ASYMPTOTIC STABILITY FOR A CLASS OF MARKOV SEMIGROUPS

BEBE PRUNARU

ABSTRACT. Let $U \subset K$ be an open and dense subset of a compact metric space such that $\partial U \neq \emptyset$. Let Φ be a Markov operator with the strong Feller property acting on the space of bounded Borel measurable functions on U. Suppose that for each $x \in \partial U$ there exists a barrier $h \in C(K)$ at x such that $\Phi(h) \geq h$. Suppose moreover that every real-valued $g \in C(K)$ with $\Phi(g) \geq g$ and which attains its global maximum at a point inside U is constant. Then for each $f \in C(K)$ there exists the uniform limit $F = \lim_{n \to \infty} \Phi^n(f)$. Moreover $F \in C(K)$, agrees with f on ∂U and $\Phi(F) = F$.

1. Introduction

Let E be a locally compact Hausdorff space and let $M_b(E)$ be the space of all complex-valued, bounded and Borel measurable functions on E. Let also $C_b(E)$ be the set of all continuous functions in $M_b(E)$. A linear map

$$\Phi: M_b(E) \to M_b(E)$$

is called a Markov operator if for each $x \in E$ there exists a probability Borel measure μ_x on E such that

$$\Phi(f)(x) = \int f d\mu_x \quad \forall f \in M_b(E).$$

A Markov operator Φ is said to have the strong Feller property if $\Phi(f) \in C_b(E)$ for every $f \in M_b(E)$.

In [1] J. Arazy and M. Engliš studied the iterates of Markov operators acting on $M_b(U)$ where U is a bounded domain in \mathbb{C}^d . One of their main results is the following (see Theorem 1.4 in [1]):

Theorem 1.1. Let $U \subset \mathbb{C}^d$ be a bounded domain and let $H^{\infty}(U)$ be the algebra of all bounded analytic function on U. Let $\partial_p(U) \subset \partial U$ be the set of all peak points for $H^{\infty}(U) \cap C(\overline{U})$. Let

$$\Phi: M_b(U) \to M_b(U)$$

be a Markov operator with the strong Feller property such that $\Phi(h) = h$ for every $h \in H^{\infty}(U)$,

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47D07, Secondary: 60J05, 60J25, 37A30, 47A25

Key words and phrases. Markov semigroup, boundary value problem, asymptotic stability. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0119.

Then for every continuous function F on the closure \bar{U} the sequence $\{\Phi^n(F)\}$ converges uniformly on every subset of U whose closure is contained in $U \cup \partial_p(U)$ to a function $G \in C_b(U)$. Moreover, $\Phi(G) = G$ and

$$\lim_{y \to x} G(y) = F(x)$$

for every $x \in \partial_p(U)$.

The authors provide a large class of such operators, including Berezin transforms on strictly pseudoconvex domains and convolution operators on bounded symmetric domains.

In this paper we prove a result concerning the iterates of a class of Markov operators with the strong Feller property associated with dense open subsets of compact metric spaces. Under suitable boundary conditions and assuming a maximum principle for the interior points, we obtain a uniform convergence similar to that of Theorem 1.1. Theorem 2.1 below can be used to give an alternate proof for the main result in [2]. The methods used in [1] strongly motivated and inspired this research.

2. The main result

The main result of this paper is the following:

Theorem 2.1. Let K be a compact metric space and let $U \subset K$ be a dense open subset such that $\partial U \neq \emptyset$. Let C(K) be the space of all continuous complex-valued functions on K and let $C(\partial U)$ be the corresponding space for ∂U .

Let $\Phi: M_b(U) \to M_b(U)$ be a Markov operator with the strong Feller property. Suppose that Φ satisfies the following conditions:

- (A) For each point $x \in \partial U$ there exists $h \in C(K)$ such that h(x) = 0, h(y) < 0 for all $y \in K \setminus \{x\}$ and $\Phi(h_U) \ge h_U$ on U, where h_U is the restriction of h to U;
- (B) If $g \in C(K)$ is a real valued function with $\Phi(g_U) \geq g_U$ and if there exists $z \in U$ such that $g(z) = \max\{g(x) : x \in K\}$ then g is constant on K.

Then, for each $f \in C(\partial U)$ there exists a unique function $G \in C(K)$ such that $\Phi(G_U) = G_U$ and G(x) = f(x) for all $x \in \partial U$. Moreover, if $F \in C(K)$ is an arbitrary continuous extension of f to K then the sequence $\{\Phi^n(F_U)\}_n$ converges uniformly on U to G_U .

Proof. Let us assume that ∂U contains at least two points.

(1) First of all, it can be proved, exactly as in Proposition 1.3 from [1], that the boundary condition (A) implies the following. For each $f \in C(K)$ and for each $x \in \partial U$

$$\lim_{y \to x} \sup_{n \ge 1} |(\Phi^n(f_U))(y) - f(x)| = 0.$$

In particular, this shows that for each $f \in C(K)$ the function $\Phi(f_U)$ extends continuously up to ∂U and this extension agrees with f on ∂U . By abuse of notation, we shall continue to denote this extension by $\Phi(f)$.

(2) We show that if $f \in C(K)$ is a real-valued function such that $\Phi(f) \geq f$ then the sequence $\{\Phi^n(f)\}$ converges uniformly on K. Indeed, this sequence is monotone increasing and if g is its pointwise limit then g is Borel measurable and

 $\Phi(g_U) = g_U$. Since Φ has the strong Feller property, it follows that g is continuous on U. Moreover (1) implies that

$$\lim_{y \to x} g(y) = f(x)$$

for every $x \in \partial U$. Since g agrees with f on ∂U and $f \in C(K)$ we see that $g \in C(K)$ and Dini's theorem shows that the convergence is uniform on K.

(3) Let

$$\mathcal{T}(\Phi) = \{ h \in C(K) : \Phi(h) = h \}$$

and let $C^*(\mathcal{T}(\Phi))$ be the norm closed subalgebra of C(K) generated by $\mathcal{T}(\Phi)$. Since $\mathcal{T}(\Phi)$ is a selfadjoint subspace of C(K) it follows that $C^*(\mathcal{T}(\Phi))$ is a commutative C^* -algebra.

Let $C(\Phi)$ be the set of all $f \in C(K)$ for which the sequence $\{\Phi^n(f)\}$ is uniformly convergent on K and denote $\pi(f)$ its limit. It is clear that $\pi(f) \in \mathcal{T}(\Phi)$ for every $f \in C(\Phi)$. Let also

$$C(\Phi)_0 = \{ f \in C(\Phi) : \pi(f) = 0 \}.$$

We will show that $C^*(\mathcal{T}(\Phi)) \subset C(\Phi)$. It suffices to prove that for any finite set of k functions from $\mathcal{T}(\Phi)$ their product belongs to $C(\Phi)$.

Let k=2. Let $h\in \mathcal{T}(\Phi)$. Since $\Phi(|f|^2)\geq |\Phi(f)|^2$ for every $f\in C(K)$ we see that $\Phi(|h|^2)\geq |h|^2$. In this case (2) shows that $|h|^2\in C(\Phi)$ therefore $g=\pi(|h|^2)-|h|^2\in C(\Phi)_0$. Since $g\geq 0$ we see that $gf\in C(\Phi)_0$ for every $f\in C(K)$. Indeed, it is easy to see that if $F\in C(\Phi)_0$ is non-negative on K then $Ff\in C(\Phi)_0$ for every $f\in C(K)$.

If $h_1, h_2 \in \mathcal{T}(\Phi)$ then

$$h_1 h_2 = (1/4) \sum_{m=0}^{3} i^m |g_m|^2$$

where $i = \sqrt{-1}$ and $g_m = (h_1 + i^m \bar{h_2})$. Since $g_m \in \mathcal{T}(\Phi)$ we see that $h_1 h_2 \in C(\Phi)$. Let $k \geq 3$ and assume that every product of at most k-1 elements from $\mathcal{T}(\Phi)$ belongs to $C(\Phi)$. Let h_1, \ldots, h_k in $\mathcal{T}(\Phi)$ and let $g = h_1 \cdots h_k$. Then

$$g = (h_1 h_2 - \pi(h_1 h_2)) \cdot h_3 \cdot \dots \cdot h_k + \pi(h_1 h_2) \cdot h_3 \cdot \dots \cdot h_k.$$

By what we have already proved the first summand belongs to $C(\Phi)_0$ and the second belongs, by the induction hypothesis, to $C(\Phi)$. This shows that $C^*(\mathcal{T}(\Phi)) \subset C(\Phi)$.

(4) Consider the map

$$\rho: C^*(\mathcal{T}(\Phi)) \to C(\partial U)$$

that takes any $f \in C^*(\mathcal{T}(\Phi))$ into its restriction to ∂U . It turns out that ρ is onto. To see this, we first observe that the boundary condition (A) together with (2) implies that for each $x \in \partial U$ there exists $g \in \mathcal{T}(\Phi)$ such that g(x) = 0 and g(y) < 0 for every $y \in \partial U \setminus \{x\}$. This shows that the range of ρ separates the points of ∂U and the Stone-Weierstrass theorem shows that this image is norm-dense in $C(\partial U)$. On the other hand, it is well-known that the image of a *-homomorphism between two C^* -algebras is norm-closed. The conclusion is that ρ is onto. Since $C^*(\mathcal{T}(\Phi)) \subset C(\Phi)$, and since for each $f \in C(\Phi)$ the function $\pi(f) \in \mathcal{T}(\Phi)$ and agrees with f on ∂U we see that for each $f \in C(\partial U)$ there exists a unique function $\theta(f) \in \mathcal{T}(\Phi)$ which agrees with f on ∂U . Uniqueness follows easily from (B). The map $f \mapsto \theta(f)$ is obviously linear and unit preserving.

(5) Let $L = \{g \in C(K) : g = \pi(|h|^2) - |h|^2 \text{ for some } h \in \mathcal{T}(\Phi)\}$. We will show that $L \neq \{0\}$. Assume, on the contrary, that $L = \{0\}$ which means that $\pi(|h|^2) = |h|^2$ for every $h \in \mathcal{T}(\Phi)$. In this case, if h_1 and h_2 are functions in $\mathcal{T}(\Phi)$ then $\pi(h_1h_2) - h_1h_2$ can be written as a linear combination of elements from L (see step (3)). It then follows that $\pi(h_1h_2) = h_1h_2$. It follows that $\mathcal{T}(\Phi)$ is closed under multiplication hence it equals $C^*(\mathcal{T}(\Phi))$. This shows that the map $\theta : C(\partial U) \to C(K)$ defined in (4) is multiplicative on $C(\partial U)$. It follows that there exists a continuous map $\gamma : K \to \partial U$ such that

$$\theta(f) = f \circ \gamma \quad \forall f \in C(\partial U).$$

Let $z \in U$ and let $x = \gamma(z)$. Let $h \in C(\partial U)$ be a nonconstant real-valued function such that

$$h(x) = \sup\{h(y); y \in \partial U\}.$$

Then

$$h(x) = (h \circ \gamma)(z) = (\theta(h))(z).$$

However, since $\theta(h) \in \mathcal{T}(\Phi)$ and is nonconstant, it attains its global maximum only on ∂U . We get a contradiction. The conclusion is that $L \neq \{0\}$.

(6) Let $h \in \mathcal{T}(\Phi)$ such that the function $g = \pi(|h|^2) - |h|^2$ is not identically zero on U. As pointed out in (3), $g \geq 0$ on K and $g \in C(\Phi)_0$. Moreover, one can see that $\Phi(g) \leq g$. We will show that g > 0 on U. Suppose, on the contrary, that there exists $z \in U$ such that g(z) = 0. Since $\Phi(g) \leq g$ and since $g \geq 0$ It follows from (B) that g = 0 on K. This contradiction shows that g > 0 on U. Since g = 0 on ∂U this shows that the closed ideal I(g) of C(K) generated by g equals

$$Z(\partial U)=\{f\in C(K): f=0 \text{ on } \partial U\}.$$

Since, as we pointed out in (3), $I(g) \subset C(\Phi)_0$ this shows that $f - \theta(f_{\partial U}) \in C(\Phi)_0$ for every $f \in C(K)$, where $f_{\partial U}$ is the restriction of f to ∂U . This means that the sequence $\{\Phi^n(f)\}$ converges uniformly on K to $\theta(f_{\partial U})$ for every $f \in C(K)$. This completes the proof for the case when ∂U contains at least two points.

(7) Suppose now that ∂U reduces to a singleton $\{x_0\}$. The first two steps hold true in this case as well. Moreover, the boundary condition (A) shows that there exists $g \in C(K)$ such that $g(x_0) = 0$, g(y) < 0 on U and $\Phi(g) \ge g$. It then follows from (2) that $g \in C(\Phi)$ and, since g = 0 on ∂U , we see that $\pi(g) = 0$ hence $g \in C(\Phi)_0$. It then follows, exactly as in (6), that $I(g) = Z(\partial U)$. This shows that $f - f(x_0) \in C(\Phi)_0$ for every $f \in C(K)$ therefore

$$\lim_{n\to\infty} \Phi^n(f) = f(x_0)$$

uniformly on K, for all $f \in C(K)$. This completes the proof of this theorem.

We close with several remarks concerning Theorem 2.1.

- (a) This proof works as well for Markov semigroups with continuous parameter.
- (b) Instead of the strong Feller property, it suffices to assume that $\Phi(C_b(U)) \subset C_b(U)$ and that every $h \in M_b(U)$ with $\Phi(h) = h$ is continuous on U.
- (c) For the existence of fixed points for Φ with prescribed boundary values, it suffices to assume only the boundary condition (A).
- (d) The uniform convergence of the iterates holds true if, instead of (B), we assume that the fixed points of Φ separate the points of K.

(e) Condition (B) (the maximum principle) holds true, for instance, in the case when every point $y \in U$ is accessible for Φ . This means that for each $x \in U$ and each open neighborhood ω of y there exists $k \geq 1$ such that $\Phi^k(\chi_\omega)(x) > 0$, where $\chi_\omega = 1$ on ω and 0 elsewhere.

References

- [1] J. Arazy and M. Engliš, *Iterates and the boundary behavior of the Berezin transform*, Ann. Inst. Fourier (Grenoble), **51** (2001) 1101-1133.
- [2] C. Liu, Iterates of a Berezin-type transform, J. Math. Anal. Appl. 329 (2007) 822-829.

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

 $E\text{-}mail\ address{:}\ \texttt{Bebe.Prunaru@imar.ro}$