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Abstract

The first aim of this thesis is to study the behavior of the spectrum of the Dirac operator

on degenerating families of Riemannian surfaces, when the length of a simple closed

geodesic shrinks to zero, under the hypothesis that the spin structure along the pinched

geodesic is non-trivial. It is well-known that the spectrum of an elliptic differential

operator on a compact manifold varies continuously under smooth perturbations of

the metric. The difficulty of our problem arises from the non-compactness of the limit

surface, which is of finite area with two cusps. The main tool for this investigation is

to construct an adapted pseudodifferential calculus (in the spirit of the celebrated b-

algebra of Melrose) which includes both the family of Dirac operators on the family of

compact surfaces and the Dirac operator on the limit (non-compact) surface, together

with their resolvents.

The second aim of this work is to investigate heat kernel asymptotics for real powers

of Laplacians. Let us fix a generalised Laplacian ∆ (satisfying certain conditions) acting

on smooth functions over a closed oriented manifold M . We first study the small-time

heat kernel asymptotics of ∆r, r ∈ (0, 1), along the diagonal of M × M , and in a

compact set away from it. Furthermore, we prove the non-triviality of the coefficients

and the non-locality of some of the coefficients. In the special case r = 1/2, we give

an uniform description of the transition between the on- and off-diagonal behavior by

proving that the heat kernel of ∆1/2 is a polyhomogeneous conormal function on a

certain heat blow-up space.
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Chapter 1

Introduction

The aim of this thesis is to study the behavior of certain elliptic operators and their

spectra in degeneracy problems, and furthermore, to investigate heat kernel asymp-

totics for real powers of Laplacians. The common ground of these two subjects is the

analysis of functions having asymptotic expansions containing logarithmic terms, and

the set-up of blow-ups of manifolds with corners.

A philosophical motivation to study such problems arises from physics. On one

hand, a particle in classical mechanics is regarded as a point in TR3 (the tangent

space of R3): a point in R3 and a vector representing its velocity. The trajectories of

such particles are geodesics of the space. On the other hand, in quantum mechanics,

a particle is an L2 function. Its velocity is encoded in the Fourier transform and it

evolves under the Schrödinger equation:

∂f

∂t
= i∆xf.

The periodic states of such particles are given by the eigenfunctions of the Laplacian,

and the frequencies are related to the eigenvalues.

Following L. Schwartz [59], one can regard differential operators as integral op-

erators given by distributional kernels. The theory of pseudo-differential operators

on compact Riemannian manifolds, due to Hörmander [36] among others, provides a

framework for the study of geometric elliptic differential operators (such as the Laplace

operator or the Dirac operator) and their solutions. The algebra of pseudo-differential

operators contains parametrices and the resolvent family of such operators. As a con-

sequence, the normalised eigenfunctions of the Laplace operator form a Hilbert basis

for the space of L2 functions on a compact Riemannian manifold (see for instance [17]).

The classic pseudodifferential calculus is intimately related to index theory results

such as the Atiyah-Patodi-Singer Theorem (see e.g. [5]-[7]). This formula computes the

index of an elliptic differential operator on a compact, oriented manifold with boundary
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in terms of certain topological data of the manifold and spectral data of the boundary,

namely the so-called eta invariant of the Dirac operator induced on the boundary.

There are ways to generalise the theory of pseudodifferential operators for open

manifolds. Melrose’s b-calculus [45] is a framework for dealing with differential opera-

tors on compact manifolds with boundary. A beautiful consequence of the b-calculus is

that it provides a proof for a generalization of the Atiyah-Patodi-Singer Index Theo-

rem in the context of compact manifolds with boundary with metrics having complete

asymptotically cylindrical ends (exact b-metrics).

One of the central ideas in Melrose’s machinery is to describe the distributional

kernels of pseudodifferential operators as polyhomogeneous conormal distributions on

manifolds with corners obtained through iterations of blow-ups. This fruitful idea led

to the development of many other calculi: the φ-calculus [49], the zero-calculus [50],

the edge-calculus [41], the scattering calculus (see e.g. [35]), the b-surgery calculus [42]

and the ϕ-surgery calculus [2]. All these pseudodifferential calculi have proven to be

powerful tools in solving a wide range of analytic problems on non-compact manifolds.

The present thesis fits into the framework of microlocal analysis on manifolds with

corners and uses a pseudodifferential calculus constructed via the Melrose machinery.

The spectrum of the Dirac operator on degenerating

surfaces

Context and Motivation

Let X be a smooth compact oriented surface of genus g ≥ 2 and denote by M−1(X)

the set of hyperbolic metrics on S. By the classical Poincaré-Koebe Uniformization

Theorem of Riemann surfaces (see e.g. [4] for a self-contained proof), M−1(X) is in

one-to-one correspondence with the set of complex structures on X. The Teichmüller

space Tg is defined by factoring the setM−1(X) by the connected component of idM in

the group of diffeomorphisms acting on X. It is known that Tg is a complex manifold of

dimension 3g− 3 endowed with a non-complete Riemannian metric, the Weil-Peterson

metric, and furthermore it is a Kähler manifold. We describe below a process to

consider a path in Tg escaping towards infinity.

Let γ ⊂ X be a simple closed geodesic in X. We consider a smooth family of

metrics (gt)t≥0 on X \ γ such that locally near γ

gt =
dx2

x2 + t2
+
(
x2 + t2

)
dy2.
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We remark that gt does not need to be hyperbolic everywhere, but only locally, near

the pinched geodesic γ. For t > 0, (X, gt) is a compact surface, while (X \ γ, g0) is a

non-compact surface with two cusps. We call this a pinching process along the geodesic

γ.

In fact, this construction is valid when we pinch simultaneously several (up to 3g−3)

disjoint simple geodesics, but for simplicity we will treat below the case where we only

pinch one geodesic.

If we choose the family of metrics (gt)t≥0 in the set M−1(X), the pinching process

described above corresponds to a path towards the boundary of the Teichmüller space.

Such degeneration phenomena were studied by Ji [39], Bär [8], Schulze [58], and Stan

[61].

It is well-known that the spectrum of a geometric elliptic differential operator like

the Laplacian or the Dirac operator varies continuously under smooth perturbations

of the metric. Our aim is to study the continuity of the spectrum of the Dirac op-

erator during a pinching process. The difficulty of the problem arises from the non-

compactness of the limit surface.

Key point

There are phenomena when the Laplacian has discrete spectrum at the limit of de-

generacy process, for example the Laplacian acting on forms [28], and the magnetic

Laplacian [27]. While it is true that the spectrum of the scalar Laplacian becomes

continuous at the limit of a pinching process, Bär [8] proved that under some invert-

ibility condition on each cusp, the spectrum of the Dirac operator remains discrete at

the limit. More precisely, if we glue a circle at the “end” of each cusp, we require the

spin structure to be non-trivial along this circle, which is equivalent to the invertibility

of the Dirac operator on the circle defined with respect to the induced spin structure.

Later on, Moroianu [54] generalised this result on manifolds of higher dimension and

for a larger class of metrics. He also deduced a Weyl’s law for the open manifold at

the limit.

Idea of the solution

The main tool for investigating the continuity of the spectrum of the Dirac operator

during a pinching process is to construct an adapted pseudodifferential calculus (in the

spirit of the celebrated b-algebra of Melrose) which includes both the family of Dirac

operators /Dt on the family of compact surfaces (X, gt)t>0 and the Dirac operator /D0 on

the limit (non-compact) surface (X \γ, g0). This adapted pseudodifferential calculus is
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closely related to the cusp calculus [51] (a particular case of the ϕ-calculus [49]). More

precisely, it is the cusp-calculus with a time parameter, and we denote it by Ψ∗,∗,∗cp (X).

Albin, Rochon, Sher [2] introduced the fibered cusp calculus with a parameter in

order to study the spectrum of the Hodge Laplacian having coefficients in a flat bundle

on a compact manifold which degenerates to a manifold with fibered cusps. Our cusp-

surgery calculus is a particular case of their ϕ-surgery calculus, since they treat the

more complicated case when the boundary fibrates over another closed manifold. We

believe that it is worth including in Chapter 3 all the details of the construction, since

the focus of our investigation regards fully-elliptic differential operators, leading to

different and more straightforward proofs.

Intuitively, we will describe the cusp-surgery pseudodifferential operators in Ψ∗,∗,∗cp (X)

as distributions on a certain blown-up space X2
cp, conormal to the closure of the

(0,∞) × Diag, where Diag is the diagonal inside X × X (see Fig. 3.6). Further-

more, we will impose certain polyhomogeneous behavior of the distributions towards

the boundary faces of X2
cp.

A challenging but crucial result in constructing this calculus is the so-called Compo-

sition Theorem, which establishes that the composition of two operators in the calculus

also belongs to it. As customary, this theorem is proved through the use of a triple

space, along with multiplication of conormal distributions, and the Pull-back and Push-

forward Theorems for conormal distributions (see for instance [44], [31]), however we

stress that the geometric structure of the triple space and of the companion b-fibrations

are by no means trivial.

To each cusp-surgery pseudodifferential operator A ∈ Ψ∗,∗,∗cp (X), we will associate

three leading symbols: σcp(A), N (A), and T (A). More precisely, the cusp-parameter

symbol σcp(A) is the leading term in the principal symbol of the conormal distribution

kA. The normal operator N (A) is a normalization of the restriction of A to the cusp

front face ffc. Finally, the temporal operator T (A) is the normalized restriction of A

to tb, the lift of the temporal boundary {t = 0} × X × X ⊂ [0,∞) × X × X to the

double space X2
cp (see Fig. 3.3).

An algebraic result ensures that if an operator A ∈ Ψ∗,∗,∗cp (X) has all the three

symbols invertible, one can construct a parametrix modulo residual operators, i.e.,

operators belonging to Ψ−∞,−∞,−∞cp (X).

Main results

We manage to merge the family of Dirac operators
(
/Dt

)
t>0

on the Riemannian surfaces

(X, gt), together with the Dirac operator /D0 on the limit (non-compact) surface (X \
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γ, g0), to obtain a cusp-surgery differential operator

/D ∈ Ψ1,1,0
cp (X).

A crucial result in Chapter 3 is to prove that the normal operator N (/D) of /D is

invertible. Here we rely on the hypothesis of non-triviallity of the spin structure along

the geodesic γ. We are able to prove that if λ is not an eigenvalue of /D0, then the

resolvent family (/D− λ)−1 for small time t belongs to the calculus.

Theorem 1.1. Let X be a compact oriented surface and let γ ⊂ X be a simple closed

geodesic. Consider a smooth family of metrics (gt)t≥0 on X \ γ which near γ are given

by:

gt =
dx2

(x2 + t2)2
+
(
x2 + t2

)
dy2.

Furthermore, consider (/Dt)t≥0 the family of Dirac operators corresponding to the family

of metrics (gt)t≥0 and to a fixed non-trivial spin structure PSpin(2)X relatively to γ. If

λ ∈ R\ spec /D0, then there exists t0(λ) > 0 such that the operator (/Dt−λ) is invertible

for every t ≤ t0(λ), and the resolvent is a cusp-surgery operator:

(/D− λ)−1 ∈ Ψ−1,−1,0
cp (X).

We also prove the convergence of the spectral projectors under degeneration.

Theorem 1.2. Suppose that we are under the hypothesis of Theorem 1.1, and let λ0

be an eigenvalue for the limit operator /D0. Consider ε > 0 such that

[λ0 − ε, λ0 + ε] ∩ spec /D0 = {λ0}.

Then the spectral projector P[λ0−ε,λ0+ε] belongs to Ψ−∞,−∞,0cp (X). More precisely, its

Schwartz kernel is smooth on [0,∞) × X × X and moreover, it vanishes rapidly at

{t = 0} × γ.

If A ∈ Ψm,α,β
cp (X) is a trace-class cusp-surgery operator, the cusp-trace is a function

cp Tr(A) : [0,∞) −→ C which associates to each time t the integral over the t-time

slice in the diagonal plane ∆ ⊂ X2
cp (see Fig. 3.6). In fact, for t > 0, the cusp trace

associates to A exactly the L2-trace of the operator A at time t acting on (X, gt).

Theorem 1.3. Let A ∈ Ψm,α,β
cp (X) be a trace-class cusp-surgery pseudodifferential

operator, meaning that the orders satisfy the following inequalities:

m < −2, α < −1, β ≤ 0. (1.1)
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i) If α− β /∈ Z, then

cp TrA ∈ t−αC∞[0,∞) + t−βC∞[0,∞).

ii) If α− β ∈ Z, then

cp TrA ∈ tmin(−α,−β)C∞[0,∞) + tmax(−α,−β) log t · C∞[0,∞).

Notice that for t > 0, the cusp-surgery trace exists whenever for α > −1, and

is clearly a C∞ function. The relevance of the result above is that it describes the

behavior of the cusp surgery trace towards {t = 0}. More precisely, it is of class C1,

and in particular, it is continuous. As a corollary, we study the cusp trace of the

resolvent of the Dirac operator.

Theorem 1.4. In the hypothesis of Theorem 1.1, consider an integer k ≥ 3, and let

λ ∈ R be in the complement of the spectrum of /D0. Denote by

R(λ) = (/D− λ)−1

the resolvent of the Dirac operator. Then the kth power of the resolvent is trace-class,

and its cusp-surgery trace cp Tr
(
R(λ)k

)
is of Hölder class Ck−1,α, for any α ∈ (0, 1).

Remark that cp Tr
(
R(λ)k

)
is smooth for t > 0 so, as above, the content of this

theorem lies in the polyhomogeneous behavior of the cusp-surgery trace as a function

of t towards t→ 0.

Theorem 1.5. Let λ, λ0 ∈ R such that the cusp differential operators /D
2
0 − λ and

/D
2
0 − λ0 are invertible. Denote the resolvents of the squared Dirac operator by

R̃(λ) :=
(
/D

2 − λ
)−1

, R̃(λ0) :=
(
/D

2 − λ0

)−1

.

Then the relative resolvent R̃(λ)−R̃(λ0) is trace-class and its cusp-surgery trace behaves

as a function of t as t↘ 0 is as follows:

cp Tr (R(λ)− R(λ0)) ∈ C∞[0,∞) + t2 log t C∞[0,∞).

We hope to apply this theorem to improve the result of Stan [61] for the asymptotic

behavior of the Dirac Selberg zeta function on degenerating hyperbolic surfaces.
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Heat kernel asymptotics for real powers of Lapla-

cians

Let E be a hermitic vector bundle over a closed, oriented Riemannian manifold M of

dimension n. Consider a non-negative self-adjoint generalized Laplacian ∆ acting on

the sections of the bundle E . For example, if /D is a Dirac operator corresponding to a

spin closed Riemannian manifold, then /D
∗ /D is such a generalized Laplacian acting on

the sections of the spinor bundle.

Background

A classical result due to Minakshisundaram-Pleijel [43] tells us that the heat kernel

pt of ∆ (i.e. the Schwartz kernel of the operator e−t∆) has a small-time asymptotic

expansion near the diagonal:

pt(x, y)
t↘0∼ t−n/2e−

d(x,y)2

4t

∞∑
j=0

tjaj(x, y), (1.2)

where d(x, y) is the geodesic distance between x and y. Moreover, the aj’s are recur-

sively defined as solutions of certain ODE’s along geodesics (see for instance [12], [14]).

Using this result, one can prove the Weyl’s law on counting the eigenvalues of a Lapla-

cian (see e.g. [12]). Furthermore, if /D is a twisted Dirac operator, then the asymptotic

expansion (1.2) applied to the generalized Laplacian ∆ = /D
∗ /D plays a leading role in

proving the Atiyah-Singer index theorem (see for instance [13], [15], [23]).

Small time heat asymptotic for real powers of ∆

The central object of study in Chapter 4 (already published as a paper in [3]) is the

Schwartz kernel ht of the operator e−t∆r
, where r ∈ (0, 1). More precisely, we first

investigate separately the short-time asymptotic expansion of ht in [0,∞)×Diag, and

towards [0,∞) ×K, where K ⊂ M ×M is a compact set disjoint from the diagonal.

The main idea used in this investigation is to relate the heat operator e−t∆ and the

operator e−t∆r
to the family of pseudodifferential operators ∆s, s ∈ C. One can obtain

these connections by the Mellin and Inverse Mellin formulæ.

The Schwartz kernel ht of the operator e−t∆r
is C∞ on [0,∞) × (M ×M \Diag)

and it vanishes at least at order 1 at t = 0. We give a precise description of the Taylor

coefficients of ht as t ↘ 0 in terms of the Schwartz kernels qs of the complex powers

∆s, s ∈ C.
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The asymptotic along the diagonal of ht is more complicated than that of the

classical heat kernel pt in (1.2). It depends on the parity of n (like in [9]) and on the

rationality of r. The most interesting case occurs when logarithmic terms appear. This

happens only if n is odd, r = α
β

is rational, and the denominator β is even.

Theorem 1.6. Let ∆ be a non-negative self-adjoint generalized Laplacian ∆ acting on

the sections of a hermitic vector bundle E over a closed manifold M of dimension n.

Let aj(x, x) be the coefficients along the diagonal of the heat kernel pt of ∆ in (1.2).

If n is odd, r = α
β

is rational and its denominator β is even, then the asymptotic

expansion of the Schwartz kernel ht of the operator e−t∆r
, r ∈ (0, 1) along the diagonal

when t↘ 0 is the following:

ht|Diag

t↘0∼
(n−1)/2∑
j=0

t−
n−2j

2r · A−n−2j
2r

+
∞∑
j=1

α-2j+1

t
2j+1

2r · A 2j+1
2r

+
∞∑
j=1
β
2
-j

tj · Aj

+
∞∑
l=1
l odd

tl
β
2 · Al β

2
+
∞∑
l=1
l odd

tl
β
2 log t ·Bl β

2
.

(1.3)

Moreover,

Aj(x) =
(−1)j

j!
· qrj(x, x).

We prove similar expansions in all the other cases and we give explicit formulæ for

all the coefficients appearing in (1.3).

Motivation to study real powers of Laplacians

If P is a scalar positive elliptic self-adjoint pseudodifferential operator of integer order,

then the asymptotic expansion of the heat kernel of e−tP was studied by Duistermaat

and Guillemin [20]. Their result was generalized by Grubb [33, Theorem 4.2.2] in the

context of fiber bundles when the order of P is positive, not necessary an integer. Later

on, Bär and Moroianu [9] studied the short-time asymptotic behavior of the heat kernel

of ∆1/m, m ∈ N∗, for a strictly positive self-adjoint generalized Laplacian ∆. In Theo-

rem 1.6, we obtain the vanishing of some terms appearing in [33, Corollary 4.2.7] in our

particular case when P = ∆r is a real power of a self-adjoint non-negative generalized

Laplacian ∆, r ∈ (0, 1). Furthermore, we prove that in general the remaining terms do

not vanish (see Theorem 4.1).
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Non-locality of some coefficients

It is well-known that the heat coefficients in (1.2) of a generalized Laplacian are locally

computable in terms of the curvature of the connection on E , the Riemannian metric

of M and their derivatives (see e.g. [12]). This is no longer the case for the coefficients

of positive integer powers of t from Theorem 1.6:

Theorem 1.7. If r is irrational, then the heat coefficients Aj for j ∈ N, j ≥ 1 from

Theorem 1.6 are not locally computable. If r = α
β

is rational, then Aj are not locally

computable for j ∈ N \ {lβ : l ∈ N}. Moreover, all the other coefficients can be written

in terms of the heat coefficients of e−t∆, thus they are locally computable.

The heat kernel as a conormal section

The classic heat kernel pt can be regarded as a polyhomogeneous conormal function

on a certain blow-up space. More precisely, Melrose introduced the heat space M2
H

by performing a parabolic blow-up of the diagonal in M × M at time t = 0. The

new space M2
H is a manifold with corners with boundary hypersurfaces given by the

boundary defining functions ρ and ω0. Then the classic heat kernel pt belongs to the

space ρ−nC∞(M2
H), and moreover, it vanishes rapidly at the boundary face {ω0 = 0}

(see [45, Theorem 7.12]).

In the special case r = 1/2, we gave a uniform description of the transition between

the on- and off-diagonal behavior of ht as t↘ 0. In this case, we can understand better

the heat operator e−t∆1/2
on a homogeneous (rather than parabolic) blow-up heat space

Mheat, obtained by the standard blow-up of {0} ×Diag in [0,∞)×M ×M .

Theorem 1.8. If n is even, then the Schwartz kernel ht of the operator e−t∆1/2
belongs

to ρ−nω0 · C∞(Mheat). If n is odd, then ht ∈ ρ−nω0 · C∞(Mheat) + ρ log ρ ·ω0 · C∞(Mheat).
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