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Abstract. For truncated Toeplitz operators, which are compressions of multiplication operators to
model subspaces of the Hardy space H2 , we obtain criteria for commutation relations. The results
show an analogy to the case of Toeplitz matrices, and they extend the theory of Sedlock algebras.

1. Introduction

Truncated Toeplitz operators are compressions of multiplication operators to model
subspaces of the Hardy space H2 ; they represent a far reaching generalization of classical
Toeplitz matrices. Although particular case had appeared before in the literature, the general
theory has been initiated in the seminal paper [14]. Since then, truncated Toeplitz operators
have constituted an active area of research. We mention only a few relevant papers: [2, 3, 4,
5, 10, 17]; see also the recent survey [9] and the references within.

In particular, in [15] Sedlock has investigated when a product of truncated Toeplitz
operators is itself a truncated Toeplitz operator. It turns out that this does not happen very
often. More precisely, there exists a family of classes Bα

u (precise definitions in the next
section), where α is in the extended complex plane, such that, whenever the product of two
nonscalar truncated Toeplitz operators is itself a truncated Toeplitz operator, both operators
have to belong to the same class Bα

u . These classes are commutative algebras, and they are
the maximal subalgebras of the subspace of truncated Toeplitz operators.

On the other hand, truncated Toeplitz operators represent a far reaching generalization
of classical Toeplitz matrices. Toeplitz matrices whose product is also a Toeplitz matrix
are sometimes called generalized circulants [7], and a discussion of the classes Bα

u for this
particular case appears in [16]. A uniform procedure for imposing conditions on products of
Toeplitz matrices has been devised in [12], leading to characterizations of different classes
of Toeplitz matrices: normal, unitary, commuting, etc.

The purpose of the present paper is to adapt the approach in [12] to the general case
of truncated Toeplitz operators on an arbitrary model space. The algebraic relations carry
through neatly if we take advantage of a certain unitary operator between different model
spaces, called the Crofoot transform. As a consequence, we obtain complete characteriza-
tions of some classes of truncated Toeplitz operators defined by commutation relations.

The plan of the paper is the following. After a preliminary section, we introduce the
Sedlock classes in Section 3 and the Crofoot transform in Section 4. Section 5 is dedicated
to the key technical argument, which is analogous to the one in [12]. The main results are
then proved in Section 6.

Mathematics subject classification (2010): 47B32, 47B35, 47B37.
Keywords and phrases: truncated Toeplitz operators; normal operators; commutation properties.

1



2. Preliminaries

Our notations are mostly standard: C is the complex plane, D= {z ∈ C : |z|< 1} the
unit disc, and T = {z ∈ C : |z| < 1} the unit circle. By Ĉ we will denote the extended
complex plane C∪{∞} . As is customary, we will view the Hardy space H2 on D as a
subspace of L2(T) by identifying functions analytic in D with their radial limits (almost
everywhere). Similarly, the algebra H∞ of bounded analytic functions in D may be viewed
as a closed subalgebra of L∞(T) .

An inner function u ∈H∞ is characterized by |u|= 1 almost everywhere on T . If u is
an inner function and a ∈ D , we define the inner function ua by

ua(z) =
u(z)−a

1− au(z)
.

If u is an inner function, the model space K2
u is defined by K2

u = H2	uH2 . We denote
by PK2

u
the orthogonal projection (in L2(T)) onto K2

u .

The conjugation of L2(T) defined by f̃ = uz f bijectively maps K2
u to itself; it is this

latter restriction that will appear in the sequel. The space K2
u is a reproducing kernel space

of analytic functions on D , and the reproducing kernels for points λ ∈ D are

ku
λ
(z) =

1−u(λ )u(z)

1−λ z
.

The conjugate kernels k̃u
λ

will also appear; an easy computation yields

k̃u
λ
(z) =

u(z)−u(λ )
z−λ

.

As shown in [1], in special cases one may have “reproducing kernels” for points ζ ∈ T .
Namely, all functions in K2

u have a nontangential limit f (ζ ) in ζ ∈ T precisely when u has
an angular derivative in the sense of Caratheodory in ζ . In this case the function

ku
ζ
(z) =

1−u(ζ )u(z)

1−ζ z

belongs to K2
u , and f (ζ ) = 〈 f ,kζ 〉 for f ∈ K2

u .
The truncated Toeplitz operators (TTO) are defined as follows. Note first that, since

the reproducing kernels are bounded functions, K2
u ∩H∞ is dense in K2

u . If φ ∈ L2(T) ,
we consider the map f 7→ PK2

u
φ f defined on K2

u ∩H∞ . If this map extends to a bounded
operator on K2

u , we denote it Au
φ

and call it a truncated Toeplitz operator with symbol φ .
The set of all TTOs on K2

u is a weakly closed subspace of L (K2
u ) , that we will denote by

Tu .
Truncated Toeplitz operators are closer to Toeplitz matrices than to Toeplitz operators.

To start with, the symbol of a TTO is not uniquely defined; it is proved in [14] that Au
φ
= 0

if and only if φ ∈ uH2 + uH2 . It would be tempting to speak about the uniquely defined
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reduced symbol of a TTO Au
φ

as the projection of φ onto L2	 (uH2 + uH2) . This space

can also be written as (K2
u +K2

u )	C(ku
0 − k

u
0) (see [14, 15]); in particular, any TTO has

a symbol in K2
u +K2

u . Obviously things simplify when ku
0 = k

u
0 , which is equivalent to

u(0) = 0; we will have more to say about this in Section 5.
It has been shown in [14, Theorem 4.1] that TTOs may be characterized algebraically

among operators on K2
u ; the result is the following.

LEMMA 2.1. The bounded operator A on K2
u belongs to Tu if and only if there are

functions ψ,χ ∈ K2
u such that

∆(A) := A−SuAS∗u = (ψ⊗ ku
0)+(ku

0⊗χ),

in which case A = Au
ψ+χ

.

EXAMPLES. 1. If φ(z) = z , then Au
φ

is the model operator [13, 18] on the space
K2

u ; it will be denoted by Su .

2. In [14] are identified all rank one operators in Tu : they are multiples of ku
λ
⊗ k̃u

λ
and

of their adjoints k̃u
λ
⊗ku

λ
, to which are added multiples of ku

ζ
⊗ku

ζ
whenever u has an

angular derivative in the sense of Caratheodory in ζ ∈ T .

3. For α ∈ D the modified compressed shifts are defined by

Sα
u = Su +

α

1−αu(0)
ku

0⊗ k̃u
0.

If α ∈D , then Sα
u is unitarily equivalent to Suα

, and is thus a completely non-unitary
contraction (whose characteristic function, in the sense of Sz.Nagy–Foias [18], is uα ).
If α ∈ T , then Sα

u is unitary, with singular spectral measure and multiplicity one
(these are precisely the Clark unitary operators defined in [6]).

3. Sedlock classes

The Sedlock classes Bα
u ⊂Tu , with α ∈ Ĉ , have been introduced in [15] in connection

to multiplication properties of TTOs. For α ∈ C , Bα
u is the set of operators in Tu which

have a symbol of the form φ +αSuφ̃ + c , where φ ∈ K2
u and c ∈ C ; while, for α = ∞ ,

B∞
u is the set of TTOs which have an antiholomorphic symbol. The following are the main

results proved in [15].

THEOREM 3.1. (i) For any α ∈ Ĉ , Bα
u is a commutative weakly closed algebra.

(ii) If α 6= α ′ , then Bα
u ∩Bα ′

u = CI .
(iii) A ∈Bα

u if and only if A∗ ∈B
1/α
u .

(iv) If α ∈ D , then Bα
u = {Sα

u }′ (the commutant of Sα
u ).

(v) If A,B ∈ Tu , then AB ∈ Tu if and only if either one of the operators is a scalar, or
both belong to the same class Bα

u for some α ∈ Ĉ . In the last case we also have AB ∈Bα
u .

(vi) The classes Bα
u are precisely the maximal subalgebras of Tu .
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As the algebras Bα
u are the commutants of modified compressed shifts, they may be

given a more concrete description. This is done in [15, Section 6], and we present below
a brief summary of the results therein. There are basically two distinct types of Sedlock
classes, depending on whether |α| = 1 or not, and the case |α| > 1 is reduced to |α| < 1
by taking adjoints.

1. If |α| = 1, then Sα
u is a unitary operator of multiplicity one, with singular spectral

measure µα . Thus Bα
u = {Sα

u }′ is a maximal abelian subalgebra of L (K2
u ) , and its

elements may be described as functions Φ(Sα
u ) with Φ ∈ L∞(µα) .

2. If |α| 6= 1, suppose first that |α|< 1. Then Sα
u is a completely nonunitary contraction,

that has a functional calculus with functions in H∞ [18]. Its commutant Bα
u is a

weakly closed nonselfadjoint algebra; its elements are the functions Ψ(Sα
u ) with Ψ ∈

H∞ , and we may identify their symbols as TTOs by the formula

Ψ(Sα
u ) = Au

Ψ

1−α u
.

If |α|> 1, then S1/α
u is a completely nonunitary contraction, and using Theorem 3.1

(iii) the elements of Bα
u may be described as

Ψ(S1/α
u )∗ = Au

αφ

α−u

for Ψ ∈ H∞ .

It is worth mentioning the following simple corollary, which determines when the prod-
uct of two TTOs is zero.

COROLLARY 3.2. If Au
φ
,Au

ψ are nonzero operators in Tu and Au
φ

Au
ψ = 0 , then there

is α ∈ Ĉ such that Au
φ
,Au

ψ ∈Bα
u . Moreover:

1. If |α|= 1 , then Au
φ
= Φ(Sα

u ) , Au
ψ = Ψ(Sα

u ) , with Φ,Ψ ∈ L∞(µα) and ΦΨ = 0 µα -
almost everywhere.

2. If |α|< 1 , then Au
φ
= Φ(Sα

u ) , Au
ψ = Ψ(Sα

u ) , with Φ,Ψ ∈ H∞ , and the inner function
uα divides ΦΨ .

3. If |α| > 1 , then Au
φ
= Φ(S1/α

u )∗ , Au
ψ = Ψ(S1/α

u )∗ , with Φ,Ψ ∈ H∞ , and the inner

function u1/α = 1−αu
u−α

divides ΦΨ .

Proof. Most of the statements are immediate consequences of the remarks above. For
point (ii), one should note that if h ∈ H∞ and h(Sα

u ) = 0, then uα divides h . This is
proved directly in [15, Section 6]; alternately, it follows from the fact, noted above, that the
characteristic function of Sα

u is uα .

We end this section with a continuity property of Sedlock classes.

LEMMA 3.3. Suppose αn,α ∈ C , αn→ α , An ∈Bαn
u , and An→ A. Then A ∈Bα

u .
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Proof. For αn,α ∈D the result follows from Theorem 3.1 (iv), once we note that αn→
α implies Sαn

u → Sα
u . If α 6∈ D , we use Theorem 3.1 (iii) to reduce it to the previous

case.

In the sequel we will usually assume that α ∈ C ; the obvious modifications of the
arguments required when α = ∞ are left to the reader.

4. The Crofoot transform

Let u be an inner function and a ∈D . The Crofoot transform J = J(u,a) is the unitary
operator J : K2

u → K2
ua defined by

J( f ) =

√
1−|a|2

1− au
f .

It is proved in [14, Theorem 13.2] that

JTuJ∗ = Tua . (1)

The next result could be obtained by tedious calculations, but we prefer a shorter argu-
ment based on the previous section.

THEOREM 4.1. If α ∈ Ĉ , then JBα
u J∗ = Bβ

u , where β = α−a
1−aα

.

Proof. Since Bα
u is a maximal subalgebra of Tu , it follows from (1) that JBα

u J∗ is
a maximal algebra of Tua , and thus, by Theorem 3.1, it must be equal to Bβ

ua for some
β ∈ Ĉ . To obtain the precise value of β , it is enough to look at the Crofoot transform of a
single nonscalar operator; this we will do in the sequel. We may assume that dimK2

u > 1,
since otherwise there is nothing to prove.

Suppose first that |α|< 1. It is shown in [15, Example 5.3] that for any λ ∈D the rank
one operator k̃u

λ
⊗ ku

λ
belongs to B

u(λ )
u ; also, k̃u

λ
⊗ ku

λ
is not scalar since dimK2

u > 1.
If f ∈ K2

u , then

f (λ ) =
1− au(λ )√

1−|a|2
(J f )(λ ) = 〈J f ,

1−au(λ )√
1−|a|2

kua
λ
〉= 〈 f , 1−au(λ )√

1−|a|2
J∗kua

λ
〉.

Therefore J∗kua
λ

is a multiple of ku
λ

, or, equivalently, kua
λ

is a multiple of Jku
λ

. Since J
commutes with the respective conjugations on K2

u and K2
ua , the conjugate kernel k̃ua

λ
is a

multiple of Jk̃u
λ

. Therefore J(k̃u
λ
⊗ ku

λ
)J∗ is a multiple of k̃ua

λ
⊗ kua

λ
, and thus belongs to

B
ua(λ )
ua . Since ua(λ ) =

u(λ )−a
1−au(λ ) , we have found, in the case α = u(λ ) , a nonscalar operator

in the class Bα
u whose Crofoot transform is in Bβ

ua , with β = α−a
1−aα

. By Theorem 3.1 (ii)
the same must then be true for the whole class.

The result is thus proved for points in u(D) ; since u is inner, this is a dense set in
D (see, for instance, [11, Theorem 6.6]). For α ∈ D outside this set, choose some w ∈ D
such that, if φ = ku

w +αSuk̃u
w , then Au

φ
is not scalar. Take a sequence αn→ α , αn ∈ u(D) ;
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then φn = ku
w +αnSuk̃u

w tend uniformly to φ , and therefore Au
φn
→ Au

φ
, JAu

φn
J∗ → JAu

φ
J∗ .

We have Au
φn
∈Bαn

u and Au
φ
∈Bα

u by the definition of the Sedlock classes. Since αn ∈
u(D) , JAu

φn
J∗ ∈ Bβn

ua , with βn := αn−a
1−aαn

→ β := α−a
1−aα

. Applying Lemma 3.3, it follows

that JAu
φ

J∗ ∈Bβ
ua . So again we have found a nonscalar operator in Bα

u , whose Crofoot

transform is in Bβ
ua with β = α−a

1−aα
, and by Theorem 3.1 (ii) the same must be true for the

whole class.
Finally, if |α|> 1, then α ′ = 1/α ∈D , and, if β ′ = α ′−a

1−aα ′ , then 1/β ′ = β . Therefore,
using the result already proved for α ′ and Theorem 3.1 (iii), we obtain

JBα
u J∗ = J(Bα ′

u )∗J∗ =
(
JBα ′

u J∗
)∗

= (Bβ ′
ua )
∗ = Bβ

ua ,

thus ending the proof of the theorem.

Note that the particular case a = α appears in [15, Section 6]. We will only use the
Crofoot transform obtained by taking a = u(0) ; in this case ua(0) = 0.

5. Basic commutation formulas

In this section the inner function u is subjected to the condition u(0) = 0. Then u =
zu1 , ku

0 = 1 (the constant function equal to 1), and k̃u
0 = u1 ; also, we have the direct sum

decompositions

K2
u = C1⊕ zK2

u1
, (2)

(uH2 +uH2)⊥ = K2
u +K2

u = zK2
u1
⊕C1⊕ zK2

u1
. (3)

Any TTO has a unique symbol φ ∈ (uH2 +uH2)⊥ , and according to (3) we may write

φ = φ++φ−+φ0 (4)

with φ± ∈ zK2
u1

and φ0 ∈ C . Whenever u(0) = 0, the operator Au
φ

will have the symbol φ

in K2
u +K2

u , and we will consistently use the decomposition (4). Note that (Au
φ
)∗ = Au

φ
, and

(φ)± = φ∓ , (φ)0 = φ0 .
We define a conjugation ˘ on zK2

u1
, that we will call the reduced conjugation, by trans-

porting the conjugation on K2
u1

; that is, for f ∈ zK2
u1

,

f̆ = z f u1. (5)

The Sedlock classes can be easily identified in terms of φ± ; namely, Au
φ
∈Bα

u if and
only if φ̆− = αφ+ .

Finally, let us note the formulas

∆(I) = I−SuS∗u = 1⊗1, I−S∗uSu = u1⊗u1. (6)

The next is the correspondent of [12, Lemma 2.3].
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LEMMA 5.1. Suppose u(0) = 0 . If Au
φ
,Au

ψ ∈Tu , then

∆(Au
φ Au

ψ) = φ+⊗ψ−− φ̆−⊗ ψ̆+

+(Au
φ ψ++ψ0φ++φ0ψ01)⊗1+1⊗ (Su(Au

ψ)
∗S∗uφ−+φ 0ψ−).

Proof. Denote φ̂ = φ −φ(0) , ψ̂ = φ −ψ(0) . We have

∆(Au
φ Au

ψ) = ∆(Au
φ̂

Au
ψ̂
)+ψ0∆(Au

φ̂
)+φ0∆(Au

ψ̂
)+φ0ψ0(1⊗1).

By Lemma 2.1, we have

∆(Au
φ̂
) = φ+⊗1+1⊗φ−, ∆(Au

ψ̂
) = ψ+⊗1+1⊗ψ−, (7)

and therefore

∆(Au
φ Au

ψ) = ∆(Au
φ̂

Au
ψ̂
)+(ψ0φ++φ0ψ++φ0ψ01)⊗1+1⊗ (ψ0φ−+φ 0ψ−). (8)

Now, using (6) and (7),

∆(Au
φ̂

Au
ψ̂
) = Au

φ̂
Au

ψ̂
−SuAu

φ̂
Au

ψ̂
S∗u

= Au
φ̂

Au
ψ̂
−Au

φ̂
SuAu

ψ̂
S∗u +Au

φ̂
SuAu

ψ̂
S∗u−SuAu

φ̂
(S∗uSu +u1⊗u1)Au

ψ̂
S∗u

= Au
φ̂

∆(Au
ψ̂
)+∆(Au

φ̂
)SuAu

ψ̂
S∗u−SuAu

φ̂
(u1⊗u1)Au

ψ̂
S∗u

= Au
φ̂
(ψ+⊗1+1⊗ψ−)+(φ+⊗1+1⊗φ−)SuAu

ψ̂
S∗u− (SuAu

φ̂
u1⊗Su(Au

ψ̂
)∗u1)

We have Au
φ̂

1 = φ+ , S∗u1 = 0, so the sum of the first two terms on the last line is

Au
φ̂

ψ+⊗1+φ+⊗ψ−+1⊗Su(Au
ψ̂
)∗S∗uφ−.

Further, Au
φ̂

u1 = PK2
u
φ̂u1 = PK2

u
φ+u1 +PK2

u
φ−u1 . Since φ+ ∈ zK2

u1
, φ+u1 has zu1 = u as a

factor, and thus is orthogonal to K2
u . Also, φ−u1 = zzφ−u1 = z φ̆− , and φ̆− ∈ zK2

u1
implies

z φ̆− ∈ K2
u , whence Au

φ̂
u1 = z φ̆− . Therefore SuAu

φ̂
u1 = PK2

u
φ̆− = φ̆− .

Taking into account the relation (Au
ψ̂
)∗ = Au

ψ̂
= Au

ψ−+ψ+
, a similar computation yields

Su(Au
ψ̂
)∗u1 = ψ̆+ . Therefore

∆(Au
φ̂

Au
ψ̂
) = Au

φ̂
ψ+⊗1+φ+⊗ψ−+1⊗Su(Au

ψ̂
)∗S∗uφ−− φ̆−⊗ ψ̆+. (9)

Gathering (8) and (9) ends the proof of the lemma.

From here follows the basic theorem, which corresponds to [12, Theorem 3.1].

THEOREM 5.2. Suppose u(0) = 0 and Au
φ
,Au

ψ ,A
u
ζ
,Au

η ∈ Tu . Then Au
φ

Au
ψ −Au

ζ
Au

η ∈
Tu if and only if

φ+⊗ψ−− φ̆−⊗ ψ̆+ = ζ+⊗η−− ζ̆−⊗ η̆+. (10)
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Proof. By Lemma 5.1, there exist f ,g ∈ K2
u such that

∆(Au
φ Au

ψ −Au
ζ

Au
η) = φ+⊗ψ−− φ̆−⊗ ψ̆+−ζ+⊗η−+ ζ̆−⊗ η̆++ f ⊗1+1⊗g.

From Lemma 2.1 it follows that Au
φ

Au
ψ −Au

ζ
Au

η ∈ Tu if and only if there exist f1,g1 ∈ K2
u

such that
φ+⊗ψ−− φ̆−⊗ ψ̆+−ζ+⊗η−+ ζ̆−⊗ η̆+ = f1⊗1+1⊗g1. (11)

Now, if we consider the orthogonal decomposition (2), we can write operators on K2
u

as 2× 2 block matrices. With respect to this decomposition, the left hand side of (11) has
zeros on the first row and column, since φ±,ψ±,ζ±,η± ∈ zK2

u1
. Meanwhile, the right hand

side is the general form of an operator that has zeros in the lower right corner. It follows that
both sides have to be zero, so, in particular, (10) is true.

6. Main results

As noticed above, the Sedlock classes have been introduced in connection with multi-
plication properties of TTOs, and the main result in this direction is Theorem 3.1 (v). As a
consequence, a characterization of unitary TTOs is obtained in [15]. In the sequel we use
Theorem 5.2 in order to improve that result (see Theorem 6.3 below), as well as to obtain
complete descriptions of other classes of TTOs.

The first result discusses commuting TTOs.

THEOREM 6.1. Let u be an inner function. If Au
φ
,Au

ψ ∈ Tu , then the following are
equivalent:

(i) Au
φ

Au
ψ = Au

ψ Au
φ

.

(ii) Au
φ

Au
ψ −Au

ψ Au
φ
∈Tu .

(iii) One of the following is true:

(1) There exists α ∈ Ĉ such that Au
φ

and Au
ψ both belong to Bα

u .

(2) The operators I,Au
φ
,Au

ψ are not linearly independent.

Proof. It is obvious that (i)⇒ (ii). For (iii)⇒ (i), in case (1) commutativity follows from
Sedlock’s result, while in case (2) one of the TTOs is a linear combination of the identity
and the other. So we are left to prove that (ii)⇒ (iii).

Both conditions (ii) and (iii) are invariant if we apply a Crofoot transform: since the
transform is unitary, this is obvious for (iii)(2). For (ii) it follows from (1), while for (iii)(1)
it is a consequence of Lemma 4.1. So we may assume for the rest of the proof that u(0) = 0,
and thus apply the results from Section 5.

Assume then that Au
φ

Au
ψ−Au

ψ Au
φ
∈Tu . Applying Theorem 5.2 with η = φ and ζ = ψ ,

formula (10) becomes

φ+⊗ψ−− φ̆−⊗ ψ̆+ = ψ+⊗φ−− ψ̆−⊗ φ̆+. (12)
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The operators on the two sides of this equality have rank at most two. If the rank is at most
one, then {φ+, φ̆−} and {ψ+, ψ̆−} are both pairs of linearly dependent functions. Suppose,
for instance, that φ− 6= 0 and φ̆− = αφ+ . Then (12) yields

φ+⊗ (ψ−−αψ̆+) = (αψ+− ψ̆−)⊗ φ̆+.

The equality of the rank one operators implies the existence of a ∈ C such that

ψ−−αψ̆+ = aφ̆+, αψ+− ψ̆− = aφ+.

Applying the reduced conjugation to the first equation and comparing the result to the sec-
ond, we see that a = 0. Thus ψ̆− = αψ+ , and thus Au

φ
and Au

ψ both belong to Bα
u ; that is,

(1) is true.
Suppose now that the rank of the operators in (12) is two. The spaces spanned by

{φ+, φ̆−} and by {ψ+, ψ̆−} are equal, and thus there exist a11,a12,a21,a22 ∈ C such that

ψ+ = a11φ++a12φ̆−, ψ̆− = a21φ++a22φ̆−.

Replacing these formulas in (12) yields[
2a21φ++(a22−a11)φ̆−

]
⊗ φ̆++

[
(a22−a11)φ+−2a12φ̆−

]
⊗φ− = 0,

and then the linear independence of φ+ and φ̆− implies that a12 = a21 = 0 and a11 = a22 =
a . Thus φ− = aφ+ , ψ̆− = aφ̆− , ψ− = aφ− , and

Au
ψ = ψ0I +Au

ψ++ψ−
= ψ0I +aAu

φ++φ−
= aAu

φ +(ψ0−φ0)I.

Therefore in this case (2) is satisfied. This ends the proof of the theorem.

One can obtain as a consequence the characterization of normal TTOs.

THEOREM 6.2. Let u be an inner function. If Au
φ
∈Tu , then the following are equiv-

alent:
(i) Au

φ
∈Tu is normal.

(ii) Au
φ
(Au

φ
)∗− (Au

φ
)∗Au

φ
∈Tu .

(iii) One of the following is true:

(1) There exists α ∈ T such that Au
φ

belongs to Bα
u .

(2) Au
φ

is a linear combination of a selfadjoint TTO and the identity.

Proof. By applying Theorem 6.1 to the case ψ = φ , we obtain the equivalence of (i),
(ii), and (iii ′ ), where (iii ′ ) states that one of the following is true:

(1′) There exists α ∈ C such that Au
φ

and (Au
φ
)∗ both belong to Bα

u .

(2′) The operators I,Au
φ
,(Au

φ
)∗ are not linearly independent.
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If Au
φ

is a multiple of the identity, then (1), (2), (1′) , (2′) are all satisfied. Suppose

this is not the case. If Au
φ
∈Bα

u , then (Au
φ
)∗ ∈Bα

−1
. If (1′) is true, then we must have

α
−1

= α , or |α|= 1; thus (1) is equivalent to (1′) .
If (2) is true, then Au

φ
= aA+bI , with A = A∗ and a 6= 0; then (Au

φ
)∗ = a

a Au
φ
+ ab−ab

a I ,
and thus (2′) is true. Conversely, suppose (Au

φ
)∗ = cAu

φ
+ dI . Since we have asumed that

Tφ is not a scalar, at least one of ℜAu
φ
,ℑAu

φ
is not a scalar. Say this is ℜAu

φ
; then ℜAu

φ
=

(c+1)Au
φ
+dI , with c 6=−1, and thus Au

φ
= (c+1)−1(ℜAu

φ
−dI ); therefore (2) is true.

Thus (1)⇔ (1′) and (2)⇔ (2′) ; this ends the proof of the theorem.

It is proved in [15] that a TTO Au
φ

is unitary if and only if it belongs to some class Bα
u

for some α ∈T . In this case Au
φ
= Φ(Sα

u ) , where |Φ|= 1 µα -almost everywhere. With our
method we can obtain a slight improvement of this result.

THEOREM 6.3. Let u be an inner function. If Au
φ
∈Tu , then the following are equiv-

alent:

1. Au
φ

is unitary.

2. Au
φ

is an isometry.

3. Au
φ

is a coisometry.

4. (Au
φ
)∗Au

φ
− I ∈Tu .

5. Au
φ
(Au

φ
)∗− I ∈Tu .

6. Au
φ
∈Bα

u for some α ∈ T , and Au
φ
= Φ(Sα

u ) , where |Φ|= 1 µα -almost everywhere.

Proof. The implications (i)⇒ (ii), (i)⇒ (iii), (ii)⇒ (iv), (iii)⇒ (v), and (vi)⇒ (i) are all
immediate.

To prove (v)⇒ (vi), we may assume, as in the proof of Theorem 6.1, that u(0) = 0. We
may then apply Theorem 5.2 to the case ψ = φ , ζ = η = 1 , which implies ζ± = η± = 0.
We obtain then

φ+⊗φ+ = φ̆−⊗ φ̆−.

Therefore there exists α ∈ T such that φ̆− = αφ+ ; that is, Au
φ
∈Bα

u . The particular form
of Au

φ
is then a consequence of the description of Bα

u in Section 3.
Finally, if (iv) is true, then (v) is true for (Au

φ
)∗ = Au

φ
. Therefore the previous paragraph

yields Au
φ
∈Bα

u for some α ∈ T , whence Au
φ
∈Bα

u . Thus (iv)⇒ (vi), which ends the proof
of the theorem.

In particular, there do not exist nonunitary isometries or coisometries in Tu . This
can also be obtained as a consequence of the complex symmetry of the truncated Toeplitz
operators with respect to the conjugation on K2

u (see [8]).

10



Acknowledgements

The first author was partially supported by the ANR project ANR-09-BLAN-0058-01.
The second author was partially supported by a grant of the Romanian National Authority
for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0119.

R E F E R E N C E S

[1] P.R. AHERN AND D.N. CLARK, ‘Radial limits and invariant subspaces’, Amer. J. Math. 92 (1970), 332–342.
[2] A. BARANOV, R. BESSONOV, AND V. KAPUSTIN, ‘Symbols of truncated Toeplitz operators’, J. Funct.

Anal. 261 (2011), 3437–3456.
[3] A. BARANOV, I. CHALENDAR, E. FRICAIN, J. MASHREGHI, AND D. TIMOTIN, ‘Bounded symbols and

reproducing kernel thesis for truncated Toeplitz operators’, J. Funct. Anal. 259 (2010), 2673–2701.
[4] J.A. CIMA, S.R. GARCIA, W.T. ROSS, AND W.R.WOGEN, ‘Truncated Toeplitz operators: spatial isomor-

phism, unitary equivalence, and similarity’, Indiana Univ. Math. J. 59 (2010), 595–620.
[5] J.A. CIMA, W.T. ROSS, AND W.R. WOGEN, ‘Truncated Toeplitz operators on finite dimensional spaces’,

Oper. Matrices 2 (2008), 357–369.
[6] D.N. CLARK, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191.
[7] P.J. DAVIS, Circulant Matrices (Wiley, New York, 1979).
[8] S.R. GARCIA AND M. PUTINAR, ‘Complex symmetric operators and applications’, Trans. Amer. Math.

Soc. 358 (2006), 1285–1315.
[9] S.R. GARCIA AND W.T. ROSS, ‘Recent progress on truncated Toeplitz operators’, Fields Institute Commu-

nications 65 (2013), 275–319.
[10] S.R. GARCIA, W.T. ROSS, AND W.R. WOGEN, ‘Spatial isomorphisms of algebras of truncated Toeplitz

operators’, Indiana Univ. Math. J. 59 (2010), 1971–2000.
[11] J.B. GARNETT, Bounded Analytic Functions (Springer, New York, 2007).
[12] C. GU AND L. PATTON, ‘Commutation relations for Toeplitz and Hankel matrices’, SIAM J. Matrix Anal.

Appl. 24 (2003), 728–746.
[13] N.K. NIKOLSKI, Operators, functions, and systems: an easy reading (American Mathematical Society,

Providence, RI, 2002).
[14] D. SARASON, ‘Algebraic properties of truncated Toeplitz operators’, Oper. Matrices 1 (2007), 491–526.
[15] N.A. SEDLOCK, ‘Algebras of truncated Toeplitz operators’, Oper. Matrices 5 (2011), 309–326.
[16] T. SHALOM, ‘On algebras of Toeplitz matrices’, Linear Algebra Appl. 96 (1987), 211–226.
[17] E. STROUSE, D. TIMOTIN, AND M. ZARRABI, ‘Unitary equivalence to truncated Toeplitz operators’, Indi-

ana Univ. Math. J. 61 (2012), 525–538.
[18] B. SZ.-NAGY AND C. FOIAS, Harmonic analysis of operators on Hilbert space (North-Holland Publishing

Co., Amsterdam-London, 1970).
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