), that is, dim(H±

B) ≤ dim(H±

A), and hence
there exists isometric operators J± : H±

B → H±

A. In addition to the decomposition (3.22) of
Cn with respect to A, we consider the like decomposition of Ck with respect to B

(3.25) C
k = H+

B ⊕H−

B ⊕ Null(B),

and with respect to it, the block-matrix representation of B similar to (3.23). Then, with
respect to (3.22) and (3.25) define V ∈ Mk,n by

(3.26) V =




B
1/2
+ J+A

−1/2
+ 0 0

0 B
1/2
− J−A

−1/2
− 0

0 0 0


 ,

and then, a simple calculation shows that V ∗AV = B. �

Theorem 3.16. Let A ∈ Mn and B ∈ Mk be two Hermitian matrices. Then the following
assertions are equivalent:

(i)There exists a completely positive map ϕ : Mn → Mk such that ϕ(A) = B.

(ii) If A is semidefinite, then B is semidefinite of the same type.

(iii) There exists m ∈ N such that

(3.27) κ±(B) ≤ mκ±(A).

In addition, the minimal Kraus (Choi) rank r of a completely positive map ϕ : Mn → Mk

such that ϕ(A) = B is

(3.28) r = min{m ∈ N | κ±(B) ≤ mκ±(A)}.

Proof. It takes only a moment of thought to see that the assertions (ii) and (iii) are equivalent.
Thus, it remains to prove that the assertions (i) and (iii) are equivalent. Assuming that there
exists m ∈ N satisfying (3.27), let r ∈ N be defined as in (3.28). Then there exist Hermitian
matrices B1, B2, . . . , Br ∈ Mk such that κ±(Bj) ≤ κ±(A) for all j = 1, . . . , r. By Lemma 3.15
there exist V1, V2, . . . , Vr ∈ Mk,n such that V ∗

j AVj = Bj for all j = 1, . . . , r. Then, letting
ϕ =

∑r
j=1 V

∗

j · Vj : Mn → Mk we obtain a completely positive map such that ϕ(A) = B.

On the other hand, if V1, V2, . . . , Vm ∈ Mk,n are such that
∑m

j=1 V
∗

j AVj = B then for each

j = 1, . . . , m we have k±(V ∗

j AVj) ≤ κ±(A), hence κ±(B) ≤
∑m

j=1 κ±(V ∗

j AVj) ≤ mκ±(A),
hence r ≤ m. �

Note that Theorem 3.16 provides one more (different) argument for Corollary 3.2 in [16],
and different from the argument given in Remark 3.6.(3) as well.
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