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INTRODUCTION AND MOTIVATIONS

The aim of the present text is to answer the question: can we integrate a smooth 1-form along a continuos
curve? When the curve is differentiable, the answer is in the affirmative and given by the concept of line integral.
Whe the curve is no longer differentiable, there are multiple possible answers: Young integral, integration in the
sense of the ”rough paths” theory, stochastic integration; the latter will be the subject of interest of this thesis.

Stochastic integration is not new: after several attempts by various mathematicians in the area of Wiener
processes, Kiyoshi Itô obtained in 1944 the first coherent construction in Rn of a new (back then) type of ”line”
integral, later named ”Itô integral”. An alternative to the Itô integral, that was initially given only a lukewarm
reception by the probabilistic community, was developed by Ruslan Stratonovich in the USSR, during the ’60s,
and was later named ”Stratonovich integral”. The history of the gradual emergence and clarification of these
concept is, of course, much richer, but it does not form the subject of this thesis; a detailed chronological
presentation thereof can be fond in [JP04].

If stochastic integration is not new, the approach that we put forward in this text is. Traditionally, the
concept is presented in Rn, as a chapter of stochastic calculus - therefore using the language and techniques of
probability theory. The few texts that venture on Riemannian manifolds do not stray away from this language.
Furthermore, even though the problem, as stated in the first paragraph, is a geometrically intrinsic one, the
construction if stochastic integration on Riemannian manifolds is often performed by resorting to extrinsic
methods, usually by using Whitney’s theorem to embed the manifold in some Euclidean space where the usual
properties of the Brownian motion may be used. The present text attempts a completely new approach:
on the one hand, stochastic integration will be obtained using functional analysis and Riemannian geometry
techniques; on the other hand, all the proofs will be intrinsic, this presentation of the concept under study having
the advantage of exposing its geometrical underpinnings, which has the tendency of remaining obscured and
unexplored in the purely probabilistoc approaches. Moreover, the construction put forward will show that the
Itô and Stratonovich integrals are just two of an infinite family of possible stochastic integrals, this family being
though very explicitly described, and any two integrals of which being connected by a very explicit and simple
relationship (thus allowing us to say that there exists essentially a single stochastic integral, all the others being
simple variations thereof). In particular, we shall see that the Stratonovich integral is the stochastic integral
with the most convenient geometrical properties (of all the stochastic integrals it having the most properties
in common with the usual line integral), while the Itô integral has the most convenient analytical properties.
In order to ease the navigation through this thesis, we shall give in the following a brief presentation of its
chapters.

Chapter 1 is dedicated to an in-depth understanding of the Laplace operator on a Riemannian manifold
(M, g) (in this text M will always be connected) and contains classical, basic results: the Laplace-Beltrami
operator ∆ is defined and, in order to be able to use functional analysis results, the Friedrichs extension L
of −∆ is constructed and its spectrum and a necessary condition for essential slef-djointness are studied. An
essential object presented next is the heat kernel, understood as the minimal positive fundamental solution of
the heat equation: its construction on arbitrary Riemannian manifolds being known, it is only sketched here
(details can be found in the cited references), only the construction on compact Riemannian manifolds being
carried out in detail. As the heat kernel on manifolds does not, in general, have an explicit formula, the chapter
concludes with the statement and proof of some (upper and lower) Gaussian estimates of it.

Chapter 2 is entirely devoted to the construction of the Wiener measure on curve spaces in Riemannian
manifolds. As in the case of stochastic integrals, this is constructed in the literature using probabilistic methods.
Until 2011, purely geometric, intrinsic constructions were not known; in 2011, however, Christian Bär and
Frank Pfäffle presented such an approach, which we adopt in this text. Thus, we will quickly obtain the Wiener
measure on the space of (arbitrary, not necessarily continuous) trajectories in the manifold using the Kolmogorov
extension theorem, all the effort then being to show that this measure is concentrated on continuous (in fact,
even Hölder continuous) trajectories. This result is guaranteed if the the Kolmogorov continuity condition is
satisfied. This, however, is an integral condition which, unfortunately, is not verified on arbitrary Riemannian
manifolds, so we shall be forced to resort to an indirect approach: first we shall verify it on compact manifolds,
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then on relatively compact domains with smooth boundary (using the concept of ”Riemannian double” to reduce
the problem to the previous case); this will allow us to construct the Wiener measure intrinsically associated
with the space of trajectories contained in such domains. Finally, we shall consider an exhaustion of M with
such domains and define the Wiener measure associated with the entire manifold as the limit of the Wiener
measures associated with the domains in the exhaustion. The chapter concludes with a classical application,
namely the Feynman-Kac formula, which presents the solutions of the heat equation with given initial conditions
as integrals with respect to the Wiener measure.

Chapter 3 presents the first original result of the thesis. Since L is a self-adjoint operator in L2(M), it will
generate a semigroup of operators (e−tL)t≥0 called the ”heat semigroup”; it can be shown that the heat kernel
constructed in chapter 1 is the integral kernel corresponding to the heat semigroup. It is reasonable then to
expand the context in which we talk about the heat kernel in the following way: we consider a Hermitian vector
bundle E over a Riemannian manifold M , endowed with a Hermitian connection ∇ from which the operator
∇∗∇ is immediately obtained, the Friedrichs extension of which generates in turn a ”heat” semigroup in E.
We ask ourselves the question: does this semigroup admit, in turn, an integral kernel in the fiberwise sense,
with good integrability properties? When M is compact the result is known and the construction is analogous
to that in chapter 1. For arbitrary manifolds, however, a purely analytic-functional construction of this kernel
was given only recently, in 2015, by Batu Güneysu, under very general assumptions. This chapter offers an
alternative construction, completely different from that of Güneysu, under slightly more restrictive assumptions
(namely, we accept the existence of the heat kernel constructed in chapter 1) but having the advantage of being
more intuitive and also presenting a series of concrete approximations of this kernel. If Güneysu’s central tool is
Lebesgue’s differentiability theorem, the central tool in our construction proposed in this chapter is Chernoff’s
approximation theorem of semigroups of operators in Banach spaces in the strong operator topology. The
chapter concludes with the study of some regularity properties of the heat kernel in bundles thus constructed.

The 4th chapter presents the second original result of this thesis, the main one in fact, namely the con-
struction of stochastic integrals using only functional analysis techniques and Riemannian geometry, and the
classification of these integrals. Using the existence of the heat kernel in vector bundles obtained in the previous
chapter, we start by obtaining an essentially bounded function on the space of continuous trajectories in M ,
which we shall later show to have absolute value 1 by some technical reasoning, based on the same Chernoff
theorem used above. Moreover, we shall show that this function is even a 1-parameter unitary continuous group
which, using Stone’s theorem, we shall deduce to have a self-adjoint generator, which will next be shown to be
a measurable function. This function will later be shown to be the Stratonovich integral. On the other hand,
starting from Borel regular probabilities P on the interval [0, 1], we shall construct some sums similar to the
Riemann sums associated with a curvilinear integral, and we shall show that they have a limit in measure. If P
is the Dirac measure δ0, then the limit obtained will be the Itô integral itself, and if P is the Lebesgue measure
on [0, 1] then the corresponding limit will be the Stratonovich integral. This motivates us to call ”stochastic
integral” any limit of such a Riemann sum associated with such a probability P . Even though it looks like
there are as many stochastic integrals as there are Borel regular probabilities P , we shall see that in reality any
two such probabilities with the same moment of order 1 produce the same stochastic integral, so the stochastic
integrals understood in the above sense above are classified by the moments of order 1 of the regular Borel
probabilities on [0, 1]. Moreover, any two such stochastic integrals differ by a simple term that we shall be able
to write explicitly, so the apparently infinite abundance of stochastic integrals essentially reduces to only one
of them (any one), all others being translations of it by a very precise term. We shall obtain, in addition, some
classical results of stochastic analysis, for example Itô’s lemma (which in this theoretical framework will have
an extremely short and simple proof), and a generalization of the Feynman-Kac formula corresponding to the
situation where the heat propagation occurs in the presence of a magnetic field (mathematically encoded by a
smooth 1-form, the Stratonovich integral of which will emerge naturally).

Chapter 5 improves some of the results from the previous one, under the slightly more restrictive assumption
that the 1-forms we stochastically integrate have compact support. With this additional condition we shall show
that the stochastic integrals are square integrable with respect to the Wiener measure. We shall also obtain an
analogue of Itô’s isometry, which will allow us to extend stochastic integrals from the space of smooth 1-forms
with compact support to much larger spaces of 1-forms.

The last chapter, the 6th, follows a conceptual and technical structure similar to that of the 4th one. Its
purpose is to show how the stochastic parallel transport in Hermitian bundles over Riemannian manifolds
can be understood from a purely functional-analytic and geometric point of view, without resorting to concepts
belonging to probability theory. We shall show that the stochastic parallel transport can naturally be understood
as an square-integrable (in fact, even essentially bounded) section in a certain pull-back bundle, and that it is
the limit of a series of concrete approximations in the topology of the Hilbert norm on this space of sections.
The Feynman-Kac formula can be formulated in this context, too (and the formulation we shall give seems to
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be significantly more general than those currently in the literature), and it will make the stochastic parallel
transport emerge naturally. If the considered bundle is trivial of rank 1, we recover the results from chapter 4
related to the stochastic Stratonovich integral.
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1. THE LAPLACIAN, THE HEAT KERNEL AND THE
DISTANCE FUNCTION ON RIEMANNIAN MANIFOLDS

This chapter aims to present, among the many properties of the distance function on a Riemann manifold,
some of those that manifest themselves in relation to the Laplacian operator and the heat equation. The
Minakshisundaram-Pleijel construction of the heat kernel on a compact Riemann manifold is also presented in
detail.

1.1 The Laplacian on Riemannian manifolds
Let (M, g) be a connected (hence separable) Riemannian manifold with dimM = n. Let C(M) and C0(M)

be the algebras of continuous and continuous functions with compact support, respectively, on M . Let ∆ be
the Laplacian acting on smooth functions, given in coordinates by

∆ =
1

?
det g

∑
i,j

∂i(
a

det g gij∂j) .

The volume form is given in coordinates by vol =
?
det g dx1∧ . . .∧dxn. Let µM be the measure associated with

the volume form, obtained by applying the Riesz theorem to the positive functional C0(M) 3 f 7→
∫
M

f vol ∈ R.
Let d(x, y) = infc

∫ b

a
‖c′(t)‖ dt be the distance associated to the Riemannian structure, where c sweeps through

the set of smooth curves with c(a) = x and c(b) = y. For x ∈ M and r > 0 we shall write B(x, r) = {y ∈ M |
d(x, y) < r}. If f is a continuous function we shall write f+ = max(f, 0).

We shall consider the Laplace-Beltrami operator ∆ to be densely-defined on L2(M) (in general, when
considering some differential operator as acting on L2(M) we shall consider it defined on the dense subspace
C∞

0 (M)). This operator is not self-adjoint. Under these conditions, since many of the functional analysis
theorems that we shall use require self-adjoint operators, we shall have to replace ∆ with some self-adjoint
extension in subsequent considerations; however, it is not clear if such extensions exist, and if there are several
of them it is not clear how to choose a specific one among them. Fortunately, the following result shows that
such extensions exist and, moreover, there is a maximal (and therefore unique) one among them in a sense that
we shall specify immediately.

Teorema 1.1. Every symmetric, lower-bounded, densely-defined operator A : DomA ⊆ H → H admits a self-
adjoint extension Â (called the Friedrichs extension) with the same lower bound. If A′ is another symmetric
extension of A with DomA′ ⊆ {DomA, then Â|DomA′= A′.

1.2 The metric completeness and the essential self-adjointness of the
Laplacian

Teorema 1.2. If M is metrically complete, then the operator −∆ : C∞
0 (M) ⊂ L2(M) → L2(M) is essentially

self-adjoint in L2(M).

1.3 The distance function and the spectrum of the Laplacian
The purpose of this section is to estimate the infimum λ(M) of the spectrum of the positive-defined Laplacian

using the distance function.

Teorema 1.3. If there exists some Lipschitz function f : M → R of Lipschitz constant 1, and some constant
c ≥ 0 such that ∆f ≥ c in the distributional sense, then λ(M) ≥ c2

4 .

1



1. The Laplacian, the heat kernel and the distance function on Riemannian manifolds

Teorema 1.4. If there exists some Lipschitz function f : M → R of Lipschitz constant 1, and some constant
c > 0, such that limx→∞ f(x) = ∞ and e−cf ∈ L1(M), then λ(M) ≤ c2

4 .

1.4 The heat kernel on Riemannian manifolds
The aim of this section is the construction of the heat kernel on Riemannian manifolds (in particular, we

shall present its detailed construction on compact manifolds) and the obtention of lower and upper Gaussian
bounds for it.

Definiția 1.5. The heat kernel on M is the unique smooth positive solution h : (0,∞) × M × M → [0,∞)
of the heat equation (∂t −∆)u = 0, that is minimal with respect to function inequality, subjected to the initial
condition limt→0+

∫
M

h(t, x, y)f(x) dx = f(y) for all f ∈ Cb(M) and all y ∈ M .

1.4.1 The construction of the heat kernel on compact Riemannian manifolds
In this section one constructs, with full details, the heat kernel on compact Riemannian manifolds, following

the method of Minakshisundaram and Pleijel; this heat kernel will be obtained as the pointwise limit of a
sequence of parametrices of the heat equation. The exposition essentially follows [Rosenberg97] and [BGM71];
several conventions and notations in the present text differ from the corresponding ones in the indicated refer-
ences.

1.4.2 The heat kernel on non-compact Riemannian manifolds
So far we have constructed, with all the details, the heat kernel on compact manifolds. In the following we

shall outline its construction on non-compact manifolds, providing the reader with the bibliographic references
necessary to study the details. The strategy will be to build it on relatively compact domains with smooth
boundary, and then use an exhaustion with such domains to obtain the heat kernel on the entire manifold. (We
shall use the same approach in the next chapter to construct the Wiener measure.)

If U is a relatively compact domain with smooth boundary, the Minakshisundaram-Pleijel method can be
adapted to produce the heat kernel on U , i.e. the only elementary solution of the heat equation on U , continuous
on U and which vanishes on the boundary ∂U (the resulting kernel will be called the ”Dirichlet heat kernel on
U”). The difference from the method described so far for compact manifolds is the purely technical additional
complication of ensuring continuity and vanishing at the boundary, but the idea is the same. Details can be
found, somewhat briefly, in ch. VII of [Chavel84], but a full and even more general proof (in which the heat
kernel is constructed on differential forms of any degree) is given in section 5 of [RaySi71].

Choosing now an exhaustion with relatively compact domains with smooth boundary M =
⋃

i≥0 Ui, and
denoting by hUi

the Dirichlet heat kernel on Ui, we define h = limi→∞hUi
as a pointwise limit. It is shown that

this limit exists and does not depend on the chosen exhaustion, and that is satisfies the definition of the heat
kernel on M . Details can be found in chap. VIII of [Chavel84] and in [Dodziuk83].

Teorema 1.6. The heat kernel h : (0,∞)×M ×M → [0,∞) enjoys the following properties:

1. h > 0;

2. h is smooth;

3. h(·,−, y) satisfies the (homogeneous) heat equation for all y ∈ M ;

4. limt→0

∫
M

h(t, x, y) f(y) dy = f(x) for all x ∈ M and all f ∈ Cb(M);

5. h is minimal among the fundamental smooth positive solutions of the heat equation;

6. h is unique with the above properties;

7. h(t, x, y) = h(t, y, x) for all t, x, y;

8. h enjoys the ”convolution property”∫
M

h(u, y, p)h(v, p, z) dp = h(u+ v, y, z) ;

2



1. The Laplacian, the heat kernel and the distance function on Riemannian manifolds

9. h(t, x, ·) ∈ L2(M) for all t > 0 and x ∈ M ; for reasons of symmetry, it follows that h(t, ·, y) ∈ L2(M) for
all t > 0 and y ∈ M ;

10.
∫
M

h(t, x, y) dy ≤ 1; if M is complete, with the Ricci curvature bounded below, then
∫
M

h(t, x, y) dy = 1;

11. h(t, ·,−) is the integral kernel of e−tH : L2(M) → L2(M) for all t > 0 (H being the Friedrichs extension
of −∆), that is (e−tHf)(x) =

∫
M

h(t, x, y) f(y) dy for all f ∈ L2(M) and almost all x ∈ M .

1.5 Gaussian upper bounds for the heat kernel
Teorema 1.7. There exists a continuous and bounded function r : M → (0,∞) și C > 0 such that if x, y ∈ M
and t ≥ t0 > 0 then

h(t, x, y) ≤ C

[min(2t0, r(x)2)min(2t0, r(y)2)]
n
4

[
1 +

d(x, y)2

t

]n
2

exp

[
−d(x, y)2

4t
− λ(M)(t− t0)

]
.

1.6 Gaussian lower bounds for the heat kernel
To close this chapter, we shall obtain Gaussian lower bounds for the heat kernel using Harnack’s parabolic

inequality which we shall prove next. We shall assume that M is compact, so there exists K > 0 such that
Ric ≥ −K, where Ric is the Ricci curvature of M .

Teorema 1.8. For all T > 0, if M is compact, and x, y ∈ M and 0 < t < T , then

h(t, x, y) ≥ t−
n
2 exp

„

−d(x, y)2

4t

ˆ

1 +
2KT

3

˙

− nKt

2

ȷ

.
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2. A GEOMETRIC CONSTRUCTION OF THE WIENER
MEASURE ASSOCIATED TO A RIEMANNIAN MANIFOLD

The aim of this chapter is to construct the Wiener measure on the space of continuous curves in a Riemannian
manifold, using only geometric methods and the Kolmogorov extension theorem. This stems from the desire of
emphasizing the Riemannian dimension of the problem, thus avoiding the existing probabilistic constructions
in the literature, based on stochastic differential equations or on Cartan’s rolling map. Although independently
conceived, this text is very similar to that of [BP11] which uses much the same ideas and techniques; the cited
text sometimes gives simpler solutions (e.g. it does not use Gaussian estimates of the heat kernel but a much
simpler estimate), sometimes it is more cumbersome than the one proposed here (the discussion of intrinsic
distance on regular domains is unnecessarily complicated).

2.1 Kolmogorov’s continuity condition for canonical projective sys-
tems

Let t > 0, let ∆k = { jt
2k

| j ∈ N∩ [0, 2k]} and let ∆ =
⋃

k∈N ∆k. Let (M,d) be a connected metric space. Let
Fin(0, t) = {F ⊂ [0, t] | F is finite}. For I ∈ Fin(0, t) let M I = {c : I → M} and for J ⊇ I let pIJ : MJ → M I

be the natural restriction. Assume that for any I ∈ Fin(0, t) there exists a positive, finite, regular Borel measure
wI on M I such that pIJ∗wJ = wI for all J ⊇ I. Let Mt =

∏
s∈[0,t] M = {c : [0, t] → M}, endowed with the

product topology (that is, that of pointwise convergence) and with the associated Borel σ-algebra, and let
pI : Mt → M I be the natural projection for all I ∈ Fin(0, t).

Teorema 2.1 (Kolmogorov’s extension theorem). There exists a unique Borel finite measure wt on Mt such
that pI∗wt = wI .

Teorema 2.2. 1. If there exist 0 < b < a and C > 0 such that∫
Mt

d(c(s), c(s′))a dwt(c) ≤ C|s− s′|1+b

for all s, s′ ∈ [0, t] (”the Kolmogorov continuity condition”), and if 0 < ε < b
a , then the subset of the Hölder-

continuous curves of expoenent ε defined by Ht(ε) = {c ∈ Mt | ∃L > 0 such that d(c(s), c(s′)) ≤ L|s−s′|ε ∀s, s′ ∈
[0, t]} is Borel in Mt and wt is concentrated on it.

2. If M is separable and Ht(ε) is endowed with the topology of uniform convergence (which is the trace of
the compact-open topology on the space of continuous curves Ct = {c ∈ Mt | c continuous} and is given by the
distance D(c, c′) = maxs∈[0,t] d(c(s), c

′(s))), then the restriction of wt to Ht(ε) is Borel and regular with respect
to this topology.

2.2 The Wiener measure associated to a Riemannian manifold
We shall now use the above results in the case where the metric space is a Riemann manifold (M, g) of

dimension n, and d is the intrinsic distance coming from the Riemannian structure. We shall also fix an
arbitrary point x0 ∈ M (the start endpoint, at time 0, of the trajectories in the space on which we shall
construct the measure wt).

If I = {0 ≤ t1, . . . , tk ≤ t} ∈ Fin(0, t), we endow the manifold M I with the measure

wx0,I(A) =

∫
M

dx1 h(t1, x0, x1) . . .

∫
M

dxk h(tk − tk−1, xk−1, xk) 1A(x1, . . . , xk) ,

4



2. A geometric construction of the Wiener measure associated to a Riemannian manifold

where we agree that
∫
M

h(0, y, z)f(z) dz = f(y) and where 1A is the characteristic function of the Borel subset
A ⊆ M I .

Thanks to the convolution property of the heat kernel, it is easy to show that if I ⊆ J , then pIJ∗wx0,J =
wx0,I . It is also clear that wx0,I is a regular positive Borel measure bounded by 1.

2.2.1 The Wiener measure associated to a compact Riemannian manifold
Since r from the theorem 1.7 is continuous and M is compact, there exists ρ = minx∈M r(x) > 0. By taking

s = s0 in that formula, we get the more convenient upper bound

h(s, y, z) ≤ C

ˆ

1 +
d(y, z)2

s

˙

n
2

min(2s, ρ2)−
n
2 exp

ˆ

−d(y, z)2

4s

˙

. (2.1)

It is shown that the Kolmogorov continuity condition in theorem 2.2.(1) is naturally satisfied in this context.
More precisely, if a > 2 then∫

Mt

d(c(u), c(v))a dwt(c) ≤ Kmin(2(v − u), ρ2)−
n
2 (v − u)

n
2 + a

2 ≤

≤

{
2−

n
2 K(v − u)

a
2 , 2(v − u) < ρ2

Kρ−nt
n
2 (v − u)

a
2 , 2(v − u) ≥ ρ2

,

whence
∫
Mt

d(c(u), c(v))a dwt(c) ≤ C(t)(v − u)1+b, where C(t) = Kmax(2−
n
2 , ρ−nt

n
2 ) and b = a

2 − 1, which
shows that Kolmogorov’s continuity condition is satisfied. This means that there exists a unique Borel positive
regular measure wx0,t bounded by 1 (because the integral of h is bounded by 1), on

⋂
0<ε< 1

2
Ht(ε) (namely, the

restriction of wt). This is the Wiener measure on the space of trajectories in M .

2.2.2 The Wiener measure associated to a regular domain
Let now (M, g) be an arbitrary Riemannian manifold.

Definiția 2.3. A regular domain is a relatively compact connected open subset with smooth boundary.

We shall assume that x0 is contained in all the regular domains that we shall talk about.
If U ⊆ M is a regular domain, we endow U with the intrinsic distance dU (p, q) = inf{L(c) | c : [0, 1] →

U is smooth and joins p and q}, where L(c) =
∫ 1

0

a

g( 9c(s), dotc(s)) ds is the length of c.
Let now (U ′, g′) be a Riemannian dual of U : this means that U embeds smoothly as a submanifold with

boundary into U ′, and that g′|U= g|U . Details of this construction can be found in subsection 5.5 on p.116 of
[Duff56]. If dU ′ is the intrinsic Riemannian distance on U ′ , then dU ′ |U≤ dU .

Propoziția 2.4. There exists αU > 0 such that dU ≤ αUdU ′ |U .

Let hU be the Dirichlet heat kernel of U , and hU ′ be the heat kernel of U ′. The idea is to transport the
problem to U ′, where we already know that this condition is satisfied, by replacing dU with αU dU ′ and hU with
hU ′ (keeping in mind that the heat kernel of a manifold is minimal, so hU ≤ hU ′ on U ⊂ U ′). Taking a > 2 and
0 < u < v < t we have:∫

(U)t

dU (c(u), c(v))
a d(wU )x0,t(c) =

∫
U

hU (u, x0, y)

ˆ∫
U

hU (v − u, y, z) dU (y, z)
a dz

˙

dy

≤ αi

∫
U ′

hU ′(u, x0, y)

ˆ∫
U ′

hU ′(v − u, y, z) dU ′(y, z)a dz

˙

dy =

= αi

∫
(U ′)t

dU ′(c(u), c(v))a d(wU ′)x0,t(c) ≤ αi Ki(t) (v − u)1+( a
2−1) ,

where (wU )x0,t and (wU ′)x0,t are the measures obtained from the Kolmogorov extension theorem on the spaces
(U)t and (U ′)t, respectively, and Ki(t) is the constant C(t) corresponding to U ′ obtained as in the previous
subsection. Since the Kolmogorov continuity condition is satisfied, it follows that (wŪ )x0,t is concentrated on
Ht,U (ε) (the space of Hölder-continuous curves of Hölder exponent ε > 0, contained in U) as a positive, Borel,
bounded by 1, regular measure, for any ε < 1

2 .
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2. A geometric construction of the Wiener measure associated to a Riemannian manifold

2.2.3 The Wiener measure associated to an arbitrary Riemannian manifold
Propoziția 2.5. There exist exhaustions with closures of regular domains (Uk)k∈N; that is, Uk ⊂ Uk+1 for any
k ∈ mathbbN and

⋃
k∈N Uk = M . Moreover, we can take x0 ∈ Uk for any k ∈ N.

Let 0 < ε < 1
2 and let (wk)x,t be the Wiener measure on Ht,Uk

(ε) , as constructed in the previous subsection.
The natural embedding ik : Uk → M induces a natural embedding ik : Ht,Uk

(ε) → Ht,M (ε), which allows us
to consider the pushed forward measure (ik)∗(wk)x,t on Ht,M (ε). We note that this sequence of measures is
bounded by 1 and increasing because hUk

≤ hUl
on Uk (again, from the minimality property of the heat kernel).

The argument from theorem 2.2.(2) also shows that the Borel σ-algebra of Ht,M (ε) coincides with the σ-
algebra generated by the subsets of the form p−1

I (B) with I ∈ Fin(0, t) and B ⊆ M I Borel. It follows that
(ik)∗(wk)x0,t(B) ≤ (il)∗(wl)x0,t(B) for any Borel subset B ⊆ Ht,M (ε), so it makes sense to define

wx0,t(B) = lim
k→∞

(ik)∗(wk)x0,t(B) = sup
k≥0

(ik)∗(wk)x0,t(B)

for any Borel subset B ⊆ Ht,M (ε).

Propoziția 2.6. wx0,t is a positive Borel regular measure on Ht,M (ε), bounded by 1.

Propoziția 2.7. For any 0 < ε < 1
2 the Wiener measure wx0,t is precisely the Wiener measure and is

concentrated on {c ∈ Ht(ε) | c(0) = x0}.

2.3 The Feynman-Kac formula
One of the classic uses of the Wiener measure is the Feynman-Kac formula, which shows how an initial

temperature distribution f propagates in time in the presence of a potential V .

Teorema 2.8. If V : M → R is a lower bounded continuous function, and if f ∈ L2(M), then

r exp(−tL− tV )f s(x) =

∫
Mt

exp

ˆ∫ t

0

−V (c(s)) ds

˙

f(c(t)) dwx0,t(c) .
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3. A FUNCTIONAL-ANALYTIC CONSTRUCTION OF THE
HEAT KERNEL IN HERMITIAN BUNDLES OVER

RIEMANNIAN MANIFOLDS

This chapter presents the author’s first original contribution, namely the construction of the heat kernel
associated with a Laplacian defined by a connection in a Hermitian vector bundle over an arbitrary Riemannian
manifold, and the obtaining of an upper bound for it. Such a construction was already known for compact
Riemannian manifolds, but at the beginning of the doctoral studies (November 2015) one for arbitrary Riemann
manifolds proved impossible to find in the specialized literature, which justified the present approach.

3.1 Motivation and context
Let M be a separable Riemann manifold of dimension n, and let E → M be a Hermitian bundle over M of

complex rank r < ∞; we do not impose any other restrictions on M or E.
The fiber of E over x ∈ M will be denoted Ex, and the Hermitian product on it 〈·, ·〉Ex (all Hermitian

products used in this text will be linear in the first argument). As we shall work with several Hilbert spaces,
the norm and the Hermitian product on each of them will carry it as a subscript: if X is a Hermitian space
and v, w ∈ X, then ‖v‖X will be the norm of v and 〈v, w〉X the Hermitian product of v and w. The measure
on M obtained using the Riemannian metric will be µM . If s is a section of E, the notation ‖s‖ (without any
other indices) will mean the function M 3 x 7→ ‖s(x)‖Ex∈ [0,∞). Γ0(E) will be the space of smooth sections
in E with compact support. If 1 ≤ p ≤ ∞, Γp(E) will be the space of classes of measurable sections equal
almost everywhere that have the property that ‖s‖∈ Lp(M). It is known that Γ0(E) is dense in Γp(E) in the
norm topology if p 6= ∞, and in the ∗-weak topology if p = ∞. The space of equivalence classes of measurable
functions equal almost everywhere will be L0(M) and Γ0(E) will be the analogous space of sections. In concrete
calculations (usually integrals on M) involving sections s ∈ Γp(E), we shall tacitly understand that we are
working with an arbitrary representative of the class s; in such situations it will be immediately clear from the
context that the results are independent of the chosen representative. Tildes will always mean extensions by 0:
if s is a section of E|S (or a function) defined on a subset S ⊂ M , then rs will be its extension by 0 to the whole
of M . For linear operators between normed spaces, ‖·‖op will denote the operator norm, without specifying the
spaces anymore when they are clear from the context.

We shall work with a map (”fibered potential”) V : M → EndE such that V (x) ∈ EndEx. It is general
enough to require that the operator norm function M 3 x 7→ ‖V (x)‖op∈ [0,∞) be locally essentially bounded
(so V ∈ Γ∞

loc(EndE), by definition). To be able to use functional calculus methods we shall require that V (x)
be self-adjoint for almost any x ∈ M . The minimum of the spectrum of V (x) will be b(x) = min specV (x), for
all x ∈ M . For simplicity, we shall impose that b ≥ 0, but all results remain valid with minimal changes to the
proofs in the more general case ess infx∈M b(x) 6= −∞. The ”multiplication” operator mul(V ) : Γ0(E) → Γ2(E)
given by (mul(V )s)(x) = V (x)s(x) is positive (since 〈V (x)s(x), s(x)〉Ex

≥ b(x) ‖s(x)‖2Ex
≥ 0) and essentially

self-adjoint.
If ∇ is a Hermitian connection in E (that is, X〈s, s′〉 = 〈∇Xs, s′〉 + 〈s,∇Xs′〉 for all X ∈ Γ(TM) and

s, s′ ∈ Γ(E)), the Laplacian associated with the connection ∇∗∇ : Γ0(E) → Γ2(E) is positive-definite and
symmetric, so performing the Friedrichs construction on ∇∗∇ + V (which will be symmetric and positive) we
obtain a densely defined, self-adjoint, positive extension H∇,V : Dom(H∇,V ) → Γ2(E) (”fibered Hamiltonian”).

Since specH∇,V ⊆ [0,∞), we deduce from the spectral theorem that the resolvent at every λ < 0 has the
property that ∥∥∥pH∇,V − λq

−1
∥∥∥
op

= sup

{ˇ

ˇ

ˇ

ˇ

1

µ− λ

ˇ

ˇ

ˇ

ˇ

| µ ∈ specH∇,V

}
≤

≤ sup

{ˇ

ˇ

ˇ

ˇ

1

µ− λ

ˇ

ˇ

ˇ

ˇ

| µ ∈ [0,∞)

}
=

1

|λ|
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3. A functional-analytic construction of the heat kernel in Hermitian bundles over Riemannian manifolds

therefore, using the Hille-Yoshida theorem (corollary 2.22 on p.51 of [Davies80]), we deduce that −H∇,V gener-
ates a strongly continuous contraction semigroup in Γ2(E). Since every open subset of M is itself a manifold,
all the notations and considerations so far hold on such subsets, too.

In this chapter we shall show that e−tH∇,V admits an integral kernel (with various properties that we
shall explore further on); more precisely, we shall construct an application (0,∞) × M × M 3 (t, x, y) 7→
k∇,V (t)(x, y) ∈ mathcalL(Ey, Ex) (the last notation representing the space of linear applications from Ey to
Ex) such that (e−tH∇,V s)(x) =

∫
M

k∇,V (t, x, y) s(y) dy for all s ∈ Γ2(E). In the particular case E = M × C,
∇ = d and V = 0, this is exactly the heat kernel of M , a very detailed and copiously commented construction
of which can be found in [Grigor’yan09]. If E is no longer trivial, but M is compact, such a result is known as
the ”Minakshisundaram-Pleijel construction” and can be found, for example, in [BGV92]. On the other hand,
at the beginning of his doctoral studies (November 2015), the author was not aware of any other similar work
published in the specialized literature dealing with the case of arbitrary manifolds and bundles, which motivated
the present research effort. Meanwhile, in 2017 Batu Güneysu published ”Covariant Schrödinger Semigroups
on Riemannian Manifolds” (cited in the present text as [Güneysu17]), which deals with the same problem, but
providing proofs based on completely different techniques than the ones used here which, therefore, retain their
originality and interest.

Section 3 and section 4 contain the central results of this chapter, namely the construction of the heat kernel
in bundles and the proof of its uniqueness. For this purpose, it will be necessary to prove, also in section 3, the
diamagnetic inequality. The heat kernel will be constructed, for technical reasons, in two steps: first on relatively
compact domains, then on the entire manifold using an exhaustion with such domains. Once constructed, in
Section 5 we study its various integrability properties and find a convenient upper bound to control it. Finally,
Section 6 studies its behaviour when the potential V is subjected to bounded perturbations.

The idea of the construction is to obtain the heat kernel in E as the limit of a sequence of approximations. The
mathematical tool that will allow this approach is Chernoff’s theorem about the approximation of semigroups
in Banach spaces.

3.2 Preliminary results
Propoziția 3.1. The function b : M → R defined above by b(x) = min specV (x) is locally essentially bounded.

Teorema 3.2. Since M was assumed separable, the space Γ2(E) will be separable.

We shall need the concept of outer tensor product of two bundles. Thus, if M and N are smooth
manifolds, and E → M and F → N are vector bundles of finite rank, if p : M ×N → M and q : M ×N → N
are the canonical projections then we can consider the bundle E bF → M ×N defined by E bF = p∗E⊗ q∗F .
The integrable square sections in this bundle will be Γ2(E b F ) ' Γ2(E) ⊗ Γ2(F ) since we can consider the
isomorphism that takes the tensor monomial (x, y) 7→ (σ⊗η)(x, y) into the tensor monomial (x, y) 7→ σ(x)⊗η(y),
extended by linearity and then density in the topologies of Hilbert spaces.

Definiția 3.3. We call the heat kernel in the bundle E → M , corresponding to the connection
∇ and the potential V , the map k∇,V : (0,∞) → Γ2

loc(E b E∗) with the property that e−tH∇,V σ =∫
M

k∇,V (t, cdot, y)σ(y) dy for all σ ∈ Γ2(E).

The purpose of this chapter is to show that such an application exists, is essentially unique, and has good
integrability properties. If V is smooth, we shall show that the integral kernel that we shall construct is also
smooth. We shall also find an upper bound for it, useful in integral inequalities.

3.3 The construction of the heat kernel in bundles over relatively
compact domains

Let U ⊆ M be a regular domain, that is, a relatively compact open subset with smooth boundary ∂U .

Teorema 3.4. For every t > 0 there exists the integral kernel k(U)
∇,V (t) ∈ Γ2(E|UbE∗|U ) such that

(e−tH
(U)
∇,V σ)(x) =

∫
U

k
(U)
∇,V (t)(x, y)σ(y) dy

for almost all x ∈ U and all σ ∈ Γ2(E|U ).
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3. A functional-analytic construction of the heat kernel in Hermitian bundles over Riemannian manifolds

Teorema 3.5. The map (0,∞) 3 t 7→ k
(U)
∇,V (t) ∈ Γ2(E|UbE∗|U ) is measurable and is the unique map k :

(0,∞) → Γ2(E|UbE∗|U ) with the property that e−tH
(U)
∇,V σ =

∫
U
k(t, ·, y)σ(y) dy for all σ ∈ Γ2(E|U ).

We are interested in an upper bound for ‖k(U)
∇,V (t)(x, y)‖op, and this will be obtained in the next theorem

that presents the integral kernel version of the diamagnetic inequality.

Teorema 3.6. For all t > 0, and almost all x, y ∈ U , ‖k(U)
∇,V (t)(x, y)‖op≤ k

(U)
d,b (t)(x, y).

Observația 3.7. Taking into account that b ≥ 0, the weaker inequality

‖(e−tH
(U)
∇,V σ)(x)‖Ex

≤ (e−tH
(U)
d,0 ‖σ‖)(x)

can be obtained, whence ‖k(U)
∇,V ‖op≤ k

(U)
d,0 , so the heat kernel on functions is a universal upper bound for all heat

kernels in bundles over U . It follows that k(U)
∇,V inherits all the integrability properties that k(U)

d,0 has. However,
since V was chosen only in Γ∞

loc(EndE), we cannot say anything about the smoothness of k(U)
∇,V in general.

3.4 The construction of the heat kernel in bundles over arbitrary
manifolds

To obtain the heat kernel k∇,V in E above M we shall consider an exhaustion M =
⋃

i≥0 Ui with relatively
compact open domains with smooth boundary. Any such open Ui admits a heat kernel kUi

∇,V in E|Ui constructed
as above, corresponding to the Friedrichs extension HUi

∇,V of the operator ∇∗∇ + V |Ui
(∇ representing, for

simplicity of writing, the restriction of the connection ∇ to the bundle E|Ui
). Intuitively, we will get k∇,V as

the limit of the kernels kUi

∇,V , but in an indirect way. The following theorem will obtain, on each open Ui, a
map k

(i)
∇,V which will later be proven to be exactly the restriction to Ui of the kernel k∇,V we are looking for.

Teorema 3.8. For all i ≥ 0 and all t > 0, the sequence (k
Uj

∇,V (t)|Ui×Ui
)j≥i is Cauchy in Γ2(E|Ui

bE∗|Ui
), so

it will have a unique limit, denoted k
(i)
∇,V (t). This limit will have the property that∫

Ui

k
(i)
∇,V (t)(x, y)σ(y) dy = [e−tH∇,V ιi(σ)](x)

for all σ ∈ Γ2(E) and almost all x ∈ Ui.

So far, we have obtained a map k
(i)
∇,V (t) on each domain Ui, but is there any relationship between all these

maps? The following theorem will show us that, indeed, these maps satisfy a very convenient compatibility
relationship that will allow us to define their pointwise limit on the whole manifold.

Teorema 3.9. If i ≤ j then the ”compatibility relationship”

k
(j)
∇,V (t)|Ui×Ui

= k
(j)
∇,V (t)

is true.

For the actual construction of the heat kernel in E, let us denote by Č

k
(i)
∇,V (t) ∈ Γ2

loc(E b E∗) the extension

of k(i)∇,V (t) by 0 to M ×M ; we shall choose a measurable representative l
(i)
∇,V (t) of Č

k
(i)
∇,V (t) ∈ Γ2

loc(E b E∗) for
each i ≥ 0 as follows:

• l
(0)
∇,V (t) is chosen arbitrarily;

• l
(i+1)
∇,V (t) is chosen such that l(i+1)

∇,V (t)|Ui×Ui
= l

(i)
∇,V (t) (such a choice is possible thanks to the compatibility

relationship proved above).

We noe define k∇,V (t) = limi→∞ l
(i)
∇,V (t). Since the sequence

´

l
(i)
∇,V (t)

¯

i≥0
is constant from some i onward

for all x, y ∈ M , the limit exists.

Teorema 3.10. The measurable map (0,∞) 3 t 7→ k∇,V (t) ∈ Γ2
loc(EbE∗) is the heat kernel in E corresponding

to the connection ∇ and to the potential V , and is the unique map with these properties.

Corolarul 3.11. For all t > 0 and almost all x, y ∈ M , ‖k∇,V (t)(x, y)‖op≤ kd,b(t)(x, y).
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3. A functional-analytic construction of the heat kernel in Hermitian bundles over Riemannian manifolds

3.5 Integrability and smoothness properties
From the weak version ‖k∇,V (t)(x, y)‖op≤ h(t, x, y) for all t > 0 and almost all x, y ∈ M of the diamagnetic

inequality, we immediately conclude that k∇,V inherits the same integrability properties that h has (see section
1.4). In particular, as h is jointly continuous and therefore bounded on any compact subset, it follows that
k∇,V ∈ Γ∞

loc(CbE bE∗). Also, since (x, y) 7→ h(t, x, y) is integrable and square integrable in each argument, it
follows that so will be (x, y) 7→ ‖k∇,V (t)(x, y)‖op, therefore k∇,V (t)(x,−) ∈ Γ1(E∗)∩Γ2(E∗) and k∇,V (t)(·, y) ∈
Γ1(E) ∩ Γ2(E) for all t > 0 and almost all x, y ∈ M .

So far, the mathematical tools at our disposal and the assumptions we have placed ourselves under have
allowed us to study only the integrability of k∇,V . We shall now make the assumption that V is smooth and
show that under this assumption k∇,V is, in turn, smooth.

Teorema 3.12. If V is smooth, the differential operator 2∂t + L is hypoeliptic.

Teorema 3.13. The (regular) distribution u = k∇,V |(0,∞)×U1×U2
∈ D′((0,∞) × U1 × U2,Cr2) is a solution in

the distributional sense of the equation (2∂t + L)u = 0.

Corolarul 3.14. The kernel k∇,V is smooth on (0,∞)×M ×M .

Under the smoothness assumption on V , we can improve the diamagnetic inequality: it will be true
everywhere, not just almost everywhere.

Corolarul 3.15. If V is smooth and v : M → R is a smooth function such that v ≤ b, then ‖k∇,V (t)(x, y)‖op≤
kd,v(t)(x, y) for all t > 0 and x, y ∈ M .

3.6 The behaviour under bounded perturbations
Sometimes, in the study of a problem, it may be useful to replace the potential V with some more convenient

approximations Vj , to study the problem with the perturbed Hamiltonian H∇,Vj
= H∇,V + (Vj − V ) and then

try to extend the conclusions to the ”original Hamiltonian” H∇,V through a passing to the limit. It is useful,
then, to study the behaviour of the heat kernel under such bounded perturbations Vj −V . Before proceeding to
this study, let us remark that the diamagnetic inequality, both in the semigroup and integral kernel versions, is
true not only for potentials V for which inf b ≥ 0 (as we have assumed for simplicity so far), but also for more
general potentials for which inf b 6= −∞. Indeed, in this last case it is sufficient to redo all the above proofs for
the potential V − inf b, whence the conclusion will be immediate.

Teorema 3.16. Let B : Γ2(E) → Γ2(E) be a self-adjoint linear operator defined everywhere (hence bounded),
and let λ = inf specB. Then

‖k∇,V (t)(x, y)− k∇,V+B(t)(x, y)‖op≤
∫ t

0

e−(t−ε)λ dε ‖B‖ kd,b(t)(x, y)

for almost all x, y ∈ M .

Corolarul 3.17. Let (Vj)j≥0 and V be locally essentially bounded and self-adjoint fibered potentials, such that
Vj → V in Γ∞(EndE). Using the notations from the previous theorem, k∇,Vj

(t)(x, y) → k∇,V (t)(x, y) in
L(Ey, Ex) when j → ∞, for all t > 0 and almost all x, y ∈ M .
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4. STOCHASTIC INTEGRATION

This chapter contains the second original result of the thesis: the construction of the concept of ”stochastic
integral” using exclusively functional-analytic and Riemannian-geometric tools. The stochastic integrals used
in the literature are the Itô integral and the Stratonovich integral. Both aim to answer the same question: can
we integrate a function along a continuous-time stochastic process on which it depends? The two integrals are
two different (but connected by a simple formula) answers to this question. The deep geometric substratum
that underlies them tends to be obscured by the probabilistic language in which these concepts were originally
formulated. We shall discover in this chapter that, by extracting the problem from the domain of probability
theory and placing it in an explicitly geometric one (Riemannian manifolds and integration of 1-forms on curves),
we gain a completely new understanding of these stochastic concepts. In particular, we shall see that we can
define a general concept of stochastic integral and construct an infinity of such integrals, among which the Itô
and Stratonovich ones are special cases. We shall also see why in the usual approximations of the Itô integral
the increments are oriented ”only toward the future”.

In this chapter, α ∈ Ω1(M) will be a smooth, real 1-form; we know what the line integral
∫
c
α means when

c : [0, 1] → M is a smooth curve, and we shall try to make sense of the same integral when c is just continuous
(and so the tangent vector 9c no longer exists).

To orient the reader’s expectations a bit, let us briefly review what is known about stochastic integration in
Rn. If c is a sufficiently smooth curve, the Riemann sums

2k−1∑
j=0

α

ˆ

c

ˆ

jt

2k

˙˙ „

c

ˆ

(j + 1)t

2k

˙

− c

ˆ

jt

2k

˙ȷ

converge to the line integral
∫
c
α. It is interesting to ask: if c is only continuous (or even only an element of∏

s∈[0,t] M), do these sums still converge to anything? The answer is known to be affirmative, but in a slightly
weaker sense, no longer true for just every curve: for almost any curve c (in the sense of the Wiener measure),
the limit exists and is called the Itô integral. Furthermore, if we symmetrize the Riemann sums above, in the
sense of considering now

2k−1∑
j=0

1

2

„

α

ˆ

c

ˆ

jt

2k

˙˙

+ α

ˆ

c

ˆ

(j + 1)t

2k

˙˙ȷ „

c

ˆ

(j + 1)t

2k

˙

− c

ˆ

jt

2k

˙ȷ

,

they will converge, for almost all curves c, to another limit, called the Stratonovich integral.
It is useful to note an interesting fact: if in the formula

2k−1∑
j=0

∫
[0,1]

α
(1−τ) c( jt

2k
)+τ c(

(j+1)t

2k
)

„

c

ˆ

(j + 1)t

2k

˙

− c

ˆ

jt

2k

˙ȷ

dP (τ) ,

where P is a probability on [0, 1], we consider in turn P = δ0 (the Dirac measure concentrated at 0) and
P = 1

2 (δ0 + δ1), then we obtain the sums that converge to the Itô integral and, respectively, the sums that
converge to the Stratonovich integral. So, these two stochastic integrals and their approximations are particular
cases of a general concept of stochastic integral that we shall highlight below. The generalization of this formula
from Rn to M is straightforward: the line segment τ 7→ τ c( jt

2k
)+(1− τ) c( (j+1)t

2k
) will be replaced by the unique

minimizing geodesic between c( jt
2k
) and c( frac(j + 1)t2k) (when it exists), and the vector c( (j+1)t

2k
)− c( jt

2k
) will

be replaced by the tangent vector of this geodesic at the moment τ .
As in chapter 2, let us fix once and for all a point x0 ∈ M and for any t > 0 consider the space Ct = {c :

[0, t] → M | c is continuous, with c(0) = x0} endowed with the Wiener measure wt.
We consider the trivial bundle E = M ×C endowed with the trivial Hermitian structure and the connection

∇(α)f = df + ifα where i = sqrt−1 is a complex square root of −1. It is easy to see that ∇(α) is Hermitian

11



4. Stochastic integration

and that the operator −∆(α) = (∇(α))∗∇(α) : C∞
0 (M) → C∞

0 (M) is symmetric and positive-definite. Using
the Friedrichs construction we obtain a self-adjoint, positive-definite, densely defined extension Lα in L2(M).
Using the results obtained in chapter 3, the semigroup (e−tLα)t≥0 will admit a heat kernel hα associated to the
connection ∇(α). It will be smooth and, from the diamagnetic inequality, will have the property |hα(t, x, y)|≤
h(t, x, y) for any t > 0 and almost all x, y ∈ M , where h is the kernel of (e−tL0)t≥0 (corresponding to the 1-form
α = 0), that is, the heat kernel on M .

For every k ∈ N we shall consider the manifold Mk = M2k and the natural projection πk : Ct → Mk given
by πk(c) = pc( t

2k
), . . . , c( 2

kt
2k

)q. Regardless of whether we endow Ct with the topology of uniform convergence of
curves or with that of pointwise convergence, πk will be continuous.

To facilitate the reader’s orientation in the text that follows, now is the right time to outline the result we are
looking for and the strategy by which we shall obtain it. Thus, we shall construct a complex measure density
ρα,t ∈ L∞(Ct) and seek to show that the map R 3 s 7→ ρsα,t ∈ B(L2(Ct)) (the space of bounded operators
on L2(Ct)) is a 1-parameter strongly continuous unitary group whence, with Stone’s theorem, it will have a
self-adjoint generator Stratt(α). It will be seen that this generator is exactly the Stratonovich integral. The
difficulty of proving this assertion comes from the fact that ρα,t will be obtained by a very abstract procedure,
therefore the group structure and unitarity are very hard to prove. To highlight these concrete properties, we
shall show that ρα,t is the limit of a sequence of functions with the desired properties, which will be transfered
to the limit by convergence.

More precisely, we shall construct a sequence of measurable real functions SP,t,k(α) linear in α ∈ Ω1(M)
such that eiSP,t,k(α) → ρα,t in L2(Ct). Although simple, this idea is complicated by some technical details that
we shall point out when we meet them and that force us to approach the problem indirectly: we shall first prove
the announced convergence in the space L2(Ct(U)) associated with an arbitrary relatively compact open subset
U with smooth boundary, and then we shall consider an exhaustion of M with such domains, which will allow
us to prove the result in the whole L2(Ct). The strategy of using exhaustions with relatively compact domains
is natural if we remember that we used it both in the construction of the Wiener measure and in that of the
heat kernel in bundles.

4.1 A measure density on the space of continuous curves contained
in a regular domain

4.1.1 The construction of a measure density
Let U ⊆ M be a connected relatively compact open domain with smooth boundary such that x0 ∈ U . Let

us endow the space
Ct(Ū) = {c : [0, t] → Ū | c continuous, with c(0) = x0} ,

with the corresponding Wiener measure w
(U)
t as we constructed it in subsection 2.2.2. Endowed with the

distance D(c0, c1) = maxs∈[0,t] dpc0(s), c1(s)q this becomes a metric space; it is separable (and therefore second-
countable), as shown in [Michael61].

Let
Cyl(Ct(Ū)) = {f ∈ Cb(Ct(Ū)) | ∃k ≥ 0 și fk ∈ C(Ū2k) astfel încât f = fk ◦ πk}

be the algebra of continuous cylindrical functions on Ct(Ū). Clearly, Cyl(Ct(Ū)) ⊂ L1(Ct(Ū)).
Let us define the (obviously linear) functional W (U)

α,t : Cyl(Ct(Ū)) → C by

W
(U)
α,t (fk ◦ πk) =

∫
M

dx1 h
(U)
α

ˆ

t

2k
, x0, x1

˙

. . .

∫
M

dx2k h
(U)
α

ˆ

t

2k
, x2k−1, x2k

˙

fk(x1, . . . , x2k)

for all fk ◦ πk ∈ Cyl(Ct(Ū)). In what follows we are going to show that we may extend it to L1(Ct(Ū)) by
continuity.

Propoziția 4.1. The algebra Cyl(Ct(Ū)) is dense in Lp(Ct(Ū), w
(U)
t ) for all p ∈ [1,∞).

Notice now that

|W (U)
α,t (fk ◦ πk)|≤

≤
∫
U

dx1

ˇ

ˇ

ˇ

ˇ

h(U)
α

ˆ

t

2k
, x0, x1

˙ˇ

ˇ

ˇ

ˇ

. . .

∫
U

dx2k

ˇ

ˇ

ˇ

ˇ

h(U)
α

ˆ

t

2k
, x2k−1, x2k

˙ˇ

ˇ

ˇ

ˇ

|fk(x1, . . . , x2k)|≤

12



4. Stochastic integration

≤
∫
U

dx1 h
(U)

ˆ

t

2k
, x0, x1

˙

. . .

∫
U

dx2k h
(U)

ˆ

t

2k
, x2k−1, x2k

˙

|fk(x1, . . . , x2k)|=

= ‖fk ◦ πk‖L1(Ct(Ū)) ,

so W
(U)
α,t is continuous with respect to the norm ‖·‖L1(Ct(Ū)) on Cyl(Ct(Ū)) and, since the latter is dense in

L1(Ct(Ū)), it follows that we may extend W
(U)
α,t to a continuous linear functional on L1(Ct(Ū)), therefore there

exists ρ
(U)
α,t ∈ L∞(Ct(Ū)) such that W

(U)
α,t (f) =

∫
Ct(Ū)

fρ
(U)
α,t dw

(U)
t for all f ∈ L1(Ct(Ū)). Moreover, |W (U)

α,t (f)|≤
‖f‖L1(Ct(Ū)) for all f ∈ L1(Ct(Ū)), so ‖ρ(U)

α,t ‖L∞(Ct(Ū))≤ 1.

4.1.2 A sequence of approximations for the measure density

So far, ρ
(U)
α,t has been constructed by a very abstract procedure, so its properties are difficult to study.

Therefore, in what follows we shall construct a series of concrete approximations of this function, which will
enjoy two essential properties: a group property, and the fact of being of absolute value 1. We will then show
that this sequence converges to ρ

(U)
α,t , and so these two properties will also be transmitted to ρ

(U)
α,t .

Let P be a regular Borel probability on the interval [0, 1]; we shall see later that the role of P will be to
completely classify the stochastic integrals. We shall denote by M1(P ) the moment of P of order 1, i.e

M1(P ) =

∫
[0,1]

τ dP (τ) .

If the points x and y may be joined by a unique minimizing geodesic, we shall denote it by γx,y : [0, 1] → M ,
where we understand that γ(0) = x and γ(1) = y. We then define IP (α) : M ×M → R as follows:

• IP (α)(x, y) =
∫
[0,1]

αγx,y(τ)( 9γx,y(τ)) dP (τ), if there exists a unique minimizing geodesic γx,y between x

and y;

• IP (α)(x, y) = 0, otherwise.

For all k ∈ N, let us define now the ”approximations” SP,t,k(α) : Ct → R by

SP,t,k(α)(c) =

2k−1∑
j=0

IP (α)

ˆ

c

ˆ

jt

2k

˙

, c

ˆ

(j + 1)t

2k

˙˙

+

+
t

2k
(d∗α)

ˆ

c

ˆ

jt

2k

˙˙ ∫
[0,1]

(2τ − 1) dP (τ) .

So far, ρ(U)
α,t has been obtained by a highly abstract procedure (section 4.1), which makes it extremely difficult

to study its properties and use it. The following theorem fixes this situation, giving us a concrete understanding
of the measure density of this object as the limit of a sequence of explicitly constructed approximations.

Teorema 4.2. limk→∞ eiSP,t,k(α)|Ct(Ū) = ρ
(U)
α,t în L2(Ct(Ū), w

(U)
t ), uniformly with respect to t from compact

subsets of (0,∞), and uniformly with respect to x0 ∈ U .

4.2 A measure density on the space of continuous curves contained
in the whole manifold

Let us now consider an exhaustion M =
⋃

j≥0 Uj of M with regular domains as above. To make the notation
a little easier, let us write ρ

(j)
α,t instead of ρ(Uj)

α,t , h(j)
α instead of h(U)j)

α and w
(j)
t instead of w(Uj)

t . We know for
now that eiSP,t,k |Ct(Ūj)

→ ρ
(j)
α,t in L2(Ct(Ūj), w

(j)
t ).

The following lemma is as important as it is trivial.

Lema 4.3. If i ≤ j then ρ
(j)
α,t|Ct(Ūi)

= ρ
(i)
α,t almost everywhere with respect to the Wiener measure w

(i)
t .

From the equality ρ
(j)
α,t|Ct(Ūi)

= ρ
(i)
α,t almost everywhere for i ≤ j it follows that there exists the pointwise limit

limj→∞ ρ̃
(j)
α,t, denoted ρα,t. It will be a measurable function (as the pointwise limit of measurable functions),
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4. Stochastic integration

and bounded by 1 almost everywhere, since all functions in the sequence are so. It will be therefore a function
from L∞(Ct, wt). With the argument from the lemma above it can be shown that ρα,t|Ct(Ūj)

= ρ
(j)
α,t for all j ≥ 0,

as elements of L∞(Ct, w(j)
t ).

After all these preparatory results, we can finally prove the central result we were after.

Teorema 4.4.
lim
k→∞

‖eiSP,t,k(α) − ρα,t‖L2(Ct)= 0

uniformly with respect to t ∈ (0, T ], for every T > 0.

Corolarul 4.5. ρα,t does not depend on the exhaustion with regular domains that we have employed.

4.3 The Stratonovich integral
We have obtained that ρα,t is the limit of a series of exponentials with imaginary exponents. It is reasonable

to ask whether ρα,t has such a form, and if so it is interesting to study its exponent. The answer to this question
(and the moral justification of all the effort made in order to obtain the above technical results) is given by the
following theorem.

Teorema 4.6. There exists a unique real function Stratt(α) ∈ L0(Ct) such that ρα,t = ei Stratt(α).

When we constructed the functions SP,t,k(α), we did it so that the functions eiSP,t,k(α) approximate ρα,t =
ei Stratt(α) in L2(Ct). We shall see that this approximation property extends, albeit more weakly, to the exponents.

Teorema 4.7. limk→∞ SP,t,k(α) = Stratt(α) in measure, uniformly with respect to t from bounded subsets of
(0,∞).

We shall see in detail in the next section that Stratt is the Stratonovich integral. That this is the limit in
measure of a certain series of approximations was already known; what is new (and unexpected) is that it can be
obtained as the generator of the unitary group discussed above (or, abandoning rigour, that it is the ”logarithm”
of the function ρα,t). This suggests that ρα,t, being the imaginary exponential of a kind of curvilinear integral,
can in turn be interpreted as a kind of parallel transport - namely the stochastic parallel transport in the bundle
M × mathbbC. These considerations, however, will be the subject of another chapter.

Corolarul 4.8. The map Ω1(M) 3 α 7→ Stratt(α) ∈ L0(Ct) is R-linear.

4.4 A general concept of stochastic integral
In order to be able to derive a general concept of stochastic integral, let us return to the approximations

SP,t,k(α) constructed above and let us define the approximations

AP,t,k(α)(c) = SP,t,k(α)(c)−
t

2k

2k−1∑
j=0

(d∗α)

ˆ

c

ˆ

jt

2k

˙˙ ∫
[0,1]

(2τ − 1) dP (τ) = (4.1)

=

2k−1∑
j=0

IP (α)

ˆ

c

ˆ

jt

2k

˙

, c

ˆ

(j + 1)t

2k

˙˙

for every curve c ∈ Ct (that is, we only drop the term containing d∗α și M1(P )). We shall study the behaviour
of these approximations on smooth curves, and this ”classical” behavior will guide us towards the understanding
of ”stochastic” behavior.

4.4.1 An approximation of the line integral along differentiable curves
Teorema 4.9. If c : [0, t] → M is a twice continuously differentiable curve, then

∫
c
α = limk→∞ AP,t,k(α)(c).
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4. Stochastic integration

4.4.2 A geometric definition and a classification of the stochastic integrals
We shall draw inspiration from the similarity between theorem 4.9 and theorem 4.7 in order to produce a

concept of stochastic integral. Let Prob([0, 1]) be the space of regular Borel probabilities on the interval [0, 1].

Definiția 4.10. We shall say that Intt : Ω1(M) → L0(Ct) is a stochastic integral if and only if there exists
P ∈ Prob([0, 1]) such that Intt(α) is the limit in measure of the approximation sequence AP,t,k(α) for all
α ∈ Omega1(M). In this case, we shall denote this stochastic integral by IntP,t, to highlight the dependence on
P .

Although in theorem 4.7 the convergence in measure was uniform with respect to t from compact subsets,
we did not include this property in the definition of stochastic integrals, it not being clear at the time of writing
whether this is an essential ingredient of the concept or, on the contrary, an accidental one without major
consequences.

Observația 4.11. Considering the nature of the concept of convergence in measure, we emphasize that Intt(α)(·)
should be understood not as a function defined for each curve in Ct, but as an element of L0(Ct). This is the
major difference from the curvilinear integral, which is defined for every piecewise-smooth curve.

Let P ∈ Prob([0, 1]). We are interested in studying whether there is any relationship between IntP,t(α) and
the function Stratt(α) constructed in section 4.3. We note that for any c ∈ Ct,

lim
k→∞

t

2k

2k−1∑
j=0

(d∗α)

ˆ

c

ˆ

jt

2k

˙˙

=

∫ t

0

(d∗α)(c(s)) ds

as a limit of Riemann sums associated to the continuous function (d∗α) ◦ c, the equidistant division with 2k

steps of the interval [0, t] and the system of intermediate points pc( jt
2k
)q0≤j≤2k−1. Moreover, then, the above

convergence is also in measure (pointwise convergence involving the one in measure). If we take the limit in
measure in formula (4.1) defining the approximations AP,t,k, we get

IntP,t(α)(c) = Stratt(α)(c)−
∫
[0,1]

(2τ − 1) dP (τ)

∫ t

0

(d∗α)(c(s)) ds

which shows that even though the probability P can be extremely complicated, the corresponding stochastic
integral IntP,t retains from it only its moment of order 1, and that any two probabilities in Prob([0, 1]) with the
same moment of order 1 produce the same stochastic integral. Also, since P appears only in the term containing
d∗α, and therefore any stochastic integral is essentially the function Stratt, we conclude that IntP,t exists for
any P ∈ Prob([0, 1]). Since the function 2τ − 1 has a minimum of −1 and a maximum of 1 on [0, 1], and since
P is a probability, it follows that

∫
[0,1]

(2τ − 1) dP (τ) ∈ [−1, 1], and so that any stochastic integral Intt on Ct is
of the form Intt(α) = Stratt(α) + θ

∫ t

0
(d∗α)(c(s)) ds with θ ∈ [−1, 1].

Moreover, if P,Q ∈ Prob([0, 1]), then

IntP,t(α)(c) = IntQ,t(α)(c)− 2

∫
[0,1]

τ d(P −Q)(τ)

∫ t

0

(d∗α)(c(s)) ds ,

and so any two stochastic integrals differ only by a multiple of the integral of d∗α.
This is the right moment to see some concrete examples of such stochastic integrals and to compare the

results obtained so far with those already obtained in the probabilistic literature.

• If P = δ0 (the Dirac measure concentrated at 0), then

Intδ0,t(α)(c) = Stratt(α)(c) +

∫ t

0

(d∗α)(c(s)) ds .

Comparing the approximations Aδ0,k,t(α) of Iδ0,t(α) with those of Theorem 7.37 on p.110 of [Émery89] (or
with theorem A from [Darling84], which is however stated in some slightly more restrictive assumptions), we
immediately recognize that Intδ0,t(α) is the Itô integral of α, therefore from now on we shall denote it Itot(α).

• If P = Leb[0,1] (the Lebesgue measure on [0, 1]), or P = δ 1
2

(the Dirac measure concentrated at 1
2 ), or

P = 1
2δ1, or P = 1

2 (δ0 + δ1), then the corresponding stochastic integral is

IntLeb[0,1],t(α) = Stratt(α) .
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4. Stochastic integration

Comparing the approximations ALeb[0,1],k,t(α) of IntLeb[0,1],t(α) with those of Theorem 7.14 on p.96 of [Émery89],
we immediately recognize that IntLeb[0,1],t(α) is the Stratonovich integral of α. We also note that SLeb[0,1],k,t =
ALeb[0,1],k,t for every k ≥ 0. (The reader is invited to compare these results also with section 6 of [Norris92].)

• In general, if M1(P ) =
∫
[0,1]

τ dP (τ), then the stochastic integral IntP,t(α) corresponding to P ∈
Prob([0, 1]) coincides with the one produced by the probabilities δM1(P ) (the Dirac measure concentrated at
M1(P ) ∈ [0, 1]) and (1 − M1(P ))δ0 + M1(P )δ1, all these probabilities having the same moment of order 1,
namely M1(P ). But, although in principle we could study stochastic integrals by just using these very simple
measures, some results are easier to prove using more complicated measures having the same moment of order
1. For example, for the Stratonovich integral it is sometimes more convenient to use the Lebesgue measure on
[0, 1].

• The case M1(P ) = 0 is much simpler than all the others, since the only measure P with this property is
δ0. Indeed, if [ε, 1] ⊂ (0, 1] then

0 =

∫
[0,1]

τ dP (τ) ≥
∫
[ε,1]

τ dP (τ) ≥ εP ([ε, 1]) ≥ 0 ,

where P ([ε, 1]) = 0, so P ((0, 1]) = 0, that is, P is concentrated at 0. Since P is a probability, it follows that
P = δ0. Therefore, the only integral corresponding to the situation M1(P ) = 0 is the Itô integral.

Observația 4.12. It follows from the above examples that the Stratonovich and Itô integrals of α are equal if
and only if d∗α = 0. Compare this result with the one in lemma 8.24 on p.120 of [Émery89], where only a
sufficient condition (hard to verify in practice) is given in order to have this equality. More precisely, Émery
first introduces the concept of stochastic parallel transport in TM and in T ∗M , starting from which he builds
some semimartingales that depend on α, and if these have finite variation then the two stochastic integrals of α
are equal.

Propoziția 4.13. The Stratonovich integral has the property that Stratt(df)(c) = f(c(1)) − f(x0) for every
continuously differentiable real function f and for almost every c inCt.

Corolarul 4.14 (Itô’s lemma). If f : M → R is continuously twice-differentiable, and if ∆ is the Laplace-
Beltrami operator on M , then

f(c(1)) = f(x0) + Itot(df)(c) +

∫ t

0

(∆f)(c(s)) ds

for almost all c ∈ Ct.

As always, when we study an object that depends on some parameters it is interesting to study the properties
of this dependence. In particular, it is interesting to study how the stochastic integral IntP,t(α) depends on
t ∈ (0, T ], with T > 0. Since these integrals live in different spaces for different values of t (namely the spaces
L0(Ct), which depend on t), they must first be embedded in some same space in order for us to be able to
compare them, which we shall do in the next theorem. To state it, we recall that the natural topology in L0(Ct)
is that of convergence in the measure wt (which is easily shown to be equal to the measure (res[0,t])∗wT , where
res[0,t] : CT → Ct is the restriction res[0,t](c) = c|[0, t]). This topology is metrizable by any distance of the form

dt(f, g) =

∫
Ct

φ(|f − g|) dwt =

=

∫
CT

φ(|f ◦ res[0,t] −g ◦ res[0,t]|) dwT = dT (f ◦ res[0,t], g ◦ res[0,t])

where φ : [0,∞) → [0,∞) must be continuous, bounded, concave, increasing, with φ(0) = 0 and φ > 0 on
(0,∞). Any such distance is called a ”Lévy distance”.

For the line integral, if c : [0, T ] → M is continuously differentiable, then we have
ˇ

ˇ

ˇ

ˇ

ˇ

∫
c

α−
∫
res[0,t](c)

α

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

∫
res[t,T ](c)

α

ˇ

ˇ

ˇ

ˇ

ˇ

≤ sup
s∈[0,T ]

|αc(s)( 9c(s))| (T − t) .

In particular, the map [0, T ] 3 t 7→
∫
res[0,t](c)

α ∈ R is continuous. In the next theorem we shall present a weaker
analogue of this conclusion for stochastic integrals.

Teorema 4.15. For all α ∈ Ω1(M), the map (0, T ] 3 t 7→ IntP,t(α) ◦ res[0,t] ∈ L0(CT ) is continuous.
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4.5 The Feynman-Kac-Itô formula
In the following we shall see that the Stratonovich integral emerges absolutely naturally when we try to

derive the analogue of the Feynman-Kac formula in the presence of a magnetic potential represented by the
1-form α. Theorem 15.3 on p.162 of [Simon79b] presents an alternative perspective on this problem, but only
in the case M = Rn. The following theorem needs an extension of some of the notations used so far: thus,
instead of Ct which denotes a space of curves starting from x0, we shall use the space

Ct,x = {c : [0, t] → M continuous; c(0) = x}

which we shall endow with the Wiener measure wt,x and the Stratonovich integral Stratt,x.

Teorema 4.16 (The Feynman-Kac-Itô formula). If V : M → R is continuous and inf V > −∞, and if
f ∈ L2(M), then

(e−tHd+iα,V f)(x) =

∫
Ct,x

ei Stratt,x(α)−
∫ t
0
V (c(s)) ds f(c(t)) dwt,x(c)

for all t > 0 and almost all x ∈ M .

We choose to end here the presentation of results concerning the stochastic calculus on manifolds. The main
goal was to show that this chapter of mathematics can be built entirely using only tools of functional analysis,
without having to resort to concepts or techniques of probability theory. Also, another aim was to propose a
point of view from which the whole of stochastic calculus is seen as arising from a small number of fundamental
ideas, as an analogue of line integration. The strategy adopted in this text allowed the classification of stochastic
integrals and the highlighting of the simple relationship between them. In particular, we have seen that the
Stratonovich integral is the natural stochastic tool in problems with a pronounced geometric component, as
it allows many ideas of differential geometry to be carried over almost unchanged to the stochastic context.
In the next chapter we shall see that the Itô integral is the preferred stochastic tool in problems with a more
pronounced probabilistic component. Neither of these two integrals is ”better” than the other, the choice of
using any one of them being made according to the specifics of the problem studied.

From a technical point of view, we managed to perform all the constructions intrinsically, i.e. without
resorting to embedding the manifold into Euclidean spaces with Whitney’s theorem, as is done in most texts
on stochastic calculus on manifolds. We also did not need Cartan’s rolling map, which is used for example in
[Elworthy82]. It was also not necessary to choose an interpolation rule ([Émery89], p.94, where it is necessary
to use the measurable selection theorem, the verification of the hypotheses of which is completely non-trivial
because it requires the study of the properties of the Whitney topology on the space of differentiable curves from
[0, 1] to M - technical details expedited very quickly by Émery), its role being taken over by the cut-off function
χ as well as by the extension by 0 of the expression

∫
[0,1]

αγx,y(τ)( 9γx,y(τ)) dP (τ) whenever y is far from x. We
also did not need second-order tangent vectors and Schwartz’s second-order differential geometry, which Émery
needs. This parsimony of fundamental concepts and technical means was an intended goal of the present text
which stems from the belief that conceptual and technical minimality must be an imperative of any intellectual
construction.

Let us end by quickly discussing the orientation of the tangent vectors in the sequence of approximations of
the Itô integral, which we recall corresponds to P = δ0. It is reasonable that upon first contact with this integral
we ask: why should the tangent vectors (”increments”) be directed toward the future and not toward the past?
If we understand the stochastic integrals in the sense presented so far, the orientation of the tangent vectors
exp−1

x y (that is, y − x in Rn) is given by the expression
∫
[0,1]

αγx,y(τ)( 9γx,y(τ)) dP (τ) (taking then P = δ0),
i.e. essentially by the expression αc(s)( 9c(s)) that appears in the usual path integral. We thus understand that
the orientation of the tangent vectors is not something to be chosen, but is merely an automatic, inevitable
consequence of the analogy between stochastic integration and integration along smooth curves.
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5. THE SQUARE INTEGRABILITY OF THE STOCHASTIC
INTEGRALS

We saw in the previous chapter that stochastic integrals are functions from L0(Ct). It is reasonable to ask
whether they belong to more convenient function spaces, for example to L2(Ct). Unfortunately, our efforts
seem to indicate that without imposing additional assumptions this question proves to be intractable; we shall
therefore assume in this chapter that α has compact support. Under this assumption the answer to our question
is affirmative and, moreover, we shall see that stochastic integrals can be extended from 1-forms with compact
support to much larger spaces of forms.

5.1 Topological preliminaries
The function IP (α), although not smooth on M ×M , was regular enough to allow us to obtain the results

of the previous chapter. In this chapter, however, we shall need to use it in calculations involving derivatives,
so we will adjust it with a cut-off function to avoid its singularities and turn it into a smooth function. Thus, if
χ : M×M → [0, 1] is the cut-off function from chapter 3, we define I

(χ)
P (α) by I

(χ)
P (α) = χ IP (α) and we quickly

note that I
(χ)
P (α) is smooth. Corresponding to this function, we define the approximations A

(χ)
P,t,k(α) ∈ L0(Ct)

by

A
(χ)
P,t,k(α)(c) =

2k−1∑
j=0

I
(χ)
P (α)

ˆ

c

ˆ

jt

2k

˙

, c

ˆ

(j + 1)t

2k

˙˙

.

To begin with, let us prove that the approximations A
(χ)
P,t,k also converge in measure to IntP,t(α), so the intro-

duction of χ does not change anything from this point of view.

Teorema 5.1. The functions A
(χ)
P,t,k converge in measure to IntP,t(α).

5.2 The square integrability of the Itô integral
Teorema 5.2. If α has compact support then Itot(α) ∈ L2(Ct). Furthermore, there exists a measurable and
bounded function N : M → [0,∞) such that

‖Itot(α)‖2L2(Ct)
≤

∫
Ct

∫ t

0

‖αc(s)‖2T∗
c(s)

M N(c(s)) ds dwt(c) .

Corolarul 5.3. If α has compact support, then IntP,t(α) ∈ L2(Ct). Furthermore,

‖IntP,t(α)‖L2(Ct) ≤

d∫
Ct

∫ t

0

‖αc(s)‖2T∗
c(s)

M N(c(s)) ds dwt(c)+

+ 2M1(P )

d∫
Ct

ˆ∫ t

0

(d∗α)(c(s)) ds

˙2

dwt(c)

A consequence of this last formula is what we might call ”the stochastic embedding”: if we endow the space
of smooth 1-forms with compact support Ω1

0(M) with the norm

‖α‖(P,χ) =

d∫
Ct

∫ t

0

‖αc(s)‖2T∗
c(s)

M N(c(s)) ds dwt(c)+
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5. The square integrability of the stochastic integrals

+ 2M1(P )

d∫
Ct

ˆ∫ t

0

(d∗α)(c(s)) ds

˙2

dwt(c)

then the map Ω1
0(M) 3 α 7→ IntP (α) ∈ L2(Ct) is a continuous embedding with norm at most 1. Moreover,

if we denote by {Ω1
0(M)

(P,χ)
the completion of Ω1

0(M) in this norm, we may extend the stochastic integral by
continuity to a continuous linear map IntP : {Ω1

0(M)
(P,χ)

→ L2(Ct), so that we may define the stochastic integral
on a significantly wider space than Ω1

0(M). When P = δ0 (and therefore we work with the Itô integral), and
M = Rn, the interaction between the heat kernel and the distance function becomes very simple, a situation in
which we find ”Itô’s isometry”, i.e.

‖Itot(α)‖2L2(Ct)
≤ 2n

∫
Ct

∫ t

0

‖αc(s)‖2T∗
c(s)

Rn ds dwt(c) ,

known in the stochastic calculus on Rn (with inequality, however, instead of equality).
We also note that if 0 < M1(P ) ≤ M1(Q), then

‖α‖(P,χ)≤ ‖α‖(Q,χ)≤
M1(Q)

M1(P )
‖α‖(P,χ) ,

so the spaces {Ω1
0(M)

(P,χ)
and {Ω1

0(M)
(Q,χ)

coincide as topological vector spaces and their norms are quasi-
isometric.

Corolarul 5.4. If α ∈ {Ω1
0(M)

(δ0)
then

∫
Ct
Itot(α) dwt = 0.

The reader is invited to compare the above corollary with theorem 3.2.1.(iii) on p.30 of [Øksendal13], which
states a similar result in the usual stochastic formalism in Rn. Likewise, one is invited to compare the theorem
5.2 with the statement and proof of Itô’s isometry from the stochastic calculus in Rn (lemma 3.1.5 on p.26 and
corollary 3.1.7 on p.29 of the same book), for a better understanding of the results obtained in this text. Also,
the reader is invited to notice that in this chapter the main character was the Itô integral, of all the stochastic
integrals it lending itself best to the type of mathematical analysis reasoning constructed above. This situation
is in contrast to the more geometric one in chapter 4, where the Stratonovich integral proved to be the main
tool. This suggests that in applications the choice of one among all the stochastic integrals is one of convenience:
where geometric reasoning prevails, the use of the Stratonovich integral is preferable, while in reasonings with
a strong analytical character, the Itô integral is recommended.
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6. THE STOCHASTIC PARALLEL TRANSPORT

The purpose of this chapter is the construction of the concept of stochastic parallel transport using only
functional analysis tools and concepts. The overall idea of the text and even some proof techniques will resemble
those used in constructing the Stratonovich stochastic integral; the non-triviality of the bundle in which we shall
work and the non-trivial dimension of its fiber will, however, complicate the problem from a technical point of
view.

6.1 Motivation and the outline of the chapter
The concept of ”stochastic parallel transport” in a vector bundle E over a Riemannian manifold M is usually

presented as a byproduct of the concept of ”stochastic differential equation”; this is the approach chosen in most
texts, for example [IW89] and [Meyer82]. Despite this, K. Itô had conceived this concept differently ([Itô63],
[Itô75a], [Itô75b]): for any continuous curve c : [0, t] → M , we consider the unique geodesic segment that joins
the consecutive ”dyadic” points c( jt

2k
) and c( (j+1)t

2k
), we these assemble these 2k geodesic segments into a single

piecewise geodesic zigzag curve, and we parallel transport the vector v ∈ Ec(0) along this curve to Ec(t); for
almost all continuous curves c, the limit when k → ∞ will exist and will be called ”the stochastic parallel
transport of v along c”. The two approaches are equivalent, as shown in [Meyer82] and [Émery90], and both
are constructed in the context of probability theory, thus being more accessible to probabilists. The purpose of
this chapter is to reconstruct the concept of ”stochastic parallel transport” using only the tools and techniques
of functional analysis, thus making it accessible to a much wider class of mathematicians.

Since the constructions in this text will be quite technical, let us outline the intuition that underlies them.
Let Dt = { jt

2k
| k ∈ N, j ∈ N∩ [0, 2k]} - the ”dyadic” numbers between 0 and t. Following Itô’s idea, the parallel

transport of v ∈ Ec(0) along the zigzag line determined by the points {c(0), c( t
2k
), . . . , c( (2

k−1)t
2k

), c(t)} is the
parallel transport Tk,0 from c(0) to c( t

2k
), followed by the parallel transport Tk,1 from c( t

2k
) to c( frac2t2k)

and so on, ending with the parallel transport Tk,2k−1 from c( (2
k−1)t
2k

) to c(t); formally, it is Tk,2k−1 . . . Tk,0v.
Now follows the central insight of this chapter: the composition of operators Tk,2k−1 . . . Tk,0v can be seen as the
”contraction” of all the tensor products in

Tk,2k−1 ⊗ . . .⊗ Tk,0 ⊗ v ∈
ˆ

Ec(t) ⊗ E∗
c(

(2k−1)t

2k
)

˙

⊗ . . .⊗
´

Ec( t

2k
) ⊗ E∗

c(0)

¯

⊗ Ec(0) '

' Ec(t) ⊗
ˆ

E∗
c(

(2k−1)t

2k
)
⊗ E

c(
(2k−1)t

2k
)

˙

⊗ . . .⊗
´

E∗
c(0) ⊗ Ec(0)

¯

'

' Ec(t) ⊗ EndE∗
c(

(2k−1)t

2k
)
⊗ . . .⊗ EndE∗

c(0) .

Let us now see what this ”contraction” means. If U and V are finite-dimensional vector spaces, if u ∈ U and
ω ∈ V ∗, and A : U → V is a linear operator, then ω ⊗ A ⊗ u ∈ V ∗ ⊗ V ⊗ U∗ ⊗ U ' EndV ∗ ⊗ EndU∗; if
IdU and IdV are the identity operators on U and V , then IdU ⊗ IdV ∈ EndV ⊗ EndU , so it makes sense to
apply ω ⊗A⊗ u to IdU ⊗ IdV , the result being ω(Au). We see that to perform this type of contraction in the
composition of parallel transports considered above, we need an additional factor E∗

c(t) with which to pair the
factor Ec(t) in order to obtain EndE∗

c(t). This means that if ηc(t) ∈ Ec(t), then

ηc(t) ⊗ Tk,2k−1 ⊗ . . .⊗ Tk,0 ⊗ v ∈ EndE∗
c(t) ⊗ . . .⊗ EndE∗

c(0)

and
ηc(t)(Tk,2k−1 . . . Tk,0v) = (ηc(t) ⊗ Tk,2k−1 ⊗ . . .⊗ Tk,0 ⊗ v)(IdEc(t)

⊗ . . .⊗ IdEc(0)
) .

Following now Itô, we let k → ∞; what we get, then, will be a contraction between two tensor products with an
infinite number of factors; the rigorous construction of these tensor products will be our first task, but we can
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6. The stochastic parallel transport

say for now that these tensor product spaces will be Ec = ⊗s∈Dt EndEc(s) and its dual. If we denote the space
of continuous curves by Ct, the fact that Ec depends on c ∈ Ct suggests that the disjoint union

∐
c∈Ct

Ec will be
a (topological) vector bundle of infinite rank over Ct. Since ηc(t) ⊗ Tk,2k−1 ⊗ . . . ⊗ Tk,0 ⊗ v takes values   in the
fiber E∗

c for any k ∈ N and any c ∈ Ct, we understand that these tensor products of parallel transports will be
sections of some type in E∗, which makes it reasonable to assume that their limit when k → ∞ (the stochastic
parallel transport from which we removed η) will be a section of the same type. Indeed, this will be the case,
and to prove it we shall resort to Chernoff’s theorem on the approximation of contraction semigroups.

An unexpected consequence of the construction in this chapter is a new version of the Feynman-Kac formula
in vector bundles: not only will its proof be completely new, but also its assumptions appear to be the most
general considered so far in the literature, to the best of the author’s knowledge ; more precisely, the potential
will be chosen only locally integrable and lower bounded, and no restriction will be imposed on the manifold.

The plan of this chapter is as follows, with notations to be explained as they become necessary:

• we shall construct a bundle E over Ct, the fibers of which will be Hilbert spaces of infinite dimension;

• we shall consider spaces of p-integrable sections in E and E∗ and, in particular, we shall obtain by an
abstract argument a particular essentially bounded section ρt,ω,η, which will be the mean square limit of a
sequence of sections (Pt,ω,η,k)k∈N that will be constructed explicitly;

• we shall highlight a continuous conjugate-linear map Pp
t,v : Γp(E) → Γp(p∗tE), which we shall see to

enclose a lot of information both about the geometry of the bundle E → M and about the Wiener measure;

• using the map P2
t,v we shall be able to give a functional-analytic meaning to the concept of stochastic

parallel transport;

• finally, using the same map P2
t,v, we shall see an extension in the bundle E of the Feynman-Kac formula.

6.2 A bundle of infinite rank
Let E → M be a Hermitian bundle of complex rank r ∈ N, endowed with a Hermitian connection ∇. Let

Dt = { jt
2k

| k ∈ N, j ∈ N ∩ [0, 2k]} - the ”dyadic” numbers between 0 and t. We are interested in making sense
of the fibration described intuitively, not rigorously, by E =

Ò

s∈Dt
EndE → Ct.

If c ∈ Ct, we define the fiber Ec of E over c as
⊗

s∈Dt
EndEc(s). This is a tensor product with infinitely many

factors the definition of which, in turn, is non-trivial and requires discussion. Thus, for any x ∈ M , we endow
the space EndEx with the Hermitian product given by 〈A,B〉EndEx

= 1
r Trace(AB∗) when A,B ∈ EndEx. We

notice that 〈·,−〉EndEx = 1
r 〈·,−〉Ex⊗E∗

x
, the Hermitian product in the right member being the natural one on

the space Ex⊗E∗
x. If IdEx ∈ EndEx is the identity operator, then ‖IdEx‖EndEx= 1. This allows us to rigorously

construct the tensor product that gives the fiber Ec as follows. If Dt,k = { jt
2k

| j ∈ N ∩ [0, 2k]} for any k ∈ N,
then for any k ≤ k′, we identify the tensor monomial ⊗s∈Dt,k

ec(s) ∈
⊗

s∈Dt,k
EndEc(s) with the monomial

⊗s∈Dt,k′ e
′
c(s) ∈

⊗
s∈Dt,k′ EndEc(s) where e′c(s) = ec(s) for s ∈ Dt,k and e′c(s) = IdEc(s)

for s ∈ Dt,k′ \ Dt,k.
This identifies the space

⊗
s∈Dt,k

EndEc(s) with a subspace of the space
⊗

s∈Dt,k′ EndEc(s), which allows us to
consider the algebraic inductive limit lim−→k∈N

⊗
s∈Dt,k

EndEc(s). This limit space is naturally endowed with a
Hermitian product obtained from the Hermitian product on every space EndEc(s) as discussed above. Finally,
the algebraic inductive limit obtained is completed under this Hermitian product, in the sense of Hilbert spaces,
the result being the Hilbert space denoted Ec. It is important to note that Ec is separable because the set of
indices in the inductive limit is N and every space in the inductive limit is finite-dimensional.

We now define the total space of the fibration as E =
⋃

c∈Ct
{c}×Ec. The natural projection of E onto Ct will

be prE : E → Ct. For now, E has only been constructed fiberwise as a set; with the help of explicitly constructed
mutually compatible local trivializations, the space E is endowed with a topology.

Unlike the chapter where we construct the stochastic integrals, we shall use here the notation πk : Ct →
M2k+1 given by

πk(c) =

ˆ

c(0), c

ˆ

t

2k

˙

, . . . , c

ˆ

(2k − 1)t

2k

˙

, c(t)

˙

.

Propoziția 6.1. The projections πk : Ct → M2k+1 and the projection prE : E → Ct are continuous.
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6. The stochastic parallel transport

6.3 Integrable sections in bundles of infinite rank
Definiția 6.2. We shall say that the section σ : Ct → E is a cylindrical section if and only if there exists a
section s ∈ Γ∞

´

(EndE)b(2k+1)
¯

such that σ = s ◦ πk.

Definiția 6.3. We define the Lebesgue space Γ2(E) of square-integrable sections as the space of measurable
sections σ, identified under equality almost everywhere, with the property that the function Ct 3 c 7→ ‖σ(c)‖Ec∈
[0,∞) is in L2(Ct, wt).

Teorema 6.4. The space Γ2(E) endowed with the scalar product

〈σ1, σ2〉Γ2(E) =

∫
Ct

〈σ1(c), σ2(c)〉 mathcalEc
dwt(c)

is a Hilbert space. Its dual is Γ2(E∗), where E∗ is the dual bundle of E in which the fiber E∗
c is the dual space of

Ec for any c ∈ Ct.

More generally, and along the same lines of thought, one can introduce the spaces Γp(E) for all p ∈ [1,∞],
which will be Banach spaces. In particular, Γq(E) ⊆ Γp(E) if p ≤ q, since the Wiener measure is finite. Also,
Γp(E∗) is the dual of Γ

p
p−1 (E) for any p ∈ (1,∞]. The proofs are analogous to those for p-integrable function

spaces, the latter being available, for example, in chapter 4 of [Brezis11].

Teorema 6.5. The space Cylt(E) of essentially bounded cylindrical sections is dense in the space Γ2(E).

We shall consider, as in the other chapters, an exhaustion of M with relatively compact domains with smooth
boundary M =

⋃
i∈N Ui, such that x0 ∈ U0. In particular, these will be Riemannian manifolds, so all the above

considerations apply to them. The geometric objects extrinsic to the domain Ui will be visually represented by
the restriction symbol (for example, the fibrate E|Ui), and the objects intrinsically associated with Ui will carry
the index (i) (the heat kernel associated with the connection ∇ in E|Ui

will be h
(i)
∇ , the Laplacian understood

as the generator of the heat semigroup in C(Ui) will be L(i) etc.).
We shall further define a linear functional on Γ2(E|Ct(Ui)

), which we shall then show to be continuous, so it
will correspond to a section of Γ2(E∗|Ct(Ui)

) which will be intimately related to the stochastic parallel transport.
Let us fix ω ∈ E∗

x0
and η ∈ Γcb(E), and define the functional W (i)

t,ω,η on essentially bounded cylindrical sections
as follows: if s : Ui

2k+1 → (EndE)b(2k+1)|
U2k+1 is an essentially bounded section, we define

W
(i)
t,ω,η(s ◦ πk) =

∫
Ui

dx1 . . .

∫
Ui

dx2k

„

ω ⊗ h
(i)
∇

ˆ

t

2k
, x0, x1

˙

⊗ . . .

. . .⊗ h
(i)
∇

ˆ

t

2k
, x2k−1, x2k

˙

⊗ η(x2k)

ȷ

· s(x0, x1, . . . , sx
2k
) .

The dot in the integrand denotes a contraction of tensors which, to be understood, requires a little comment.
The term ω⊗h∇

`

t
2k
, x0, x1

˘

⊗ . . .⊗h∇
`

t
2k
, x2k−1, x2k

˘

⊗ η(x2k) belongs to the space E∗
x0

⊗ (Ex0 ⊗E∗
x1
)⊗ . . .⊗

(Ex
2k−1

⊗ E∗
x
2k
) ⊗ Ex

2k
which is naturally isomorphic to (E∗

x0
⊗ Ex0

) ⊗ . . . ⊗ (E∗
x
2k

⊗ Ex
2k
), which in turn is

isomorphic to (EndE∗)x0
⊗ . . .⊗ (EndE∗)x

2k
(we emphasize that the latter isomorphism is not the natural one

but is multiplied by a norming factor, because the scalar product of two endomorphisms was chosen so that the
identity has norm 1). In turn, s(x0, . . . , x2k) belongs to the space (EndE)x0

⊗ . . .⊗ (EndE)x
2k

, which clarifies
the tensor contraction in the integral.

W
(i)
t,ω,η is well-defined, trivially linear, and

|W (i)
t,ω,η(s ◦ πk)| ≤

1
?
r
‖ω‖E∗

x0

∫
Ct(Ui)

‖(η(c(t))‖(s ◦ πk)(c)‖ dw(i)
t (c) ≤

≤ 1
?
r
‖ω‖E∗

x0
[(e−tL(i)

‖η‖2)(x0)]
1
2 ‖(s ◦ πk)(c)‖Γ2(E|Ct(Ui)

) ,

where ‖η‖ denotes the function M 3 x 7→ ‖η(x)‖Ex
∈ [0,∞).

Since the essentially bounded sections are dense in Γ2(E|Ct(Ui)
), it follows that W

(i)
t,ω,η may uniquely extend

to a continuous linear functional on this space, so there exists a unique ρ
(i)
t,ω,η ∈ Γ2(E∗|Ct(Ui)

) such that

W
(i)
t,ω,η(σ) =

∫
Ct(Ui)

ρ
(i)
t,ω,η(c)(σ(c)) dw

(i)
t (c)
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6. The stochastic parallel transport

for all σ ∈ Γ2(E|Ct(Ui)
). Furthermore, ‖ρ(i)t,ω,η‖Γ2(E∗|Ct(Ui)

)≤ 1?
r
‖ω‖E∗

x0
[(e−tL(i)‖η‖2)(x0)]

1
2 .

Next, we shall seek to understand what kind of geometric object ρ(i)t,ω,η is; more precisely we shall investigate
its connection with the parallel transport in E. To this end, for any (x, y) ∈ M × M let us define P (x, y) :
Ey → Ex by:

• P (x, y) = the parallel transport from y to x, if there exists a unique minimizing geodesic (in M) between
x and y defined on [0, 1],

• P (x, y) = 0 otherwise.

We note that P thus defined is a section in the bundle E b E∗. As the subset

{(x, y) ∈ M ×M | there is a unique minimizing geodesic between x and y defined on [0, 1]}

is open in M ×M , in particular it will be measurable. Since (x, y) 7→ P (x, y) is a continuous section in E b E∗

on this subset, P will be a measurable section in this bundle.
With P thus defined, for any curve c ∈ Ct and any k ∈ N we define

Pt,ω,η,k(c) = ω ⊗ P

ˆ

c(0), c

ˆ

t

2k

˙˙

otimes . . .⊗ P

ˆ

c

ˆ

(2k − 1)t

2k

˙

, c(t)

˙

⊗ η(c(t))

and, as P is measurable and bounded by 1 in the pointwise operator norm, we conclude that Pt,ω,η,k is a
measurable and bounded cylindrical section in the bundle E∗. We shall show that ρt,ω,η is the limit of the
sequence (Pt,ω,η,k)k∈N in Γ2(E∗).

Teorema 6.6. The sequence (Pt,ω,η,k|Ct(Ui)
)k∈N converges to ρ

(i)
t,ω,η in Γ2(E∗|Ct(Ui)

), uniformly with respect to
t from bounded subsets of (0,∞).

So far, we have worked on the curve spaces Ct(Ui) associated with the domains Ui in the exhaustion of M .
We did this only for technical reasons. The time is now to remove this exhaustion and obtain global objects
and relationships between them.

Teorema 6.7. If i ≤ j then ρ
(j)
t,ω,η|Ct(Ui)

= ρ
(i)
t,ω,η.

This compatibility property between the sections (ρ
(j)
t,ω,η)j∈N ensures that the section defined by ρt,ω,η =

limj→∞ ρ
(j)
t,ω,η is well defined and that ρt,ω,η|Ct(Uj)

= ρ
(j)
t,ω,η. In the definition of ρt,ω,η we understand that

we work with measurable representatives of the classes of sections ρ
(j)
t,ω,η ∈ Γ∞(E∗|Ct(Uj)

) ⊆ Γ∞(E∗), so that
changing these representatives changes the limit only on some null subset.

Teorema 6.8. The section ρt,ω,η thus defined is measurable and essentially bounded. In addition, ‖ρt,ω,η(c)‖E∗
c
=

1?
r
‖ω‖E∗

x0
‖ηc(t)‖Ec(t)

for almost any c ∈ Ct.

We have seen in theorem 6.6 that Pt,ω,η,k|Ct(Uj)
→ ρt,ω,η|Ct(Uj)

in square mean with respect to the measure
w

(j)
t , for any j ∈ N. We shall now prove that all these convergences on the spaces Ct(Uj) lead to a global

convergence, on the space Ct.

Teorema 6.9. The sequence (Pt,ω,η,k)k∈N converges to ρt,ω,η in Γ2(E∗), uniformly with respect to t ∈ (0, T ] for
every T > 0.

6.4 A continuous map between spaces of integrable sections
The object ρt,ω,η, although it contains a lot of information, does not have a clear geometric interpretation. In

what follows we shall obtain a new mathematical object from it which will turn out to be the stochastic parallel
transport. Furthermore, the section η should play no role in defining the stochastic parallel transport, since the
sections Pt,v,k below (which will be seen to approximate the stochastic parallel transport) do not depend on it.
Indeed, the use of η was only dictated by the technical details of chosen proof strategy, with η having a purely
auxiliary role, and our efforts in what follows will be focused on removing it from the results obtained.

Let pt : Ct → M be the projection given by pt(c) = c(t). For all v ∈ Ex0
we shall denote by v♭ ∈ E∗

x0
the

linear form defined by v♭ =
?
r 〈·, v rangleEx0

∈ E∗
x0

. The notation p∗tE denotes the bundle over Ct obtained as
the pull-back under pt of the bundle E → M . The fiber (p∗tE)c will, by definition, be Ec(t), and we shall prefer
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6. The stochastic parallel transport

the second notation for its simplicity. We shall next construct, for any p ∈ (1,∞], a continuous conjugate-linear
map Γp(E) 3 ξ 7→ Pp

t,v(ξ) ∈ Γp(p∗tE) such that

[ρt,v♭,η(c)] [ξ(c)] = 〈Pp
t,v(ξ)(c), η(c(t))〉Ec(t)

for all η ∈ Γ∞(E).
Let M =

⋃
i∈N V ′

i be a cover of M with open trivialization domains for E. Let V0 = V ′
0 and Vi = V ′

i \ (V0 ∪
. . . ∪ Vi−1) for i ≥ 1; these subsets will be mutually disjoint measurable trivialization domains. Above each
Vi we shall consider a measurable orthonormal frame {η1i , . . . , ηri }. Defining ηl by ηl|Vi

= ηli for any 1 ≤ l ≤ r
and i ∈ N, we obtain a measurable orthonormal global frame {η1, . . . , ηr} in E, consisting of sections from
Γ∞(E) ⊆ Γt, so from sections ηl for which ρt,v flat,ηl is a well-defined object as we saw above. Let {η1, . . . , ηr}
be the dual frame in E∗ defined by ηk(η

l) = δlk (Kronecker’s symbol).
It is shown that ρt,ω,η, which has so far been constructed under the assumption that η ∈ Γcb(E), can be

defined for a significantly wider class of sections η that includes the space Γ∞(E).
If σ ∈ Γ

p
p−1 (p∗tE

∗), then for every c ∈ Ct we may write

σ(c) =

r∑
l=1

{σ(c) [ηl(c(t))]} ηl(c(t)) ∈ E∗
c(t) .

We then define the function Fp
t,v,ξ : Γ

p
p−1 (p∗tE

∗) → C by

Fp
t,v,ξ(σ) =

r∑
l=1

∫
Ct

{[σ(c)] [ηl(c(t))]} {[ρt,v♭,ηl(c)] [ξ(c)]} dwt(c)

and we immediately see that it is linear. It is also shown to be continuous, so there exists a unique section
Pp
t,v(ξ) ∈ Γp(p∗tE) such that

Fp
t,v,ξ(σ) =

∫
Ct

[σ(c)] [Pp
t,v(ξ)(c)] dwt(c)

for any σ ∈ Γ
p

p−1 (p∗tE
∗), and

‖Pp
t,v(ξ)‖Γp(p∗

tE)≤ r ‖v‖Ex0
‖ξ‖Γp(E) .

The continuity and conjugate-linearity of ξ 7→ Pp
t,v(ξ) are obvious.

Corolarul 6.10. In the above notations, 〈ηc(t), Pp
t,v(ξ)(c)〉Ec(t)

= [ρt,v♭,η(c)] [ξ(c)] for all η ∈ Γ∞(E) and almost
all c ∈ Ct.

The linearity of the dependence of Pp
t,v(ξ) on v ∈ Ex0

allows us to obviously define a section Pp
t (ξ) ∈

Γp(p∗tE)⊗ E∗
x0

so that Pp
t (ξ)(c)(v) = Pp

t,v(ξ)(c) for any v ∈ Ex0
and c ∈ Ct. Furthermore,

‖Pp
t (ξ)(c)‖Ec(t)⊗E∗

x0
= sup

∥v∥Ex0
=1

‖Pp
t,v(ξ)(c)‖Ec(t)

≤ r ‖v‖Ex0
‖ξ‖Γp(E)= r ‖ξ‖Γp(E) .

The map Pp
t encloses a lot of information about the differential geometry and the stochastic calculus asso-

ciated with the bundle E. Below we shall see only two uses of it, enough hopefully to convince the reader of its
importance.

6.5 The first application: the stochastic parallel transport
We start by defining the objects Pt,v,k by the explicit formula

Pt,v,k(c) = P

ˆ

c(t), c

ˆ

(2k − 1)t

2k

˙˙

. . . P

ˆ

c

ˆ

t

2k

˙

, c(0)

˙

v

where v ∈ Ex0
is arbitrary, c ∈ Ct and k ∈ N. We note that Pt,v,k(c) belongs to the fiber Ec(t) = (p∗tE)c. Since

we have shown that P is a measurable map, it means that Pt,v,k is a measurable section in p∗tE. Since, in
addition, ‖Pt,v,k‖Ec(t)

≤ ‖v‖Ex0
, we deduce that Pt,v,k ∈ Γ∞(p∗tE) ⊆ Γ2(p∗tE).

Let us define the section Id : Ct → E by Id(c) = ⊗s∈Dt
IdEc(s)

∈ Ec; more precisely, Id(c) is the equivalence
class (in the sense of constructing the inductive limit as a space of equivalence classes), for instance, of the
element IdEx0

, and the map Ct 3 c 7→ IdEx0
∈ Ec is obviously continuous. Moreover, it is obvious that

‖Id(c)‖Ec
= ‖Id(Ex0

)‖EndEx0
= 1, so Id ∈ Γ∞(p∗tE) ⊆ Γ2(p∗tE). We then notice that

[Pt,v♭,η,k(c)] [Id(c)] = [Pt,v♭,η,k(c)] [IdEc(0)
⊗ . . .⊗ IdEc(t)

] = 〈η(c(t)), Pt,v,k(c)〉Ec(t)
.
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6. The stochastic parallel transport

Teorema 6.11. Pt,v,k → P2
t,v(Id) in Γ2(p∗tE) for all v ∈ Ex0 , uniformly with respect to t ∈ (0, T ] for every

T > 0.

Comparing this result with the one obtained by probabilistic methods ([Itô63], [Itô75a], [Itô75b]), we conclude
that P2

t,v(Id) is the stochastic parallel transport in E of the vector v ∈ Ex0
. In particular, P2

t,v(Id) does not
depend on the choices made in its construction (trivialization domains, orthonormal local frames above them,
etc.), being the limit of a sequence of sections that do not depend on these choices.

6.6 The second application: the Feynman-Kac formula in vector
bundles

In the following, we shall present an extension of the Feynman-Kac formula in Hermitian bundles, one of
the motivations being the desire to convince the reader that the new formalism and methods constructed in this
chapter allow one to obtain all the already known results related to the stochastic parallel transport, sometimes
even under better assumptions than those currently in use. We shall work with a ”potential” V ∈ Γ1

loc(EndE)
with the property that ess infx∈M min specV (x) = β > −∞ (in short: V ≥ β), and with V (x) self-adjoint for
almost all x ∈ M . The quadratic form Γ0(E) 3 η 7→

∫
M
〈V (x)ηx, ηx〉Ex

dx ∈ R will give rise to a self-adjoint
densely defined in Γ2(E), which we shall continue to denote V , for simplicity. Indeed, the quadratic form is
well-defined because

ˇ

ˇ

ˇ

ˇ

∫
M

〈V (x)ηx, ηx〉Ex
dx

ˇ

ˇ

ˇ

ˇ

≤ sup
x∈M

‖ηx‖2
∫
supp η

‖V (x)‖op dx < ∞ .

It is also lower bounded by β because if {e1,x, . . . , er,x} is an orthonormal basis in Ex made of eigenvectors of V (x)
corresponding to the eigenvalues   λ1,x ≤ . . . ≤ λr,x ⊂ [β,∞) for almost all x ∈ M , and if ηx =

∑r
i=1 αi,x ei,x, we

have that

〈V (x)ηx, ηx〉Ex
=

〈
r∑

i=1

αi,xλi,xei,x,

r∑
j=1

αj,xej,x

〉
Ex

=

=

r∑
i=1

λi,x|αi,x|2≥
r∑

i=1

λ1,x|αi,x|2= λ1,x‖η‖2Ex
≥ β‖η‖2Ex

.

In the same way (using quadratic forms) one can construct the self-adjoint densely defined operator correspond-
ing to the sum of ∇∗∇ and V ; we shall denote it H∇,V . Of course, this construction can be performed not only
on M but also on any relatively compact open domain with smooth boundary.

When the point from which the curves start is no longer the fixed x0 ∈ M , as before, but some variable
x ∈ M , all the objects that depend on it will get it as an additional lower index, i.e. the space of continuous
curves what start from x will be Ct,x, on which we shall have the Wiener measure wt,x (precisely the notations
used in theorem 4.16), and all objects constructed in this text will accordingly acquire an additional index x,
that is, we shall have the sections ρt,ω,η,x, Pt,v,x and Pt,x etc.

For each k ∈ N let us denote by Vt,x,k ∈ Γ∞(E) the section given by

Vt,x,k(c) = e−
t

2k
V pcp t

2k
qq ⊗ . . .⊗ e−

t

2k
V (c(t)) .

Since V ≥ β and t ≥ 0, it is immediate that ‖Vt,x,k(c)‖Ec
≤ e−tβ for almost all c ∈ Ct,x, so by the Banach-

Alaoglu theorem we conclude that there exists a subsequence (kl)l∈N ⊆ N such that the subsequence (Vt,x,kl
)l∈N

has a weak accumulation point Vt,x ∈ Γ2(E). We conclude, in particular, that the section P2
t,x(Vt,x) exists in

Γ2(p∗tE)⊗ E∗
x.

Teorema 6.12 (The Feynman-Kac formula). If η ∈ Γ2(E) then

(e−tH∇,V η)(x) =

∫
Ct,x

[P2
t,x(Vt,x)(c)]

∗ ηc(t) dwt,x(c)

for all t > 0 and almost all x ∈ M .

We notice that if we define the map Vt,x : Ct,x → EndEx by

Vt,x(c) = [P2
t,x(Vt,x)(c)]

∗ [P2
t,x(Id)(c)]
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6. The stochastic parallel transport

the Feynman-Kac formula can be rewritten, in a trivial way, in the equivalent form

(e−tH∇,V η)(x) =

∫
Ct,x

[Vt,x(c)] [P2
t,x(Id)(c)]

−1 ηc(t) dwt,x(c) ;

thus rewritten, the Feynman-Kac formula in bundles was also obtained by other authors, but in other contexts
and under different assumptions:

• in [BP08] functional analysis techniques are used (also based on Chernoff’s theorem) but the potential is
assumed to be smooth and M is closed;

• in [DT01] probabilistic techniques are used to give in Proposition 4.5 very abstract conditions under
which the Feynman-Kac formula is valid, after which Proposition 5.1 shows that these assumptions are satisfied
when M is closed, and the potential (denoted there R) is assumed to be smooth (p.48);

• in [Güneysu10] the Feynman-Kac formula is proved using functional analysis techniques, but the existence
of the stochastic parallel transport is accepted without proof, under the assumption that the manifold is both
metrically and stochastically complete, and under very generous assumptions on the potential (in Theorem 3.1
it is assumed to be essentially bounded, and in theorem 3.3 the result is extended to the more general situation
when the potential is locally square-integrable); in remark 1.4 the author outlines how the proof would have to
be modified if the assumption of metric completeness were to be dropped, but without elaborating;

• in [BG20] (not yet published, existing only as a preprint at the time of writing) the potential V , which
can be understood as a differential operator of order 0, is now assumed to be a differential operator of order 0
or 1 acting on smooth sections in E (so in particular V has smooth coefficients), so that the operator ∇∗∇+ V
is sectorial; this potential naturally gives rise to a stochastic differential equation the unique solution of which
is assumed to be locally square-integrable, uniformly with respect to x ∈ M (in our notations); this assumption
guarantees that the equality in the Feynman-Kac formula will hold everywhere, not just almost everywhere. No
restrictions are imposed on M .
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