
Integr. Equ. Oper. Theory
DOI 10.1007/s00020-012-2009-1
c© Springer Basel 2012

Integral Equations
and Operator Theory

Dilations of Some VH-Spaces Operator
Valued Invariant Kernels

Aurelian Gheondea

Abstract. We investigate VH-spaces (Vector Hilbert spaces, or Loynes
spaces) operator valued Hermitian kernels that are invariant under ac-
tions of ∗-semigroups from the point of view of generation of ∗-represen-
tations, linearizations (Kolmogorov decompositions), and reproducing
kernel spaces. We obtain a general dilation theorem in both Kolmogo-
rov and reproducing kernel space representations, that unifies many dila-
tion results, in particular B. Sz.-Nagy’s and Stinesprings’ dilation type
theorems.
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1. Introduction

The dilation theorem of Sz.-Nagy [31], which generalizes a dilation theorem
for groups of Naimark [25], says that any operator valued positive semidefinite
map on a ∗-semigroup can be dilated to a ∗-representation of the ∗-semigroup
on a “larger” Hilbert space. A generalization to VH-spaces (Vector Hilbert
spaces) operator valued maps, motivated by questions in multivariable sto-
chastic processes, was obtained by Loynes [17]. A slightly stronger version of
this generalization was obtained in [11].

The Stinespring’s Theorem [29], which generalizes another dilation the-
orem, for semispectral measures, of Naimark [24], says that, for the case
of a Hilbert space H and a C∗-algebra A, any positive semidefinite map
ϕ : A → B(H) can be dilated to a ∗-homomorphism π of A on B(K), for
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some “larger” Hilbert space K. A result of Szafraniec [30] says that Stine-
spring’s Theorem is logically equivalent with the Sz.-Nagy Dilation Theorem.
An enhanced version of Stinespring’s Theorem, e.g. see [3], states that Stine-
spring’s Theorem is also true when A is a B∗-algebra. It was proven in [11]
that a variant of this equivalence can be put in the framework of VH-spaces,
that is, the theorem of Szafraniec extends to the setting of VH-spaces as well.

The aim of this article is to show that these two dilation theorems,
even at the level of generality of VH-spaces operator valued maps, can be
unified under the same concept, those of positive semidefinite kernels that
are invariant under the action of a ∗-semigroup. More precisely, we prove in
Theorem 4.2 that these kernels can be equivalently characterized by a “line-
arization” of the kernel, that is called a Kolmogorov decomposition, together
with a ∗-representation of the ∗-semigroup onto a “larger” VH-space, and we
also show that, even more, this is equivalent with a VH-space reproducing
kernel onto which the ∗-representation holds

Positive semidefinite kernels have been first considered mainly with
respect to reproducing kernel Hilbert spaces, see Aronszajn [1] and the
rich bibliography cited there. An equivalent description can be obtained by
Kolmogorov decomposition, which is a linearization (or separation of vari-
ables) of the kernel, named this way after Kolmogorov’s seminal paper [15].
For scalar valued kernels, this linearization was first obtained by J. Mercer
back in 1909, cf. [21], in connection with the theory of integral equations
as developed by D. Hilbert, while the reproducing kernel aspects have been
systematically considered by Moore [22]. Basically, a Kolmogorov decompo-
sition is a dilation phenomenon that is strongly related with many other
problems in operator algebras and mathematical physics, see Parthasarathy
and Schmidt [26], Evans and Lewis [7] and the rich bibliography cited there.
When the kernel presents a certain symmetry, that can be modeled, e.g. by
an invariance with respect to an action of a ∗-semigroup (any group can be
organized in a natural way as a ∗-semigroup with the involution defined by
the inverse operation), this turns out to be a powerful method of produc-
ing representations of the underlying ∗-semigroup on the Hilbert space of
dilation. A consequence is that this unifies both Sz.-Nagy’s type dilations
and Stinespring’s type dilations. These ideas have been used in investigating
dilations for indefinite Hermitian kernels in [4,5].

Motivated by questions in operator algebras and mathematical physics,
some generalizations of Hilbert spaces to the case when the inner product
takes vector values have been investigated: we mention here Hilbert modules,
cf. the monographs [16,20], notably a generalization to Hilbert C∗-module
operator valued maps of the Stinespring’s Theorem obtained by Kasparov
[14], Hilbert modules over locally C∗-algebras, cf. Inoue [13] and Phillips [28],
as well as a different type generalization, that was performed by R.M. Loy-
nes, notably his generalization of the Sz.-Nagy’s dilation theorem as in [17],
and followed by a study of operators on these spaces, as in [18]. The latter
vector valued Hilbert spaces, that have been acronymed by VH-spaces, show
many common features with Hilbert spaces but there are many anomalies
as well, the most notable ones due to missing a Schwarz Inequality and an
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analog of the Riesz’s Representation Theorem. Motivation for studying these
VH-spaces and their linear operators originally came mainly from multi-var-
iable stochastic processes, as explained in [19], see also [8] and the rich bibli-
ography cited there for applications of this theory and for an update review
of these applications.

It is worth noting that VH-spaces are so general that they contain
Hilbert modules over either C∗ or locally C∗-algebras. From this perspec-
tive, more recently, Murphy [23] considered Kolmogorov decompositions in
connection with Hilbert C∗-modules, Gaşpar and Gaşpar studied reproducing
kernel Hilbert B(X)-modules in [10] and reproducing kernel Hilbert modules
over locally C∗-algebras in [9], while Heo [12] investigated reproducing kernel
Hilbert C∗-modules and kernels associated with cocycles.

We start this article with a brief presentation of notation and basic
facts on VH-spaces, their linear operators and the C∗-algebra of adjoin-
table operators, to which we add an inequality related to tensor products of
Hilbert spaces with VH-spaces, as a technical result needed later in this arti-
cle. Then we consider Hermitian kernels that take values in B∗(H), the C∗-
algebra of adjointable operators on a VH-space H and investigate different
levels of positivity and their consequences. There are two main results here:
one is Theorem 3.3 that shows that Kolmogorov decompositions character-
ize positive semidefinte kernels and the second is Theorem 3.5 that adds the
characterization by reproducing kernel VH-spaces. There are advantages and
disadvantages for each one of these: Kolmogorov decomposition gives much
more freedom in dealing with it, while its reproducing kernel counter-part
has a “function space” look and enjoys uniqueness. In view of our experience
with applications of the operator valued kernels to moment problems, dila-
tions theory, and multi-variable holomorphy as in [6], we think that having
both of them available is an advantage on the flexibility side, which offers a
choice depending on the particular problem that requires this model.

The main result is Theorem 4.2 that shows that, when the kernel is
invariant under the action of a certain ∗-semigroup, then the Kolmogorov
decomposition, as well as its underlying reproducing kernel VH-space, yields
a ∗-representation of the ∗-semigroup on the VH-space of dilation, that can
be viewed also on the underlying reproducing kernel VH-space. Then we show
that the Loynes–Sz.-Nagy dilation type theorem, see Theorem 5.2 obtained
in [11], is a particular case of Theorem 4.2 to which we add an equivalent
characterization in terms of reproducing kernels. In addition, we transfer
Kolmogorov decompositions to linearizations of positive semidefinite maps
on ∗-semigroups. Finally, we show that the Stinespring’s type theorem for
VH-spaces operator valued completely positive maps on B∗-algebras obtained
in [11], see Theorem 5.5, can be obtained from Thereom 4.2 as well.

2. Notation and Preliminary Results on VH-Spaces

In this section we review most of the definitions and some theorems on
VH-spaces and their operator theory, cf. Loynes [17–19]. A few facts are
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added in connection to taking tensor products, in order to obtain a techni-
cal result that can be considered as a surrogate of a multivariable Schwarz
inequality.

2.1. VH-Spaces

A complex vector space Z is called admissible if:
(a1) Z is a complete locally convex space.
(a2) Z has an involution ∗, that is, a map Z � z �→ z∗ ∈ Z that is conjugate

linear ((αx + βy)∗ = αx∗ + βy∗ for all α, β ∈ C and all x, y ∈ Z) and
involutive ((z∗)∗ = z for all z ∈ Z).

(a3) In Z there is a convex cone Z+ (αx+βy ∈ Z+ for all numbers α, β ≥ 0
and all x, y ∈ Z+), that is closed, strict (Z+ ∩ −Z+ = {0}), and con-
sisting of selfadjoint elements only (z∗ = z for all z ∈ Z+). This cone is
used to define a partial order in Z by: z1 ≥ z2 if z1 − z2 ∈ Z+.

(a4) The topology of Z is compatible with the partial ordering in the sense
there exists a base of the topology, linearly generated by a family of
neighbourhoods {Nj}j∈J of the origin, such that all of them are con-
vex and solid, that is, whenever x ∈ Nj and 0 ≤ y ≤ x then y ∈ Nj .
It can be proven that axiom (a4) is equivalent with the following one:

(a4’) There exists a collection of seminorms {pj}j∈J defining the topology
of Z that are increasing, that is, 0 ≤ x ≤ y implies pj(x) ≤ pj(y).
If, in addition, to the axioms (a1)–(a4), the space Z satisfies also the

following:
(a5) With respect to the specified partial ordering, any bounded monotone

sequence is convergent.
then Z is called a strongly admissible space.

Given a complex linear space E and an admissible space Z, a Z-valued
inner product or Z-gramian is, by definition, a mapping E × E � (x, y) �→
[x, y] ∈ Z subject to the following properties:
(ve1) [x, x] ≥ 0 for all x ∈ E , and [x, x] = 0 if and only if x = 0.
(ve2) [x, y] = [y, x]∗ for all x, y ∈ E .
(ve3) [ax1 + bx2, y] = a[x1, y] + b[x2, y] for all a, b ∈ C and all x1, x2 ∈ E .

A complex linear space E onto which a Z-valued inner product [·, ·]
is specified, for a certain admissible space Z, is called a VE-space (Vector
Euclidean space).

In any VE-space E over an admissible space Z the familiar polarization
formula

4[x, y] =
3∑

k=0

ik[(x + iky, x + iky], x, y ∈ E , (2.1)

holds, which shows that the Z-valued inner product is perfectly defined by
the Z-valued quadratic form E � x �→ [x, x].

Any VE-space E can be made in a natural way into a Hausdorff sepa-
rated locally convex space by considering the weakest locally convex topology
on E that makes the mapping E � h �→ [h, h] ∈ Z continuous, more precisely,
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letting {Nj}j∈J be the collection of convex and solid neighbourhoods of the
origin in Z as in axiom (a4), the collection of sets

Uj = {x ∈ E | [x, x] ∈ Nj}, j ∈ J , (2.2)

is a topological base of neighbourhoods of the origin of E that linearly gen-
erates the weakest locally convex topology on E that makes the mapping
E � h �→ [h, h] ∈ Z continuous, cf. Theorem 1 in [17]. In terms of seminorms,
this topology can be defined in the following way: let {pj}j∈J be a family of
increasing seminorms defining the topology of Z and let

qj(h) = pj([h, h])1/2, h ∈ E , j ∈ J . (2.3)

Then the specified topology of E is fully determined by the family of semi-
norms {qj}j∈J .

If E is complete with respect to this locally convex topology then it is
called a VH-space (Vector Hilbert space). In case the admissible space Z is
strongly admissible, a VH-space is called an LVH-space (Limit Vector Hilbert
space), cf. [18], or Loynes space. LVH-spaces are more suitable for spectral
representations of their unitary or selfadjoint operators, but we do not use
them in this article.

The concept of VE-spaces isomorphism is also naturally defined: this is
just a linear bijection U : E → F , for two VE-spaces over the same admissible
space Z, such that, [Ux,Uy] = [x, y] for all x, y ∈ E . Any VE-space E can be
embedded as a dense subspace of a VH-space H, uniquely determined up to
an isomorphism, cf. Theorem 2 in [17].

In general VH-spaces, an analog of the Schwarz Inequality does not
hold. However, some of its consequences can be proven using slightly differ-
ent techniques. One such consequence is the following lemma.

Lemma 2.1. (Loynes [17]) Let Z be an admissible space, E a complex vector
space and [·, ·] : E × E → Z a positive semidefinite sesqui-linear map, that
is, [·, ·] is linear in the first variable and conjugate linear in the second var-
iable, and [x, x] ≥ 0 for all x ∈ E. If f ∈ E is such that [f, f ] = 0, then
[f, f ′] = [f ′, f ] = 0 for all f ′ ∈ E.

2.2. Linear Operators in VH-Spaces

The collection L(E ,F) of all linear and continuous operators between
VE-spaces E and F is naturally organized as a complex vector space. In
particular, the set L(E) of all linear and continuous operators T : E → E is
naturally organized as a complex algebra.

Given two VH-spaces H and K, a linear operator A : H → K is called
bounded if there exists a constant k ≥ 0 such that

[Ax,Ax] ≤ k[x, x], x ∈ H. (2.4)

Taking into account the definition of the underlying topology of a VH-space,
any linear and bounded operator T is continuous but the converse is not true,
in general. We denote the special class of bounded operators by B(H,K). For
a bounded operator A ∈ B(H,K) we define its operator norm ‖A‖ by the
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square root of the least k satisfying (2.4), that is,

‖A‖ = inf{
√

k | [Ax,Ax] ≤ k[x, x], for all x ∈ H}. (2.5)

It is easy to see that the infimum is actually a minimum and hence, that we
have

[Ax,Ax] ≤ ‖A‖2[x, x], x ∈ H. (2.6)

If H is a VH-space then B(H) = B(H,H) is a Banach algebra with respect
to the usual algebraic operations and the operator norm, cf. Theorem 1 in
[18].

2.3. The C∗-Algebra B∗(H)
Given two VH-spaces H and K, an operator A ∈ B(H,K) is called adjointable
if there exists a bounded operator A∗ : K → H such that for all x ∈ H and
y ∈ K

[Ax, y] = [x,A∗y]. (2.7)

We denote by B∗(H,K) the collection of all adjointable elements in B(H,K).
We emphasize the fact that, in a general VH-space setting, not all bounded
operators are adjointable. This is mostly due to the lack of an analog of the
Riesz Representation Theorem.

The definitions of selfadjoint, unitary, and normal operators are the
same as in the Hilbert space case. It is clear that A is selfadjoint if and only
if [Ax, y] = [x,Ay] for all x, y ∈ H, and also, by the polarization formula
(2.1), this is equivalent to

[Ax, x] = [Ax, x]∗, x ∈ H. (2.8)

A bounded operator A in H is called positive if [Ax, x] ≥ 0 for all x ∈ H.
From (2.8) it follows that a positive operator is necessarily selfadjoint. A
contraction is a linear operator T such that [Tx, Tx] ≤ [x, x] for all x ∈ H.
By Theorem 2 in [18], the involution ∗ is isometric, that is, ‖T ∗‖ = ‖T‖.

If A ∈ B∗(H) is selfadjoint, then we have

− ‖A‖[x, x] ≤ [Ax, x] ≤ ‖A‖[x, x]. (2.9)

The importance of the previous inequality, cf. Theorem 3 in [18], is that,
sometimes, it may be used instead of the Schwarz Inequality which, in gen-
eral, does not hold for a VH-space. Moreover, assume that A is a linear
operator in H and that for some real numbers m,M we have

m[x, x] ≤ [Ax, x] ≤ M [x, x], x ∈ H.

Then A ∈ B∗(H) and A = A∗. If, in addition, m is the maximum and M is
the minimum with these properties, then |A| = max{|m|, |M |}.

It is now clear that B∗(H) is a Banach ∗-algebra with isometric involu-
tion. According to Theorem 4 in [18], for any VH-space H the algebra B∗(H)
is a C∗-algebra, more precisely, we have ‖A∗A‖ = ‖A‖2 for all A ∈ B∗(H).

On the other hand, the natural cone of positive elements in a C∗-alge-
bra A is A+ = {a∗a | a ∈ A}. According to Theorem 5 in [18], given H
a VH-space and A ∈ B∗(H), then A is positive (that is, [Ax, x] ≥ 0 for all
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x ∈ H) if and only if A = B∗B for some B ∈ B∗(H). So, the two notions
coincide.

A subspace M of a VH-space H is orthocomplemented or accessible if
every element x ∈ H can be written as x = y + z where y is in M and z is
such that [z,m] = 0 for all m ∈ M, that is, z is in the orthogonal compan-
ion M⊥ of M. Observe that if such a decomposition exists it is unique and
hence the orthogonal projection PM onto M can be defined by PMx = y.
Any orthogonal projection P is selfadjoint and idempotent, in particular we
have [Px, y] = [Px, Py] for all x, y ∈ H, hence P is positive and contractive.
Conversely, any selfadjoint idempotent operator is an orthogonal projection
onto its range subspace. Any orthocomplemented subspace is closed.

2.4. Direct Sums and Tensor Products

Let Z be an admissible space and Hk, k = 1, . . . , n be VH-spaces with Z-gra-
mian [·, ·]k, respectively. On the algebraic direct sum K = H1 ⊕ · · · ⊕ Hn one
can consider a two variable Z-valued map

[x, y] =
n∑

k=1

[xk, yk]k, x = (x1, . . . , xn), y = (y1, . . . , yn), (2.10)

and it is easy to see that it is a Z-valued inner product on H. Letting {pj}j

denote a collection of increasing seminorms on Z that define its underlying
topology, we consider the family of seminorms on K

K � x �→
( n∑

k=1

pj([xk, xk]k)
)1/2

, x = (x1, . . . , xn),

and it is easy to see that the locally convex topology of K defined by this
family of seminorms is complete, hence K is a VH-space.

If we have Hk = H for all k = 1, . . . , n then we let Hn = H ⊕ · · · ⊕ H
(the sum has exactly n terms). An alternate characterization of the VH-space
Hn can be obtained as a tensor product. More precisely, let C

n denote the
canonical n-dimensional complex vector space and consider the algebraic ten-
sor product C

n ⊗ H, on which a Z- valued two variable map can be defined
by

[ l∑

k=1

ek ⊗ xk,

m∑

j=1

fj ⊗ yj

]
=

l∑

k=1

m∑

j=1

〈ek, fj〉[xk, yj ], (2.11)

for xk, yj ∈ C
n and ek, fj ∈ H, k = 1, . . . , l and j = 1, . . . , m. By Proposi-

tion 2.4 in [11], given H a VH-space and n ∈ N, the vector space C
n ⊗ H,

endowed with the Z-valued map [·, ·] defined by (2.11), is a VH-space, canon-
ically isomorphic with the VH-space Hn.

Let Mn denote the C∗-algebra of all n×n matrices with complex entries.
There is a canonical identification of Mn with the C∗-algebra B(Cn) given by
the action on the canonical orthonormal basis of C

n. We consider Mn(B∗(H))
as the collection of all n × n matrices with entries in B∗(H) that has a
natural structure of ∗-algebra: for instance, letting A = [Ai,j ]ni,j=1 we have
A∗ = [A∗

j,i]
n
i,j=1, addition is entry-wise, while multiplication is matrix-wise.
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Since B∗(H) is a C∗-algebra, Mn(B∗(H)) is a C∗-algebra, e.g. see [27], in a
natural fashion. There is a canonical identification of Mn(B∗(H)) with the
C∗-algebra B∗(Hn) which provides a ∗-isomorphism of C∗-algebras, more
precisely, any A = [Ai,j ]ni,j=1 in Mn(B∗(H)) is identified with the operator
A in Hn defined by left matrix multiplication with column vectors of size n
with entries in H.

Consider now the vector space Mn⊗B∗(H). There is a natural structure
of ∗-algebra on Mn ⊗ B∗(H): for elementary tensors A ⊗ T and B ⊗ S, we
have

(A ⊗ T )(B ⊗ S) = (AB ⊗ TS), (A ⊗ T )∗ = A∗ ⊗ T ∗.

Moreover, an identification of the ∗-algebra Mn ⊗ B∗(H) with the C∗-alge-
bra Mn(B∗(H)) is obtained in the following way: for an elementary tensor
A⊗T the corresponding element in Mn(B∗(H)) is [ai,jT ]ni,j=1. This provides
a natural C∗-algebra structure on Mn ⊗ B∗(H) with respect to which this
identification becomes a ∗-isomorphism.

On the other hand, since the C∗-algebras Mn and B(Cn) are identified
canonically, we actually have a canonical identification of the C∗-algebras
Mn ⊗ B∗(H) with the C∗-algebra B∗(Cn ⊗ H): an arbitrary elementary ten-
sor A ⊗ T in Mn ⊗ B∗(H) is identified with the operator on the VH-space
C

n ⊗ H by

(A ⊗ T )(x ⊗ h), x ∈ C
n, h ∈ H, (2.12)

and then extended by linearity. We are particularly interested in positive ele-
mentary tensors: if A ∈ M+

n and T ∈ B∗(H)+, then A⊗T ∈ (Mn ⊗B∗(H))+,
more precisely, if A = B∗B for some B ∈ Mn and similarly, T = S∗S for some
S ∈ B∗(H), hence, A⊗T = B∗B⊗S∗S = (B∗⊗S∗)(B⊗S) = (B⊗S)∗(B⊗S).

The following inequality is a surrogate of a Schwarz inequality and will
be needed later.

Lemma 2.2. Let T be a positive operator in the VH-space H. Then, for all
h1, h2, . . . , hn ∈ H we have

0 ≤
n∑

j,k=1

[Thj , hk]H ≤ ‖T‖
n∑

j,k=1

[hj , hk]H. (2.13)

Proof. We consider the VH-space Hn = C
n ⊗ H and then the C∗-algebra

Mn(B∗(H)) � Mn ⊗ B∗(H) � B∗(Hn).

We consider E ∈ Mn the n × n matrix with all entries equal to 1 and note
that it is positive. Since T is positive it follows that ‖T‖I − T ≥ 0 and hence

E ⊗ (‖T‖I) − E ⊗ T = E ⊗ (‖T‖I − T ) ≥ 0,

as an element in the C∗-algebra Mn ⊗ B∗(H) as before, equivalently,

E ⊗ T ≤ E ⊗ (‖T‖I) = ‖T‖(E ⊗ I),

which, when evaluated at the vector (h1, h2, . . . , hn) ∈ Hn � C
n⊗H, provides

the inequality (2.13). �
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3. Hermitian Kernels

3.1. Some General Facts

Let X be a nonempty set and let H be a VH-space over the admissible space
Z. A map K : X ×X → B(H) is called a kernel on X and valued in B(H). In
case the kernel K has values in B∗(H), an adjoint kernel K∗ : X×X → B∗(H)
can be associated by K∗(x, y) = K(y, x)∗ for all x, y ∈ X. The kernel K is
called Hermitian if K∗ = K.

Let F = F(X;H) denote the complex vector space of all functions
f : X → H, and G = G(X;H) its subspace of those functions having finite
support. A pairing [·, ·]G : G × G → Z can be defined by

[g, h]G =
∑

y∈X

[g(y), h(y)]H, g, h ∈ G. (3.1)

This pairing is clearly a Z-gramain on G, hence (G; [·, ·]G) is a VE-space.
Let us observe that the sum in (3.1) makes sense even when only one

of the functions g or h has finite support, the other can be arbitrary in F .
Thus, another pairing [·, ·]K can be defined on G by

[g, h]K =
∑

x,y∈X

[K(y, x)g(x), h(y)]H, g, h ∈ G. (3.2)

In general, the pairing [·, ·]K is linear in the first variable and conjugate lin-
ear in the second variable. If, in addition, K = K∗ then the pairing [·, ·]K is
Hermitian as well, that is,

[g, h]K = [h, g]∗K , g, h ∈ G.

A convolution operator K : G → F can be associated to the kernel K
by

(Kg)(y) =
∑

x∈X

K(y, x)g(x), g ∈ G, (3.3)

and it is easy to see that K is a linear operator. There is a natural relation
between the pairing [·, ·]K and the convolution operator K given by

[g, h]K = [Kg, h]G , g, h ∈ G.

If K is adjointable, and letting K∗ denote the convolution operator of the
adjoint kernel K∗, we have

[g, h]K = [Kg, h]G = [g,K∗h]G = [K∗h, g]∗G = [h, g]∗K∗ , g, h ∈ G,

and hence, the pairing [·, ·]K is Hermitian if and only the kernel K is
Hermitian.

Given n ∈ N, the kernel K is called n-positive if for any x1, x2, . . . , xn ∈
X and any h1, h2, . . . , hn ∈ H we have

n∑

j,k=1

[K(xk, xj)hj , hk]H ≥ 0. (3.4)

The kernel K is called positive semidefinite (or of positive type) if it is
n-positive for all natural numbers n.
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Lemma 3.1. Assume that the kernel K : X ×X → B∗(H) is 2-positive. Then:
(1) K is Hermitian.
(2) If, for some x ∈ X, we have K(x, x) = 0, then K(x, y) = 0 for all

y ∈ X.

Proof. (1) Since K is 2-positive it is 1-positive, hence K(x, x) ≥ 0 for all
x ∈ X. On the other hand, writing down the 2-positivity condition, for any
x, y ∈ X and any g, h ∈ H we have

[K(x, y)g, h]H + [K(y, x)h, g]H + [K(x, x)h, h]H + [K(y, y)g, g]H ≥ 0, (3.5)

hence the sum of the first two terms is in the real span of the cone Z+, in
particular, it is selfadjoint. Thus,

[K(x, y)g, h]H + [K(y, x)h, g]H = [h,K(x, y)g]H + [g,K(y, x)h]H,

equivalently,

[
(
K(x, y) − K(y, x)∗)g, h]H + [

(
K(y, x) − K(x, y)∗)h, g]H = 0.

Letting h = i
(
K(x, y) − K(y, x)∗)g it follows

2i[
(
K(x, y) − K(y, x)∗)g,

(
K(x, y) − K(y, x)∗)g]H = 0,

hence K(x, y) = K(y, x)∗ for all x, y ∈ X, that is, K is Hermitian.
(2) Let K(x, x) = 0 and consider (3.5) for arbitrary y ∈ X and g, h ∈ H.

Then

[K(x, y)g, h]H + [K(y, x)h, g]H ≥ −[K(y, y)g, g]H. (3.6)

We claim that

[K(x, y)g, h]H + [K(y, x)h, g]H = 0. (3.7)

Indeed, taking into account the K is 1-positive, we have two choices only: if
[K(y, y)g, g]H = 0, from (3.6) it follows that [K(x, y)g, h]H+[K(y, x)h, g]H ≥
0 and then, replacing g by −g we obtain the opposite inequality, hence (3.7)
holds. The second possible choice is [K(y, y)g, g]H > 0 when, observing that
the rightmost term in (3.6) does not depend on h, we can replace h by th,
for t ∈ R. But then, from (3.6) it follows that the only possibility is that
(3.7) should hold, since the opposite leads to a contradiction. Thus, (3.7) is
proven.

To finish the proof, in (3.7) we replace g by ig and get [K(x, y)g, h]H −
[K(y, x)h, g]H = 0 which, in combination with (3.7) implies [K(x, y)g, h]H =
0 for all g, h ∈ H, hence K(x, y) = 0. �

The following result is a surrogate of a Schwarz inequality for kernels
and it will have a technical role in this article.

Proposition 3.2. Assume that the kernel K is 2n-positive for some natural
number n. Then, for any x, y1, y2, . . . , yn ∈ X and any g1, g2, . . . , gn ∈ H,
the following inequality holds

n∑

j,k=1

[K(x, yj)gj ,K(x, yk)gk]H ≤ ‖K(x, x)‖
n∑

j,k=1

[K(yk, yj)gj , gk]H. (3.8)
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Proof. Since K is 2n-positive, it follows that for any x1, . . . , x2n ∈ X and
h1, . . . , h2n ∈ H we have

2n∑

j,k=1

[K(xk, xj)hj , hk]H ≥ 0. (3.9)

For each k = 1, . . . , n we make the following choice

xk = x, xn+k = yk, hk = −K(x, yk)gk, hn+k = ‖K(x, x)‖gk,

in (3.9) and get

0 ≤
n∑

j,k=1

[K(x, x)K(x, yj)gj ,K(x, yk)gk]H

− 2‖K(x, x)‖
n∑

j,k=1

[K(x, yj)gj ,K(x, yk)gk]H

+ ‖K(x, x)‖2
n∑

j,k=1

[K(yk, yj)gj , gk]H. (3.10)

Taking into account that, by Lemma 2.2, when applied for T = K(x, x) ≥ 0
and hj = K(x, yj)gj , have

n∑

j,k=1

[K(x, x)K(x, yj)gj ,K(x, yk)gk]H ≤ ‖K(x, x)‖

×
n∑

j,k=1

[K(x, yj)gj ,K(x, yk)gk]H,

which, when used in (3.10), yields

‖K(x, x)‖
n∑

j,k=1

[K(x, yj)gj ,K(x, yk)gk]H ≤ ‖K(x, x)‖2
n∑

j,k=1

[K(yk, yj)gj , gk]H,

which, by Lemma 3.1.(2), implies (3.8). �

3.2. Kolmogorov Decompositions

Given a B∗(H)-valued kernel K on a nonempty set X, for some VH-space H
on an admissible space Z, a Kolmogorov decomposition of K is, by definition,
a pair (V ;K), subject to the following conditions:
(kd1) K is a VH-space over the same admissible space Z.
(kd2) V : X → B∗(H,K) satisfies K(y, x) = V ∗(y)V (x) for all x, y ∈ X.
If, in addition, the Kolmogorov decomposition satisfies the following
condition
(kd3) LinV (X)H is dense in K.
then it is called minimal.

Two Kolmogorov decompositions (V ;K) and (V ′;K′) of the same kernel
K are called unitary equivalent if there exists a unitary operator U : K → K′

such that UV (x) = V ′(x) for all x ∈ X.
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Theorem 3.3. Given a B∗(H)-valued kernel K, for some VH-space H on
an admissible space Z, on a nonempty set X, the following assertions are
equivalent:
(1) K is positive semidefinite.
(2) K admits a Kolmogorov decomposition (V ;K).
In addition, the Kolmogorov decomposition (V ;K) can always be chosen min-
imal and, in this case, it is unique up to unitary equivalence.

Proof. (1)⇒(2). Assuming that K is positive semidefinite, by Lemma 3.1.(1)
it follows that K is Hermitian, that is, K(x, y)∗ = K(y, x) for all x, y ∈ X.
With the notation as in Sect. 3.1 we consider the convolution operator K
defined at (3.3) and let F0 = F0(X;H) be its range, more precisely,

F0 = {f ∈ F | f = Kg for some g ∈ G} (3.11)

= {f ∈ F | f(y) =
∑

x∈X

K(y, x)g(x) for some g ∈ G and all y ∈ X}.

A pairing [·, ·]F0 : X × X → Z can be defined by

[e, f ]F0 = [g, h]K = [Kg, h]G =
∑

y∈X

[e(y), h(y)]H

=
∑

x,y∈X

[K(y, x)g(x), h(y)]H, (3.12)

where f = Kh and e = Kg for some g, h ∈ G, that is, g and h are finitely
supported H-valued functions on X. We observe that

[e, f ]F0 =
∑

y∈X

[e(y), h(y)]H =
∑

x,y∈X

[K(y, x)g(x), h(y)]H

=
∑

x,y∈X

[g(x),K(x, y)h(y)]H =
∑

x∈X

[g(x), f(x)]H,

which shows that the definition in (3.12) is correct (that is, independent of
g and h such that e = Kg and f = Kh).

We claim that [·, ·]F0 is a Z-valued inner product, that is, it satisfies all
the requirements (ve1)–(ve3). The only fact that needs a proof is [f, f ]F0 = 0
implies f = 0. To see this we use Lemma 2.1 and first get that [f, f ′]F0 = 0
for all f ′ ∈ F0. For each x ∈ X and each h ∈ H let δxh ∈ G denote the
function

(δxh)(y) =

{
h, if y = x,

0, if y �= x.
(3.13)

(A correct notation would be δxh = δx ⊗ h, when identifying G(X;H) with
G(X; C) ⊗ H, but we resisted the temptation of using it in order to keep the
notation simpler.) Letting f ′ = Kδxh we have

0 = [f, f ′]F0 = [f,Kδxh]G =
∑

y∈X

[f(y), (δxh)(y)]H = [f(x), h]H,

hence, since h ∈ H and x ∈ X are arbitrary, it follows that f = 0.
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Thus, (F0; [·, ·]F0) is a VE-space that can be completed to a VH-space
that we denote by K, that contains F0 as a dense linear manifold. For each
x ∈ X we define V (x) : H → F0 by

V (x)h = Kδxh, h ∈ H. (3.14)

Actually, there is an even more explicit way of expressing V (x), namely,

(V (x)h)(y) = (Kδxh)(y) =
∑

z∈X

K(y, z)(δxh)(z)

= K(y, x)h, y ∈ X. (3.15)

We first show that V (x) is a bounded operator from the VH-space H
to the VE-space F0. Indeed,

[V (x)h, V (x)h]F0 = [Kδxh,Kδxh]F0 =
∑

y,z∈X

[K(y, z)(δxh)(z), (δxh)(y)]H

= [K(x, x)h, h]H ≤ ‖K(x, x)‖[h, h]H.

Thus, V (x) is bounded and hence can be uniquely extended by continuity to
an operator V (x) ∈ B(H,K).

We now show that V (x) is adjointable for all x ∈ X. To see this, let us
fix x ∈ X and take h ∈ H and f ∈ F0 arbitrary. Then,

[V (x)h, f ]F0 =
∑

y∈X

[(δxh)(y), f(y)]H = [h, f(x)]H, (3.16)

which shows that, if V (x) is adjointable then its adjoint, when restricted to
F0 should be F0 � f �→ f(x) = W (x)f ∈ H. We prove that W (x) is bounded
as a linear operator from the VE-space F0 to the VH-space H. To this end,
let f ∈ F0 be arbitrary, hence f = Kg for some finitely supported g. Then

[W (x)f,W (x)]H = [f(x), f(x)]H =
[ ∑

z∈X

K(x, z)g(z),
∑

y∈X

K(x, y)g(y)
]
H

=
∑

z,y∈X

[K(x, z)g(z),K(x, y)g(y)]H

and, by Proposition 3.2, we get

≤ ‖K(x, x)‖
∑

z,y∈X

[K(y, z)g(z), g(y)]H = ‖K(x, x)‖[f, f ]F0 .

This proves that W (x) is bounded and hence can be extended uniquely, by
continuity, to an operator W (x) ∈ B(K,H). By (3.16) it follows that V (x) is
adjointable and W (x) = V (x)∗ for all x ∈ X, more precisely,

V (x)∗f = f(x), f ∈ F0. (3.17)

On the other hand, for any x, y ∈ X, by (3.17) and (3.15), we have

V (y)∗V (x)h = (V (x)h)(y) = K(y, x)h, h ∈ H,

hence (V ;K) is a Kolmogorov decomposition of K. We prove that it is min-
imal as well. To see this, note that for any g ∈ G, with the notation as in
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(3.13), we have

g =
∑

x∈supp(g)

δxg(x),

hence, by (3.14), the linear span of V (X)H equals F0 which is dense in K.
The uniqueness of the minimal Kolmogorov decomposition (V ;K) just

constructed follows in the usual way: if (V ′;K′) is another minimal Kol-
mogorov decomposition of K, for arbitrary x1, . . . , xm, y1, . . . , yn ∈ X and
arbitrary g1, . . . , gm, h1, . . . , hn ∈ H, we have

[ m∑

j=1

V (xj)gj ,
m∑

k=1

V (yk)hk

]
K =

m∑

j=1

n∑

k=1

[V (yk)∗V (xj)gj , hk]H

=
m∑

k=1

n∑

j=1

[K(yk, xj)gj , hk]H

=
m∑

j=1

n∑

k=1

[V ′(yk)∗V ′(xj)gj , hk]H

=
[ m∑

j=1

V ′(xj)gj ,

m∑

k=1

V ′(yk)hk

]
K′ ,

hence U : Lin V (X)H → Lin V ′(X)H defined by
m∑

j=1

V (xj)gj �→
m∑

j=1

V ′(xj)gj (3.18)

is a linear operator, correctly defined, isometric, densely defined, and with
dense range. Thus, U extends uniquely to a unitary operator U ∈ B∗(K,K′)
and UV (x) = V ′(x) for all x ∈ X, by construction.

(2)⇒(1). This is proven exactly as in the classical case:
n∑

j,k=1

[K(xk, xj)hj , hk]H =
n∑

j,k=1

[V (xk)∗V (xj)hj , hk]H

=
[ n∑

j=1

V (xj)hj ,

n∑

j=1

V (xj)hj

]
H ≥ 0,

for all n ∈ N, x1, . . . , xn ∈ X, and h1, . . . , hn ∈ H. �

3.3. Reproducing Kernel VH-Spaces

Let H be a VH-space over the admissible space Z, and let X be a nonempty
set. As in Sect. 3.1, we consider the complex vector space F(X;H) of all
functions f : X → H. A VH-space R, over the same admissible space Z, is
called an H-reproducing kernel VH-space on X if there exists a Hermitian
kernel K : X × X → B∗(H) such that the following axioms are satisfied:

(rk1) R is a subspace of F(X;H), with all algebraic operations.
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(rk2) For all x ∈ X and all h ∈ H, the H-valued function Kxh = K(·, x)h ∈
R.

(rk3) For all f ∈ R we have [f(x), h]H = [f,Kxh]R, for all x ∈ X and h ∈ H.
In addition, as a consequence of (rk3), the following minimality property
holds as well:
(rk4) Lin{Kxh | x ∈ X, h ∈ H} is dense in R.

Proposition 3.4. Assume that R is an H-reproducing kernel VH-space on X
with kernel K.
(a) K is positive semidefinite and uniquely determined by R.
(b) R is uniquely determined by K.

Proof. (a) Using the reproducing axiom (rk3) it follows
n∑

j,k=1

[K(xk, xj)hj , hk]H =
n∑

j,k=1

[Kxj
hj ,Kxk

hk]H

=
[ n∑

j=1

Kxj
hj ,

n∑

j=1

Kxj
hj

]
H ≥ 0

hence K is positive semidefinite.
On the other hand, by (rk3) it follows that all the functions Kxh, x ∈

X,h ∈ H are uniquely determined by (R; [·, ·]R), hence all the operators
K(y, x) = Kx(y), x, y ∈ X, are uniquely determined.

(b) Let R′ be another H-reproducing kernel VH-space on X with ker-
nel K. By axiom (rk2) and (rk4), R0 = Lin{Kxh | x ∈ X, h ∈ H} is a
linear space that lies and is dense in both of R and R′. By axiom (rk3), the
Z-valued inner products [·, ·]R and [·, ·]R′ coincide on R0 and then it is easy
to see that, due to the special way in which the topologies on R and R′ are
defined (see (2.2) and (2.3)) and the density of R0, we actually have R = R′

as VH-spaces. �

Consequently, given R an H-reproducing kernel VH-space on X we can
talk about the H-reproducing kernel K corresponding to R.

The following theorem adds one more equivalent characterization of
VH-spaces operator valued positive semidefinite kernels in terms of reproduc-
ing kernel VH-spaces. Our point of view is to obtain this equivalent statement
through Kolmogorov decompositions.

Theorem 3.5. Let H be a VH-space over the admissible space Z,X a nonempty
set, and K : X × X → B∗(H) a Hermitian kernel. The following assertions
are equivalent:
(1) K is positive semidefinite.
(2) K has a Kolmogorov decomposition.
(3) K is the H-reproducing kernel on X of a VH-space R.

Proof. The equivalence (1)⇔(2) was proven in Theorem 3.3. Even though we
already have the implication (3)⇒(1) by Proposition 3.4, we prefer to prove
the equivalence of assertions (2) and (3) independently of this, in order to
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show explicitly both ways of the connection between Kolmogorov decompo-
sitions and reproducing kernel VH-spaces.

(2)⇒(3). Let (K;V ) be a Kolmogorov decomposition of K. As shown
by Theorem 3.3, without loss of generality we can assume it to be minimal
as well. Define

R = {V (·)∗f | f ∈ K}, (3.19)

that is, R consists of all functions X � x �→ V (x)∗f ∈ H, in particular
R ⊆ F(X;H), and we endow R with the algebraic operations inherited from
the complex vector space F(X;H).

We want to show that the correspondence

K � f �→ Uf = V (·)∗f ∈ R (3.20)

is bijective. By the definition of R, this correspondence is surjective. In order
to verify that it is injective as well, let f, g ∈ K be such that V ∗(·)f = V ∗(·)g.
Then, for all x ∈ X and all h ∈ H we have

[V (x)∗f, h]H = [V (x)∗g, h]H,

equivalently,

[f − g, V (x)h]K = 0, x ∈ X, h ∈ H.

By the minimality of the Kolmogorov decomposition (K;V ) it follows that
g = f . Thus, U is a bijection.

Clearly, the bijective map U defined at (3.20) is linear, hence a linear
isomorphism of complex vector spaces K → R. On R we introduce a Z-valued
pairing

[Uf,Ug]R = [V (·)∗f, V (·)∗g]R = [f, g]K, f, g ∈ K. (3.21)

Since (K; [·, ·]K) is a VH-space over Z, it follows that (R; [·, ·]R) is a VH-space
over Z: just note that, by (3.21) we transported the Z-gramian from K to
R or, in other words, we have defined on R the Z-gramian that makes the
linear isomorphism U a unitary operator between the VH-spaces K and R.

We show that (R; [·, ·]R) is an H-reproducing kernel VH-space with cor-
responding reproducing kernel K. By definition, R ⊆ F(X;H). On the other
hand, since

Kx(y)h = K(y, x)h = V (y)∗V (x)h, for all x, y ∈ X and all h ∈ H,

taking into account that V (x)h ∈ K, by (3.19) it follows that Kx ∈ R for all
x ∈ X. Further, for all f ∈ R, x ∈ X, and h ∈ H, we have

[f,Kxh]R = [V (·)∗g,Kxh]R = [V (·)∗g, V (·)∗V (x)h]R
= [g, V (x)h]K = [V (x)∗g, h]H = [f, h]H,

where g ∈ K is the unique vector such that V (x)∗g = f , which shows that R
satisfies the reproducing axiom as well. Finally, taking into account the mini-
mality of the Kolmogorov decomposition (K;V ) and the definition (3.19), it
follows that Lin{Kx | x ∈ X} = R. Thus, we finish proving that (R; [·, ·]R)
is an H-reproducing kernel VH-space with reproducing kernel K.
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(3)⇒(2). Assume that (R; [·, ·]R) is an H-reproducing kernel VH-space
on X, with reproducing kernel K. We let K = R and define

V (x)h = Kxh, x ∈ X, h ∈ H. (3.22)

Note that V (x) : H → K is linear for all x ∈ X.
We have to show that V (x) ∈ B∗(H,K) for all x ∈ X. To see this, first

note that, by the reproducing property, for all h ∈ H we have

[V (x)h, V (x)h]K = [Kxh,Kxh]R = [K(x, x)h, h]H ≤ ‖K(x, x)‖[h, h]H,

hence V (x) is bounded for all x ∈ X. On the other hand,

[f, V (x)h]K = [f,Kxh]R = [f(x), h]H, x ∈ X, h ∈ H. (3.23)

Let us then, for fixed x ∈ X, consider the linear operator W (x) : R = K → H
defined by W (x)f = f(x) for all f ∈ R = K. In order to show that W (x)
is bounded, by the minimality property (rk4) it follows that it is sufficient
to consider only functions f ∈ Lin{Kxh | x ∈ X, h ∈ H}. Thus, if f =
Kx1h1 + · · · + Kxn

hn it follows that

[W (x)f,W (x)f ]H = [f(x), f(x)]H =
[ n∑

j=1

K(x, xj)hj ,
n∑

k=1

K(x, xk)hk

]
H

≤ ‖K(x, x)‖
n∑

j,k=1

[K(xk, xj)hj , hk]H,

where the inequality follows by Proposition 3.2. Since, by the reproducing
axiom, we have

[f, f ]R =
n∑

j,k=1

[Kxj
hj ,Kxk

hk]R

=
n∑

j,k=1

[Kxj
(xk)hj , hk]H =

n∑

j,k=1

[K(xk, xj)hj , hk]H

it follows that, for all f ∈ Lin{Kxh | x ∈ X,h ∈ H}, we have

[W (x)f,W (x)f ]H ≤ ‖K(x, x)‖[f, f ]R. (3.24)

Thus, W (x) is bounded on a dense linear manifold of R and hence it extends
by continuity to an operator W (x) ∈ B(H,K). From (3.23) we conclude that
V (x) is adjointable and V (x)∗ = W (x) for all x ∈ X.

Finally, by the reproducing axiom, for all x, y ∈ X and all h, g ∈ H we
have

[V (y)∗V (x)h, g]H = [V (x)h, V (y)g]R = [Kxh,Kyg]R = [K(y, x)h, g]H,

hence V (y)∗V (x) = K(y, x) for all x, y ∈ X. Thus, (K;V ) is a Kolmogorov
decomposition of K (actually, a minimal one). �

Given K : X × X → B∗(H) a positive semidefinite kernel, as a conse-
quence of Theorem 3.5 and statement (b) in Proposition 3.4, we can denote,
without any ambiguity, by RK the unique H-reproducing kernel VH-space
on X associated to K.
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Remark 3.6. There is another by-product of the proofs of Theorem 3.3 and
that of Theorem 3.5 namely, that, up to the abstract completion, the con-
struction in Theorem 3.3 is essentially an H-reproducing kernel one. More
precisely, with the notation as in the proof of the implication (1)⇒(2) of
Theorem 3.3, we first note that, for arbitrary f ∈ F(X;H), f = Kg with
g ∈ G(X;H), we have

f =
∑

x∈X

K(y, x)g(x) =
∑

x∈X

Kx(y)g(x), (3.25)

hence F0(X;H) = Lin{Kxh | x ∈ X, h ∈ H}. Then, for arbitrary f ∈ F0 we
have

[f,Kxh]K = [f,Kxh]F0 = [f,Kδxh]F0 =
∑

y∈X

[f(y), (δxh)(y)]H

= [f(x), h]H = [f,Kxh]R(K), x ∈ X, h ∈ H,

hence [·, ·]K = [·, ·]R(K) on F0(X;H) = Lin{Kxh | x ∈ X, h ∈ H}, that is
dense in both K and R(K). Therefore, we can take K = R(K) as the comple-
tion of F0(X;H) to a VH-space, with the advantage that it consists entirely
of H-valued functions on X and hence, it is very “concrete”.

This fact can be put in the following way as well: the completion of
the VE-space F0(X;H) can be performed within F(X;H), and this is exactly
the H-reproducing kernel VH-space H(K). In order to prove this statement
there are, at least, two different paths. One way is that we just mentioned,
going through the Kolmogorov decomposition (K;V ) obtained in the proof of
Theorem 3.3. Alternatively, there is a more direct way that we can briefly
outline: if (fj) is a net in F0(X;H) that is Cauchy with respect to the locally
convex topology of the VE-space F0(X;H), one can prove that for all x ∈ X
the net (fj(x)) is Cauchy within the VH-space H, which is complete, hence
let f(x) ∈ H be its limit. In this way, we obtained f ∈ F(X;H) and it
remains to prove that f ∈ H(K) and the net (fj) converges to f in H(K).
We leave the details to the reader.

4. Kernels Invariant under Actions of ∗-Semigroups

Let X be a nonempty set, a (multiplicative) semigroup Γ, and an action of
Γ on X, denoted by ξ · x, for all ξ ∈ Γ and all x ∈ X. By definition, we have

α · (β · x) = (αβ) · x for all α, β ∈ Γ and all x ∈ X. (4.1)

Alternatively, this means that we have a semigroup morphism Γ � ξ �→ ξ· ∈
G(X), where G(X) denotes the semigroup, with respect to composition, of
all maps X → X. In case the semigroups Γ has a unit ε, the action is called
unital if ε · x = x for all x ∈ X, equivalently, ε· = IdX .

We assume further that Γ is a ∗-semigroup, that is, there is an involu-
tion ∗ on Γ; this means that (ξη)∗ = η∗ξ∗ and (ξ∗)∗ = ξ for all ξ, η ∈ Γ. Note
that, in case Γ has a unit ε then ε∗ = ε.
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Given a VH-space H we are interested in those Hermitian kernels
K : X × X → B∗(H) that are invariant under the action of Γ on X, that is,

K(y, ξ · x) = K(ξ∗ · y, x) for all x, y ∈ X and all ξ ∈ Γ. (4.2)

A triple (K;π;V ) is called an invariant Kolmogorov decomposition, of the
kernel K and the action of Γ on X, if:
(ikd1) (K;V ) is a Kolmogorov decomposition of the kernel K.
(ikd2) π : Γ → B∗(K) is a ∗-representation, that is, a multiplicative

∗-morphism.
(ikd3) V and π are related by the formula: V (ξ · x) = π(ξ)V (x), for all

x ∈ X, ξ ∈ Γ.
In order to explain this definition, let (K;π;V ) be an invariant Kolmogorov
decomposition of the kernel K. Since (K;V ) is a Kolmogorov decomposition
and taking into account the axiom (ikd3), for all x, y ∈ X and all ξ ∈ Γ, we
have

K(y, ξ · x) = V (y)∗V (ξ · x) = V (y)∗π(ξ)V (x)
= (π(ξ∗)V (y))∗V (x) = K(ξ∗ · y, x), (4.3)

hence K is invariant under the action of Γ on X.
If, in addition to the axioms (idk1)–(idk3), the triple (K;π;V ) has also

the property
(ikd4) LinV (X)H is dense in K,
that is, the Kolmogorov decomposition (K;V ) is minimal, then (K;π;V ) is
called a minimal invariant Kolmogorov decomposition of K and the action of
Γ on X.

The next proposition shows that minimal invariant Kolmogorov decom-
positions have a built-in linearity property.

Proposition 4.1. Assume that, given an VH-operator valued kernel K, invari-
ant under the action of the ∗-semigroup Γ on X, for some fixed α, β, γ ∈ Γ we
have K(y, α ·x)+K(y, β ·x) = K(y, γ ·x) for all x, y ∈ X. Then for any min-
imal invariant Kolmogorov decomposition (K;π;V ) of K, the representation
satisfies π(α) + π(β) = π(γ).

Proof. For any x, y ∈ X and any h, k ∈ H we have

[(π(α) + π(β))V (x)h, V (y)k]H = [V ∗(y)π(α)V (x)h + V ∗(y)π(β)V (x)h, k]H
= [K(y, α · x)h + K(y, β · y), k]H
= [K(y.γ · x)h, k]H
= [V (y)∗π(γ)V (x)h, k]H
= [π(γ)V (x)h, V (y)k]H,

hence, since V (X)H is total in H, it follows that π(α) + π(β) = π(γ). �

Two invariant Kolmogorov decompositions (K;π;V ) and (K′;π′;V ′), of
the same Hermitian kernel K, are called unitary equivalent if there exists a
unitary operator U : K → K′ such that Uπ(ξ) = π′(ξ)U for all ξ ∈ Γ, and
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UV (x) = V ′(x) for all x ∈ X. Let us note that, in case both of these invari-
ant Kolmogorov decompositions are minimal, then this is equivalent with
the requirement that the Kolmogorov decompositions (K;V ) and (K′;V ′)
are unitary equivalent.

Theorem 4.2. Let Γ be a unital ∗-semigroup that acts on the nonempty set
X, and let K : X × X → B∗(H) be a kernel, for some VH-space H over an
admissible space Z. The following assertions are equivalent:

(1) K satisfies the following conditions:
(a) K is positive semidefinite.
(b) K is invariant under the action of Γ on X, that is, (4.2) holds.
(c) For any α ∈ Γ there exists c(α) ≥ 0 such that

n∑

j,k=1

[K(α · xk, α · xj)hj , hk]H ≤ c(α)2
n∑

j,k=1

[K(xk, xj)hj , hk]H, (4.4)

for n ∈ N, all x1, . . . , xn ∈ X, and all h1, . . . , hn ∈ H.
(2) K has an invariant Kolmogorov decomposition (K;π;V ).
(3) K admits an H-reproducing kernel VH-space R and there exists

a ∗-representation ρ : Γ → B∗(R) such that ρ(ξ)Kxh = Kξ·xh for all
ξ ∈ Γ, x ∈ X,h ∈ H.

Moreover, in case any of the assertions (1), (2), or (3) holds, then a
minimal invariant Kolmogorov decomposition can be constructed, any mini-
mal invariant Kolmogorov decomposition is unique up to unitary equivalence,
and the pair (R; ρ) as in assertion (3) is uniquely determined by K as well.

Proof. (1)⇒(2). We consider the notation and the minimal Kolmogorov
decomposition (K;V ) constructed as in the proof of the implication (1)⇒(2)
of Theorem 3.3. For each ξ ∈ Γ we let π(ξ) : F → F be defined by

(π(ξ)f)(y) = f(ξ∗ · y), y ∈ X, ξ ∈ Γ. (4.5)

We claim that π(ξ) leaves F0 invariant. To see this, let f ∈ F0, that is,
f = Kg for some g ∈ G or, even more explicitly, by (3.11),

f(y) =
∑

x∈X

K(y, x)g(x), y ∈ X. (4.6)

Then,

f(ξ∗ · y) =
∑

x∈X

K(ξ∗ · y, x)g(x) (4.7)

=
∑

x∈X

K(y, ξ · x)g(x) =
∑

z∈X

K(y, z)gξ(z),

where,

gξ(z) =

⎧
⎨

⎩
0, if ξ · x = z has no solution x ∈ X,∑
ξ·x=z

g(x), otherwise. (4.8)
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Since clearly gξ ∈ G, that is, gξ has finite support, it follows that π(ξ) leaves
F0 invariant. In the following we denote by the same symbol π(ξ) the map
π(ξ) : F0 → F0.

In the following we prove that π is a representation of the semigroup Γ
on the complex vector space F0, that is,

π(αβ)f = π(α)π(β)f, α, β ∈ Γ, f ∈ F0. (4.9)

To see this, let f ∈ F0 be fixed and denote h = π(β)f , that is, h(y) = f(β∗ ·y)
for all y ∈ X. Then π(α)π(β)f = π(α)h, that is, (π(α)h)(y) = h(α∗ · y) =
h(β∗α∗ · y) = h((αβ)∗ · y) = (π(αβ))(y), for all y ∈ X, which proves (4.9)

Next we show that π is actually a ∗-representation, that is,

[π(ξ)f, f ′]F0 = [f, π(ξ∗)f ′]F0 , f, f ′ ∈ F0. (4.10)

To see this, let f = Kg and f ′ = Kg′ for some g, g′ ∈ G. Then, recalling
(3.12) and (4.7),

[π(ξ)f, f ′]F0 =
∑

y∈X

[f(ξ∗y), g′(y)]H =
∑

x,y∈X

[K(ξ∗ · y, x)g(x), g′(y)]H

=
∑

x,y∈X

[K(y, ξ · x)g(x), g′(h)]H =
∑

x,y∈X

[g(x),K(ξ · x, y)g′(y)]H

=
∑

x∈X

[g(x), f ′(ξ · x)]H = [f, π(ξ∗)f ′]H,

and hence the formula (4.10) is proven.
Considering F0 as a VE-space, we prove now that π(ξ) is bounded for

all ξ ∈ Γ. Indeed, let f = Kg for some g ∈ G. Using the definition of π(ξ)
and the boundedness condition (c), we have

[π(ξ)f, π(ξ)f ]F0 = [π(ξ∗)π(ξ)f, f ]F0 = [π(ξ∗ξ)f, f ]F0

=
∑

x,y∈X

[K(ξ∗ξ · y, x)g(x), g(y)]H

=
∑

x,y∈X

[K(ξ · y, ξ · x)g(x), g(y)]H

≤ c(ξ)2
∑

x,y∈X

[K(y, x)g(x), g(y)]H

= c(ξ)2[f, f ]F0 ,

and hence the boundedness of π(ξ) is proven. This implies that π(ξ) can be
uniquely extended by continuity to an operator π(ξ) ∈ B(H). In addition,
since π(ξ∗) also extends by continuity to an operator π(ξ∗) ∈ B(H) and tak-
ing into account (4.10), it follows that π(ξ) is adjointable and π(ξ∗) = π(ξ)∗.
We conclude that π is a ∗-representation of Γ in B∗(H), that is, the axiom
(ikd2) holds.

In order to show that the axiom (ikd3) holds as well, we use (3.15).
Thus, for all ξ ∈ Γ, x, y ∈ X,h ∈ H, and taking into account that K is
invariant under the action of Γ on X, we have
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(V (ξ · x)h)(y) = K(y, ξ · x)h = K(ξ∗ · y, x)h (4.11)
= (V (x)h)(ξ∗ · y) = (π(ξ)V (x)h)(y),

which proves (ikd3). Thus, (K;π;V ), here constructed, is an invariant
Kolmogorov decomposition of the Hermitian kernel K. Note that (K;π;V ) is
minimal, that is, the axiom (ikd4) holds, since the Kolmogorov decomposition
(K;V ) is minimal, by the proof of Theorem 3.3.

In order to prove the uniqueness of the minimal invariant Kolmogo-
rov decomposition, let (K′;π′;V ′) be another minimal invariant Kolmogorov
decomposition of K. We consider the unitary operator U : K → K′ defined
as in (3.18) and we already know that UV (x) = V ′(x) for all x ∈ X. Since,
for any ξ ∈ Γ, x ∈ X, and h ∈ H, we have

Uπ(ξ)V (x)h = UV (ξ · x)h = V ′(ξ · x)h = π′(ξ)V ′(x)h = π′(ξ)UV (x)h,

and taking into account the minimality, it follows that Uπ(ξ) = π′(ξ)U for
all ξ ∈ Γ.

(2)⇒(1). Let (K;π;V ) be an invariant Kolmogorov decomposition of the
kernel K. We already know from the proof of Theorem 3.3 that K is positive
semidefinite and it was shown in (4.3) that K is invariant under the action of
Γ on X. In order to show that the boundedness condition (c) holds as well,
let α ∈ Γ, n ∈ N, x1, . . . , xn ∈ X, and h1, . . . , hn ∈ H be arbitrary. Then

n∑

j,k=1

[K(α · xk, α · xj)hj , hk]H =
n∑

j,k=1

[V (xk)∗π(α∗)π(α)V (xj)hj , hk]H

=
n∑

j,k=1

[π(α)V (xj)hj , π(α)V (xk)hk]H

≤ ‖π(α)‖2
n∑

j,k=1

[V (xj)hj , V (xk)hk]H

= ‖π(α)‖2
n∑

j,k=1

[K(xk, xj)hj , hk]H,

and hence (c) holds with c(α) = ‖π(α)‖ ≥ 0.
(2)⇒(3). Let (K;π;V ) be an invariant Kolmogorov decomposition of the

kernel K and the action of Γ on X. Without loss of generality, we can assume
that it is minimal. We use the notation and the facts established during the
proof of the implication (2)⇒(3) in Theorem 3.5. Then, for all x, y ∈ X and
h ∈ H we have

Kξ·x(y)h = K(y, ξ · x)h = V (y)∗V (ξ · x) = V (y)∗π(ξ)V (x)h,

hence, letting ρ(ξ) = Uπ(ξ)U−1, where U : K → R is the unitary operator
defined as in (3.20), we obtain a ∗-representation of Γ on the VH-space R
such that Kξ·x = ρ(ξ)Kx for all ξ ∈ Γ and x ∈ X.

(3)⇒(2). Let (R; ρ), where R = R(K) is the H-reproducing kernel
VH-space of K and ρ : Γ → B∗(R) is a ∗-representation such that Kξ·x =
ρ(ξ)Kx for all ξ ∈ Γ and x ∈ X. As in the proof of the implication (3)⇒(2) in
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Theorem 3.5, we show that (R;V ), where V is defined as in (3.22), is a min-
imal Kolmogorov decomposition of K. Letting π = ρ, it is then easy to see
that (R;π;V ) is an invariant Kolmogorov decomposition of the kernel K and
the action of Γ on X. �

5. Unification of Two Dilation Theorems in VH-Spaces

In this section we show that Theorem 4.2 contains both the Loynes general-
ization of the Sz.-Nagy’s Dilation Theorem and the VH-space operator valued
generalization of Stinespring’s Dilation Theorem.

5.1. Linearization and Dilation in VH-Spaces

Recall that a ∗-semigroup is a (multiplicative) semigroup Γ on which there
exists an involution, denoted by ∗, that is, Γ � γ �→ γ∗ ∈ Γ having the
properties: (βγ)∗ = γ∗β∗ and (γ∗)∗ = γ, for all β, γ ∈ Γ. If Γ has a unit ε
then ε∗ = ε. In case Γ is a group and we use the multiplicative notation, we
can take γ∗ = γ−1, but other choices are also possible.

Let H be a VH-space and consider a family T = {Tξ}ξ∈Γ of operators in
B∗(H) indexed by a ∗-semigroup Γ. However, taking into account the frame-
work of this article, it is preferable to think T as a function on Γ and valued
in B∗(H). Given n an arbitrary natural number, we call T n-positive if for
any η1, . . . , ηn ∈ Γ and any h1, . . . , hn ∈ H, we have

n∑

i,j=1

[Tη∗
i ηj

hj , hi] ≥ 0. (5.1)

It is easy to see that, if T is n-positive then it is k-positive for all natural
numbers k ≤ n. T is called positive semidefinite if it is n-positive for all
natural numbers n.

To any map T : Γ → B∗(H) we associate a kernel K : Γ × Γ → B∗(H)
by

K(ξ, η) = Tη∗ξ, ξ, η ∈ Γ. (5.2)

Then, the kernel K is n-positive, in the sense of (3.4), if and only if T is
n-positive, in the sense of (5.1). Consequently, K is positive semidefinite
if and only if T is positive semidefinite. Having in mind the Kolmogorov
decompositions of Hermitian kernels, see Sect. 3.2, we introduce the follow-
ing definition. A pair (K;U) is called a linearization of T if:
(l1) K is a VH-space on Z.
(l2) U : Γ → B∗(K,H).
(l3) Tη∗ξ = U(ξ)U∗(η) for all ξ, η ∈ Γ.

Proposition 5.1. Given H a VH-space on the admissible space Z, a unital
∗-semigroup Γ, and a map T : Γ → B∗(H), the following assertions are equiv-
alent:
(1) T is positive semidefinite.
(2) T admits a linearization (K;U).
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(3) T yields a reproducing kernel VH-space R over Z, that is:
(a) R consists of functions f : Γ → H only.
(b) Tξ·h ∈ R, that is, the map Γ � η �→ Tξηh ∈ H belongs to R, for all

ξ ∈ Γ and all h ∈ H.
(c) [f(ξ), h]H = [f, Tξ∗·h]R for all ξ ∈ Γ, h ∈ H, and f ∈ R.

Proof. The equivalence of (1) and (2) is a consequence of the observations
from before applying Theorem 3.3 to the kernel K(ξ, η) = Tη∗ξ, for ξ, η ∈ Γ,
and letting U(ξ) = V ∗(ξ), for all ξ ∈ Γ.

In order to prove the equivalence of (2) and (3), we apply Theorem 3.5
to the kernel K(ξ, η) = Tη∗ξ, for ξ, η ∈ Γ, and observing that Kξh = Tξ∗·h,
where, Tξ·h denotes the map Γ � η �→ Tξηh ∈ H, for all ξ ∈ Γ all h ∈ H. �

The kernel K(ξ, η) = Tη∗ξ has an additional property, namely that it
is invariant under the action of Γ on itself by left multiplication: ξ · η = ξη.
With the definition as in (4.2), this is proven as follows: for all ξ, η, γ ∈ Γ, we
have

K(η, ξ · γ) = T(ξ·γ)∗η = Tγ∗(ξ∗·η) = K(ξ∗ · η, γ). (5.3)

Thus, we can consider T having in mind the invariant Kolmogorov decom-
position and its reproducing kernel counter-part, as in Theorem 4.2, in order
to obtain the following:

Theorem 5.2. Let Γ be a ∗-semigroup with unit ε and T = {Tξ}ξ∈Γ ⊆ B∗(H),
for some VH-space H. The following assertions are equivalent:
(1) T satisfies the following conditions:

(b) T is positive semidefinite as a function on Γ, in the sense that for
any finitely supported family {gξ}ξ∈Γ in H we have

∑

ξ,η∈Γ

[Tξ∗ηgη, gξ] ≥ 0.

(c) For any α ∈ Γ there exists a nonnegative number c(α) such that
for any finitely supported family g = {gξ}ξ∈Γ in H we have

∑

ξ,η∈Γ

[Tξ∗α∗αηgη, gξ] ≤ c(α)2
∑

ξ,η∈Γ

[Tξ∗ηgη, gξ]. (5.4)

(2) There exists a VH-space K, a ∗-representation D = {Dξ}ξ∈Γ of Γ in
B∗(K), and an operator V ∈ B∗(H,K), such that

Tξ = V ∗DξV, ξ ∈ Γ. (5.5)

Moreover, under the assumption of Theorem 5.2, the VH-space K can
be obtained minimal in the sense that it is spanned by elements of the form
DξV f , where f ∈ H and ξ ∈ Γ and, in this case, the triple (K;D;V ) is
uniquely determined up to an isomorphism of VH-spaces that intertwines
the ∗-representations and keeps the corresponding operators V .

In addition, in case Tε = I,H can be isometrically embedded as an
orthocomplemented subspace into K and, letting PH be the orthogonal pro-
jection onto H, we have

Tξ = PHDξ|H, ξ ∈ Γ. (5.6)
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As a consequence of the reproducing kernel version for invariant kernels,
see Theorem 4.2.(3), and the reproducing kernel version of the linearization
as in Proposition 5.1, we get the following:

Corollary 5.3. With the notation as in Theorem 5.2, each of the assertions
(1) and (2) is equivalent with
(3) T admits a reproducing kernel VH-space R over Z, in the sense of
the properties (a)–(c) in Proposition 5.1(3), and a ∗-representation ρ : Γ →
B∗(R), such that

(d) ρ : Γ → B∗(R) is a ∗-representation such that ρ(ξ)Tη·h = Tηξ∗·h, in
the sense that map Γ � γ �→ ρ(ξ)Tηγh ∈ H coincides with the map
Γ � γ �→ Tηξ∗γh ∈ H, for all ξ, η ∈ Γ and all h ∈ H.

Also, the pair (R; ρ) is uniquely determined by T , with properties (a)–(d).

5.2. Stinespring’s Dilation Theorem in VH-Spaces

Let A be a complex ∗-algebra with unit 1. Recall that the involution ∗ is
supposed to be conjugate linear, (ab)∗ = b∗a∗ for all a, b ∈ A, (a∗)∗ = a for
all a ∈ A, and that 1∗ = 1. In particular, A has an underlying structure of
a unital multiplicative ∗-semigroup. Also, by definition, an element a ∈ A
is positive if a = x∗x for some x ∈ A. This definition, for general ∗-alge-
bras, may not mean too much, but it is the right definition in the case of
C∗-algebras.

For an arbitrary VH-space H over the admissible space Z, let ϕ : A →
B∗(H) be a linear map. A kernel K : A × A → B∗(H) can be defined by

K(b, a) = ϕ(a∗b), a, b ∈ A. (5.7)

With this observation, the types of positivity for kernels, as in Sects. 3.1
and 5.1, have transcriptions to this setting: ϕ is n-positive, for some natural
number n, if for any a1, . . . , an ∈ A and h1, . . . , hn ∈ H we have

n∑

i,j=1

[ϕ(a∗
i aj)hj , hi]H ≥ 0,

and, respectively, ϕ is positive semidefinite if it is n-positive for all n ∈ N.
There is another notion of positivity that has been considered, following

the original terminology of Stinespring [29]. Given A a ∗-algebra, a linear map
ϕ : A → B∗(H) is called positive if ϕ(a∗a) ≥ 0 for any a ∈ A. Given n ∈ N,
there is a natural identification of ∗-algebras of Mn(A), the algebra of all n×n
matrices with entries in A, with Mn ⊗ A, organized as a ∗-algebra similarly
in a natural way (e.g. see [27]). A linear map ϕn : Mn(A) → Mn(B∗(H)) is
naturally associated to ϕ by

ϕn([ai,j ]ni,j=1) = [ϕ(ai,j)]ni,j=1, [ai,j ]ni,j=1 ∈ Mn(A). (5.8)

The importance of this construction, and its consequences in terms of posi-
tivity, relies on its “quantization” interpretation, which basically comes from
the interpretation of the tensor product of two Hilbert spaces as the aggregate
of two quantum systems.
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Taking into account that any positive element A = [ai,j ]ni,j=1 ∈ Mn(A)
can be decomposed

A = A∗
1A1 + · · · + A∗

nAn,

where Ak is the n×n matrix having its k-th row with entries ak,j , j = 1, . . . , n,
and all the other entries null, we get the following fact, essentially proven in
[29]:

Proposition 5.4. Let A be a ∗-algebra, H a VH-space, and a linear map
ϕ : A → B∗(H).

(a) For arbitrary n ∈ N, ϕ is n-positive if and only if ϕn is positive.
(b) ϕ is positive semidefinite if and only if ϕn is positive for all n ∈ N.

ϕ is called completely positive if ϕn is positive for all n ∈ N, hence,
Proposition 5.4 says that complete positivity is the same with positive semi-
definiteness, in this setting.

We make now the observation that the kernel K defined as in (5.7) is
invariant under the action of A on itself by left multiplication, more precisely,

K(b, c · a) = ϕ((ca)∗b) = ϕ(a∗c∗b) = K(c∗ · b, a), a, b, c ∈ A. (5.9)

Thus, dilations of completely positive maps ϕ fall under Theorem 4.2 for
dilations of positive semidefinite kernels that are invariant under actions of
∗-semigroup. However, there is an important difference due to the fact that
the rich structure of the B∗-algebra yields the boundedness condition (4.4)
for free, in this special setting; we briefly recall the argument in [11]. Let
a ∈ A and finitely supported {hb}b∈A in H. Since ϕ is positive semidefinite,
for any y ∈ A we have

∑

b,c∈A
[ϕ(c∗y∗yb)hb, hc]H ≥ 0. (5.10)

Without loss of generality we can assume that ‖a‖ < 1 and let x = a∗a, hence
‖x‖ ≤ ‖a‖2 < 1. Following an idea in [3] and using an exercise in [2] at page
125, we consider the power series of the analytic complex function (1 − λ)1/2

that converges in the open unit disc

(1 − λ)1/2 = 1 −
∑

n≥1

cnλn

and let

y = 1 −
∑

n≥1

cnxn ∈ A. (5.11)

It is easy to see that y = y∗, since x = x∗, and that 1 − a∗a = 1 − x = y2,
hence, from (5.10) it follows

∑

b,c∈A
[ϕ(c∗a∗ab)hb, hc]H ≤

∑

b,c∈A
[ϕ(c∗b)hb, hc]H, (5.12)

which proves that, there exists a nonnegative number c(a) such that
∑

b,c∈A
[ϕ(c∗a∗ab)hb, hc]H ≤ c(a)2

∑

b,c∈A
[ϕ(c∗b)hb, hc]H. (5.13)
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The following theorem summarizes the consideration from above in the
form of a Stinespring type theorem that falls under Theorem 4.2. In [11] this
theorem has been proven in two other different ways.

Theorem 5.5. Let A be a unital B∗-algebra, H a VH-space over an admissi-
ble space Z, and let ϕ: A → B∗(H) be a linear map. Then ϕ is a completely
positive if and only if there exists K a VH-space over the same admissible
space Z, an operator V ∈ B∗(H,K) and a ∗-representation ρ : A → B∗(K)
such that

ϕ(a) = V ∗ρ(a)V, for all a ∈ A. (5.14)

Moreover, the VH-space K can be obtained minimal in the sense that
K = Lin{ϕ(A)H} and, in this case, the triple (ρ;V ;K) is unique, modulo
a unitary operator of VH-spaces that intertwines the ∗-representations and
keeps the operators V .

In addition, if ϕ is unital, H can be isometrically embedded as an ortho-
complemented subspace of K and, letting PH denote the orthogonal projection
onto H, we have

ϕ(a) = PHρ(a)|H, for all a ∈ A. (5.15)

Finally, we point out that, in the context of Theorem 5.5, a reproducing
kernel representation can always be obtained, similarly as in Corollary 5.3.

Corollary 5.6. Let A be a unital B∗-algebra, H a VH-space over an admissi-
ble space Z, and ϕ : A → B∗(H) be a completely positive linear map. Then,
there exists a pair (R;π) subject to, and uniquely determined by, the following
properties:
(i) R consists of functions f : A → H only.
(ii) ϕ(a·)h ∈ R, that is, the function A � b �→ ϕ(ab)h ∈ H belongs to R, for

all a ∈ A and all h ∈ H.
(iii) [f(a), h]H = [f, ϕ(a∗·)h]R for all f ∈ R, a ∈ A, and h ∈ H.
(iv) π : A → B∗(R) is a ∗-algebra representation such that π(a)ϕ(b·)h =

ϕ(ba∗·)h for all a, b ∈ A and all h ∈ H.

References

[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–
404 (1950)

[2] Arveson, W.B.: A Short Course on Spectral Theory. Graduate Texts in Math-
ematics, vol. 209. Springer, Berlin-Heidelberg-New York (2002)

[3] Arveson, W.B.: Dilation theory yesterday and today. In: A Glimpse at Hilbert
Space Operators. pp. 99–123. Oper. Theory Adv. Appl., vol. 207. Birkhäuser
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[25] Năımark, M.A.: Positive definite operator functions on a commutative
group. Bull. (Izv.) Acad. Sci. USSR 7, 237–244 (1943)

[26] Parthasaraty, K.R., Schmidt, K.: Positive-Definite Kernels, Continuous Tensor
Products and Central Limit Theorems of Probability Theory. Lecture Notes
in Mathematics, vol. 272. Springer, Berlin (1972)



VH-Spaces Operator Valued Kernels

[27] Paulsen, V.R.: Completely Bounded Maps and Operator Algebras. Cambridge
University Press, Cambridge (2002)

[28] Phillips, N.C.: Inverse limits of C∗-algebras. J. Operator Theory 19, 159–
195 (1988)

[29] Stinespring, W.F.: Positive functions on C∗-algebras. Proc. Am. Math.
Soc. 6, 211–216 (1955)

[30] Szafraniec, F.H.: Dilations of linear and nonlinear maps. In: Functions, Series,
Operators, vols. I, II (Budapest, 1980), pp. 1165–1169. Colloq. Math. Soc.
Janos Bolyai, 35. North-Holland, Amsterdam (1983)

[31] Sz.-Nagy B.: Prolongement des transformations de l’espace de Hilbert qui sor-
tent de cet espace. In: Appendice au livre “Leçons d’analyse fonctionnelle” par
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