1. Analytic brancches of eigenvalues and eigenforms, clustering

(Summary)
The main result of this course is the following theorem.
Theorem 0.1 Suppoae M^{n} closed manifold equipped with a Morse function f with c_{0} critical points of index $0, c_{1}$ critical points of index $1, \cdots c_{n}$ critical points of index n, and a Riemannian metric g. Suppose that in the neighborhood of any critical point $y \in C r(f)$ exists a chart $M \supset U_{y}, \varphi_{y}:\left(U_{y}, y\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ s.t. $f \cdot \varphi_{y}^{-1}=f(y)-1 / 2 \sum_{\leq k} x_{i}^{2}+1 / 2 \sum_{i \geq k+1} x_{i}^{2}$ and $\left(\varphi_{y}^{-1}\right)^{*} g=\delta_{i, j}$. Then

- For any q one has the countable collection \mathcal{A}_{q} of analytic functions in $t,\left\{\lambda_{\alpha}^{q}(t) \in \mathbb{R}\right.$ and $\omega_{\alpha}^{q}(t) \in$ $\left.\Omega^{q}(M)\right\}$, such that

1. $\Delta_{q}^{f}(t) \omega_{\alpha}^{q}(t)=\lambda_{\alpha}^{q}(t) \omega_{\alpha}^{q}(t)$,
2. $\left\|\omega_{\alpha}^{q}(t)\right\|=1, \omega_{\alpha}^{q}(t) \perp \omega_{\beta}^{q}(t)$ for $\alpha \neq \beta$.
3. $\lambda_{\alpha}^{q}(t)$ exhaust the eigenvalues with multiplicilty of Δ_{q}^{f} and $\omega_{\alpha}^{q}(t)$ provide a complete othonormal system in the Hilbert space completion of $\Omega^{q}(M)$.

- For a generic set of smooth functions f the branches $\lambda_{\alpha}^{q}(t)$ are simple ($=$ of multiplicity one).
-The collection \mathcal{A}_{q} has the following properties:

1. exactly $\operatorname{dim} H^{r}(M: \mathbb{R})$ branches $\lambda_{\alpha}^{q}(t)$ are identically zero,
2. (Witten) exactly c_{q} branches $\lambda_{\alpha}^{q}(t)$ satisfy $\lambda_{\alpha}^{q}(t) \leq C e^{-t}$ for tlarge enough,
3. For any $N \in \mathbb{Z}_{\geq 0}$ a precise number, depending on $c_{0}, c_{1}, \cdots, c_{n}$ and not on M, of branches $\lambda_{\alpha}^{q}(t)$ satisfy $\lim _{t \rightarrow \infty} \frac{\bar{\lambda}_{\alpha}^{q}(t)}{t}=2 N$.
As a consequence

$$
\mathcal{A}_{q}=\mathcal{A}_{q}(0) \sqcup \mathcal{A}_{q}(1) \sqcup \mathcal{A}_{q}(2) \cdots \sqcup \mathcal{A}_{q}(N) \cdots \sqcup \mathcal{A}_{q}(\infty)
$$

with $\mathcal{A}_{q}(N)$ finite and $\mathcal{A}_{q}(\infty)$ conjecturally $=\emptyset$.
Call $\mathcal{A}_{q}(N)$ the N-th cluster and $\mathcal{A}_{q}(0)$ the virtually small spectral package.
Define $\left(\Omega_{N}^{q}(M)(t), d_{q}(t)\right)$ the subcomplex of $\left(\Omega^{q}(M), d_{q}(t)\right)$ generated by the eigenforms $\omega_{\alpha}^{q}(t)$ with α corresponding to the eigenvalue branch with $\lim _{t \rightarrow \infty} \frac{\lambda_{\alpha}^{q}(t)}{t}=2 N$, equivalently the cluster $\mathcal{A}_{q}(N)$.

Consider the scaling $S(t):\left(C^{q}, \partial_{q}\right) \rightarrow\left(C^{q}, \partial_{q}(t)\right)$ defined by

$$
S_{q}(t)\left(E_{y}\right)=(\pi / t)^{n-2 q / 4} e^{-t f(x)} E_{y}
$$

$\left(\right.$ for $y \in C r_{q}(f), E_{y} \in \operatorname{Maps}\left(C r_{q}(f) \mathbb{R}\right)$ with $\left.E_{y}\left(y^{\prime}\right):=\delta_{y, y^{\prime}}\right)$
In view of Helffer -Sjöstrand estimates the composition

$$
\left.\left(\Omega_{0}^{q}(M), d_{q}(t)\right) \xrightarrow{C}\left(\Omega_{0}^{q}(M), d_{q}(t)\right) \xrightarrow{e^{t h}} \Omega^{q}(M), d_{q}(t)\right) \xrightarrow{\text { Int }}\left(C^{q}, \partial_{q}\right) \xrightarrow{S(t)}\left(C^{q}, \partial_{q}(t)\right)
$$

is an "asymptotical an isometry", i.e. equal to $I+O(1 / t)$ with I an isometry (when $C^{q}=\operatorname{Maps}\left(C r_{q}, \mathbb{R}\right)$ is equipped with the scalar product which makes E_{x}^{\prime} s orthonormal).

The fact that the composition Int $\cdot e^{t h} \cdot \subset$ is an isomorphism is referred to as Witten theorem.
Restrict to $t=0$ and obtain the collection of finite dimensional sub complexes of $\left(\Omega^{q}(M)_{N}, d\right) \subset$ $\left(\Omega^{q}(M), d\right)$ referred to as the N-th spectral package of the triple (M, g, f) The dimension of $\Omega^{q}(M)_{N}=$ $\sharp \mathcal{A}_{q}(N)$. All of these complexes but for $N=0$ are acyclic and the one for $N=0$ is canonically isomorphic to the geometric complex hence carries the entire homological information about M plus more (to be studied).

About the proof of the theorem

For the Morse function f denote by $y \in C r(f)$ a critical point and let $k(y)$ the Morse index of y.
We want to prove that either $\lim _{t \rightarrow \infty} \frac{\lambda_{\alpha}^{q}(t)}{t}$ is an even integer or the limit does not exists as a real number (an optimistic conjecture). Actually we want to show that for each $\epsilon>0$ and for each N there exists C, T positive real numbers s.t. for $t>T$
$S p e c t \Delta_{q}^{f}(t) \subset \sqcup_{N}\left(2 N-C t^{-\epsilon}, 2 N+C e^{-C t^{\epsilon}}\right)$
Instead we will check that

$$
\operatorname{Spect} \Delta_{q}^{f}(t) \cap\left(2 N+C e^{-C t^{\epsilon}}, 2 N+2-C t^{-\epsilon},\right)=\emptyset
$$

by applying "the spectral gap" lemma with $a=2 N+C e^{-C t^{\epsilon}}$ and $b=(2 N+2)-C t^{-\epsilon}$.
For this purpose we will compare the formally self adjoint operator $\Delta_{q}^{f}(t): \Omega^{q}(M) \rightarrow \Omega^{q}(M)$ with the formally self adjoint operator $D_{q}(t): \Omega_{S}^{q} \rightarrow \Omega_{S}^{q}$, referred to as the Model operator for the Morse function f,
$D_{q}(t):=\oplus_{y \in C(f)} \Delta_{q}^{n, k(y)}(t)$, on the space equipoed with the scalar product induced by the metric $\delta_{i, j}$ on each copy \mathbb{R}_{y}^{n} of \mathbb{R}^{n}.
$\Omega_{S}^{q}:=\oplus_{y \in C r(f)} \Omega_{S}^{q}\left(R_{y}^{n}\right)=\Omega_{S}^{q}\left(\sqcup_{y \in C r(f)} \mathbb{R}_{y}^{n}\right)$ where R_{y}^{n} denotes a copy or R^{n} for each critical point y and
$\Delta_{q}^{n, k}(t)$ is the Witten Laplacian for the Riemannian manifold \mathbb{R}^{n} equipped with the metric $\delta_{i, j}$ and the Morse function
$f_{k}\left(x_{1}, x_{2}, \cdots x_{n}\right):=-1 / 2 \sum_{i \leq k} x_{i}^{2}+1 / 2 \sum_{i \geq k+1} x_{i}^{2}$.
This is what we refer to as the multidimensional (quantum) harmonic oscillator
Recall that $\Omega_{S}^{q}\left(\mathbb{R}^{n}\right)$ denotes the q-forms on \mathbb{R}^{n} whose coefficients are rapidlly decaying functions in n-variables. which is a direct sum of spaces $\Omega_{S, I}^{q}\left(\mathbb{R}^{n}\right)$ indexed by symbols $I=\left\{1 \leq i_{1}<i_{2}<\cdots<\right.$ $\left.i_{q} \leq n\right\}$. A form $\omega \in \Omega_{S, I}^{q}\left(\mathbb{R}^{n}\right)$ can be written unquely as $a\left(x_{1}, x_{2}, \cdots x_{n}\right) d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots d x_{i_{q}}$ with $a\left(x_{1}, x_{2}, \cdots x_{n}\right) \in S$ and the operator $\Delta_{q}^{n, k}(t)$ acts componentwise on the functions $a\left(x_{1}, x_{2}, \cdots x_{n}\right)$ as

$$
-\sum \partial^{2} / \partial x_{i}^{2}+t^{2} \sum x_{i}^{2}+\epsilon(I) t
$$

with $\epsilon(I)= \pm 1,1$ if $k \in I$, and -1 otherwise.
The mathematics of the quantum harmonic oscillator implies that each eigenform of $D_{q}(t)$ is a direct sum of forms

$$
e^{-t|x|^{2} / 2} H_{r_{1}}\left(\sqrt{t} x_{1}\right) \cdot H_{r_{2}}\left(\sqrt{t} x_{2}\right) \cdots H_{r_{n}}\left(\sqrt{t} x_{n}\right)
$$

with $H_{r}(y)$ are the Hermite polynomals $H_{r}(y)=y^{r}+\cdots$. and eigenvalues are constant in t and always even integers.

The comparison leads to the conclusion that the indexing \mathcal{A}_{q} for $D_{q}(t)$ is a subset of the indexing for $\Delta_{q}^{f}(t)$ (it is conjecturally the same) and the limit of $\lambda_{\alpha}^{q}(t) / t$ when $t \rightarrow \infty$ are the same. for both operators when the case. To show this one proceeds as follows .

For any critical point y of f choose a Morse chart $\varphi_{y}, \varphi_{y}:\left(U_{y}, y\right) \rightarrow\left(R^{n}, 0\right)$, s.t. both the function f and the metric are in the standard form.

Choose $l>0$ s.t the disc of radius l in \mathbb{R}^{n} is contained in $\varphi\left(U_{y}\right)$ for any $y \in C r(f)$ and a cutoff function $\chi: \mathbb{R}^{n} \rightarrow\left[0, \infty\right.$ which is 1 for points in $x \in \mathbb{R}^{n}$ with $\sum x_{i}^{2} \leq l^{\prime}$ and 0 when $\sum x_{i}^{2} \geq l$ for $0<l^{\prime}<l$. Move using φ_{y} the forms $\tilde{\omega}_{\alpha}^{q}(x, t)=\chi(|x|) \omega_{\alpha}^{q}(x, t)$ for all α with $\lambda_{\alpha}^{q}=2 N t$ into the forms with compact support $\left.\tilde{\tilde{\omega}}_{\alpha}^{q}\right)$ on M.

Define H_{1} the span of these forms and take H_{2} the orthogonal complement in the Hilbert space completion of $\Omega^{q}(M)$. For t very large this choice satisfies the requirement of spectral gap lemma..

A complete proof of the above theorem will be soon available. Please follow arXive I a couple of months or contact me personally for the preprint in preparation.

