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Abstract. The paper investigates the asymptotic behavior of (non-normalized)

traces of certain classes of matrices with non-commutative random variables as
entries. We show that, unlike in the commutative framework, the asymptotic

behavior of matrices with free circular, respectively with Bernoulli distributed
Boolean independent entries is described in terms of free, respectively Boolean

cumulants. We also present an example of relation of monotone independence

arising from the study of Boolean independence.

1. Introduction

The fluctuations of traces of various classes of random matrices have been studied
in the last two decades in both physics (see, for example [2], [4], [5]) and mathe-
matics (see [7], [8] [9]) literature. Extensive works (such as [19], [18]) indicate that
free independence is best suited to describe the interaction of important classes of
independent ensembles of random matrices with respect to normalized traces. It
was shown that free independence and the corresponding Central Limit Theorem
laws (centered semicircular distributions) behave in a very regular manner when
tensoring with algebras of complex matrices ([17]). In order to address interactions
of independent ensembles of random matrices with respect to unnormalized traces
(fluctuation moments, higher order trace-moments), recent works, such as [7] and
[8], introduced the notion of second order freeness or the more refined real second
order freeness ([9]). The present paper comes as an addendum to these works,
more in the spirit of [15]. More precisely, while [7], [8] and [9] study the behavior
of important classes of random matrices with entries in a commutative algebra, we
present some similar results for the case when the entries are not commuting.

The results presented here bring contributing evidence to the special nature of
second order independence relations. We show that although ensembles of self-
adjoint Gaussian random matrices can be well approximated at first order level
by ensembles of matrices with free semicircular entries, the second order behavior
of these two classes is different. Also, classical cumulants are well-suited to de-
scribe higher order independence relations of ensembles of random matrices with
commuting, independent entries; the results from Section 3, respectively Section
4, seem to indicate that free, respectively Boolean cumulants are appropriate to
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describe higher order independence relations of ensembles of random matrices with
free, respectively Boolean independent entries.

In what follows, the paper is organized in 3 sections. Section 2 contains some
preliminary notions and results on permutations and partitions of an ordered set
and non-commutative notions of independence.

Section 3 presents some results in the study of higher order behavior of ensembles
of self-adjoint matrices with free circular entries. We first show (see Theorem 3.1)
that the free cumulants of unnormalized traces of such ensembles have a very similar
behavior to the results presented in [8] concerning classical cumulants of ensembles
of random matrices with independent Gaussian entries. We also show that, in this
framework, a substitute for second order freeness from [7] is Property (∗) that we
define in Section 3.2.

The shorter Section 4 presents some results concerning Boolean independence.
This non-unital notion of non-commutative independence ([16]) is by far less stud-
ied than freeness, but it was shown to be of relevance in some problems from
Theoretical Physics ([20]), Free Probability ([13]), completely positive maps ([14])
or Real Analysis ([1]). We show that the Boolean cumulants of traces of ensem-
bles of self-adjoint matrices with Bernoulli distributed boolean independent entries
and constant matrices have a similar behavior to the classical cumulants of traces
of Gaussian ensembles, as presented in [8], respectively to the free cumulants of
traces of semicircular ensembles, as presented in Section 3. In addition, Theorem
4.3 presents a new example of monotone independence relation, here arising from
the relations between constant matrices and matrices with Bernoulli distributed
Boolean independent entries.

2. Preliminaries

2.1. Partitions on an ordered set. For a positive integer n, we will denote by
[n] the ordered set {1, 2, . . . , n}. By a partition π on [n] we will understand a family
B1, B2, . . . , Bq(π) of pairwise disjoint nonvoid subsets of [n], called blocks of π, such

that ∪q(π)l=1 Bl = [n]. If each block of π has exactly 2 elements, then π will be called
a pairing. The set of all partitions, respectively pairings on [n] will be denoted by
P (n), respectively by P2(n).

The set P (n) is a lattice under the partial order relation <, given by σ < π if
any block of σ is contained in some block of π. The maximal element of the lattice
is 1n, the partition with a single block. For π, σ ∈ P (n), define

σ ∨ π = inf{τ : τ > π, τ > σ}.

A partition π ∈ P (n) will be called non-crossing if for any B,D disjoint blocks
of π, there exists no 4-tuple i < j < k < l from [n] such that i, k ∈ B and j, l ∈ D.
The sets of all non-crossing partitions, respectively non-crossing pair-partitions of
[n] will be denoted by NC(n), respectively NC2(n).

A partition π ∈ P (n) will be called interval partition if each block of π contains
only consecutive elements from [n]. We will denote the set of all interval partitions,
respectively pairings of [n] by I(n), respectively I2(n). Note that if n is odd, then
I2(n) = ∅; if n is even then I2(n) has only one element, namely the partition of
blocks {(2k − 1, 2k) : 1 ≤ k ≤ n

2 }.
A permutation γ ∈ Sn (the Symmetric group of order n) will be uniquely iden-

tified with a partition on [n] by taking the blocks to equal (as sets) the cycles. A
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pair partition π ∈ P2(n) can be uniquely identified with a permutation from Sn by
taking the cycles to equal the blocks of π. The following result connecting partitions
and permutations was proved in [6] (see [6], relation 2.9):

Proposition 2.1. If τ, σ ∈ Sn , then

#(τ) + #(τ−1σ) + #(σ) ≤ n+ 2#(τ ∨ σ)

where in the left hand side of the equation τ, σ are seen as permutations and in the
right hand side as partitions.

For σ ∈ Sm and A1, . . . , Am some N × N complex matrices, we will define
Trσ(A1, . . . , Am) as follows. If σ has the cycle decomposition

σ =

n∏
q=1

(i(q, 1), i(q, 2), . . . , i(q, l(q))) ,

then we define

Trσ(A1, . . . , Am) =

n∏
q=1

Tr(Ai(q,1) ·Ai(q,2) · · ·Ai(q,l(q)).

If
−→
j = (j1, . . . , jm) is a multiindex and σ ∈ Sm, we will write that

−→
j =

−→
j ◦ σ

if σ(k) = l implies jk = jl.
We will use the following version of the Lemma 5 from [9]:

Lemma 2.2. Suppose that Ak are N × N complex matrices with entries a
(k)
i,j ,

where 1 ≤ k ≤ m. If π ∈ P2(m) and σ ∈ Sm are such that k + πσ(k) ≡ 1 (mod 2)
for all k ∈ {1, . . . ,m}, then there exists some τ ∈ Sm such that∑

−→
j =
−→
j ◦πσ

a
(1)
jσ(1)jσ(2)

· · · a(m)
jσ(2m−1)jσ(2m)

= Trτ (A1, . . . , Am),

and if (i1, i2, . . . , iq) is a cycle of τ , then πσ(iv + 1) = iv+1.

2.2. Non-commutative probability spaces and independence relations.
Following [18], by a non-commutative C∗-probability space we will understand a
couple (A, φ), where A is a unital C∗-algebra and φ : A −→ C is a positive, linear,
unital map. The elements of A will be called non-commutative random variables.

For n ≥ 1 , the n-th classical, free, respectively Boolean cumulant are the n-
multilinear maps from An to C denoted by kn, κn, respectively bn and given by
the following recurrence relations:

φ(X1X2 · · ·Xn) =
∑

π∈P (n)

∏
B∈π

B={b(1),b(2),...,b(s)}

ks(Xb(1), Xb(2), . . . , Bb(s))(1)

=
∑

σ∈NC(n)

∏
B∈σ

B={b(1),b(2),...,b(s)}

κs(Xb(1), Xb(2), . . . , Bb(s))(2)

=
∑

τ∈I(n)

∏
B∈τ

B={b(1),b(2),...,b(s)}

bs(Xb(1), Xb(2), . . . , Bb(s)).(3)

Two unital subalgebras A1, A2 of A are said to be free independent if

φ(a1a2 · · · an) = 0
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whenever ai (1 ≤ i ≤ n) are such that φ(ai) = 0, ai ∈ Aε(i) with ε(i) ∈ {1, 2},
ε(i) 6= ε(i + 1). An equivalent condition (see [18]) is that κn(a1, a2, . . . , an) = 0
whenever ai ∈ Aε(i) such that not all ε(1), ε(2), . . . , ε(n) are equal.

Two subalgebras A1, A2 of A are said to be Boolean independent (see [20], [12])
if

φ(a1a2 · · · an) = φ(a1)φ(a2) · · ·φ(an)

whenever ai ∈ Aε(i) with ε(i) 6= ε(i+ 1). An equivalent condition (see [12]) is that
bn(a1, . . . , an) = 0 whenever ai ∈ Aε(i) such that not all ε(1), ε(2), . . . , ε(n) are
equal.

We will say that a subalgebra A1 of A is monotone independent (see [10], [11],
[16]) from A2, another subalgebra of A if, for all x1, x2 ∈ A, b1, b2 ∈ A2 and a ∈ A1

we have that

φ(x1b1a) = φ(x1b1)φ(a)

φ(ab2x2) = φ(a)φ(b2x2)

φ(x1b1ab2x2) = φ(x1b1b2x2)φ(a).

A selfadjoint element x ∈ A is said to be semicircular, respectively Bernoulli
distributed of mean 0 and variance σ > 0 if κn(x, x, . . . , x) = δn, 2σ

2, respectively
if bn(x, x, . . . , x) = δn,2σ

2.
The following result is known as the Free Wick Theorem (see [3]):

Proposition 2.3. Let H be a real Hilbert space with orthonormal basis {ei}i∈I and
ϕ : H⊗C −→ A be a linear map such that {ϕ(ei)}i∈I is a free family of semicircular
elements of mean 0 and variance 1. Then, for any f1, . . . , fn ∈ H⊗C we have that

φ(ϕ(f1)ϕ(f2) · · ·ϕ(fn)) =
∑

π∈NC2(n)

∏
(i,j)∈π

〈fi, fj〉.

A similar result holds true for the Boolean framework. More precisely, we have
the following proposition.

Proposition 2.4. Let H be a real Hilbert space with orthonormal basis {ei}i∈I and
ϕ : H ⊗ C −→ A be a linear map such that {ϕ(ei)}i∈I is a Boolean independent
family of Bernoulli distributed elements of mean 0 and variance 1. Then, for any
f1, . . . , fn ∈ H ⊗ C we have that

(4) φ(ϕ(f1)ϕ(f2) · · ·ϕ(fn)) =


0 if n is odd ;
n
2∏
i=1

〈f2i−1, f2i〉 if n is even .

Equivalently,

φ(ϕ(f1)ϕ(f2) · · ·ϕ(fn)) =〈f1, f2〉φ(ϕ(f3) · · ·ϕ(fn))

=
∑

π∈I2(n)

∏
(k,l)∈π

〈fk, fl〉.

Proof. Since both sides of the equation are multilinear in f1, . . . , fn, it suffices to
prove the result for all fk from the orthonormal basis {ei}i∈I . For n ≤ 2, the
equality follows from (2) and the fact that φ(ϕ(ei)) = 0.

For n > 2, let m = max{p : fk = f1, 1 ≤ k ≤ p}. From equation (2) we have
that

φ(ϕ(f1) · · ·ϕ(fn)) = φ(ϕ(f1) · · ·ϕ(fm)) · φ(ϕ(fm+1) · · ·ϕ(fn)).
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If m is odd then φ(ϕ(f1)m) = 0; also, the right hand side of (4) will contain the
factor 〈fm, fm+1〉 which cancels, hence in this case the equality holds. Suppose
than m is even. Equation (2) gives

φ(ϕ(f1)m) =
∑

τ∈I(n)

∏
B=block of τ

b|B|(ϕ(f1), . . . , ϕ(f1)).

Since ϕ(f1) is Bernoulli distributed of mean 0 and variance 1, all its Boolean cu-
mulants cancel, except the ones of order 2, which equal 1, therefore

φ(ϕ(f1) · · ·ϕ(fm)) = φ(ϕ(f1)m) = 1 = [φ(ϕ(f1)2)]
m
2

= 〈f1, f1〉
m
2 =

m
2∏
i=1

〈f2i−1, f2i〉,

and the conclusion follows by induction.
�

2.3. Ensembles of random matrices. Throughout the paper, MN (C) will de-
note the C∗-algebra of N×N square matrices with complex entries and MN (A) the
C∗-algebra MN (C)⊗A; by a random matrix with entries in A we will understand
an element of MN (A). Throughout the paper, by an ensemble of random matrices
with entries in A we will understand a set {Ai,N}i∈I,N∈Z+ such that Ai,N ∈MN (A)
for all i,N . The ensemble {Ai,N}i∈I,N∈Z+

is said to have limit distribution if for
any i1, . . . , in ∈ I, the limit

lim
N−→∞

tr(Ai1,N ·Ai2,N · · ·Ain,N )

exists and it is finite.

3. Random matrices with free circular entries

3.1. Semicircular random matrices. Let H be a real Hilbert space and H =
H ⊗ C be its complexification. Let {SN (f)}N∈Z+,f∈H be an ensemble of random

matrices such that SN (f) = [ci,j(f)]Ni,j=1 with ci,j(f) ∈ A such that

(i) φ(ci,j(f)ck,l(g)) =
1

N
δi,kδj,l〈f, g〉

(ii) SN (f)∗ = SN (f)
(iii) {<ci,j(f),=ci,j(f)}1≤i≤j≤N form a free family of semicircular elements of

mean 0.

Let l1, . . . , lr > 0 and put l0 = n0 = 0, and, for 1 ≤ k ≤ r, put nk = nk−1 + lk.
Let m = nr = l1 + l2 + · · ·+ lr; take f1, f2, . . . , fm ∈ H and let

Y
(N)
k = XN (fnk−1+1)XN (fnk−1+2) · · ·XN (fnk).

Theorem 3.1. With the notations above, we have that

κr(Tr(Y
(N)
1 ),Tr(Y

(N)
2 ), . . . ,Tr(Y (N)

r )) = O(N2−r).
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Proof. Let γ ∈ Sm with cycle decomposition

r∏
k=1

(nk−1 + 1, nk−1 + 2, . . . , nk). Then

the Free Wick Theorem gives:

φ(Tr(Y1) · · ·Tr(Yr)) =

N∑
i1,...,im=1

φ(ci1iγ(1)(f1) · · · cimiγ(m)
(fm))

=

N∑
i1,...,im=1

N−
m
2

∑
σ∈NC2(m)

∏
(k,l)∈σ

〈fk, fl〉δik,iγ(l)δil,iγ(k)

=
∑

σ∈NC2(m)

N#(γσ)−m2
∏

(k,l)∈σ

〈fk, fl〉δik,iγ(l)δil,iγ(k)

The blocks of γ ∨ σ are unions of blocks of γ. Suppose that γ ∨ σ 6∈ NC(m),
that is there exit B1, B2, B3, B4 blocks of γ in this lexicographical order such that
B1, B3 ∈ D1 and B2, B4 ∈ D2 with D1, D2 distinct blocks of γ ∨ σ. Hence there
exist bk ∈ Bk ( 1 ≤ k ≤ 4 such that σ(b1) = b3 and σ(b2) = b4, which implies that
σ 6∈ NC2(m). We have then tha γ ∨ σ ∈ NC(m) and an inductive argument on r
gives us that
(5)

κr(Tr(Y
(N)
1 ), . . . ,Tr(Y (N)

r )) =
∑

σ∈NC2(m)
γ∨σ=1m

N#(γσ)−m2
∏

(k,l)∈σ

〈fk, fl〉δik,iγ(l)δil,iγ(k)

Since the number of cycles is the same in a conjugacy class of permutations and
σ2 is the identity permutation, we have that #(γσ) = #(σγσ2) = #(σ−1γ). Also,
#(σ) = m

2 and #(γ) = r, hence, for γ ∨ σ = 1m, Proposition 2.1 gives

r + #(γσ) +
m

2
≤ m+ 2

which implies #(γσ)− m
2 ≤ 2− r, and the conclusion follows.

�

Definition 3.2. Let {Ai,N}i∈I,N∈Z+ be an ensemble of random matrices with
entries in A. We will say that the ensemble has second order free limit dis-
tribution if it has limit distribution and, for all i1, i2, . . . , in ∈ I, and collec-
tion {pk}k∈Z+

of non-commutative polynomials in n variables, with the notation
Yk = pk(Ai1,N , . . . , Ain,N ), we have that

(1) lim
N−→∞

κ2 (Tr(Y1),Tr(Y2)) exists and it is finite

(2) lim
N−→∞

κr (Tr(Y1), . . . ,Tr(Yr)) = 0 for all r ≥ 3.

Ensembles of matrices from
∐∞
n=1Mn(C) with limit distribution have second

order free distribution, since free cumulants with constant entries cancel (see, for
example [18]); an immediate consequence of Theorem 3.1 is that ensembles of semi-
circular random matrices also have second order free limit distribution.

3.2. The next notion can be seen as an analogue, in our framework, of the notion
of second order free independence from [6].

Definition 3.3. Consider K ∈ Z+ and for each k ∈ K let Ek = {A(k)
i,N}i∈I,N∈Z+

be an ensemble of random matrices that has limit distribution. We will say that the
family {Ek}k has Property (∗) if the following hold true:
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(1) {Ek}k is an asymptotically free family with respect to the map tr⊗ φ.
(2) Suppose that {Pk}k∈K are non-commutative polynomials in p variables and

that k1, . . . ks+t ∈ K with kj 6= kj+1 for j ∈ [s + t] \ {s, s + t} . Suppose

also that {A(k)
1,N , . . . , A

(k)
p,N}N are subensembles of Ek with limit distribution

such that

lim
N−→∞

tr(Pk(A
(k)
1,N , . . . , A

(k)
p,N )) = 0

and denote by α
(N)
j = Pkj (A

(kj)
1,N , . . . , A

(kj)
p,N ). Then

lim
N−→∞

κ2(Tr(α
(N)
1 · · ·α(N)

s ),Tr(α
(N)
s+1 · · ·α

(N)
s+t) = δs,t

s∏
j=1

lim
N−→∞

tr(α
(N)
j α

(N)
s+t+1−j)

(3) Suppose that r ≥ 3, m ∈ Z+, that {Ql}rl=1 are non-commutative polynomi-

als in m variables and that k1, . . . , km ∈ K. Suppose also that {A(k)
1,N , . . . , A

(k)
p,N}N

are subensembles of Ek with limit distribution and denote

β
(N)
l = Tr

(
Ql(A

(k1)
1,N , . . . , A

(k1)
p,N , . . . , A

(km)
1,N , . . . , A

(km)
p,N )

)
.

Then

lim
N−→∞

κr(β
(N)
1 , . . . , β(N)

r ) = 0.

In the next two section, that is Section 3.3 and Section 3.4, we will prove the
following result.

Theorem 3.4. Let {fk}k∈Z+
be an orthonormal set from H and let E be an en-

semble of constant matrices with limit distribution. The family of ensembles E and
{SN (fk)}N , (k ∈ Z+), has Property (∗).

Note first that property (1) from Definition 3.3 is satisfied, since semicircular
matrices are free from matrices with constant coefficients (see, for example, [18]).

3.3. Let s1, . . . , sn, j1, . . . , jm be positive integers and letA
(N)
1 , . . . , A

(N)
n , B

(N)
1 , . . . , B

(N)
m

be constant matrices that are either centered or identity, such that if sk = sk+1,

respectively if jk = jk+1, then A
(N)
k 6= I, respectively B

(N)
k 6= I.

Let k1, . . . , kn, l1, . . . , lm be positive integers and

P (N)
s =SN (fis)

ks − tr(SN (fis)
ks)I

Q(N)
s =SN (fjs)

ls − tr(SN (fjs)
ls)I.

In order to show Property (2) from Definition 3.3, it suffices to prove the following
Lemma:

Lemma 3.5. With the notations above,

κ2

(
Tr(A(N)

n P (N)
n · · · A(N)

1 P
(N)
1 ),Tr(Q

(N)
1 B

(N)
1 · · ·Q(N)

m B(N)
m )

)
(6)

= δn,m

n∏
k=1

tr(A
(N)
k B

(N)
k ) · tr(P

(N)
k Q

(N)
k ).

We will prove (6) in several steps. First, to simplify the notations, we will omit
the index N , with the convention that only matrices of the same dimension are
multiplied.
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Let us focus first to

Em,n = φ
(
Tr(AnS(fsn)kn · · ·A1S(fs1)k1)Tr(S(fj1)l1B1 · · ·S(fjm)lmBm)

)
.

Let N1 = n + k1 + · · · + kn , N2 = m + l1 + · · · + lm and M = M1 + M2,

M0 = M − m − n. Denoting by a
(p)
i,j , b

(p)
i,j , respectively c

(p)
i,j the (i, j)-entries of

Ap, Bp, respectively S(fp), and denoting by
−→
i the multiindex (i1, i2, . . . iM ), we

have that

(7) Em,n =
∑
−→
i

φ(a
(n)
i1,i2

c
(sn)
i2,i3

c
(sn)
i3,i4
· · · c(s1)iM1

,i1
c
(j1)
iM1+1,iM1+2

· · · c(jm)
iM−1,iM b

(m)
iM ,iM1+1

)

From the Free Wick Theorem, the expression above is computed as a sum over all

non-crossing pair partitions acting on the factors of the type c
(k)
i,j , more precisely

we can write

Em,n =
∑

π∈NC2(M0)

∑
−→
i ∼π

v(π)

where we write
−→
i ∼ π if whenever π is pairing c

(k)
is,it

to c
(l)
iu,iv

we have that

is = iv and it = iu, and we denote v(π) for the expression (depending also on

A1, . . . , An, B1, . . . , Bm) that results by pairing the c
(k)
i,j ’s according to π.

Denote P ′s = S(fis)
ks and Q′s = S(fjs)

ls . Suppose that π pairs two consec-
utive entries of the type crl,k from the same P ′i or Q′j . Without affecting the
generality, we can suppose, to simplify the notations, that the development of

P ′i contains the sequence · · · c(si)iv−1,iv
c
(si)
iv,iv+1

c
(si)
iv+1,iv+2

c
(si)
iv+2,iv+3

· · · and that π pairs

c
(si)
iv,iv+1

with c
(si)
iv+1,iv+2

. If
−→
i is such that

−→
i ∼ π, then iv = iv+2, hence, elimi-

nating c
(si)
iv,iv+1

c
(si)
iv+1,iv+2

we will obtain a summand from a development as in equa-

tion (7) but ki is now replaced by ki − 2. Same argument works if the sequence

c
(si)
iv,iv+1

c
(si)
iv+1,iv+2

is preceded or succeded by entries of constant matrices.

Denote by NCv2 (M0) the set of all pair partitions acting on c
(k)
i,j ’s that are pair-

ing c
(si)
iv,iv+1

and c
(si)
iv+1,iv+2

, denote by
−→
i v the set of indices

−→
i without iv and by

NCv2 (M0−2) the set of pair-partitions acting on c
(k)
i,j ’s without {c(si)iv,iv+1

, c
(si)
iv+1,iv+2

}.
Since φ(c

(si)
iv,iv+1

c
(si)
iv+1,iv+2

) = 1
N ‖fsi‖

2 = 1
N , we have that

∑
π∈NCv2 (M0)

∑
−→
i ∼π

v(π) =
∑

σ∈NCv2 (M0−2)

∑
−→
i v∼σ

[v(σ) ·
N∑
iv=1

φ(c
(si)
iv,iv+1

c
(si)
iv+1,iv+2

)](8)

=
∑

σ∈NCv2 (M0−2)

∑
−→
i v∼σ

v(σ).

Consider now NC
[t]
2 (M0) the set of all π as above such that P ′t is invariant under

π (that is all c
(st)
i,j are paired only among themselves; in particular, kt must be

even). The restriction of π to P ′t is then again a ono-crossing pairing; since any
non-crossing partition has at least one interval block, iterating (8) we obtain

(9)
∑

π∈NC[t]
2 (M0)

∑
−→
i ∼π

v(π) = tr(Pt) ·
∑

σ∈NC[t]
2 (M0−kt+2)

∑
−→
i [t]∼σ

v(σ)
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where
−→
i [t] is the multiindex formed by the set of all indices from

−→
i that are not

contained only in the factors from P ′t and where NC
[t]
2 (M0 − kt + 2) denotes the

set of all non-crossing pairings acting on all c
(k)
i,j except the ones in P ′t .

Let us now go back to the computation of the second order free cumulant
κ2 (Tr(AnPn · · ·A1P1),Tr(Q1B1 · · ·QmBm)). As seen in the proof of Theorem 3.1,
it develops (following the Free Wick Theorem) as a sum over pair partitions action

on the factors of the type c
(k)
i,j and connecting Pn · · ·P1 with Q1 · · ·Qm. Note that

here the partitions are acting on sets of different lengths, due to the presence of
terms of type tr(S(fis)

ks)I in the expressions of Ps’s (and the analogues for Qs’s).
But, according to (9), the factors of the type tr(S(fis)

ks) and the partitions leaving
invariant Ps cancel each other, hence, with the notations from (7)

κ2 (Tr(AnPn · · ·A1P1),Tr(Q1B1 · · ·QmBm)) =
∑

π∈NC∼
2 (M0)

ν(π)

where ν(π) =
∑
−→
i ∼π v(π) and NC∼2 (M0) is the set of all non-crossing pairings π

acting on the factors of type c
(k)
i,j such that

(1) π connects P ′n · · ·P ′1 with Q′1 · · ·Q′m;
(2) no P ′k or Q′k is left invariant by π.

Suppose π ∈ NC∼2 (M0) is such that ν(π) 6= 0. first note that, by equation (8), we
can suppose that π does not connect elements from the same P ′k or Q′k. Second,
note that if π connects two P ′k’s, then, from the non-crossing property, it may also
connects two consecutive ones, say P ′t and P ′t+1. Using again the fact the π is
non-crossing, the last factor of P ′t must be connected to the first factor of P ′t+1.

Let c
(st)
iv−1iv

be the last factor of P ′t . Then the development of Emn contains the
sequence

· · · c(st)iv−1iv
a
(t)
iviv+1

c
(st+1)
iv+1iv+2

· · · .

Since c
(st)
iv−1iv

and c
(st+1)
iv+1iv+2

are connected by π, it follows that iv = iv+1 hence v(π)

contains the factor
∑N
iv=1 a

(t)
iviv

= Tr(At) = 0, therefore v(π) cancels. It follows

that π connects only P ′k’s with Q′l’s.
We will show next that each P ′k can be connected to exactly one Q′l. Suppose that

P ′t is connected to more than one Q′l. Since π is non-crossing and does not connect
two different Q′l’s, it follows that P ′t is connected to two consecutive Q′l’s, say with
Q′r and Q′r+1. Since we can suppose, by (8) that π does not connect factors of P ′t
among themselves, it follows that two consecutive factors of P ′t must be connected
to the last fact of Q′w and to the first factor of Q′w+1. Let cstiv−1iv

, cstiviv+1
be the

two consecutive factors of P ′t connected to the last factor of Q′w, respectively to
the first factor of Q′w+1 If Bw = I, then fjw 6= fjw+1

, therefore fit is orthogonal
to at least one of the vectors fjw , fjw+1 , hence v(π) = 0. Therefore we must have

tr(Bw) = 0 and the sequence c
(lw)
iu−1iu

b
(w)
iuiu+1

c
(lw+1)
iu+1iu+2

appearing in the development

of Emn contains the last, respectively the first factors of Q′w, Q′w+1. Then iu =

iv = iu+1 and v(π) will contain the factor
∑N
iv=1 b

(w)
iviv

= Tr(Bw) = 0, therefore v(π)
must cancel.

We proved that π must connect each P ′t to exactly one Q′l and no P ’s and Q’s
among themselves, particularly that n = m. Moreover, since π is noncrossing and
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does not connect two different P ’s or Q ’s , it follows that P ′k is connected to Q′k
for all k = 1, . . . , n.

We will now finish the proof for equation (6). From the argument above, the
relation hold true if n 6= m and if n = m, then

κ2 (Tr(AmPm · · ·A1P1),Tr(Q1B1 · · ·QmBm)) =
∑

π∈NC∼
2 (M0)

ν(π)

Fix π ∈ NC∼2 (M0), and let us denote by a
(k)
jt,j−t

, respectively by b
(k)
u−tut the

entries of A1, . . . , Am, respectively B1, . . . , Bm that appear as factors in the cor-
responding development. We will show that jt = ut and j−t = u−t, therefore,
from Lemma 2.2, the factors from ν(π) concerning the constant matrices will be∏m
k=1 Tr(AkBk). Since the summands in Emn have trace-type developments, the

indeces of jt, j−t, ut, u−t from above are determined by the indeces of the first and
last factors of P ′t , P

′
t+1 and Q′t, Q

′
t+1. From the argument in equation (8), we can

suppose, in what concerns indeces, that π does not connect factors from the same
P ′k or Q′k, hence it may suppose that each factor from P ′k is connected to a factor
from Q′k. Since π is non-crossing, the last, respectively first, element from P ′k must

be connected to the first, respectively last, factor from Q′k, and
−→
i ∼ π gives the

result.
Fix not t ∈ {1, . . . ,m}. From the argument above, if π ∈ NC∼2 (M0) such that

ν(π) 6= 0, then the set Ct = {c(k)i,j : c
(k)
i,j is a factor in P ′t or in Q′t } is invarinat

under π. Hence, denoting by πt the restriction of π to Ct, the Free Wick Theorem
implies that v(πt), respectively ν(πt) factors in v(π), respectively in ν(π). Let us

also denote by
−→
i (t) the set of indeces from

−→
i that appear as lower indeces for

elements of Ct. Let us write

P ′t =c
(st)
iviv+1

c
(st)
iv+1iv+2

· · · c(st)iv+kt−1iv+kt

Q′t =c
(jt)
iwiw+1

c
(jt)
iw+1iw+2

· · · c(jt)iw+lt−1iw+lt
.

Then, the previous argument gives that iv = iw+lt and iv+kt = iw. Since πt
connects P ′t to Q′t, equation (7) gives that

ν(πt) = φ(Tr(P ′tQ
′
t)− φ(Tr(P ′t ))φ(Tr(Q′t))

= φ(Tr(PtQt)

Remark now that the indeces iw and respectively iv are counted both in Tr(PtQt)
and in Tr(AtBt), respectively Tr(At+1Bt+1), henceforth∑

π∈NC∼
2 (M0)

ν(π) =

m∏
t=1

1

N2
Tr(AtBt)Tr(PtQt) =

m∏
t=1

tr(AtBt)tr(PtQt),

hence the proof of (6) is concluded.

Remark 3.6. Lemma 3.5 can be seen as a free analogue of Theorem 5.3 from [7];
yet, the results are different in nature, Theorem 5.3 from [7] is an asymptotical
result, more in the spirit of part (2) from Property (∗).

3.4. Vanishing of higher order free cumulants.
Suppose that {fi}i∈Z+

is an orthonormal system in H, let i1, . . . , im ∈ Z+ and let
SN (fi) be as defined in Section 3.1.
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Let l1, . . . , lr > 0 and put M(0) = 0, M(k) = M(k−1)+lk, for k ∈ {1, . . . , r−1},
and M = M(r).

Suppose that {A(N)
1 , . . . , A

(N)
M }N is an ensemble of constant matrices with limit

distribution (some of them may be identity matrices) and, for k = 1, . . . , r, define

Y
(N)
k = SN (fiM(k−1)+1)A

(N)
M(k−1)+1 · · ·SN (fiM(k)

)A
(N)
M(k).

Theorem 3.7. With the notations from above, if r ≥ 3, we have that

lim
N−→∞

κr(Tr(Y
(N)
1 ),Tr(Y

(N)
2 ), . . . ,Tr(Y (N)

r ).

Proof. As before, we will omit the index N , with the convention that only matrices

of the same size are multiplied. Also, we will denote by a
(k)
i,j , respectively c

(k)
i,j the

(i, j) entry of Ak, respectively SN (fk).
Let γ be the permutation with r cycles (M(k − 1) + 1,M(k − 1) + 2, . . . ,M(k))

and γ̂ be the permutation with r cycles (2M(k − 1) + 1, 2M(k − 1) + 2, . . . , 2M(k))

for 1 ≤ k ≤ r . Denote
−→
i = (i1, . . . , im) ∈ ZM+ and by

−→
j = (j1, . . . , jm) ∈ [M ]N .

Then

Tr(Y1) · · ·Tr(Yr) =
∑
−→
j

(
c
(i1)
j1j2
· · · c(iM )

j2M−1j2M

)
·
(
a
(1)
j2jγ̂(2)

· · · a(M)
j2M jγ̂(2M)

)
.

Let π ∈ NC2(M). We will put δπ−→
i

to be 1 if π(l) = k implies il = ik and 0

otherwise. The pairing π induces a pairing π̂ ∈ NC2(2M) as follows: if π(l) = k,
then put π̂(2l − 1) = 2k and π̂(2l) = 2k − 1.

Since φ(c
(a)
ij c

(b)
kl ) = δabδjkδil, the Free Wick Theorem implies that

φ (Tr(Y1) · · ·Tr(Yr)) =
∑

π∈NC2(M)

δπ−→
i
N−

M
2

∑
−→
j =
−→
j ◦π̂

a
(1)
j2jγ̂(2)

· · · a(M)
j2M jγ̂(2M)

.

Denoting by µ(π) = δπ−→
i
N−

M
2

∑
−→
j =
−→
j ◦π̂

a
(1)
j2jγ̂(2)

· · · a(M)
j2M jγ̂(2M)

, an inductive argument

on r gives that

κr(Tr(Y1), . . . ,Tr(Yr)) =
∑

π∈NC2(M)
π∨γ=1M

µ(π).

We will show Theorem 3.7 by proving that if π ∈ NC2(M) is such that π∨γ = 1M ,
then µ(π) = O(N−1).

Fix π as above. Applying Lemma 2.2 to π̂ ∈ NC2(2M) and σ ∈ S2M given by
σ(2k) = γ̂(2k − 1) and σ(2k + 1) = 2k + 2, we have that there exist some τ ∈ SM
such that ∑

−→
j =
−→
j ◦π̂

a
(1)
j2jγ̂(2)

· · · a(M)
j2M jγ̂(2M)

= Trτ (A1, . . . , AM ).

Since lower indeces of factor of type a
(k)
ij are from th same block of γ̂, we have that

(k) is a singleton of τ only if π(k) = k + 1 and both k and k + 1 are from the
same block of γ. As seen in Section 3.3, in this situation we can simply remove

SN (fik)A
(N)
k SN (fik+1

) from the product without affecting the order of magnitude
of the product. Henceforth, we can suppose that τ does not have singletons and
that π does not connect elements from the same block of γ.
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Since the ensemble {A(N)
1 , . . . , A

(N)
M }N has limit distribution, we have that

Trτ (A1, . . . , AM ) = O(N#(τ))

so Theorem 3.7 is proved if we show that, under the asumptions above, τ has a
cycle with at least 3 elements.

Let B1, . . . , Br be the blocks of γ. Since π∨γ = 1M , there is at least one block of
γ connected by π with more than one other block. Suppose that Bk = (M(K−1)+
1, . . . ,M(k)) is such a block and that π(M(k)) ∈ Bl. If π(M(k−1)+1) ∈ Bl, since
π is non-crossing, we would have that π(Bk) ⊂ Bl, therefore π(M(k− 1) + 1) 6∈ Bl.

Let v = −1 + inf{t : t ∈ Bk, π(t) ∈ Bl}, let π(v + 1) = w ∈ Bl and take u, s

such that π(v) = u ∈ Bs 6= Bl. If
−→
j =

−→
j ◦ π̂, then j2v = j2u+1 and j2v+1 = j2w,

which implies that AuAvAw are in the same cycle of τ , hence the conclusion.
�

4. Random matrices with Boolean independent Bernoulli-distributed
entries

4.1. As in Section 3, we will consider H to be a real Hilbert space, H = H ⊗ C.
Let {BN (f)}N∈Z+,f∈H be an ensemble of random matrices such that BN (f) =[
b
(N)
i,j (f)

]N
i,j=1

with bi,j(f) ∈ A such that

(i) φ
(
b
(N)
i,j (f)b

(N)
k,l (g)

)
=

1

N
〈f, g〉δi,kδj,l

(ii) BN (f)∗ = BN (f)

(iii) {<b(N)
i,j (f),=b(N)

i,j (f)}1≤i,j≤N form a Boolean independent family of Bernoulli
distributed random variables of mean 0.

Remark 4.1.

(1) BN (f) is Bernoulli distributed of variance ‖f‖2 (with respect to the func-
tional tr⊗ φ).

(2) If {fi}i∈Z+ is an orthonormal family in H, then {BN (fi)}i form a Boolean
independent family.

Proof. Consider m1, . . . ,mp ∈ Z+, m = m1 + · · · + mp and the multiindex
−→
i =

(i1, i2, . . . , im) ∈ [N ]m.
To simplify the writing we will omit the upper-index (N), with the convention

that only matrices of the same size are multiplied.
For part (1), note that

tr⊗ φ(BN (f)m) =
1

N

∑
−→
i

φ (bi1i2bi2i3 · · · bimi1) .

If m is odd, Proposition 2.4 gives that all summands cancel. If m is even, Proposi-
tion 2.4 gives that

tr⊗ φ(BN (f)m) =
∑
−→
i

N−
m
2 −1‖f‖mδi1,i3δi3i5 . . . δim−3im−1

δim−1i1 = ‖f‖m.

For part (2), it suffices to prove that, if jk 6= jk+1, then
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tr⊗ φ (BN (fj1)m1 · · · BN (fjp)mp
)

= [tr⊗ φ (BN (fj1)m1)] · [tr⊗ φ
(
BN (fj2)m2 · · ·BN (fjp)mp

)
].

On the other hand,

tr⊗ φ
(
BN (fj1)m1 · · ·BN (fjp)mp

)
=
∑
−→
i

1

N
φ
(
bi1i2(fj1)bi2i3(fj1) · · · bim1 im1+1

(fj1)bim1+1im1+1
(fj2) · · · bimi1(fjp)

)
If m1 is odd, then, from part (1), tr⊗φ(BN (fj1)m1) = 0; also, applying Proposition
2.4 to the equation above, we obtain

φ (bi1i2(fj1)) bi2i3(fj1) · · · bim1
im1+1(fj1)bim1+1im1+1(fj2) · · · bimi1(fjp)

)
= φ(bim1

im1+1
(fj1)bim1+1im1+1

(fj2)) ·
m1−3∏
k=1

φ
(
bikik+1

(fj1)bik+1ik+2
(fj1)

)
· φ
(
bim1+1im1+2

(fj2) · · · bimi1(fjp)
)
.

Since fj1 ⊥ fj2 , we have that

φ
(
bikik+1

(fj1)bik+1ik+2
(fj1)

)
= 〈fj1 , fj2〉δikik+2

= 0

hence the equality holds true.
If m1 is even, Proposition 2.4 gives

φ (bi1i2(fj1)) bi2i3(fj1) · · · bim1 im1+1
(fj1)bim1+1im1+1

(fj2) · · · bimi1(fjp)
)

= [

m1−3∏
k=1

φ
(
bikik+1

(fj1)bik+1ik+2
(fj1)

)
] · φ

(
bim1+1im1+2(fj2) · · · bimi1(fjp)

)
Since φ

(
bikik+1

(fj1)bik+1ik+2
(fj1)

)
= ‖fj1‖2δikik+2

, the right-hand side of the

equation above cancels unless i1 = i3 = · · · = im1+1, hence, denoting
−→
i (m1 + 1) =

(im1+1, im1+2, . . . , im), we obtain

tr⊗ φ
(
BN (fj1)m1 · · ·BN (fjp)mp

)
=
∑
−→
i

1

N
φ
(
bi1i2(fj1)bi2i3(fj1) · · · bim1 im1+1

(fj1)bim1+1im1+1
(fj2) · · · bimi1(fjp)

)
= N−

m1
2 −1 ·N

m1
2 ‖fj1‖m1 ·

∑
−→
i (m1+1)

φ
(
bim1+1im1+2(fj2) · · · bimim1+1(fjp)

)
= [tr⊗ φ (BN (fj1)m1)] · [tr⊗ φ

(
BN (fj2)m2 · · ·BN (fjp)mp

)
].

�

Since the results in the next two sections are not asymptotic in nature, we will
omit the index N from the notation BN (f), with the convention that all matrices
involved here are of size N for some N ≥ 2.
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4.2. Monotone independence and matrices with Bernoulli distributed
Boolean independent entries.

As presented in [16], the relation of Boolean independence is not unital, that
is C is not Boolean independent from any algebra. In this section we will show
that, when tensoring with matrices, the relation of monotone independence appears
connecting Boolean independence to the algebra MN (C).

Lemma 4.2. Let A1, . . . , Am be a set of matrices from MN (C), {fk}k∈Z+
be a set

of vectors from H and
−→
i = (i1, i2, . . . , iM+1) ∈ [N ]M+1. Then

(tr⊗ φ)(

m∏
k=1

B(f2k−1)AkB(f2k)) =

m∏
k=1

tr(Ak)〈f2k−1, f2k〉

= φ(
∑
−→
i

m∏
k=1

bi1ik+1
(f2k−1)a

(k)
ik+1ik+1

bik+1i1(f2k))

Proof. Denote X = [xi,j ]
N
i,j=1 =

m∏
k=2

B(f2k−1)AkB(f2k). Then

(tr⊗ φ)(B(f1)A1B(f2)X) =
1

N

N∑
i1i2i3=1

φ
(
bi1i2(f1)a

(1)
i2i3

bi3i4(f2)xi4i1

)
.

Since for all 1 ≤ i, j ≤ N , xij is in the unital algebra generated by bk,l(fp), Propo-
sition 2.4 gives that

N∑
i1i2i3=1

φ
(
bi1i2(f1)a

(1)
i2i3

bi3i4(f2)xi4i1

)
=

N∑
i1i2i3=1

φ(bi1i2(f1)bi3i4(f2))a
(1)
i2i3

φ(xi4i1)

=

N∑
i1i2i3=1

1

N
〈f1, f2〉δi1i4δi2i3a

(1)
i2i3

φ(xi4i1)

=

N∑
i1i2

1

N
〈f1, f2〉a(1)i2i2φ(xi1i1)

=tr(A1)〈f1, f2〉Tr(X).

�

Theorem 4.3. Let B be the (non-unital) algebra generated by {B(f)AB(g) : A ∈
MN (C), f, g ∈ H}. Then B is monotone independent from MN (C) with respect to
the functional tr⊗ φ.

Proof. It suffices to show that, if A,D ∈MN (C), f1, f2 ∈ H and X is in the algebra
generated by MN (C) and {B(f) : f ∈ H}, then

tr⊗ φ(AB(f1)DB(f2)X) = tr(A)〈f1, f2〉[tr⊗ φ(AX)]

and the conclusion follows appling Lemma 4.2.

Denoting
−→
i = (i1, i2, . . . , i5), we have that

tr⊗ φ(AB(f1)DB(f2)X) =
1

N

∑
−→
i

φ(ai1i2bi2i3(f1)di3i4bi4i5(f2)xi5i1).
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But, since all xi,j are in the unital algebra generated by {bkl(f) : f ∈ H}, Propo-
sition 2.4 gives:∑
−→
i

φ(ai1i2bi2i3(f1)di3i4bi4i5(f2)xi5i1) =
∑
−→
i

φ(bi2i3(f1)bi4i5(f2))di3i4φ(ai1i2xi5i1)

=
∑
−→
i

1

N
〈f1, f2〉δi3i4δi2i5di3i4φ(ai1i2xi5i1)

=

N∑
i1,i2,i3=1

〈f1, f2〉
1

N
di3i3φ(ai1i2xi2i1) = tr(A)〈f1, f2〉Tr(AX).

�

4.3. Let f1, . . . , fM ∈ H, let l1, . . . , lr > 0 and put M(0) = 0, M(k) = M(k−1)+lk,
for k ∈ {1, . . . , r − 1}, and M = M(r).

Suppose that A1, . . . , AM ∈MN (C) and, for k = 1, . . . , r, define

Yk = B(fM(k−1)+1)AM(k−1)+1 · · ·B(fM(k))AM(k).

Theorem 4.4. With the notations above,

br(Tr(Y1), . . . ,Tr(Yr)) = O(N2−r).

Proof. Let
−→
i = (i1, . . . , i2M ) ∈ [N ]2M and γ ∈ S2M be the permutation with r

cycles (2M(k − 1) + 1, 2M(k − 1) + 2, . . . , 2M(k)), for 1 ≤ k ≤ r. Proposition 2.4
gives

φ(Tr(Y1) · · ·Tr(Yr)) =
∑
−→
i

φ(

M∏
k=1

bi2k−1i2k(fk)a
(k)
i2kiγ(2k)

)

=
∑

π∈I2(M)

{
∑
−→
i

{[
∏

(k,l)∈π

φ(bi2k−1i2k(fk)bi2l−1i2l(fl))] · [
M∏
s=1

a
(s)
i2s,iγ(2s)

]}}.

Induction on r gives that br is a sum as above but over π ∈ I2(M) such that
π ∨ γ′ = 1m, for γ′ ∈ P (M) the partition with r blocks of type (M(k − 1) +
1,M(k − 1) + 2, . . . ,M(k)), where 1 ≤ k ≤ r. In particular, since I2(M) has at
most one element, br(Tr(Y1) · · ·Tr(Yr)) = 0 unless such a pairing exists, that is if
r =, then l1 is odd, and if r ≥ 2, then l1 and lr are odd and l2, . . . , lr−1 are even.

Let us suppose that there exists π ∈ I2(M) satisfying the conditions above. In
this case, from the expansion (3), we also have that

br(Tr(Y1) · · ·Tr(Yr)) = φ(Tr(Y1) · · ·Tr(Yr)).

Suppose now that l1 ≥ 2 and let α = Tr(Y2) · · ·Tr(Yr) (if r = 1, we put α = IN )
and Y ′1 = Y · A2, where Y = B(f3)A3 · · ·B(fM(1))AM(1) = [yi,j ]

N
i,j=1 (if l1 = 2, we

put Y = AM(1)).

Then, for
−→
j = (j1, . . . , j5) ∈ [N ]5, Proposition 2.4 gives

φ(Tr(Y1) · · ·Tr(Yr)) =
∑
−→
j

φ(bj1j2(f1)a
(1)
j2j3

bj3j4(f2)a
(2)
j4j5

yj5j1 · α)

=
∑
−→
j

φ(bj1j2(f1)bj3j4(f2))a
(1)
j2j3

φ(yj5j1a
(2)
j4j5
· α).
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Since φ(bj1j2(f1)bj3j4(f2)) =
1

N
〈f1, f2〉δj1,j4δj2j3 , it follows that

φ(Tr(Y1) · α) =

N∑
i,j,k=1

〈f1, f2〉
1

N
a
(1)
i,i φ(yjka

(2)
kj · α)(10)

= 〈f1, f2〉tr(A1)φ(Tr(Y ′1) · α) = O(N0)φ(Tr(Y ′1) · α).

If r = 1, iterating equation (10), we obtain

(11) φ (Tr(B(f1)A1 · · ·B(f2m)A2m)) = [

m∏
k=1

〈f2k−1, f2k〉tr(A2k−1)] ·φ(Tr(

m∏
j=1

A2j))

which implies the theorem for r = 1.
For r ≥ 2, a similar argument to (10) aplied to the last two factors of the type

bi,j(fk) of Yr (if lr > 1) and to the second and third such factors from Yk ( if lk > 2
for 2 ≤ k ≤ r − 1) gives that it suffices to prove the theorem for l1 = lr = 1 and
l2 = · · · = lr−1 = 2.

Let Y1 = B(f1)A1 and let Y2 = B(f2)X with X = A2 if r = 2, respectively
X = A2B(f3)A3 if r ≥ 3. put α = IN if r = 2, respectively α = Tr(Y3) · · ·Tr(Yr) if
r ≥ 3. With this notations, we have that

φ(Tr(Y1)Tr(Y2) · α) =

N∑
i,j,k,l=1

φ(bi,j(f1)a
(1)
j,i bk,l(f2)xl,k · α)

=

N∑
i,j,k,l=1

φ(bi,j(f1)bk,l(f2))φ(xl,ka
(1)
j,i α)

Since φ(bi,j(f1)bk,l(f2)) =
1

N
〈f1, f2〉δi,lδj,k, it follows that

φ(Tr(Y1)Tr(Y2) · α) =
〈f1, f2〉
N

N∑
i,j=1

φ(xi,ja
(1)
j,i · α)(12)

=
〈f1, f2〉
N

N∑
i,j=1

φ(Tr(XA1) · α).

If r = 2, equation (12) implies that φ(Tr(Y1)Tr(Y2) = 〈f1, f2〉tr(A2A1) = O(N0),
and induction on r, using again equation (12) gives the result for r ≥ 3. �
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