1. Analytic brancches of eigenvalues and eigenforms, clustering

(Summary)

The main result of this course is the following theorem.

Theorem 0.1 Suppose M^n closed manifold equipped with a Morse function f with c_0 critical points of index 0, c_1 critical points of index $1, \dots, c_n$ critical points of index n, and a Riemannian metric q. Suppose that in the neighborhood of any critical point $y \in Cr(f)$ exists a chart $M \supset U_y$, $\varphi_y : (U_y, y) \rightarrow (\mathbb{R}^n, 0)$ s.t. $f \cdot \varphi_y^{-1} = f(y) - 1/2 \sum_{\leq k} x_i^2 + 1/2 \sum_{i\geq k+1} x_i^2$ and $(\varphi_y^{-1})^* g = \delta_{i,j}$. Then - For any q one has the countable collection \mathcal{A}_q of analytic functions in t, $\{\lambda_{\alpha}^q(t) \in \mathbb{R} \text{ and } \omega_{\alpha}^q(t) \in \mathbb{R} \}$

 $\Omega^q(M)$, such that

 $1. \ \Delta_q^f(t)\omega_\alpha^q(t) = \lambda_\alpha^q(t)\omega_\alpha^q(t),$ $2. \ ||\omega_\alpha^q(t)|| = 1, \ \omega_\alpha^q(t) \perp \omega_\beta^q(t) \text{ for } \alpha \neq \beta.$

 $3.\lambda_{\alpha}^{q}(t)$ exhaust the eigenvalues with multiplicity of Δ_{q}^{f} and $\omega_{\alpha}^{q}(t)$ provide a complete othonormal system in the Hilbert space completion of $\Omega^q(M)$.

- For a generic set of smooth functions f the branches $\lambda_{\alpha}^{q}(t)$ are simple (= of multiplicity one).

-The collection \mathcal{A}_q has the following properties:

- 1. exactly dim $H^r(M:\mathbb{R})$ branches $\lambda^q_{\alpha}(t)$ are identically zero,
- 2. (Witten) exactly c_a branches $\lambda_{\alpha}^q(t)$ satisfy $\lambda_{\alpha}^q(t) \leq Ce^{-t}$ for t large enough,
- 3. For any $N \in \mathbb{Z}_{>0}$ a precise number, depending on c_0, c_1, \cdots, c_n and not on M, of branches $\lambda_{\alpha}^q(t)$ satisfy $\lim_{t\to\infty} \frac{\lambda_{\alpha}^q(t)}{t} = 2N.$

As a consequence

$$\mathcal{A}_q = \mathcal{A}_q(0) \sqcup \mathcal{A}_q(1) \sqcup \mathcal{A}_q(2) \cdots \sqcup \mathcal{A}_q(N) \cdots \sqcup \mathcal{A}_q(\infty)$$

with $\mathcal{A}_q(N)$ finite and $\mathcal{A}_q(\infty)$ conjecturally = \emptyset .

Call $\mathcal{A}_{q}(N)$ the N-th cluster and $\mathcal{A}_{q}(0)$ the virtually small spectral package.

Define $(\Omega_N^q(M)(t), d_q(t))$ the subcomplex of $(\Omega^q(M), d_q(t))$ generated by the eigenforms $\omega_\alpha^q(t)$ with α corresponding to the eigenvalue branch with $\lim_{t\to\infty} \frac{\lambda_{\alpha}^{\alpha}(t)}{t} = 2N$, equivalently the cluster $\mathcal{A}_q(N)$.

Consider the scaling $S(t): (C^q, \partial_q) \to (C^q, \partial_q(t))$ defined by

$$S_q(t)(E_y) = (\pi/t)^{n-2q/4} e^{-tf(x)} E_y$$

(for $y \in Cr_q(f)$, $E_y \in Maps(Cr_q(f)\mathbb{R})$ with $E_y(y') := \delta_{y,y'}$)

In view of Helffer -Sjöstrand estimates the composition

$$(\Omega_0^q(M), d_q(t)) \xrightarrow{\subset} (\Omega_0^q(M), d_q(t)) \xrightarrow{e^{th}} \Omega^q(M), d_q(t)) \xrightarrow{Int} (C^q, \partial_q) \xrightarrow{S(t)} (C^q, \partial_q(t)) \xrightarrow{S(t)} (C^q, \partial_q(t))$$

is an "asymptotical an isometry", i.e. equal to I + O(1/t) with I an isometry (when $C^q = Maps(Cr_q, \mathbb{R})$ is equipped with the scalar product which makes E'_x s orthonormal).

The fact that the composition $Int \cdot e^{th} \cdot \subset$ is an isomorphism is referred to as Witten theorem.

Restrict to t = 0 and obtain the collection of finite dimensional sub complexes of $(\Omega^q(M)_N, d) \subset$ $(\Omega^q(M), d)$ referred to as the N-th spectral package of the triple (M, g, f) The dimension of $\Omega^q(M)_N =$ $\sharp \mathcal{A}_{q}(N)$. All of these complexes but for N=0 are acyclic and the one for N=0 is canonically isomorphic to the geometric complex hence carries the entire homological information about M plus more (to be studied).

About the proof of the theorem

For the Morse function f denote by $y \in Cr(f)$ a critical point and let k(y) the Morse index of y.

We want to prove that either $\lim_{t\to\infty} \frac{\lambda_{\alpha}^q(t)}{t}$ is an even integer or the limit does not exists as a real number (an optimistic conjecture). Actually we want to show that for each $\epsilon > 0$ and for each N there exists C, Tpositive real numbers s.t. for t > T

 $Spect\Delta_q^f(t) \subset \sqcup_N(2N - Ct^{-\epsilon}, 2N + Ce^{-Ct^{\epsilon}})$

Instead we will check that

$$Spect\Delta_{q}^{f}(t) \cap (2N + Ce^{-Ct^{\epsilon}}, 2N + 2 - Ct^{-\epsilon},) = \emptyset$$

by applying "the spectral gap" lemma with $a = 2N + Ce^{-Ct^{\epsilon}}$ and $b = (2N + 2) - Ct^{-\epsilon}$.

For this purpose we will compare the formally self adjoint operator $\Delta_q^f(t): \Omega^q(M) \to \Omega^q(M)$ with the formally self adjoint operator $D_q(t): \Omega_S^q \to \Omega_S^q$, referred to as the Model operator for the Morse function f,

 $D_q(t) := \bigoplus_{y \in C(f)} \Delta_q^{n,k(y)}(t)$, on the space equipoed with the scalar product induced by the metric $\delta_{i,j}$ on each copy \mathbb{R}^n_u of \mathbb{R}^n .

 $\Omega_S^q := \bigoplus_{y \in Cr(f)}^{s} \Omega_S^q(R_y^n) = \Omega_S^q(\sqcup_{y \in Cr(f)} \mathbb{R}_y^n) \text{ where } R_y^n \text{ denotes a copy or } R^n \text{ for each critical point } y$ and

 $\Delta_q^{n,k}(t)$ is the Witten Laplacian for the Riemannian manifold \mathbb{R}^n equipped with the metric $\delta_{i,j}$ and the Morse function

 $f_k(x_1, x_2, \dots x_n) := -1/2 \sum_{i \le k} x_i^2 + 1/2 \sum_{i \ge k+1} x_i^2$. This is what we refer to as the multidimensional (quantum) harmonic oscillator

Recall that $\Omega_S^q(\mathbb{R}^n)$ denotes the q-forms on \mathbb{R}^n whose coefficients are rapidly decaying functions in *n*-variables. which is a direct sum of spaces $\Omega_{S,I}^q(\mathbb{R}^n)$ indexed by symbols $I = \{1 \le i_1 < i_2 < \cdots < i_n < i$ $i_q \leq n$ }. A form $\omega \in \Omega^q_{S,I}(\mathbb{R}^n)$ can be written unquely as $a(x_1, x_2, \cdots, x_n) dx_{i_1} \wedge dx_{i_2} \wedge \cdots dx_{i_q}$ with $a(x_1, x_2, \cdots, x_n) \in S$ and the operator $\Delta_q^{n,k}(t)$ acts componentwise on the functions $a(x_1, x_2, \cdots, x_n)$ as

$$-\sum \partial^2 / \partial x_i^2 + t^2 \sum x_i^2 + \epsilon(I)t$$

with $\epsilon(I) = \pm 1$, 1 if $k \in I$, and -1 otherwise.

The mathematics of the quantum harmonic oscillator implies that each eigenform of $D_q(t)$ is a direct sum of forms

$$e^{-t|x|^2/2}H_{r_1}(\sqrt{t}x_1)\cdot H_{r_2}(\sqrt{t}x_2)\cdots H_{r_n}(\sqrt{t}x_n)$$

with $H_r(y)$ are the Hermite polynomials $H_r(y) = y^r + \cdots$ and eigenvalues are constant in t and always even integers.

The comparison leads to the conclusion that the indexing \mathcal{A}_q for $D_q(t)$ is a subset of the indexing for $\Delta_q^f(t)$ (it is conjecturally the same) and the limit of $\lambda_{\alpha}^q(t)/t$ when $t \to \infty$ are the same. for both operators when the case. To show this one proceeds as follows .

For any critical point y of f choose a Morse chart $\varphi_y, \varphi_y : (U_y, y) \to (\mathbb{R}^n, 0)$, s.t. both the function f and the metric are in the standard form.

Choose l > 0 s.t the disc of radius l in \mathbb{R}^n is contained in $\varphi(U_y)$ for any $y \in Cr(f)$ and a cutoff function $\chi : \mathbb{R}^n \to [0, \infty \text{ which is } 1 \text{ for points in } x \in \mathbb{R}^n \text{ with } \sum x_i^2 \leq l' \text{ and } 0 \text{ when } \sum x_i^2 \geq l \text{ for } 0 < l' < l.$ Move using φ_y the forms $\tilde{\omega}^q_{\alpha}(x, t) = \chi(|x|)\omega^q_{\alpha}(x, t)$ for all α with $\lambda^q_{\alpha} = 2Nt$ into the forms with compact support $\underline{\tilde{\omega}}_{\alpha}^{q}$) on M.

Define H_1 the span of these forms and take H_2 the orthogonal complement in the Hilbert space completion of $\Omega^q(M)$. For t very large this choice satisfies the requirement of spectral gap lemma.

A complete proof of the above theorem will be soon available . Please follow arXive I a couple of months or contact me personally for the preprint in preparation.