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PREFACE

Operator algebras are, roughly speaking, noncommutative extensions of the
uniformly closed algebras of bounded continuous complex functions on topological
spaces, similarly as matrix algebras enlarge the diagonal matrix algebras, that is
the function algebras on finite sets. Their theory enables to extend many topics
from Topology, Measure Theory, Geometry and Analysis to the noncommutative
setting, creating powerful tools for the investigation of several problems in Math-
ematics and Theoretical Physics.

These notes were written, mainly in the late seventies, with the purpose to
develop a detailed self-contained introduction to the theory of operator algebras.
They are conceived also as reference text, containing all details we could track
down in the literature on each treated subject item. In order to make the overview
easier, the material included is described by small titles accompanying the number
of the section in listing the Contents. The bibliography and the sections of notes
contain only references to works directly used in the exposition.

In the first three chapters we present the basic algebraic, order theoretical
and topological properties of the C∗-algebras. In the fourth chapter positive linear
forms on C∗-algebras and their relationship with the construction of representa-
tions of C∗-algebras on Hilbert spaces is treated. We notice that the treatment is
given, whenever possible, in a more general setting than just C∗-algebras, often in
the framework of Banach algebras or Banach ∗-algebras.

The subject of the fifth and sixth chapters are two kinds of bounded linear
maps between C∗-algebras: completely positive linear maps respectively surjective
linear isometries. They are complementary in the sense that surjective linear
isometries, which are also completely positive, turn out to be ∗-isomorphisms.

In the seventh chapter weak and strong operator topology on the C∗-algebra
of all bounded linear operators on a Hilbert space is discussed. In particular, the
basic properties of the weak operator closed, non-degenerate ∗-algebras of bounded
linear operators on a Hilbert space, called von Neumann algebras, are presented.
Subsequently, the eighth chapter is devoted to the space free theory of the von
Neumann algebras, that is to the C∗-algebras which are ∗-isomorphic with von
Neumann algebras, called W ∗-algebras.

Finally, in the ninth chapter several classes of C∗-algebras defined by order
completeness properties, like AW ∗-algebras, monotone complete C∗-algebras and
their countable variants, are discussed. These classes were introduced by trying
to describe W ∗-algebras algebraically, but they occur also as universal objects.

The original version of these notes was used for about 20 years by the Ro-
manian school of operator algebras in Bucharest. Until 1995 it had a limited
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distribution, in Romania and abroad, by means of just copying the typed pages of
the manuscript. In 1995 it was multiplied in the frame of the series “Monografii
Matematice” of the University of Timişoara, but these copies have been shortly out
of stock. Several appeals we got from colleagues to publish these notes convinced
us to reasonably update and publish them as a book.

The authors would like to express their sincere gratitude to Prof. Béla
Szőkefalvi-Nagy for having encouraged them to write this book and for his constant
support.

Warm thanks are due to Prof. Dumitru Gaşpar for the distribution of the
original version in the frame of the series “Monografii Matematice”. Particular
thanks are due also to Sanda Strătilă for having carefully and patiently typed the
original manuscript.



Chapter 1

SPECTRAL THEORY

1.1. A ∗-vector space is a complex vector space V together with a ∗-operation
(or involution) ∗ : V → V such that

(x∗)∗ = x, (λx)∗ = λx∗, (x+ y)∗ = x∗ + y∗; x, y ∈ V, λ ∈ C.

A ∗-algebra is a complex algebra A with a ∗-operation such that A is a
∗-vector space and

(xy)∗ = y∗x∗; x, y ∈ A.

If A is a unital ∗-algebra with unit 1A, then (1A)
∗ = 1A.

A normed algebra is a complex algebra A endowed with a norm such that:

‖xy‖ 6 ‖x‖ ‖y‖; x, y ∈ A.

If A 6= {0} is a unital normed algebra with unit 1A, then ‖1A‖ = ‖1A1A‖ 6 ‖1A‖2,
so ‖1A‖ > 1. Remark that there exists an equivalent norm |‖ · |‖ on A, for instance

‖1A‖
−1‖x‖ 6 |‖x|‖ = sup{‖xy‖ : y ∈ A, ‖y‖ 6 1} 6 ‖x‖; x ∈ A,

such that (A, |‖ · |‖) is a normed algebra and |‖1A|‖ = 1. For this reason, by unital
normed algebras we shall always understand normed algebras with a norm one unit
element.

A Banach algebra is a complete normed algebra.
A normed algebra which is also a ∗-algebra is called normed ∗-algebra. If in

addition
‖x‖ = ‖x∗‖; x ∈ A,

then A is called an involutive normed algebra. The terms Banach ∗-algebra and
involutive Banach algebra are self-explanatory.

A pre-C∗-algebra is a normed ∗-algebra A such that

‖x∗x‖ > ‖x2‖; x ∈ A.

Since ‖x‖2 6 ‖x∗x‖ 6 ‖x∗‖ ‖x‖, it follows that ‖x∗‖ = ‖x‖, (x ∈ A), thus every
pre-C∗-algebra is an involutive normed algebra and

‖x∗x‖ = ‖x2‖; x ∈ A.
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If A 6= {0} is a unital pre-C∗-algebra, then (1A)
∗ = 1A and ‖1A‖ = ‖(1A)∗1A‖ =

‖1A‖2, so ‖1A‖ = 1.
A C∗-algebra is a complete pre-C∗-algebra.
Remark that the completion of a normed algebra (respectively involutive

normed algebra, respectively pre-C∗-algebra) is a Banach algebra (respectively
involutive Banach algebra, respectively C∗-algebra).

A subset of a ∗-algebra is called a ∗-subalgebra if it is closed under both the
algebraic operations and the ∗-operation. A norm-closed ∗-subalgebra of a C∗-
algebra is called a C∗-subalgebra. If A is a C∗-algebra, and S ⊂ A, then C∗(S)
denotes the smallest C∗-subalgebra of A containing S.

Let A,B be ∗-algebras. A ∗-homomorphism (respectively a ∗-antihomomor-
phism), π : A → B is a linear mapping such that:

π(x∗) = π(x)∗; x ∈ A,

π(xy) = π(x)π(y), (respectively π(xy) = π(y)π(x)); x, y ∈ A.

A bijective ∗-homomorphism (respectively ∗-antihomomorphism) is called a
∗-isomorphism (respectively a ∗-antiisomorphism).

1.2. C∗-seminorms on ∗-algebras. Let A be a ∗-algebra and p be a semi-
norm on A. Then the following conditions are equivalent:

(i) p(xy) 6 p(x)p(y) and p(x∗x) > p(x)2 for all x, y ∈ A;
(ii) there is a ∗-homomorphism π of A into some C∗-algebra such that p(x) =

‖π(x)‖.
Indeed, (ii) ⇒ (i) is obvious. If p satisfies (i), then the set Np = {x ∈ A :

p(x) = 0} is a two sided ideal of A and is stable under the ∗-operation. The
quotient ∗-algebra A/Np endowed with the norm induced by p becomes a pre-
C∗-algebra, the completion C∗

p (A) of A/Np is a C∗-algebra and the quotient map
πp : A → C∗

p (A) is the desired ∗-homomorphism.

A seminorm (respectively a norm) on A satisfying the above conditions is
called a C∗-seminorm (respectively C∗-norm). If p is a C∗-seminorm on A, then
the above constructed C∗-algebra C∗

p (A) and ∗-homomorphism πp : A → C∗
p (A)

will be said canonically associated to p.

1.3. Examples. There are two fundamental examples of C∗-algebras.
First, consider a locally compact Hausdorff space Ω and let C0(Ω) be the set

of all complex continuous functions on Ω vanishing at infinity. Then C0(Ω) be-
comes a commutative C∗-algebra with the usual algebraic operations, the complex
conjugation as ∗-operation and the uniform norm

‖f‖ = sup{|f(t)| : t ∈ Ω}; f ∈ C0(Ω).

We will see in 1.14 that every commutativeC∗-algebra is isometrically ∗-isomorphic
with some C0(Ω).
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Next, consider a complex Hilbert space H and let B(H) denote the set of all
bounded linear operators on H . Then B(H) becomes a C∗-algebra with the usual
algebraic operations, the adjunction as ∗-operation and the operator norm

‖x‖ = sup{‖xξ‖ : ξ ∈ H, ‖ξ‖ = 1} = sup{|(xξ | η)| : ξ, η ∈ H, ‖ξ‖ = ‖η‖ = 1}.

Since any norm closed ∗-subalgebra of a C∗-algebra is again a C∗-algebra, the
norm closed ∗-subalgebras of B(H) are C∗-algebras. They will be called Gelfand-
Năımark algebras.

We will see in 4.11 that every C∗-algebra is isometrically ∗-isomorphic to a
Gelfand-Năımark algebra.

A ∗-homomorphism of a ∗-algebra A into B(H) will be called a ∗-representa-
tion of A on H .

Among Gelfand-Năımark algebras we note the two sided ideal K(H) of all
compact linear operators on H .

If n > 1 is an integer, then the ∗-algebra B(Cn) is usually identified with the
∗-algebra Mn of all n × n matrices with complex entries. Thus, we can consider
on Mn the norm transported from B(Cn), with which Mn becomes a C∗-algebra.

1.4. Let A be a C∗-algebra and let Ω be a topological space. Denote by
C(Ω, A) the vector space of all continuous functions f : Ω → A with ‖f‖ =
sup{‖f(t)‖ : t ∈ Ω} < +∞. Then C(Ω, A) is a C∗-algebra with pointwise algebraic
operations and involution, and the norm ‖ · ‖.

The set of all f ∈ C(Ω, A) which vanish at infinity, i.e. for every ε < 0
there exists a compact subset K ⊂ Ω with sup{‖f(t)‖ : t ∈ Ω \ K} 6 ε, is a
C∗-subalgebra of C(Ω, A), denoted by C0(Ω, A).

In particular, we can consider the C∗-algebra C(Ω) = C(Ω,C) and its C∗-
subalgebra C0(Ω) = C0(Ω,C).

Let {Ai}i∈I be a family of C∗-algebras. Then the subset of the direct product
∗-algebra

∏
i∈I

Ai consisting of all x = {xi}i∈I with ‖x‖ = sup
i∈I

‖xi‖ < +∞ is a ∗-

subalgebra which, endowed with the norm ‖ · ‖, becomes a C∗-algebra called the
direct product C∗-algebra of the familly {Ai}i∈I .

The set of those x = {xi}i∈I ∈
∏
i∈I

Ai which vanish at infinity, i.e. for every

ε > 0 there exists a finite subset F ⊂ I such that sup
i∈I\F

‖xi‖ 6 ε, is a C∗-subalgebra

of the direct product C∗-algebra, called the restricted direct product C∗-algebra of
{Ai}i∈I .

Remark that, if Ai = A for all i ∈ I and I is considered with its discrete
topology, then C(I, A) (respectively C0(I, A)) is nothing but the direct product
(respectively the restricted direct product) C∗-algebra of {Ai}i∈I .

1.5. Associate unital algebra. Let A be an algebra. Then A ⊕ C is a
unital algebra with the product

(x⊕ λ)(y ⊕ µ) = (xy + µx+ λy)⊕ λµ; x, y ∈ A, λ, µ ∈ C,
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and with the unit element 0 ⊕ 1. We call it the algebra with adjoined unit corre-
sponding to A. Remark that A = A⊕ 0 is a two sided ideal of codimension one in
A⊕ C. On the other hand we denote

Ã =

{
A if A is unital;
A⊕ C if A is not unital;

and call Ã the associate unital algebra of A.

The algebra Ã is uniquely determined up to isomorphisms by the following

universality property: Ã is generated by A and by its unit element, and every
injective homomorphism of A into a unital algebra B has an extension to an

injective homomorphism of Ã into B. Note that every homomorphism π of A into

a unital algebra B can be extended to a homomorphism π̃ : Ã → B. If A is not
unital, then π̃ can be uniquely choosen such that π̃(1

Ã
) = 1B.

If A is a ∗-algebra then A⊕ C is also a ∗-algebra with the ∗-operation

(x⊕ λ)∗ = x∗ ⊕ λ; x ∈ A, λ ∈ C.

Hence Ã is a ∗-algebra and each injective ∗-homomorphism of A in some unital

∗-algebra B can be extended to an injective ∗-homomorphism of Ã in B.

If A is a normed algebra (respectively normed ∗-algebra, respectively invo-
lutive normed algebra), then the same is true for A⊕ C with the norm

‖x⊕ λ‖ = max{‖x‖, |λ|}; x ∈ A, λ ∈ C.

Hence Ã is also a normed algebra (respectively normed ∗-algebra, respectively in-
volutive normed algebra) and it is easy to formulate the corresponding universality

property. Remark that if A is complete, then also A⊕ C and Ã are complete.
Now let A be a non-unital C∗-algebra. Consider the Banach algebra B(A)

of all bounded linear operators on the underlying Banach space of A and denote
by I ∈ B(A) the identity operator. For any x ∈ A define πA(x) ∈ B(A) by

πA(x)y = xy; y ∈ A.

Then πA is an algebra homomorphism and using ‖xx∗‖ = ‖x‖2 it is easy to see that

‖πA(x)‖ = ‖x‖ for all x ∈ A. Let π̃A : Ã → B(A) be the unique homomorphism

extending πA and carying the unit of Ã in I. Then π̃A is injective (since A is

non-unital) and we can define a norm on Ã by

‖x̃‖ = ‖π̃A(x)‖; x̃ ∈ Ã.

Since πA(A) is a two sided ideal of codimension 6 1 in π̃A(Ã) and it is complete, it

follows that π̃A(Ã) is complete, so Ã is complete with the above norm. Moreover,
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Ã is a C∗-algebra because for each x ∈ A, λ ∈ C and ε > 0 there exists y ∈ A,
‖y‖ 6 1, with

‖πA(x) + λI‖2 6 ε+ ‖xy + λy‖2 = ε+ ‖(xy + λy)∗(xy + λy)‖

= ε+ ‖y∗(x∗xy + λxy + λx∗y + λλy)‖

6 ε+ ‖(πA(x
∗) + λI)(πA(x) + λI)y‖

6 ε+ ‖(πA(x
∗) + λI)(πA(x) + λI)‖.

If A is a C∗-algebra, then we shall always consider the above norm on Ã, so

that Ã becomes a unital C∗-algebra called the associate unital C∗-algebra of A.
Remark that if A has a unit e, then we still can define a complete C∗-norm

on A⊕ C, namely,

‖x⊕ λ‖ = max{‖x+ λe‖, |λ|}; x ∈ A, λ ∈ C.

Thus, for every C∗-algebra A there exists a canonical complete C∗-norm on A⊕C

and, endowed with this norm, A ⊕ C will be called the C∗-algebra with adjoined
unit corresponding to A.

We stress that for a non unital C∗-algebra the associate unital C∗-algebra
coincides with the C∗-algebra with adjoined unit, while for a unital C∗-algebra
they differ.

1.6. Special elements. An element x of a ∗-vector space A is called self-
adjoint (or hermitian) if x∗ = x. The set Ah of all selfadjoint elements of A is a
real vector subspace of A. For each x ∈ A we define the real part Rex and the
imaginary part Imx by

Rex = 2−1(x + x∗), Imx = (2i)−1(x− x∗).

Then Rex, Imx are selfadjoint and

x = Rex+ i Imx.

Thus,
A = Ah + iAh, Ah ∩ iAh = {0}.

Suppose now that A is a ∗-algebra. Then the product xy of two selfadjoint elements
x, y ∈ A is again selfadjoint if and only if xy = yx. An element x ∈ A is called
normal if x∗x = xx∗. Note that every selfadjoint element is normal. Also, x ∈ A
is normal if and only if Rex commutes with Imx. A projection is a selfadjoint
idempotent p ∈ A, i.e. p∗ = p = p2 and a partial isometry is an element v ∈ A
such that v∗v and vv∗ are projections. If v ∈ A is a partial isometry, then v∗v
(respectively vv∗) is called the initial (respectively the final) projection of v. Two
projections p, q ∈ A are called orthogonal if pq = 0.
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If A is a unital ∗-algebra, then 1A is necessarily selfadjoint and hence a
projection. If x ∈ A is invertible, then x∗ is also invertible and (x∗)−1 = (x−1)∗.
An element u ∈ A with u∗u = 1A (respectively uu∗ = 1A) is called an isometry
(respectively a co-isometry) and if u∗u = 1A = uu∗, then u is called a unital
element. Every unitary element u ∈ A is normal and invertible: u−1 = u∗. The
set U(A) of all unitary elements is a multiplicative group, called the unitary group
of A.

If A is an arbitrary ∗-algebra, then v ∈ A is called quasiunitary if v∗v =
vv∗ = v + v∗. Remark that v ∈ A is quasi-unitary if and only if 1 − v is unitary

in Ã.
A ∗-algebra A is called U∗-algebra if A is the linear span of its quasi-unitary

elements. If A is a U∗-algebra, then so is Ã, because the element 2 ∈ Ã is quasi-
unitary. If A is a unital ∗-algebra, then A is a U∗-algebra if and only if A is the
lineary span of U(A).

Finally, assume that A is a C∗-algebra. If p ∈ A is a nonzero projection then
‖p‖2 = ‖p∗p‖ = ‖p‖, thus ‖p‖ = 1. If v ∈ A and v∗v = p is a projection, then
vv∗ = q is also a projection, i.e. v is a partial isometry. Indeed,

‖q2 − q‖2 = ‖(q2 − q)∗(q2 − q)‖ = ‖q4 − 2q3 − q2‖ = ‖vp3v∗ − 2vp2v∗ + vpv∗‖ = 0,

so q∗ = q = q2. Similarly, we get vv∗v = v, that is, vp = qv = v. For every non-
zero partial isometry v ∈ A we have ‖v‖2 = ‖v∗v‖ = 1, so ‖v‖ = 1. In particular,
if A is unital, then ‖1A‖ = 1 and each unitary element has norm one.

If x ∈ A is normal, then ‖x2‖ = ‖x‖2:

‖x2‖2 = ‖(x2)∗x2‖ = ‖(x∗x)∗(x∗x)‖ = ‖x∗x‖2 = ‖x‖4.

Since the multiplication and the ∗-operation in a C∗-algebra A are continuous, Ah

and {x ∈ A : x is normal} are closed.

1.7. Spectrum and resolvent. If A is an algebra, then the spectrum σ(x) =
σA(x) of an element x ∈ A is the set of all λ ∈ C such that λ− x is not invertible

in Ã and its resolvent set is ρ(x) = ρA(x) = C \ σA(x). If A 6= Ã, then 0 ∈ σ(x)
for all x ∈ A.

For every x, y ∈ A we have

(1) σ(xy) ∪ {0} = σ(yx) ∪ {0}.

Indeed, suppose that λ ∈ C is not in σ(xy) ∪ {0}. Then there is u ∈ Ã such that
(λ − xy)u = u(λ − xy) = 1. Putting v = λ−1 + (1 + yux) we obtain (λ − yx)v =
v(λ− yx) = 1, thus λ is not in σ(yx) ∪ {0}.

For each x ∈ A the number r(x) = rA(x) = sup{|λ| : λ ∈ σA(x)} is called
the spectral radius of x. By (1),

(2) r(xy) = r(yx); x, y ∈ A.
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For x, y ∈ A put
x ◦ y = x+ y − xy.

Then 1− x is right (respectively left) invertible in Ã if and only if x ◦ y = 0
(respectively y ◦ x = 0) for some y ∈ A, called a right (respectively left) quasi-
inverse of x, and, in this case, 1 − y is a right (respectively left) inverse of 1− x.

Thus 1− x is invertible in Ã if and only if x ◦ y = y ◦ x = 0 for some y ∈ A, which
is then unique and called the quasi-inverse of x.

Note that λ 6= 0 is in ρ(x) if and only if λ−1x has quasi-inverse. In particular,
if x ∈ A and r(x) < 1, then 1 ∈ ρ(x), so there exists y ∈ A such that x ◦ y =
y ◦ x = 0.

If A is a ∗-algebra, then

λ ∈ σ(x) ⇔ λ ∈ σ(x∗); x ∈ A, λ ∈ C,(3)

r(x∗) = r(x); x ∈ A.(4)

Remark that v ∈ A is quasi-unitary if and only if v∗ ◦ v = v ◦ v∗ = 0.
Consider now a Banach algebra A 6= {0} and an arbitrary Banach algebra

norm on Ã extending the norm of A.
It is easy to see that if x ∈ A and λ0 ∈ ρ(x), then

(5) {λ ∈ C : |λ− λ0| < ‖(λ0 − x)−1‖−1} ⊂ ρ(x),

and that for any λ ∈ C, |λ− λ0| < ‖(λ0 − x)−1‖−1 we have

(6) (λ− x)−1 =

∞∑

n=0

(λ0 − λ)n(λ0 − x)−n−1.

Thus the resolvent set ρ(x) is open and the resolvent function

ρ(x) ∋ λ 7→ (λ− x)−1 ∈ Ã

is norm analytic, in particular norm continuous.
On the other hand,

(7) {λ ∈ C : |λ| > ‖x‖} ⊂ ρ(x)

and, for any λ ∈ C, |λ| > ‖x‖, we have

(8) (λ− x)−1 =

∞∑

n=0

λ−n−1xn.

Thus the spectrum σ(x) is a compact set and

(9) r(x) 6 ‖x‖.

Moreover, using (8) we get lim
|λ|→∞

‖(λ − x)−1‖ = 0. Thus, if it were σ(x) =

∅, then by the Liouville theorem the entire function λ 7→ (λ − x)−1 would be
identically zero, which is impossible. Hence the spectrum σ(x) is non void.
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Proposition. If A 6= {0} is a Banach algebra and x ∈ A then

(10) rA(x) = lim
n

‖xn‖1/n.

Proof. Put
α(x) = inf

{
‖xn‖1/n : n ∈ N

}
.

Fix ε > 0 and choose nε ∈ N such that ‖xnε‖1/nε 6 α(x) + ε. For each n ∈ N we
can write n = nεq + r, (q, r ∈ N, 0 6 r 6 nε − 1), and we have

‖xn‖ = ‖xnεqxr‖ 6 ‖xnε‖q‖x‖r 6 (α(x) + ε)nεq‖x‖r = (α(x) + ε)n−r‖x‖r.

Therefore ‖xn‖1/n 6 (α(x) + ε)1−r/n‖x‖r/n and so

α(x) 6 lim inf
n

‖xn‖1/n 6 lim sup
n

‖xn‖1/n 6 α(x) + ε.

It folows that
lim
n

‖xn‖1/n = α(x).

If |λ| > α(x) then the series
∞∑
n=0

‖xn‖/|λ|n converges, and hence, the series

∞∑
n=0

xn/λn is norm convergent in Ã. Hence 1− λ−1x is invertible and so

α(x) > r(x).

Suppose that α(x) > r = r(x). Then {λ ∈ C : |λ| > r} ⊂ ρ(x). Let ϕ be a

bounded linear functional on Ã. Then the function λ 7→ ϕ((λ − x)−1) is analytic
on {λ ∈ C : |λ| > r} and for |λ| > α(x) we have

ϕ((λ − x)−1) =

∞∑

n=0

λ−n−1ϕ(xn).

Consequently, the equality

f(µ) =

{
0 if µ = 0;
ϕ((µ−1 − x)−1) if 0 < |µ| < r−1;

defines a function f analytic on D = {µ ∈ C : |µ| < r−1}. Since the Taylor
expansion of f near 0 is

f(µ) =

∞∑

n=0

µn+1ϕ(xn)

the same formula holds for any µ ∈ D.
Consider λ0 ∈ C, r < |λ0| < α(x). Then λ−1

0 ∈ D and

lim
n

λ−n−1
0 ϕ(xn) = 0,

for any bounded liniar functional ϕ on Ã. Using the Banach-Steinhauss theorem
we infer sup

n
|λ0|

−n−1‖xn‖ = c < +∞, therefore ‖xn‖ 6 c|λ0|
n+1, (n > 0), and

this yields

α(x) = lim
n

‖xn‖
1
n 6 lim

n
c

1
n |λ0|

1+n−1

= |λ0| < α(x),

a contradiction.
Hence r(x) = α(x).
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By the above proposition, if x, y ∈ A, xy = yx, then

(11) r(xy) 6 r(x)r(y), r(x + y) 6 r(x) + r(y).

Now let A 6= {0} be a normed algebra, consider on Ã a normed algebra norm

extending the norm of A and let B be the Banach algebra completion of Ã. Then
obviously σA(x) ⊃ σB(x) 6= ∅ for any x ∈ A and it folows that:

Corollary. If A 6= {0} is a normed algebra and x ∈ A then

(12) rA(x) > lim
n

‖xn‖1/n.

Finally, we note the following property of lower semicontinuity of the spec-

trum. Let A be a Banach algebra, x ∈ A and let N be a neighborhood of σ(x) in
C. Then there exists ε > 0 such that σ(y) ⊂ N whenever y ∈ A, ‖x− y‖ 6 ε.

Indeed, if 0 < ε < sup
λ6∈N

‖(λ − x)−1‖)−1, then for any λ 6∈ N we successively

have: ‖(λ− x)−1(x− y)‖ < 1, −1 6∈ σ((λ − x)−1(x− y)), λ 6∈ σ(y), and

(λ− y)−1 = (λ− x)−1(1 + (λ− x)−1(x− y))−1.

1.8. Whenever A is a C∗-algebra, we shall consider on Ã only the C∗-norm
defined in 1.5.

Proposition. Let A be a C∗-algebra and x ∈ A. Then:

x is normal ⇒ r(x) = ‖x‖;(1)

x is selfadjoint ⇒ σ(x) ⊂ R;(2)

x is unitary ⇒ σ(x) ⊂ {λ ∈ C : |λ| = 1}.(3)

Proof. (1) If x is normal, then by 1.6, ‖x2‖ = ‖x‖2 and using 1.7.(10) we get

r(x) = lim
n

‖x2
n

‖2
−n

= ‖x‖.

(2) Let x be selfadjoint and consider λ = α+ iβ ∈ σ(x) with α, β ∈ R. Then

xn = x− α+ inβ ∈ Ã, i (n+ 1)β ∈ σ(xn) and

(n+ 1)2β2
6 r(xn)

2
6 ‖xn‖

2 = ‖x∗
nxn‖ = ‖(x− α)2 + n2β2‖ 6 ‖x− α‖2 + n2β2

for all n ∈ N. Clearly, this entails β = 0, hence λ ∈ R.

(3) Since x and x−1 are unitary, we have ‖x‖ = ‖x−1‖ = 1 so that σ(x) and

σ(x−1) = {λ−1 : λ ∈ σ(x)} are both contained in {λ ∈ C : |λ| 6 1}, which shows

that σ(x) ⊂ {λ ∈ C : |λ| = 1}.

1.9. An important consequence of Proposition 1.8 is that every ∗-homomo-

rphism between C∗-algebras is contractive. More precisely:



10 Spectral Theory

Theorem. Let π be a ∗-homomorphism of an involutive Banach algebra A

onto a C∗-algebra B. Then

‖π(x)‖ 6 ‖x‖; x ∈ A.

Proof. Using the caracterization of spectra with quasi-inverses (see 1.7), it

is easy to see that σB(π(x)) ⊂ σA(x) ∪ {0} for any x ∈ A. Thus, if x is normal,
by 1.8 we get:

‖π(x)‖ = rB(π(x)) 6 rA(x) 6 ‖x‖.

For an arbitrary x ∈ A we then obtain:

‖π(x)‖2 = ‖π(x)∗π(x)‖ = ‖π(x∗x)‖ 6 ‖x∗x‖ 6 ‖x‖2.

Corollary 1. Every ∗-isomorphism of a C∗-algebra onto another C∗-alge-

bra is isometric.

Corollary 2. Any two complete C∗-norms on a ∗-algebra are equal.

In particular, for every C∗-algebra A there is only one complete, C∗-norm

on A⊕ C and Ã.

1.10. Spectral permanence. The following result is usually called the

spectral permanence property for C∗-algebras.

Theorem. Let B be a C∗-subalgebra of the C∗-algebra A. Then for every

x ∈ B we have

σA(x) ∪ {0} = σB(x) ∪ {0}.

Proof. Passing to C∗-algebras with adjoined units (1.5) we may assume that

A is unital and 1A ∈ B. In this case we show that

σA(x) = σB(x); x ∈ B.

It is clear that σB(x) ⊃ σA(x). For the converse inclusion suppose first x is

selfaldjoint and consider λ /∈ σA(x). If λ 6∈ R, then λ 6∈ σB(x) by 1.8. If λ ∈ R

then λn = λ+ i /n 6∈ σB(x), thus (λn − x)−1 ∈ B. Using the equality

(λ − x)−1 − (λn − x)−1 = (λn − λ)(λ − x)−1(λn − x)−1,

we see that {(λn−x)−1} converges to (λ−x)−1 as n → +∞ and hence (λ−x)−1 ∈
B, which means that λ /∈ σB(x). Passing to the general case, consider λ 6∈ σA(x).

Then y = λ−x is invertible in A so that the selfadjoint elements y∗y and yy∗ ∈ B

are invertible in A and by the preceding discussion they are invertible in B. It
follows that y is left and right invertible in B and so λ 6∈ σB(x).
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1.11. Regular ideals. Let A be an algebra. A left (respectively right) ideal
M of A is called regular if there exists a right (respectively left) unit for M , that is
an element u ∈ A such that xu− x ∈ M (respectively ux− x ∈ M) for all x ∈ A.
Remark that if A is unital then every ideal of A is regular.

A regular left (respectively right) ideal M of A is called maximal if M 6= A
and for each left (respectively right) ideal N of A with M ⊂ N we have either
N = M or N = A.

Lemma 1. Every regular left (respectively right) ideal J 6= A is contained in
some maximal regular left (respectively right) ideal of A.

Proof. Let J be a regular left ideal and u be a right unit for J . By the Zorn
lemma there exists a maximal element M in the set of all left ideals of A containing
J but not containing u. Then M is regular with right unit u. If N ⊃ M is left
ideal and N 6= A, then u /∈ N , so N = M by the choice of M .

Lemma 2. Let a ∈ A and 0 /∈ λ ∈ C. Then the following statements are
equivalent:

(i) λ− a has no left (respectively right) inverses in Ã;
(ii) λ−1a has no left (respectively right) quasi-inverses in A;

(iii) λ−1a is a right (respectively left) unit for some maximal regular left (respec-
tively right) ideal in A.

Proof. (i) ⇔ (ii) follows immediately using the remarks from 1.7

Suppose that (ii) holds. Then J = {x(λ−1a) − x : x ∈ A} is a regular left
ideal A with right unit λ−1a and λ−1a /∈ J , because otherwise λ−1a would have a
left quasi-inverse. By Lemma 1, J is contained in some maximal regular left ideal
M and λ−1a is a right unit for M . Consequently, (ii) ⇒ (iii).

We now assume that λ−1a is a right unit for the maximal regular left ideal
M of A but λ−1a has a left quasi-inverse x ∈ A. Then x + λ−1a − x(λ−1a) = 0,
so λ−1a = x(λ−1a)− x ∈ M . Consequently, y ∈ A ⇒ y(λ−1a)− y ∈ M ⇒ y ∈ M ,
that is M = A, a contradiction. Thus (iii) ⇒ (ii).

Theorem. The following equalities hold:⋂
{M : M maximal regular left ideal of A}

=
⋂
{N : N maximal regular right ideal of A}

=
⋃
{J : J left ideal of A and all a ∈ J have left quasi-inverses}

=
⋃
{K : K right ideal of A and all b ∈ K have right quasi-inverses}.

Proof. If a ∈ A belongs to all maximal regular left ideals of A, then a is not
a right unit for any maximal regular left ideal and hence, by Lemma 2, a has left
quasi-inverses in A.

Let J be a left ideal of A such that each element of J has left quasi-inverses
in A and let a ∈ J . Then a has a left quasi-inverse b ∈ A and b = ba− a ∈ J has
also left quasi-inverses in A. It follows that b is quasi-invertible with quasi-inverse
a, so a is quasi-invertible. Thus all elements of J are quasi-invertible.
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Let J be as above and a ∈ J . For any y ∈ Ã, ya ∈ J has a quasi-inverse
z ∈ A and, as easily verified, azy− ay is a quasi-inverse of ay. Hence all elements
of the right ideal generated by a are quasi invertible.

Finally, let K be a right ideal of A such that each element of K has right
quasi-inverses in A and let b ∈ K. Assume that b /∈ N for some maximal regular

right ideal N of A with a left unit v ∈ A. Then {y + bx : y ∈ N, x ∈ Ã} is a right
ideal of A containing N ∪ {b}, so it coincides with A. In particular, there exist

y ∈ N and x ∈ Ã such that v = y + bx. Since bx ∈ K has a right quasi-inverse
z ∈ A, we have

v = y + bx = y − z + bxz = y − z + (v − y)z = y − yz + (vz − z) ∈ N,

which is not possible. Therefore K is contained in every maximal regular right
ideal of A.

In conclusion:⋂
{M : M maximal regular left ideal of A}

⊂
⋃
{J : J left ideal of A and all a ∈ J have left quasi-inverses}

⊂
⋃
{K : K right ideal of A and all b ∈ K have right quasi-inverses}

⊂
⋂
{N : N maximal regular right ideal of A}.

The proofs of the converse inclusions are completely similar.

The set defined in Lemma 3 is called the radical of A and is denoted by
Rad(A). By Lemmas 3 and 2, Rad(A) is a two sided ideal of A and

(1) a ∈ Rad(A) ⇒ σA(a) ⊂ {0}.

Moreover, Rad(A) is the greatest left (or right, or two sided) ideal contained in
{x ∈ A : σA(x) ⊂ {0}}.

It is easy to see that the radical of a ∗-algebra is a ∗-subalgebra.

Lemma 4. Every maximal regular left (respectively right) ideal of a Banach
algebra is closed.

Proof. Let M be a maximal regular left ideal of a Banach algebra A and let
u be a right unit for M . Assume that M is not closed. Then its closure is A, so
exists x ∈ M with r(u−x) 6 ‖u−x‖ < 1. By 1.7, u−x has a quasi-inverse y ∈ A
and we have:

u = (u − x) + x = y(u− x)− y + x = (yu− y)− yx+ x) ∈ M,

which is not possible.

By Lemma 4, the radical of a Banach algebra is closed.

An algebra A is called semisimple if Rad(A) = {0}.
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Proposition. Every pre-C∗-algebra is semisimple.

Proof. Let A be a pre-C∗-algebra and x ∈ Rad(A). Then a = x∗x ∈ Rad(A)
so, by Lemma 3, σA(a) = {0}. If B is the C∗-algebra completion of A, then
σB(a) = {0} so, by Proposition 1.8, a = 0 and consenquently x = 0.

1.12. We have the following continuity result similar to Theorem 1.9:

Theorem. Let A be a Banach algebra, B be a pre-C∗-algebra and π be a
homomorphism of A onto B. Then π is bounded.

Proof. By Proposition 1.11

Kerπ =
⋂
{π−1(M) : M maximal regular left ideal in B}.

For any maximal regular left ideal M of B, π−1(M) is a maximal regular left ideal
of A and hence is closed (Lemma 4 in 1.11). Indeed, π−1(M) is obviously a left
ideal of A; if u ∈ B is a right unit for M , then any v ∈ π−1({u}) is a right unit
for π−1(M), so π−1(M) is regular; if N ⊃ π−1(M) is a left ideal of A, then either
π(N) = M , in which case N = π−1(M), or π(N) = B, in which case N contains
a right unit for N , so N = A. We conclude that Kerπ is a closed two sided ideal
of A.

Denote by ̂ the canonical homomorphism A → A/Kerπ and consider on
A/Kerπ the quotient norm

‖â‖ = inf{‖a+ x‖ : x ∈ Kerπ}; a ∈ A.

Then A/Kerπ becomes a Banach algebra. Since â → π(a) is an isomorphism
of A/Kerπ onto B, we can consider on B the Banach algebra norm ‖| · |‖ defined
by

‖|π(a)|‖ = ‖â‖; a ∈ A.

Let {bn}n∈N ⊂ B and c ∈ B be such that

lim
n

‖|bn|‖ = 0, lim
n

‖|b∗n − c|‖ = 0.

Using Corollary 1.7 we get

‖b∗n − c‖2 = ‖(b∗n − c)∗(b∗n − c)‖ = lim
k

‖[(b∗n − c)∗(b∗n − c)]k‖
1
k

6 rB((b
∗
n − c)∗(b∗n − c)) 6 ‖|bn − c∗|‖ ‖|b∗n − c|‖

6

(
sup
n

‖|bn|‖+ ‖|c∗|‖
)
‖|b∗n − c|‖,

so lim
n

‖b∗n − c‖ = 0. Similarly, lim
n

‖b∗n‖ = lim
n

‖bn‖ = 0. Consequently, c = 0. By

the closed graph theorem it follows that there exists α > 0 such that

‖|b∗|‖ 6 α‖|b|‖; b ∈ B.

Now, using again Corollary 1.7, we obtain

‖π(a)‖2 = ‖π(a)∗π(a)‖ = lim
k

‖[π(a)∗π(a)]k‖
1
k

6 rB(π(a)
∗π(a)) 6 α‖|π(a)|‖2 = α‖â‖2 6 α‖a‖2.

Thus π is bounded.
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Corollary. Let A be a Banach ∗-algebra, B be a C∗-algebra and π : A → B
be a ∗-homomorphism. Then π is bounded.

1.13. The Envelopping C∗-algebra of a Banach ∗-algebra. Let A be
a Banach ∗-algebra. For any C∗-seminorm p on A, consider the ∗-homomorphism
πn : A → C∗

n(A) canonically associated to p (1.2).
Using Corollary 1.12, for all x ∈ A we have

p(x)2 = ‖πp(x)‖
2 = ‖πp(x

∗x)‖ = lim
n

‖πp((x
∗x)n)‖1/n

6 lim sup
n

‖πp‖
1/n‖(x∗x)n‖1/n = rA(x

∗x).

Hence, for every x ∈ A

‖x‖∗ = sup{p(x) : p is a C∗-seminorm on A} 6 rA(x
∗x)

1
2 < +∞.

Clearly, ‖ · ‖∗ is the greatest C∗-seminorm on A.
We denote C∗

env(A) = C∗
‖·‖∗

(A), πA
env = π‖·‖∗

and call C∗
env(A) the envelop-

ping C∗-algebra of A and πA
env the canonical ∗-homomorphism of A into C∗

env(A).
By Corollary 1.12, πA

env is bounded.
Let π be an arbitrary ∗-homomorphism of A into some C∗-algebra B. Then

x 7→ ‖π(x)‖ is a C∗-seminorm on A, hence ‖π(x)‖ 6 ‖x‖∗, (x ∈ A). Consequently,
there exists a unique ∗-homomorphism ρ : C∗

env(A) → B such that

π = ρ ◦ πA
env.

Remark that the pair (C∗
env(A), π

A
env) is uniquely determined up to ∗-isomor-

phism by the above universality property and by the fact that πA
env(A) is dense in

C∗
env(A).

Using the universality property we can improve Corollary 1.12 as follows: for
every ∗-homomorphism π of A into some C∗-algebra,

(1) ‖π(x)‖ 6 ‖πA
env(x)‖ 6 rA(x

∗x)1/2; x ∈ A,

in particular,

(2) ‖π‖ 6 ‖πA
env‖.

If x ∈ Rad(A), then ‖πA
env(x)‖ 6 rA(x

∗x)1/2 = 0 (1.11.(1)), so Rad(A) is
contained in KerπA

env. In particular, if πA
env is injective, then A is semisimple. By

the universality property of (C∗
env(A), π

A
env), π

A
env is injective if and only if there

exists an injective ∗-homomorphism of A into some C∗-algebra.
Note that if A is an involutive Banach algebra, then ‖πA

env‖ 6 1 by Theo-
rem 1.9. There exist non zero involutive Banach algebras A with C∗

env(A) = {0},
for instance A = C with zero multiplication and complex conjugation.
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1.14. Gelfand representation. In this section we shall briefly review the
Gelfand theory of commutative Banach algebras, which provides a structure the-
orem for commutative C∗-algebras.

Let A be a commutative Banach algebra.
By Lemma 4 in 1.11, if M is a maximal regular ideal of A, then M is closed,

so we can consider the quotient Banach algebra A/M . Then A/M 6= {0} is unital,
1A/M being the canonical image of any unit for M , and the only ideals of A/M
are {0} and A/M , so A/M is a field. If x ∈ A, then the canonical image x/M
of x in A/M has non void spectrum (1.7) that is, there exists λx ∈ C such that
λx1A/M−x/M is not invertible, so x/M = λx1A/M . The map ωM : A → C defined
by ωM (x) = λx, (x ∈ A), is a non zero algebra homomorphism of A into C, i.e. a
non zero character of A, and KerωM = M .

Conversely, if ω is a non zero character of A, then M = Kerω is a maximal
regular ideal of A and ω = ωM . Hence M 7→ ωM and ω 7→ Kerω are mutually
inverse bijections between all maximal regular ideals M of A and all non zero
characters ω of A.

Denote by ΩA the set of all non-zero characters of A. By Lemma 2 in 1.11
we have

(1) σA(x) ∪ {0} = {ω(x) : ω ∈ ΩA} ∪ {0}; x ∈ A.

In particular, for every ω ∈ ΩA,

|ω(x)| 6 rA(x) 6 ‖x‖; x ∈ A,

so ‖ω‖ 6 1. Therefore, the union of ΩA with the zero character is an A-closed
subset of the closed unit ball of A∗, and hence, by the Alaoglu theorem, it is A-
compact. It folows that ΩA endowed with the A-topology is locally compact. The
topological space ΩA is called the Gelfand spectrum of A. Every x ∈ A defines a
continuous function GA(x) on ΩA by GA(x)(ω) = ω(x), (ω ∈ ΩA). It is easy to
see that GA(x) vanishes at infinity. The map

GA : A → C0(ΩA)

is a homomorphism, called the Gelfand representation of A. Note that ‖GA‖ 6 1
and, by (1) and the remarks after Lemma 3 in 1.11, KerGA = Rad(A).

If, in addition, A is unital, then a character ω on A is non zero if and only if
ω(1A) = 1. In this case the Gelfand spectrum ΩA is compact. Moreover, we have

(2) σA(x) = {ω(x) : ω ∈ ΩA}; x ∈ A.

Now suppose that A is non unital and consider on Ã a Banach algebra norm
extending the norm of A. Then each ω ∈ ΩA can be extended to a unique character

ω̃ of Ã and the map ω 7→ ω̃ is a homeomorphism of ΩA onto a subset of Ω
Ã
, so we

may consider ΩA ⊂ Ω
Ã
. Then Ω

Ã
\ ΩA contains a single element ω∞ defined by

ω∞(x + λ) = λ; x ∈ A, λ ∈ C.
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By (2) we have:

(3) σA(x) = {ω(x) : ω ∈ Ω
Ã
} ∋ ω∞(x) = 0; x ∈ A.

Let A be a C∗-algebra. For every selfadjoint a ∈ A and every ω ∈ ΩA we
have (Proposition 1.8) ω(a) ∈ σA(a) ∪ {0} ⊂ R, and hence

ω(x∗) = ω(x); x ∈ A, ω ∈ ΩA.

Thus GA is a ∗-homomorphism. Using again Proposition 1.8 we obtain:

‖x‖ = rA(x) = sup{|ω(x)| : ω ∈ ΩA}; x ∈ A,

so GA is isometric. This shows that GA(A) is a closed ∗-subalgebra of C0(ΩA)
(= {f ∈ C(Ω

Ã
) : f(ω∞) = 0}, if A is not unital) which separates the points of Ω

Ã
.

By the Stone-Weierstrass theorem we obtain that GA(A) = C0(ΩA). We record
these conclusions in the following

Theorem. For every commutative C∗-algebra A, the Gelfand representation
is a ∗-isomorphism of A onto C0(ΩA).

In particular, a C∗-algebra A is unital if and only if ΩA is compact. Remark
that this statement is true for arbitrary Banach algebras.

We note the following useful consequence:

Corollary. Let A be C∗-algebra and x, y ∈ A. If x∗y = xy∗ = 0 then

‖x+ y‖ = max{‖x‖, ‖y‖}.

Proof. Since x∗y = 0, we have also y∗x = (x∗y)∗ = 0 so

‖x+ y‖2 = ‖(x+ y)∗(x+ y)‖ = ‖x∗x+ y∗y‖.

Now (x∗x)(y∗y) = x∗(xy∗)y = 0 thus B = C∗({x∗x, y∗y}) is comutative and by
the above theorem

‖x∗x+ y∗y‖ = ‖GB(x
∗x) +GB(y

∗y)‖ = max{‖GB(x
∗x)‖, ‖GB(y

∗y)‖}

= max{‖x∗x‖, ‖y∗y‖} = (max{‖x‖, ‖y‖})2.

1.15. The following result is complementary to Theorem 1.9.

Theorem. Let π be an injective ∗-homomorphism of a C∗-algebra A into
an involutive normed algebra B. Then

(1) ‖π(x) > ‖x‖; x ∈ A.

Proof. It is sufficient to prove (1) only for selfadjoint elements since then, for
an arbitrary x ∈ A, we deduce

‖x‖2 = ‖x∗x‖ 6 ‖π(x∗x)‖ = ‖π(x)∗π(x)‖ 6 ‖π(x)‖2.
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In proving (1) for a selfadjoint element x ∈ A we can assume that A and B are
both commutative and unital, B is complete, π(A) is dense in B and π(1A) = 1B.
Indeed, we can replace A by C∗({x}), B by the completion of π(C∗({x})) and
then, adjoining unit elements to both A and B, we can extend π appropriately.

In this case the Gelfand spectra ΩA, ΩB are compact and the transpose map
of π

tπ : ΩB ∋ ω 7→ ω ◦ π ∈ ΩA

is a well defined continuous mapping. Hence tπ(ΩB) is a closed subset of ΩA.

We show that tπ(ΩB) = ΩA. Indeed, assuming the contrary, by Theorem 1.14
there exist 0 6= a, b ∈ A such that

ab = 0 and θ(a) = 1 for all θ ∈ tπ(ΩB).

Then by 1.4.(2)

σB(π(a)) = {ω(π(a)) : ω ∈ ΩB} = {θ(a) : θ ∈ tπ(ΩB)} = {1} 6∋ 0

hence π(a) is invertible. On the other hand, by the injectivity of π we have π(b) 6= 0
and π(a)π(b) = π(ab) = 0, a contradiction.

Using again 1.14.(2) we conclude

‖x‖ = sup{|θ(x)| : θ ∈ ΩA} = sup{|ω(π(x))| : ω ∈ ΩB} 6 ‖π(x)‖.

By the above theorem and by Theorem 1.9 we have

Corollary. If A,B are C∗-algebras and π : A → B is an injective ∗-
homomorphism, then π is isometric. In particular, π(A) is a C∗-subalgebra of B.

1.16. Continuous functional calculus for normal elements. We be-
gin with brief review of the analytic functional calculus for arbitrary elements of
Banach algebras.

Let A be an arbitrary Banach algebra and x ∈ A. If f is an analytic function
on some open supset Df ⊃ σA(x) of C and Γ is a finite union of closed rectifiable
Jordan curves in Df with mutually disjoint interiors encircling counterclockwise
σA(x), then we put

(1) f(x) = (2πi)−1

∫

Γ

(λ− x)−1f(λ) dλ ∈ Ã.

By the Cauchy integral theorem, f(x) does not depend on Γ. If f, g are analytic
functions defined on open neighborhoods of σA(x) and λ ∈ C, then

(2) (f + g)(x) = f(x) + g(x), (λf)(x) = λf(x), (fg)(x) = f(x)g(x).



18 Spectral Theory

Here the only non trivial verification is the following: if Γ encircles σA(x)
and ∆ encircles Γ, then

(fg)(x) = (2πi)−1

∫

Γ

(λ− x)−1f(λ)g(λ) dλ

= (2πi)−1

∫

Γ

(λ− x)−1f(λ)
[
(2πi)−1

∫

∆

(µ− λ)−1g(µ) dµ
]
dλ

− (2πi)−1

∫

∆

(µ− x)−1g(µ)
[
(2πi)−1

∫

Γ

(µ− λ)−1f(λ) dλ
]
dµ

= (2πi)−2

∫

Γ

∫

∆

(λ− x)−1(µ− x)−1f(λ)g(µ) dλdµ = f(x)g(x).

If f is analytic on {λ ∈ C : |λ| < rA(x) + ε} for some ε > 0 and f(λ) =
∞∑
n=0

cnλ
n

is its power series expansion, then

(3) f(x) =

∞∑

n=0

cnx
n.

If f is an analytic function on an open neighborhood of σA(x) then for every
ω ∈ Ω

Ã

ω(f(x)) = (2πi )−1

∫

Γ

(λ − ω(x))−1f(λ) dλ = f(ω(x))

so, by 1.14.(3),

(4) σA(f(x)) = f(σA(x)).

Note that if f(0) = 0 then f(x) ∈ A. Indeed, if A is not unital then

ω∞(f(x)) = (2πi)−1

∫

Γ

λ−1f(λ) dλ = f(0) = 0,

and hence f(x) ∈ Kerω∞ = A.
Let f be an analytic function on some open neighborhood of σA(x), g be an

analytic function on some open neighborhood of σA(f(x)) = f(σA(x)). Then g ◦ f
is defined and analytic on some open neighborhood of σA(x) and

(5) (g ◦ f)(x) = g(f(x)).

For each x ∈ A we denote by expx the element f(x) ∈ Ã where f is the entire
function defined by f(λ) = eλ, (λ ∈ C). By (3)

expx =

∞∑

n=0

xn

n!
.
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Suppose that A is a unital Banach algebra and let x ∈ A be such that

σA(x) ⊂ {reiθ : r > 0, θ0 − π < θ < θ0 + π}

for some θ0 ∈ R. Denote by f the branch of the multivalued analytic function ln
defined by

f(reiθ) = ln r + i θ; r > 0, θ0 − π < θ < θ0 + π,

and put y = f(x). Then by (5) and (4) we get x = exp y and

σA(y) ⊂ {ln r + i θ : r > 0, θ0 − π < θ < θ0 + π, reiθ ∈ σA(x)}.

Now let A be a C∗-algebra and x ∈ A be a normal element. Consider the

C∗-subalgebra C∗({x, 1
Ã
}) of Ã and let Ω be its Gelfand spectrum.

First we show that the map χ : Ω ∋ ω 7→ ω(x) is a homeomorphism of Ω onto
σA(x). Indeed, by Theorem 1.10 and 1.14.(3) we have χ(Ω) = σA(x). If ω1, ω2 ⊂ Ω
and ω1(x) = ω2(x), then ω1 = ω2 since {y ∈ C∗({x, 1

Ã
}) : ω1(y) = ω2(y)} is a

C∗-subalgebra of C∗({x, 1
Ã
}) containing x and 1

Ã
. Thus, χ is bijective and, since

it is also continuous and Ω is compact, χ is a homeomorphism.
Let G be a Gelfand representation of C∗({x, 1

Ã
}). Using Theorem 1.14 we

can define a ∗-isomorphism

C(σ(x)) ∋ f 7→ f(x) ∈ C∗({x, 1
Ã
}),

by the formula
f(x) = G−1(f ◦ χ); f ∈ C(σ(x)).

If f ∈ C(σ(x)) can be extended to an analytic function, still denoted by f , on an
open neighborhood Df of σ(x), and Γ is a finite union of closed rectifiable Jordan
curves in Df encircling counterclockwise σ(x), then for every ω ∈ Ω we have

G(f(x))(ω) = f(ω(x)) = (2πi)−1

∫

Γ

(λ− ω(x))−1f(λ) dλ

= G[(2πi)−1

∫

Γ

(λ− x)−1f(λdλ)](ω)

and hence

f(x) = (2πi)−1

∫

Γ

(λ− x)−1f(λ) dλ.

Using Theorem 1.10 and 1.14.(3), for each f ∈ C(σ(x)) we get

(6) σA(f(x)) = {ω(f(x)) : ω ∈ Ω} = {G(f(x))(ω) : ω ∈ Ω} = f(σA(x)).

Suppose that 0 6∈ σA(x). If 1Ã 6∈ C∗({x}), then by the Hahn-Banach theorem

we obtain a linear functional ω on C∗({x, 1
Ã
}) which vanishes on C∗({x}) and
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ω(1
Ã
) = 1. Therefore ω ∈ Ω and hence 0 = ω(x) ∈ σA(x), a contradiction.

Thus, in this case, C∗({x, 1
Ã
}) = C∗({x}) and therefore, f(x) ∈ C∗({x}) for all

f ∈ C(σ(x)).

If 0 ∈ σA(x), then f(x) ∈ C∗({x}) only for those f ∈ C(σ(x)) with f(0) = 0.
Indeed there exists a unique ω∞ ∈ Ω such that ω∞(x) = 0 and we have

ω∞(f(x)) = G(f(x))(ω∞) = f(χ(ω∞)) = f(0).

For a continuous complex function f defined on some subset of C containing σA(x)

we denote f(x) = (f |σA(x))(x). By the above remarks we have

(7) f ∈ C(σA(x)) ∪ {0}), f(0) = 0 ⇒ f(x) ∈ C∗({x}).

The map f 7→ f(x) is characterized as the unique ∗-homomorphism π : C(σA(x)) →

Ã such that:
if f(λ) = 1 for all λ ∈ σA(x), then π(f) = 1

Ã
;

if f(λ) = λ for all λ ∈ σA(x), then π(f) = x.

Indeed, such a π must coincide with f 7→ f(x) on the algebra of polynomials in λ
and λ, which are dense in C(σA(x)) by the Stone-Weierstrass theorem.

The ∗-isomorphism C(σA(x)) ∋ f 7→ f(x) ∈ C∗({x, 1
Ã
}) is called the con-

tinuous functional calculus for the normal element x ∈ A. As we have seen, it
extends the “analytic functional calculus”.

Using the real version of the Stone-Weierstrass theorem, we obtain the fol-
lowing useful result:

(8)
if x = x∗ ∈ A, f ∈ C(σA(x) ∪ {0}), f real, f(0) = 0

then f(x) ∈ the norm-closed real subalgebra of A generated by x.

Let H be a complex Hilbert space. Since B(H) is a C∗-algebra all the above

results apply to normal operators in B(H).

1.17. Fuglede-Putnam theorem. For each element x of a C∗-algebra A

we can consider expx =
∞∑
n=0

xn/n! ∈ Ã (1.16). Clearly,

(expx)∗ = expx∗ for all x ∈ A;

(expx)(exp y) = exp(x + y) if x, y ∈ A and xy = yx.

In particular, if x ∈ A is selfadjoint, then exp(ix) is unitary.

Theorem. Let A be a C∗-algebra and x1, x2, y ∈ A. If x1, x2 are normal
and x1y = yx2, then x∗

1y = yx∗
2.
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Proof. The map f : C ∋ λ 7→ exp(−λx∗
1)y exp(λx

∗
2) ∈ A is an entire function

with respect to the norm. Using x1y = yx2 we infer y = exp(λx1)y exp(−λx2),
(λ ∈ C), thus

f(λ) = exp(−λx∗
1) exp(λx1)y exp(−λx2) exp(λx

∗
2)

= exp(i (iλx∗
1 − iλx1))y exp(i (iλx2 − iλx∗

2)).

The elements iλx∗
1 − iλx1 and iλx2 − iλx∗

2 being selfadjoint, it follows that
the function f is bounded. Therefore f is a constant function, by Liouville’s
theorem and hence its derivative vanishes:

0 = f ′(λ) = −x∗
1 exp(−λx∗

1)y exp(λx
∗
2) + exp(−λx∗

1)y exp(λx
∗
2)x

∗
2.

In particular, f ′(0) = 0, that is x∗
1y = yx∗

2.

1.18. In this section we record some working properties and some conse-
quences of the continuous functionals calculus.

Let A be a C∗-algebra.
(1) If x ∈ A is normal, f ∈ C(σA(x)) and g ∈ C(σA(f(x))) = C(f(σA(x))),

then f(x) is normal and, by the uniqueness of the continuous functional calculus,

(g ◦ f)(x) = g(f(x)).

(2) If x, y ∈ A are normal and xy = yx then, by Theorem 1.17, the C∗-
algebra C∗({x, y, 1A}) is commutative and hence, for every f ∈ C(σA(x)) and
every g ∈ C(σA(y)) we have f(x)g(y) = g(y)f(x).

(3) Also, if x ∈ A is normal, y ∈ A, x = xy = y∗x and f ∈ C(σA(x)), then

f(x) = f(x)y + f(0)(1
Ã
− y) = y∗f(x) + f(0)(1

Ã
− y∗).

Indeed, this can be easily verified for polynomials in λ and λ which are uniformly
dense in C(σA(x)).

(4) Let f ∈ C([−1, 1]). For every ε > 0 there exists δ > 0 such that for every
x ∈ A, x = x∗, ‖x‖ 6 1 and every y ∈ A, ‖y‖ 6 1 we have

‖xy − yx‖ 6 δ ⇒ ‖f(x)y − yf(x)‖ 6 ε.

Indeed, there exists a polynomial p(t) =
n∑

k=0

λkt
k, (t ∈ R), such that

‖f − p‖ = sup {|f(t)− p(t)|t ∈ [−1, 1]} 6
ε

4
.

Define

δ =
ε

2

n∑

k=1

k|λk|,
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and let x, y ∈ A, ‖x‖ 6 1, ‖y‖ 6 1, x = x∗ be such that ‖xy − yx‖ 6 δ.
Consider the linear mapping D : A → A defined by

D(a) = ay − ya; a ∈ A.

Clearly, ‖D‖ 6 2. Since

‖D(xk+1)‖ = ‖xD(xk) +D(x)xk‖ 6 ‖D(xk)‖ + ‖D(x)‖,

by induction we get

‖D(xk)‖ 6 k‖D(x)‖ 6 kδ; 1 6 k 6 n.

It follows that

‖D (p(x)) ‖ =
∥∥∥

n∑

k=1

λkD(xk)
∥∥∥ 6

( n∑

k=1

k|λk|
)
δ =

ε

2
,

and hence ‖f(x)y − yf(x)‖ = ‖D(f(x))‖ 6 ‖D(p(x))‖ + 2‖f(x)− p(x)‖ 6 ε.

(5) Let Ω ⊂ C be such that (Ω \ Ω) ∩ Ω = ∅ and f be a continuous complex
function on Ω. Then the map

{x ∈ A : x normal, σA(x) ⊂ Ω} ∋ x 7→ f(x) ∈ Ã

is norm continuous.
Indeed, let x ∈ A be normal, σA(x) ⊂ Ω and ε > 0. Since (Ω \ Ω)∩σA(x) = ∅,

there exists a compact neighbourhoodN of σA(x) such that (Ω \ Ω)∩N = ∅. Then

Ω ∩N = (Ω ∪ (Ω\Ω)) ∩N = Ω ∩N

is compact and hence by the Stone-Weierstrass theorem there exists a polynomial
p in λ and λ such that |f(λ) − p(λ, λ)| 6 ε/3 for all λ ∈ Ω ∩ N . Finally, by the
lower semicontinuity of the spectrum (1.7), there exists δ > 0 such that if y ∈ A,
‖x− y‖ 6 δ, then σA(y) ⊂ N and ‖p(x, x∗) − p(y, y∗)‖ 6 ε/3. For y ∈ A normal
with σA(y) ⊂ Ω and ‖x− y‖ 6 δ we have σA(y) ⊂ Ω ∩N , hence

‖f(x)− f(y)‖ 6 ‖f(x)− p(x, x∗)‖+ ‖p(x, x∗)− p(y, y∗)‖+ ‖p(y, y∗)− f(y)‖ 6 ε.

Note that if Ω ⊂ C is either open or closed or a subinterval of R or an arc

on {λ ∈ C : |λ| = 1}, then the condition (Ω \ Ω) ∩Ω = ∅ is satisfied.
(6) A normal element x ∈ A is selfadjoint if and only if σA(x) ⊂ R.
Indeed, if x is selfadjoint, then σA(x) ∈ R (Proposition 1.8). Conversely, if

σA(x) ⊂ R, then f : λ 7→ λ and g : λ 7→ λ concide on σA(x), hence x = f(x) =
g(x) = x∗.

Similarly, a normal element x ∈ A is unitary if and only if σA(x) ⊂ {λ ∈ C :
|λ| = 1}.
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(7) By (6), if x ∈ A is selfadjoint, then exp(ix) is unitary.

Conversely, let u ∈ Ã be unitary and suppose that

σ
Ã
(u) ⊂

{
eiθ : θ0 − π < θ < θ0 + π

}

for some θ0 ∈ R. Denote by f the continuos function defined on
{
eiθ : θ0 − π < θ <

θ0 + π} by f(eiθ) = θ and put x = f(u) ∈ Ã. Then x is selfadjoint and u = exp(ix).
Moreover,

σ
Ã
(x) ⊂

{
θ : θ0 − π < θ < θ0 + π, eiθ ∈ σ

Ã
(u)

}
.

In particular, every unitary element u ∈ Ã with σ
Ã
(u) 6= {λ ∈ C : |λ| =

1} belongs to exp(i Ãh) = {exp(ix) : x ∈ Ãh}. This happens, for instance, if
‖λ0 − u‖ < 2 for some λ0 ∈ C, |λ0| = 1 since then −λ0 6∈ σ

Ã
(u).

(8) Let B be a unital C∗-algebra and π : Ã → B be a ∗-homomorphism

such that π(1
Ã
) = 1B. Then, for every normal x ∈ Ã, π(x) ∈ B is normal,

σB(π(x)) ⊂ σ
Ã
(x) and, by the uniqueness of the continuous functional calculus,

we have
π(f(x)) = f(π(x)); f ∈ C(σ

Ã
(x)).

1.19. Notes. For the introduction of C∗-algebras and the main results in this
section we refer to the fundamental contributions of I.M. Gelfand and M.A. Năımark
[105], [106], to the articles [16], [103], [168], [256], [257], [276] and to the monographs
[33], [78], [80], [81], [163], [164], [213], [258]. In our exposition we used mainly the books
of F.F. Bonsall and J. Duncan [33] and J. Dixmier [78].

I.M. Gelfand and M.A. Năımark [106] defined the notion of a C∗-algebra by the
following axioms:

(I) A is a ∗-algebra;
(II) A is a Banach space, with the vector structure of (I);
(III) ‖xy‖ 6 ‖x‖ ‖y‖, for any x, y ∈ A;
(IV) ‖x∗x‖ = ‖x∗‖ ‖x‖, for any x ∈ A;
(V) ‖x∗‖ = ‖x‖, for any x ∈ A;
(VI) 1 + x∗x is invertible in A, for any x ∈ A.

With this definition, they proved that every C∗-algebra is ∗-isomorphic to a norm-
closed ∗-subalgebra of B(H) for some Hilbert space H (see 4.11) and conjectured that
axiom (VI) and axiom (V) should follow from the other axioms.

The redundancy of (VI) has been proved by I.M. Gelfand and M.A. Năımark [106],
R. Arens [16] and M. Fukamiya [103] in the commutative case, and by M. Fukamiya [103],
I. Kaplansky (see [276]), J.L. Kelley and R.L. Vaught [168] in the general case.

J. Glimm and R.V. Kadison [113] and T. Ono [222] proved that axiom (V) also
follows from axioms (I)–(IV) if A has a unit element, and J. Vowden [341] proved the
same for the general case, thus solving positively and completely the Gelfand-Năımark
conjecture.

The term of a “C∗-algebra” has been introduced in fact by I.E. Segal [282], while
J. Dixmier proposed the name of “Gelfand-Năımark algebras” for this class (cf. [163],
p. 5). Here we adopted Dixmier’s terminology for concrete C∗-algebras. For a while,
the algebras satisfying just the axioms (I)–(IV) were called “B∗-algebras” in contrast to
“C∗-algebras”, but now there is no more difference between these two terms.
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The conjuction of axioms (IV) and (V) is obviously equivalent to

(IV′) ‖x∗x‖ = ‖x‖2, for any x ∈ A,

this being the axiom we used here. H. Araki and G.A. Elliott [15], [90], have shown that
axiom (III) is a consequence of (I), (II), and (IV′); moreover, they have also shown that
axiom (III) follows from (I), (II), and (IV) provided that the ∗-operation is assumed to
be continuous (see also [278], [279], [280], [281]).

The Gelfand-Năımark conjecture has led to outstanding achievements in the theory
of general Banach ∗-algebras. In what follows we sketch a brief survey of some important
results related to the axiomatic theory of C∗-algebras, guided by [28], [33], [253], [258]
and using some material from Chapters 2 through 6.

We begin with two general results in Banach algebras (compare with 1.10 and 1.9):

1. Theorem ([257]; see [33], p. 25). Let B be a closed subalgebra of a Banach
algebra A and let b ∈ B. Then σA(b) ⊂ σB(b) ∪ {0} and the boundary of σB(b) ⊂ the
boundary of σA(b).

2. Theorem ([135]; see [33], p. 130, [137], [256]). If A is a semisimple Banach
algebra, then any other Banach algebra norm on A is equivalent to the original norm on
A.

Now let A be a Banach ∗-algebra. From Theorem 2 we get

3. Theorem (see [33], p. 191). If A is semisimple, then the ∗-operation is contin-
uos.

Put
p(x) = r(x∗

x)1/2; x ∈ A.

The ∗-radical of A, denoted as ∗-Rad(A), is defined as the intersection of the kernels of
all (irreducible) ∗-representation of A on Hilbert spaces. Then

Rad(A) ⊂ p
−1(0) ⊂ {x ∈ A : ‖x‖∗ = 0} = ∗-Rad(A).

4. Theorem ([103], [168]; see [33], p. 223). If A is unital, then

∗-Rad(A) =
{
x ∈ A : −x

∗
x ∈ A+

}
.

A Banach ∗-algebra A is called hermitian if σ(a) ⊂ R for any a ∈ A, a∗ = a.

Then Ã is also hermitian. The following theorem contains the solution to a conjecture
of I. Kaplansky [159]:

5. Theorem ([252], [288]; see [33], pp. 224–228, [253], 5.10). If A is unital then
the following statements are equivalent:

(i) A is hermitian;
(ii) σ(x∗x) ⊂ R

+, for all x ∈ A;
(iii) 1 + x∗x is invertible, for all x ∈ A;
(iv) r(x)2 6 r(x∗x), i.e. r(x) 6 p(x), for all x ∈ A;
(v) r(y)2 = r(y∗y), for every normal y ∈ A;
(vi) r(u) 6 β, for every unitary u ∈ A and some β > 0;
(vii) r(u) = 1, for every unitary u ∈ A;
(viii) p is subadditive;
(ix) p is (the greatest) C∗-seminorm on A.

6. Corollary (see [33], p. 227). If A is unital and hermitian, then

Rad(A) = ∗-Rad(A) = p
−1(0).
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7. Theorem (see [253], 8.4). If A is unital then the following statements are
equivalent:

(i) A has an equivalent C∗-norm;
(ii) ‖x∗‖ ‖x‖ 6 α‖x∗x‖, for all x ∈ A and some α > 0;
(iii) ‖u‖ 6 β, for every unitary u ∈ A and some β > 0;
(iv) ‖ exp(i a)‖ 6 γ, for every a ∈ A, a∗ = a and some γ > 0;
(v) A is hermitian and ‖a‖ 6 δr(a) for every a ∈ A, a∗ = a and some δ > 0.

For related results see [22], [126], [349]. The following result contains the Glimm-
Kadison solution of the Gelfand-Năımark conjecture:

8. Theorem (see [253], 10.1). If A is unital, then the following statements are
equivalent:

(i) A is a C∗-algebra;
(ii) ‖x∗‖ ‖x‖ = ‖x∗x‖, for all (normal) x ∈ A;
(iii) ‖x‖ = p(x), for all x ∈ A;
(iv) ‖u‖ = 1, for every unitary u ∈ A;
(v) ‖ exp(i a)‖ = 1, for every a ∈ A, a∗ = a.

An A∗-algebra is a Banach ∗-algebra such that the greatest C∗-seminorm is a norm
([33], p. 214). Any semisimple hermitian Banach ∗-algebra is an A∗-algebra ([33], p.
227), but there exists an A∗-algebra which is not hermitian ([107]; cf. [33], p. 227).

The last theorem is also a consequence of the following powerful result, known as
the Vidav-Palmer Theorem, which characterizes the unital C∗-algebras among all unital
Banach algebras by means of a certain “local differential condition”.

Let A be a unital Banach algebra. An element a ∈ A is called a hermitian element
if

‖ exp (i ta)‖ = 1 for every t > 0.

The set of all hermitian elements of A is denoted by H(A).

9. Theorem ([223], [336]; see also [26], [37], [110], [184], [337]). A unital Banach
algebra A is a C∗-algebra with respect to the involution

(a+ i b)∗ = a− i b; a, b ∈ H(A),

if and only if A = H(A) + iH(A).

The importance of this theorem justifies a more detailed discussion of the ideas
involved in its proof ([33], p. 211). We do not follow the historical line (see for this [32],
[33]).

The following outstanding result has considerably simplified the proof:

10. Theorem ([290]; see [31], [33], pp. 56–57). The norm of a hermitian element
a of a unital Banach algebra A is equal to its spectral radius: ‖a‖ = r(a).

The technical instrument used in the proof of Theorem 9 is the numerical range
V (x) and the numerical radius v(x) of an element x of a unital Banach algebra A ([30],
[32], [184]) defined by

V (x) = {f(x) : f ∈ A
∗

, f(1) = 1 = ‖f‖} , v(x) = sup {|λ| : λ ∈ V (x)} .

Then ([33], pp. 51–55) V (x) is a compact convex subset of C which does not depend on
the ambiant unital Banach algebra and σ(x) ⊂ V (x). Moreover,

maxReV (x) = inf
α>0

α
−1(‖1 + αx‖ − 1) = lim

α→0+
α
−1(‖1 + αx‖ − 1)

= sup
α>0

α
−1 log ‖ exp(αx)‖ = lim

α→0+
α
−1 log ‖ exp(αx)‖.
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11. Theorem (see [33], p. 56). r(x) 6 v(x) 6 ‖x‖ 6 ev(x); x ∈ A.

12. Theorem (see [32], p. 46; [33], p. 55). The following conditions on x ∈ A are
equivalent:

(i) x ∈ H(A);

(ii) lim
α→0

α
−1(‖1 + iαx‖ − 1) = 0;

(iii) V (x) ⊂ R.

Using Theorems 10 through 12, it follows that:

13. Corollary (see [33], p. 206). V (x) = co σ(x) for each x ∈ A of the form
x = a+ i b with a, b ∈ H(A), ab = ba.

14. Corollary (see [33], p. 206). H(A) is a real Banach space and i (ab− ba) ∈
H(A) whenever a, b ∈ H(A).

In general, H(A) + iH(A) need not be a subalgebra of A (see [32], pp. 57–60).
However, it is a Banach subspace of A and the ∗-operation (a+i b) = a−i b, (a, b ∈ H(A)),
is continuous ([32], p. 50).

15. Lemma (see [32], p. 59; [33], p. 207). If H(A) + iH(A) is an algebra, then it
is a Banach ∗-algebra with continuous involution and with H(A) as its set of selfadjoint
elements.

Define
P (A) =

{
x ∈ A : V (x) ⊂ R

+
}
.

By Corollary 13, x ∈ P (A) if and only if x ∈ H(A) and σ(x) ⊂ R
+). Also, P (A) is

a normal closed cone in H(A) and 1 is an interior point of P (A) ([32], pp. 48–49).
Assume now that A = H(A) + iH(A). The proofs of the next lemmas ([33], pp.

207–208) are similar to those of their analogous results in C∗-algebras:

16. Lemma. Let a ∈ P (A) and let C denote the Banach subalgebra of A generated
by a and 1. Then there is b ∈ C ∩ P (A) such that a = b2.

17. Lemma. For any x ∈ H(A) there are a, b ∈ P (A) such that x = a − b and
ab = ba = 0.

18. Lemma. x∗x ∈ P (a) for any x ∈ A.

The proof of Theorem 9 is now completed by using the GNS-construction (4.3),
Theorem 1.14 and the Russo-Dye Theorem (6.3) (see [33], p. 211). We record two more
consequences of Theorem 9:

19. Corollary (see [33], p. 214). If A is a unital Banach ∗-algebra such that
a bounded linear functional f on A is selfadjoint whenever f(1) = ‖f‖, then A is a
C∗-algebra.

20. Corollary (see [33], p. 213). A unital Banach ∗-algebra A such that
(i) σ(a) ⊂ R for each a ∈ A, a∗ = a;
(ii) r(1 + λa) = ‖1 + λa‖ for each a ∈ A, a∗ = a and any λ ∈ C,

is a C∗-algebra.

Also,

21. Corollary ([223], II.3.10). A unital Banach algebra is isometrically isomor-
phic to a C∗-algebra if and only if it is linearly isometric to a C∗-algebra.

For other applications of Theorem 9 see [32], pp. 67–79. A dual characterization
of C∗-algebras appears in [199] (see also [20]). There is also a characterization of C∗-
algebras just as Banach spaces (see [223], II.4.6). For further results see also [224], [225].

Finally, we record the following interesting result:

22. Theorem ([220]). Two C∗-algebras which are algebraically isomorphic are
also ∗-isomorphic.

Further refinements of this theorem, suggested by I. Kaplansky ([154], p. 11) appear
in [216], [219].



Chapter 2

POSITIVE ELEMENTS

2.1. An element x of the C∗-algebra A is called positive if it is normal and
σ(x) ⊂ [0,+∞). By functional calculus (1.18.(5)), x is then selfadjoint.

If y ∈ A is selfadjoint, then x = y2 is positive since σ(y) ⊂ R, so that
σ(x) = {λ2; λ ∈ σ(y)} ⊂ [0,+∞).

We denote

A+ = {x ∈ A; x is positive}.

Suppose that A is unital. By Gelfand representation (1.14), for x ∈ Ah and any
λ > ‖x‖ we have

(1) x ∈ A+ ⇔ ‖λ− x‖ 6 λ.

Proposition. For every C∗-algebra A, A+ is a closed convex cone and

A+ ∩ (−A+) = {0}.

Proof. Passing to associate unital C∗-algebra, we may suppose A unital. It
is clear that λx ∈ A+ for any x ∈ A+, λ > 0. If x, y ∈ A+ then, using (1)

‖(‖x‖+ ‖y‖)− (x + y)‖ 6 ‖ ‖x‖ − x‖+ ‖ ‖y‖ − y‖ 6 ‖x‖+ ‖y‖,

so that x + y ∈ A+. Using again (1) we see also that A+ is closed. Finally, if
x ∈ A+∩ (−A+), then x ∈ Ah and σ(x) = {0}, therefore ‖x‖ = r(x) = 0, x = 0.

The set A+ is called the positive cone of A.
The above proposition shows that the relation 6 defined on Ah by

s 6 y ⇔ y − x ∈ A+

is an order relation on Ah.

2.2. Proposition. Let A be a C∗-algebra. For any x ∈ A+ there is a

unique a ∈ A+ such that a2 = x.

Proof. The existence is clear by functional calculus, namely a = f(x) with
f(t) = t1/2, t ∈ [0,+∞). Now let b ∈ A+, b2 = x. Then b commutes with x,
hence it commutes also with a = f(x). Using the Gelfand representation of the
C∗-subalgebra generated by a and b, we deduce b = a.
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The unique a ∈ A+ with x = a2 will be denoted by x1/2. Since x1/2 = f(x)
as in the above proof, by 1.18.(4) it follows that the mapping

A+ ∋ x 7→ x1/2 ∈ A+

is norm continuous.

2.3. Proposition. Let A be a C∗-algebra. For any x ∈ Ah there exist

a, b ∈ A+ uniquely determined such that x = a− b, ab = 0.

Proof. Again the existence part is clear by functional calculus, namely a =
f+(x), b = f−(x), with f+(t) = max(t, 0), f−(t) = max(−t, 0), t ∈ R. Now let
a, b be as in the statement. Since ab = 0 we have a+ b = (a1/2 + b1/2)2 ∈ A+ and
(a+ b)2 = x2, therefore a+ b = (x2)1/2. This, together with a− b = x, proves the
uniqueness part.

The unique a, b ∈ A+ with x = a − b, ab = 0, will be denoted as x+ = a,
x− = b. Note that ‖x‖ = max{‖x+‖, ‖x−‖}.

The proposition shows that Ah = A+ − A+, therefore every C∗-algebra is
the linear span of its positive elements.

2.4. Theorem. For an element x of a C∗-algebra A, the following condi-

tions are equivalent:

(i) x ∈ A+;

(ii) x =
n∑

k=1

y∗kyk with yk ∈ A, (1 6 k 6 n; n ∈ N).

Proof. (i) ⇒ (ii) follows with n = 1 and y1 = x1/2.

(ii) ⇒ (i). Since A+ is a convex cone, it suffices to show that x = y∗y ∈ A+

for any y ∈ A. We first remark that:

(1) z ∈ A, z∗z ∈ −A+ ⇒ z = 0.

Indeed, since σ(z∗z) ∪ {0} = σ(zz∗) ∪ {0} by 1.7.(1) we have also zz∗ ∈ −A+.
Thus, putting a = Re z, b = Im z, we get

z∗z = 2a2 + 2b2 + (−zz∗) ∈ A+,

so that z∗z ∈ A+ ∩ (−A+) = {0}.
Since x = x+ − x−, x+ ∈ A+, x− ∈ A+ and x+x− = 0, we have

(yx−)∗yx− = x−(y∗y)x− = x−(x+ − x−)x− = −(x−)3 ∈ (−A+),

thus yx− = 0 by (1). Consequently, (x−)2 = −y∗yx− = 0, hence x− = 0 and we
conclude x = x+ ∈ A+.
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For an arbitrary x ∈ A we can therefore define its modulus

|x| = (x∗x)1/2 ∈ A+.

Note that |x| = |x∗| ⇔ x is normal. If x is selfadjoint, then |x| = x+ + x−.
Remark that the functions x 7→ |x|, x 7→ x+, x 7→ x− are norm continuous on
their domains.

Corollary. If π : A → B is a ∗-homomorphism between C∗-algebras, then

π(A+) = π(A) ∩B+.

Proof. Consider y ∈ π(A) ∩B+ and let x ∈ A be such that y = π(x). Then
π(|x|) = π(|x|1/2)2 ∈ B+ and π(|x|)2 = π(x∗x) = y2, hence y = π(|x|) ∈ π(A+)
by Proposition 2.2. Conversely, if x ∈ A+, then π(x) = π(x1/2)2 ∈ π(A) ∩B+.

2.5. Examples. (i) Let Ω be a topological space, C(Ω) be the C∗-algebra of
all bounded continuous complex functions on Ω and f ∈ C(Ω). Then f ∈ C(Ω)+

means that f(t) > 0 for all t ∈ Ω.
(ii) Let B(H) be the C∗-algebra of all bounded linear operators on the Hilbert

space H and x ∈ B(H). Then

x ∈ B(H)+ ⇔ (xξ|ξ) > 0 for all ξ ∈ H.

Indeed, if x = y∗y, then (xξ|ξ) = ‖yξ‖2 > 0. Conversely, if (xξ|ξ) > 0, ξ ∈ H ,
then x is selfadjoint and

0 6 (x(x−ξ)|x−ξ) = −((x−)3ξ|ξ) 6 0, ξ ∈ H,

so that (x−)3 and x = x+ ∈ A+.
As an application, we show that for x ∈ B(H), x∗ = x,

(1) ‖x‖ = sup{|(xξ|ξ)|; ξ ∈ H, ‖ξ‖ = 1}.

Indeed, x = x+ − x−, x+x− = 0 and ‖x‖ = max{‖x+‖, ‖x−‖} by 2.3. Let
ε > 0. Denote by H+ the closure of the subspace {(x+)1/2ξ; ξ ∈ H}. Then
(x+)1/2|H ⊖ H+ = 0 and x−|H+ = 0. It follows that there is η ∈ H+, ‖η‖ = 1
such that

(xη|η) = (x+η|η) = ‖(x+)1/2η‖2 > ‖x+‖ − ε.

Similarly, (xζ|ζ) > ‖x−‖ − ε for some ζ ∈ H , ‖ζ‖ = 1. This proves (1).
(iii) Finally, let Ω be a topological space, A be a C∗-algebra and C(Ω, A) be the

C∗-algebra of all bounded continuous A-valued functions on Ω. For f ∈ C(Ω, A)
we have

f ∈ C(Ω, A)+ ⇔ f(t) ∈ A+ for all t ∈ Ω.

Indeed, if f = g∗g, (g ∈ C(Ω, A)), then f(t) = g(t)∗g(t) for all t ∈ Ω.
Conversely, if f(t) ∈ A+ for all t ∈ Ω, then f is a selfadjoint element of C(Ω, A)
and

0 6 f−(t)f(t)f−(t) = −(f−)3(t) 6 0, t ∈ Ω,
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so that f− = 0, f = f+ ∈ C(Ω, A)+.

2.6. This section assembles some useful properties of the order relation in a
C∗-algebra A.

(1) For a, b, x ∈ A we have a 6 b ⇒ x∗ax 6 x∗bx, since b − a = y∗y, y ∈ A,
entails x∗bx− x∗ax = (yx)∗(yx).

(2) In particular, if a, b ∈ A+ and ab = ba then ab = b1/2ab1/2 ∈ A+.

(3) If a ∈ A+ then, by Gelfand representation, ‖a‖ 6 λ ⇔ a 6 λ1 in Ã.
Therefore, if 0 6 a 6 b, then a 6 ‖b‖ so that ‖a‖ 6 ‖b‖.

(4) Again by Gelfand representation, for a ∈ A+, we have ‖a‖ 6 1 ⇔ a2 6 a.
(5) Once more by Gelfand representation, if a ∈ A+, then ‖P (a)‖ = P (‖a‖)

for every polinomial P with positive coefficients.
(6) Let a, b, c, x, y ∈ A, xx∗ 6 aa∗, y∗y 6 b∗b. Then ‖ycx‖ 6 ‖bca‖. Indeed,

‖ycx‖2 = ‖x∗c∗y∗ycx‖ 6 ‖x∗c∗b∗bcx‖ = ‖(bcx)∗(bcx)‖

= ‖(bcx)(bcx)∗‖ = ‖bcxx∗c∗b∗‖ 6 ‖bcaa∗c∗b∗‖ = ‖bca‖2.

(7) If a ∈ A+ is invertible in Ã, then a−1 ∈ Ã+ and (a−1)1/2 = a−1/2.

Moreover, if a, b ∈ A+ are invertible in Ã and a 6 b, then b−1 6 a−1. Indeed,

a 6 b ⇒ b−1/2ab−1/2
6 1 ⇒ ‖a1/2b−1/2‖2 = ‖b−1/2ab−1/2‖ 6 1

⇒ ‖a1/2b−1a1/2‖ = ‖b−1/2a1/2‖2 = ‖(a1/2b−1/2)∗‖2 6 1

⇒ a1/2b−1a1/2 6 1 ⇒ b−1
6 a−1.

(8) If a, b ∈ A, a = a∗, ‖a‖ 6 1, 0 6 b 6 1, then

a = ab ⇒ a 6 b.

Indeed ab = a = a∗ = ba and the assertion follows using the Gelfand representation
of C∗({a, b, 1}).

Moreover, if a ∈ A, 0 6 a 6 1 and e ∈ A is a projection, then

a = ae ⇔ a 6 e, quade = ae ⇔ e 6 a.

Indeed, e 6 a ⇔ 1− a 6 1− e and

0 6 a 6 e ⇒ 0 6 (1− e)a(1− e) 6 0 ⇒ a1/2(1 − e) = 0

⇒ a− ae = a1/2a1/2(1 − e) = 0.

(9) In particular, for projections e1, e2 ∈ A we have

e1 6 e2 ⇔ e1 = e1e2.

2.7. Operator monotone functions. Consider an interval (bounded or
not) I ⊂ R and a real continuous function f defined on I. The function f is called
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operator monotone (increasing) if for every C∗-algebra A and every x, y ∈ Ah with
σ(x), σ(y) ⊂ I we have

x 6 y ⇒ f(x) 6 f(y).

Proposition. For every 0 6 α 6 1, the function t 7→ tα is operator mono-

tone on [0,+∞).

Proof. Let A be a C∗-algebra, x, y ∈ A, 0 6 x 6 y, and let T = {α ∈
[0, 1]; xα 6 yα}. In order to show that T = [0, 1] we may assume both x and y

invertible in Ã since, for each ε > 0, x+ ε and y + ε are invertible, x + ε 6 y + ε
and from (x+ ε)α 6 (y + ε)α we get xα 6 yα letting ε → 0.

Thus, let x and y be invertible in Ã. It is then clear that 0 ∈ T , 1 ∈ T and
T is closed. We shall show that

α, β ∈ T ⇒ (α+ β)/2 ∈ T,

which entails T = [0, 1], thus proving the proposition.
If α, β ∈ T , then ‖y−α/2xα/2‖ 6 1, ‖xβ/2y−β/2‖ 6 1 (see 2.6). Since the

spectral radius of a positive element equals its norm and r(ab) = r(ba) (see 1.7.(2)),
we have

1 > ‖y−α/2xα/2xβ/2x−β/2‖ > r(y−α/2x(α+β)/2y−β/2)

= r(y−(α+β)/4x(α+β)/2y−(α+β)/4) = ‖y−(α+β)/4x(α+β)/2y−(α+β)/4‖,

so that y−(α+β)/4x(α+β)/2y−(α+β)/4 6 1 and x(α+β)/2 6 y(α+β)/2.

If γ > 1, then the function t 7→ tγ is not operator monotone (see Corollary
1/4.18). However, if x, y ∈ A+, x 6 y and xy = yx, then xγ 6 yγ for any γ > 0,
by Gelfand representation.

There are other useful operator monotone functions. For instance, consider
fα : (−α−1,+∞) → R, α > 0, defined by

fα(t) = t(1 + αt)−1 = α−1(1 − (1 + αt)−1); t ∈ (−α−1,+∞).

Let A be a C∗-algebra. For any x ∈ Ah, σ(x) ⊂ (−α−1,+∞), the element

fα(x) = x(1 + αx)−1 = α−1(1 − (1 + αx)−1) ∈ Ã belongs in fact to A since
fα(0) = 0. If y ∈ Ah, σ(y) ⊂ (−α−1,+∞) and x 6 y, then 0 6 1 + αx 6 1 + αy,
so that (1+αx)−1 > (1+αy)−1 which obviously implies fα(x) 6 fα(y). Therefore
each fα is operator monotone and the same is true for αfα.

The functions fα have the following properties:

fα(t) 6 min{t, α−1}, αfα(t) 6 1 for t ∈ (−α−1,+∞);(1)

α 6 β ⇒ fα(t) > fβ(t) for t ∈ (−β−1,+∞);(2)

α 6 β ⇒ αfα(t) 6 βfβ(t) for t ∈ [0,+∞);(3)

fα(fβ(t)) = fα+β(t) for t ∈ (−(α+ β)−1,+∞);(4)

lim
α→0

fα(t) = t uniformly on compact subset of (−∞,+∞);(5)

lim
α→+∞

αfα(t) = 1 uniformly on compact subset of (0,+∞).(6)
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Using functional calculus, each of these properties can be translated in a
corresponding property of elements of the form fα(x).

As an application, let x, y ∈ A, 0 6 x 6 y and α, β ∈ R, 0 < α 6 β. Then
αfα(x) 6 βfβ(x) by (3) and βfβ(x) 6 βfβ(y) since βfβ is operator monotone, so
that αfα(x) 6 βfβ(y). Therefore,

(7) 0 6 x 6 y, 0 < α 6 β ⇒ x(α−1 + x)−1
6 y(β−1 + y)−1.

On the other hand, for 0 < β < 1 and t > 0 we have

∫ ∞

0

fα(t)α
−β dα =

∫ ∞

0

t(1 + αt)−1α−β dα = tβ
∫ ∞

0

(1 + α)−1α−β dα = γtβ .

The second equality is obtained by changing the variable α into αt−1 and γ =
π/ sinπβ > 0. It follows that for each fixed compact set K ⊂ [0,∞) and every
ε > 0, there is n ∈ N and an equidistant division 0 = α0 < α1 < · · · < αm = n
such that ∣∣∣tβ − γ−1 n

m

m∑

k=1

fαk
(t)α−β

k

∣∣∣ 6 ε, t ∈ K.

This gives another simple proof of the above proposition. Indeed, consider x, y ∈
A+, x 6 y. Since the functions fαk

are operator monotone, the above inequality
with K = [0, ‖y‖] yields yβ − xβ > −2ε for all ε > 0, hence xβ 6 yβ .

2.8. The preorder structure of a ∗-algebra.Given an arbitrary ∗-algebra
A, we still can define the positive cone A+ by

A+ =
{
x ∈ A; x =

n∑

k=1

y∗kyk, yk ∈ A, n ∈ N

}
.

Then A+ ⊂ Ah is a convex cone, but we may have A+ ∩ (−A)+ 6= {0}. Therefore
the relation

x 6 y ⇔ y − x ∈ A+

is just a preorder relation on Ah.
Another unsatisfactory feature of A+ is that A+ does not necessarily span

the whole A. However, the following “polarization relation”

(1) y∗x = 4−1
3∑

k=0

ik(x+ iky)∗(x+ iky); x, y ∈ A,

shows that A2 = linA+, hence A = linA+ whenever A2 = A, which is the case if
A is unital.

Note also the following form of the polarization relation:

(2) y∗ax = 4−1
3∑

k=0

ik(x+ iky)∗a(x+ iky); x, y, a ∈ A.
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Even if A is an involutive Banach algebra, A+ need not be closed.
Finally, in any non-commutative C∗-algebra, the order is not latticial (see

Corollary 1/4.18).
In every ∗-algebra, (x− y)∗(x− y) > 0, which yields x∗y+ y∗x 6 x∗x+ y∗y.

Using this inequality, we get

(3)
( n∑

k=1

xk

)∗( n∑

k=1

xk

)
6 n

n∑

k=1

x∗
kxk; xk ∈ A, 1 6 k 6 n.

If Ã is the associate unital ∗-algebra, then Ã+ ∩ A+ = A+. Indeed, if
n∑

k=1

(yk+λk)
∗(yk +λk) ∈ A, and A is not unital, then

n∑
k=1

|λk|2 = 0, so that λk = 0

for all k = 1, . . . , n.
Note that if B is a ∗-subalgebra of A then we may have A+ ∩ B 6= B+.

However, for any C∗-subalgebra B of a C∗-algebra A, the equality A+ ∩B = B+

holds.
If π : A → B is a ∗-homomorphism between ∗-algebras, then clearly π(A+) ⊂

B+.
A ∗-algebra A is said to satisfy the Combes axiom if for each x ∈ A there is

λ(x) > 0 such that
a∗x∗xa 6 λ(x)a∗a for all a ∈ A.

Any C∗-algebra satisfies the Combes axiom with λ(x) = ‖x‖2, since x∗x 6 ‖x‖2

in Ã.
Also, any U∗-algebra A satisfies the Combes axiom. Indeed, each x ∈ A can

be written as x =
n∑

k=1

λkuk with uk ∈ Ã unitary elements and the Combes axiom

is satisfied with λ(x) = n
n∑

k=1

|λk|2 since x∗x 6 λ(x) in Ã by (3).

In the last part of this section we shall show that any Banach ∗-algebra A is
a U∗-algebra and satisfies the Combes axiom with λ(x) = ‖x∗x‖+ ε, where ε > 0
is arbitrary.

For a Banach algebra A, recall the notation

x ◦ y = x+ y − xy; x, y ∈ A,

and the fact for any y ∈ A with r(y) < 1, there exists x ∈ A such that x ◦ y = 0
(see 1.7). For a ∈ A we denote by A(a) the closed subalgebra of A generated by a.

Lemma. Let A be a Banach algebra and a ∈ A, ‖a‖ < 1. Then there exists a
unique x ∈ A such that x ◦ x = a and r(x) < 1. Moreover, ‖x‖ < 1 and x ∈ A(a).

Proof. Let ‖a‖ = λ < 1, let E = {x ∈ A(a); ‖x‖ 6 λ} and let T : E → E be
defined by T (x) = (a + x2)/2, x ∈ E. Since xy = yx for any x, y ∈ E, it follows
that ‖T (x)− T (y)‖ 6 λ‖x− y‖ and, by the contraction mapping principle, there
exists x ∈ E with T (x) = x, i.e. x ◦ x = a. Clearly, r(x) 6 ‖x‖ < 1.

If y ∈ A, r(y) < 1 and y◦y = a, then ay = ya so that xy = yx since x ∈ A(a).
Thus, letting u = (x + y)/2, v = x − y, we have u ◦ v = u and r(u) < 1, so there
is w ∈ A with w ◦ u = 0. It follows that

x− y = v = 0 ◦ v = w ◦ u ◦ v = w ◦ u = 0

and hence y = x.
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Proposition (Ford’s square root lemma). Let A be a Banach ∗-algebra and
a ∈ A, a∗ = a, ‖a‖ < 1. Then there exists a unique x ∈ A, x∗ = x, such that
x ◦ x = a and r(x) < 1. Moreover, ‖x‖ < 1 and x ∈ A(a).

Proof. By the above lemma there exists a unique x ∈ A with x ◦ x = a
and r(x) < 1; moreover, ‖x‖ < 1 and x ∈ A(a). Since r(x∗) = r(x) < 1 and
x∗ ◦ x∗ = a∗ = a, we have also x∗ = x.

Corollary 1. Every Banach ∗-algebra A is a U∗-algebra.

Proof. Let a ∈ A, a∗ = a, ‖a‖ < 1. By the proposition there exists x ∈ A,
x∗ = x, ‖x‖ < 1, xa = ax such that 2x − x2 = x ◦ x = a. Then v = x + ia is a
quasi-unitary element of A and

a = 2−1i(v∗ + v).

Let A be a C∗-algebra. In this case Ford’s square root lemma is replaced
by a stronger result — Proposition 2.2. If a ∈ Ah and ‖a‖ < 1, then u =

a+ i(1 − a2)1/2 ∈ Ã is unitary and

a = 2−1u+ 2−1u∗.

Note that −i ∋ σ(u), hence u ∈ exp(iAh) by 1.18.(6). It follows that every x ∈ A,

‖x‖ < 1/2, is a convex combination of four unitary elements of exp(iAh) ⊂ Ã, in
particular

(4) {x ∈ A; ‖x‖ < 1/2} ⊂ co exp(iAh).

Similar results hold for Banach ∗-algebra with continuous ∗-operation.

Corollary 2. Let A be a Banach ∗-algebra, h ∈ A, h∗ = h, and a ∈ A.
Then, for any ε > 0,

−(‖h‖+ ε)a∗a 6 a∗ha 6 (‖h‖+ ε)a∗a.

Proof. Let ε > 0. By the proposition there exist x, y ∈ A, x∗ = x, y∗ = y
such that x ◦ x = (‖h‖ + ε)−1h, y ◦ y = −(‖h‖ + ε)−1h. Denote u = a − xa,
v = a− ya. Then

a∗a− (‖h‖+ ε)−1a∗ha = u∗u, a∗a+ (‖h‖+ ε)−1a∗ha = v∗v,

so that the desired result follows.

Both corollaries show that a Banach ∗-algebra A satisfies the Combes axiom.
Corollary 2 shows that for every x ∈ A, the Combes axiom is satisfied with λ(x) =
‖x∗x‖+ ε, where ε > 0 is arbitrary. If additionally A+ is closed, then we can take
λ(x) = ‖x∗x‖.

2.9. Faces. Let A be a ∗-algebra. A subset S of A+ is called hereditary if

y ∈ A+, y 6 x ∈ S ⇒ y ∈ S.

A face (or an order ideal) of A+ is a hereditary convex subcone F of A+. A
set F ⊂ A+ is a face of A+ if and only if for x, y ∈ A+ we have

x+ y ∈ F ⇔ x ∈ F and y ∈ F.

An invariant face of A+ is a face F of A+ such that z∗Fz ⊂ F for all z ∈ Ã.
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Lemma 1. If A is an U∗-algebra, a face F of A+ is invariant if and only if

u∗Fu ⊂ F for all unitary elements u ∈ Ã.

Proof. By assumption, every z ∈ Ã can be written as a linear combination

z =
n∑

k=1

λkuk of unitaries uk ∈ Ã. Then, using 2.8.(3), for any x ∈ F we obtain

z∗xz =
( n∑

k=1

λkuk

)∗

x
( n∑

k=1

λkuk

)
6 n

n∑

k=1

|λk|
2u∗

kxuk,

and the desired conclusion follows.

A strongly invariant face of A+ is a face F of A+ such that

x ∈ A, x∗x ∈ F ⇒ xx∗ ∈ F.

Lemma 2. A convex subcone F of A+ is a strongly invariant face of A+ if

and only if

x ∈ A, x∗x 6 a ∈ F ⇒ xx∗ ∈ F.

Proof. Let F be a convex subcone of A+ which satisfies the condition of the

statement. If b ∈ A+ and b 6 a ∈ F then b =
n∑

k=1

x∗
kxk, for some x1, . . . , xn ∈ A

and, using repeatedly the assumption we get, for each k,

x∗
kxk 6 a ∈ F ⇒ xkx

∗
k ∈ F ⇒ x∗

kxk ∈ F.

Hence b ∈ F , thus F is a face. By the assumption F is strongly invariant. The
converse is clear.

A subalgebra M of A is called a hereditary subalgebra or a facial subalgebra

(respectively a facial ideal, respectively a strongly facial ideal) if M ∩ A+ is a
face (respectively an invariant face, respectively a strongly invariant face) of A+

and M = lim(M ∩ A+). Due to the last condition, any facial subalgebra is a
∗-subalgebra.

Given a face F of A+ we shall denote

NF = {x ∈ A; x∗x ∈ F} and MF = N∗
FNF .

Proposition. Let A be a ∗-algebra satisfying the Combes axiom and F be a

face of A+. Then:

(i) NF is a left ideal of A;

(ii) MF ⊂ N∗
F ∩NF is a facial subalgebra of A and MF ∩ A+ = F ;

(iii) NF is a two-sided ideal ⇔ MF is a two-sided ideal ⇔ F is invariant;

(iv) NF is selfadjoint ⇔ F is strongly invariant.

Proof. (i) Consider x, y ∈ NF and z ∈ A. We have

(x+ y)∗(x+ y) 6 2(x∗x+ y∗y) ∈ F,
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hence x+ y ∈ NF . Then using Combes axiom,

(zx)∗(zx) = x∗z∗zx 6 λ(z)x∗x ∈ F,

hence zx ∈ N . Therefore NF is a left ideal.
(ii) Since NF is a left ideal, N∗

F is a right ideal, so that MF is a selfadjoint
subalgebra of N∗

F ∩ NF . If a =
∑
k

x∗
kxk ∈ F , then x∗

kxk 6 a ∈ F , so that

successively: x∗
kxk ∈ F , xk ∈ NF , x

∗
kxk ∈ MF and a ∈ MF ∩ A+. Conversely,

let a =
∑
k

y∗kxk ∈ MF ∩ A+ where yk, xk ∈ NF . Using the polarization relation

(2.8.(1)) we get

4a =
∑

k

[(xy + yk)
∗(xy + yk)− (xy − yk)

∗(xy − yk)] 6
∑

k

(xy + yk)
∗(xy + yk) ∈ F

so that a ∈ F . Thus MF ∩A+ = F . Using again polarization relation we see that
MF = linF , therefore MF is a facial subalgebra.

(iii) If F is invariant, then

x ∈ NF ⇒ x∗x ∈ F ⇒ (xz)∗(xz) = z∗x∗xz ∈ F for all z ∈ A

⇒ xz ∈ NF for all z ∈ A,

so that NF is a two-sided ideal. If NF is a two-sided ideal, then MF = N∗
FNF is

also a two-sided ideal and this in turn entails that F = MF ∩ A+ is an invariant
face.

(iv) This is obvious.

Clearly, a selfadjoint left ideal is two-sided. By the Proposition we infer that
if A satisfies Combes axiom, then every strongly invariant face of A+ is invariant.

As the following example shows, the converse is not true even for C∗-algebras.
In particular, a two-sided ideal of a C∗-algebra need not be selfadjoint (see how-
ever 3.5).

Let A (respectively B) be the C∗-algebra constructed as the restricted direct
product (respectively the direct product; 1.4) of a sequence of copies of the C∗-
algebra M2. Consider the elements v = {vn} ∈ A, p = {pn} ∈ B, where

vn = A =

(
0 0

1/n 0

)
, pn = A =

(
0 0
0 1

)
; n ∈ N.

Then A ⊂ B. Let F be the smallest invariant face of A+ containing v∗v. Suppose
that vv∗ ∈ F . This means that there is a finite set of elements xk = {xk,n} ∈
A and α > 0 such that

vv∗ 6
∑

k

xkv
∗vxk + αv∗v.
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We have vp = 0, pv = v, therefore putting yk = xkp ∈ A we get

0 6 vv∗ = pvv∗p 6
∑

k

y∗kv
∗vyk.

For each n ∈ N we obtain successively:

vnv
∗
n 6

∑

k

y∗k,nv
∗
nvnyk,n, ‖vn‖

2
6

∑

k

‖yk,n‖
2‖vn‖

2,

1 6
∑

k

‖yk,n‖
2
6

∑

k

‖xk,n‖
2.

Letting n → +∞, we infer 1 6 0, a contradiction. Therefore vv∗ 6∈ F and F

is an invariant face which is not strongly invariant.

Corollary. Let A be a ∗-algebra satisfying Combes axiom. Then the map-

pings F 7→ linF , M 7→ M ∩ A+ are mutually inverse correspondences between:

(i) {F : faces of A+} and {M : facial subalgebras of A};

(ii) {F : invariant faces of A+} and {M : facial ideals of A};

(iii) {F : strongly invariant faces of A+} and {M : strongly facial ideals of A}.

The above results hold in particular if A is a C∗-algebra. In this case we

have also

MF = (N∗
F ∩NF )

2,

for every face F of A+. Indeed, if a ∈ MF ∩ A+, then a1/2 ∈ N∗
F ∩ NF , hence

a = (a1/2)2 ∈ (N∗
F ∩NF )

2.

2.10. Proposition. Let A be a C∗-algebra and let N be a left or right ideal

of A or a facial subalgebra of A. Then the set

{x ∈ N ∩A+; ‖x‖ < 1}

is upward directed.

Proof. Let x, y ∈ N ∩ A+, ‖x‖ < 1, ‖y‖ < 1 and put u = x(1 − x)−1, v =

y(1−y)−1, z = (u+v)(1+u+v)−1. Then u, v, z ∈ A+, ‖z‖ < 1 and x = u(1+u)−1,

y = v(1 + v)−1. Since the function f1 in 2.6 is operator monotone, we have x 6 z,

y 6 z. It remains to prove that z ∈ N . This is clear if N is an ideal. If N is a

facial subalgebra, then N ∩ A+ is a face of A+ and

u 6 ‖(1− x)−1‖x ∈ N ∩ A+

so that u ∈ N ∩ A+ and similarly v ∈ N ∩ A+, z ∈ N ∩ A+.
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Let N be as in the statement of the proposition. Then for any x, y ∈ N ∩A+,
‖x‖ 6 1, ‖y‖ 6 1 and any ε > 0 there exist z ∈ N ∩A+, ‖z‖ 6 1, such that

(1− ε)x 6 z, (1− ε)y 6 z.

2.11. C∗-seminorms on tensor products. If A,B are ∗-algebras, then
their algebraic tensor product A⊗B becomes a ∗-algebra with ∗-operation

( n∑

k=n

ak ⊗ bk

)∗

=

n∑

k=n

a∗k ⊗ b∗k; ak ∈ A, bk ∈ B,

and we have
(A⊗B)h = Ah ⊗Bh.

Indeed, if
( n∑

k=1

ak ⊗ bk

)∗

=

n∑

k=1

ak ⊗ bk ∈ (A⊗B)h,

then
n∑

k=1

ak ⊗ bk =

n∑

k=1

(Re ak ⊗ Re bk − Im ak ⊗ Im bk) ∈ Ah ⊗Bh.

Now, the ∗-algebra A⊗B has a positive cone (A⊗B)+ ⊂ (A⊗B)h. It is easy to
see that

{a⊗ b; a ∈ A+, b ∈ B+} ⊂ (A⊗B)+.

In particular, if a1, a2 ∈ A+, a1 6 a2 and b1, b2 ∈ B+, b1 6 b2, then

a1 ⊗ b1 6 a1 ⊗ b2 6 a2 ⊗ b2.

On the other hand, let A, B be normed spaces. A seminorm p defined on the
algebraic tensor product A⊗B of the underlying vector spaces is called a subcross
seminorm (respectively cross seminorm) if

p(a⊗ b) 6 ‖a‖ ‖b‖ (respectively p(a⊗ b) = ‖a‖ ‖b‖); a ∈ A, b ∈ B.

As an application of the study of positive elements in C∗-algebras we prove:

Proposition. Let A,B be C∗-algebras. Then any C∗-seminorm p on A⊗B
is a subcross seminorm.

Proof. By 1.2 we may suppose that p(x) = ‖π(x)‖, x ∈ A ⊗ B, where π is
a ∗-homomorphism of A ⊗ B into some C∗-algebra C. Recall that 2.6.(4) for a
positive element x of a C∗-algebra we have ‖x‖ 6 1 ⇔ x2 6 x.

Consider a ∈ A+, ‖a‖ 6 1 and b ∈ B+, ‖b‖ 6 1. Then a2 6 a, b2 6 b,
so that (a⊗ b)2 = a2 ⊗ b2 6 a⊗ b. Then π(a⊗ b) ∈ C+ and π(a⊗ b)2 6 π(a⊗ b),
hence ‖π(a⊗ b)‖ 6 1.

It follows that
p(a⊗ b) 6 ‖a‖ ‖b‖

for all a ∈ A+, b ∈ B+. Then, for arbitrary a ∈ A, b ∈ B,

p(a⊗ b)2 = p((a⊗ b)∗(a⊗ b)) = p(a∗a⊗ b∗b) 6 ‖a∗a‖ ‖b∗b‖ = ‖a‖2‖b‖2

which completes the proof.
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2.12. Consider the ∗-algebra Mn of all n× n complex matrices. An element
of Mn is a colection [λhk] of n

2 complex numbers λhk, 1 6 h, k 6 n. In particular,
let

eij = [δihδjk] ∈ Mn; 1 6 i, j 6 n,

where δpq = 1 if p = q and δpq = 0 if p 6= q. Then {eij}ij is a system of matrix
units for Mn, that is

eijers = δjreis, e∗ij = eji; 1 6 i, j, r, s 6 n

and clearly, {eij}ij is a linear basis of the vector space Mn:

[λij ] =
∑

ij

λijeij .

Given a ∗-algebra A, we can consider the tensor product ∗-algebra A⊗Mn.
An arbitrary element X of A⊗Mn can be uniquely written as

(1) X =
∑

ij

xij ⊗ eij ,

with xij ∈ A.

Proposition. Let A be a ∗-algebra. An element of A ⊗ Mn belongs to
(A⊗Mn)

+ if and only if it is a sum of elements of the form

(2)

∑

ij

x∗
i xj ⊗ eij ,

with x1, . . . , xn ∈ A.

Proof. The elements of the form (2) belong to (A⊗Mn)
+ since

∑

ij

x∗
i xj ⊗ eij =

(∑

k

xk ⊗ e1k

)∗(∑

k

xk ⊗ e1k

)
.

Conversely, any element of (A⊗Mn)
∗ is a sum of elements of the form X∗X with

X ∈ A⊗Mn and, if X is as in (1), then

X∗X =
(∑

hk

xhk ⊗ ehk

)∗(∑

rs

xrs ⊗ ers

)

=
∑

hkrs

x∗
hkxrs ⊗ ekhers =

∑

h

∑

ks

x∗
hkxhs ⊗ eks.

Given the ∗-algebra A, we can also consider the set Mn(A) consisting of all
collections x = [xij ] of n

2 elements xij of A, 1 6 i, j 6 n, endowed with the
operations

[xij ] + [yij ] = [xij + yij ]; λ[xij ] = [λxij ];

[xij ][yij ] =
[∑

k

xikykj

]
; [xij ]

∗ = [x∗
ji].

Then Mn(A) becomes a ∗-algebra and the mapping

Mn(A) ∋ [xij ] 7→
∑

ij

xij ⊗ eij ∈ A⊗Mn

is a ∗-isomorphism of Mn(A) onto A⊗Mn.
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Corollary. Let A be a ∗-algebra. An element of Mn(A) belongs to Mn(A)
+

if and only if it is a sum of elements of the form

[x∗
i xj ]

with x1, . . . , xn ∈ A.

In particular, [eij ] ∈ Mn(Mn)
+ since eij = (e1i)

∗(e1j), 1 6 i, j 6 n. Actually,
[eij ]

2 = n[eij ], so that n−1[eij ] is a projection.
Clearly, if A = Mm, then Mn(A) can be identified to Mm+n. On the other

hand, let A = B(H) for some Hilbert space H and let H(n) be the Hilbert space
direct sum of n copies of H . Then it is easy to see that Mn(A) can be identified
to B(H(n)).

Note that the order relation in B(H(2)) determines the norm in B(H), since
for x ∈ B(H) we have

(3) ‖x‖ 6 1 ⇔

(
1 x
x∗ 1

)
> 0.

Indeed, this follows from the following equalities:
(
0 0
0 1− x∗x

)
=

(
0 0
x∗ −1

)(
1 x
x∗ 1

)
=

(
0 x
0 −1

)
,

(
1 x
x∗ 1

)
=

(
1 x
x∗ x∗x

)
+

(
1 0
0 1− x∗x

)
.

Finally, if A is the C∗-algebra C(Ω) of all bounded continuous functions on
a topological space Ω, then Mn(A) can be obviously identified to C(Ω,Mn).

In all above examples A was a C∗-algebra and Mn(A) was identified to a
C∗-algebra. Later (4.19) we shall see that Mn(A) is a C∗-algebra whenever A is a
C∗-algebra.

2.13. Notes. The main results concerning positive elements in C
∗-algebras (2.1–

2.4) are due to M. Fukamiya [103], J.L. Kelley and R.L. Vaught [168] and I. Kaplansky
(cf. [258], 4.8.8). These results are strongly related to the Gelfand-Năımark conjecture
(see 1.19). In our exposition of 2.1–2.6 we have used [78].

The study of operator monotone functions appeared with the work of K. Löwner
[183], who obtained a complete caracterization of these functions, proving in particular
Proposition 2.7. For further developments concerning operator monotone functions and
also “operator convex functions” we refer to [14], [23], [38], [68], [69], [74], [79], [129],
[165], [169], [180], [181], [182], [287]. The present proofs of Proposition 2.7 are due to
G.K. Pedersen ([240]; [242], 1.3).

The Ford square root lemma (2.8), proved in [102], “makes it possible to establish
a large part of the theory of Banach ∗-algebras without any assumption of continuity or
local continuity of the involution, since that assumption is frequently made for the sole
purpose of establishing the square root property” (cf. [102]; compare with [258], 4.1.4).
This program is accomplished in [33] which we followed for our exposition in 2.8. The
Combes axiom has been introduced in [57].

The notions and the results contained in 2.9 appeared in [57], [76], [84], [233], [251]
and our exposition follows that of F. Combes [57]. The Proposition 2.10 is due to J.
Dixmier (cf. [61], 3.1).

The fact that any C
∗-seminorm on the algebraic tensor product of two C

∗-algebras
is subcross (2.11) has been asserted by T. Okayasu [215], but there is a gap in his proof.
The proof we have presented is due to B.J. Vowden [342] with some simplifications by
E.C. Lance [172] (see also [217]).



Chapter 3

APPROXIMATE UNITS AND IDEALS

3.1. Bounded approximate units in Banach algebras. Let A be a
Banach algebra. A net {uι}ι∈I in A is called a bounded left (respectively right)
approximate unit for A if sup

ι∈I
‖uι‖ < +∞ and ‖uιa− a‖ → 0 (respectively ‖auι −

a‖ → 0) for all a ∈ A. A bounded left and right approximate unit is called simply
a bounded approximate unit. If sup

ι∈I
‖uι‖ 6 1, then the word “bounded” will be

dropped.
A Banach space X is called a left Banach A-module if there exists a jointly

continuous bilinear mapping

A×X ∋ (a, x) → a · x ∈ X

such that a · (b ·x) = (a · b) ·x for all a, b ∈ A, x ∈ X. Then X is also a left Banach

Ã-module with 1 · x = x, (x ∈ X).

Theorem. Let A be a Banach algebra having a bounded left approximate
unit and let X be left Banach A-module.Then

X0 = {a · x; a ∈ A, x ∈ X}

is a closed A-submodule of X.

Proof. Let u = {uι} be a bounded left approximate unit for A and λ =
sup
ι

‖uι‖. Then Y , the closed linear span of X0, is a closed submodule of X and

Y = {x ∈ X ; ‖uι · x− x‖ → 0}.

Put γ = λ−1. Then for any u ∈ A, ‖u‖ 6 λ, the element (1 + γ)− γu is invertible

in Ã, ((1+γ)−γu)−1 = (1+γ)−1 + an element of A, and ‖((1+γ)−γu)−1‖ 6 λ,
as easily verified by the usual geometrical series argument.

Let y ∈ Y . We shall define a sequence {un} of elements of A, ‖un‖ 6 λ, such
that

an = ((1 + γ)− γun)
−1 · · · ((1 + γ)− γu1)

−1 = (1 + γ)−n + bn

(bn ∈ A) converges in Ã to a limit a ∈ A and

xn = a−1
n · y
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converges in X to a limit x ∈ X . The theorem will then follow, since

y = ana
−1
n y = anxn = lim

n
anxn = a · x ∈ X0.

The sequence {un} is defined inductively by {un} ⊂ u,

‖unbn−1 − bn−1‖ 6 λ(1 + γ)−n and ‖uny − y‖ 6 ‖a−1
n−1‖

−1λ(1 + γ)−n

where a0 = 1, b0 = 0, and all we have to show is that {bn} and {xn} are Cauchy
sequences. We have

bn+1 = an+1 − (1 + γ)−n−1 = ((1 + γ)− γun+1)
−1((1 + γ)−n + bn)− (1 + γ)−n−1

thus

bn+1−bn =((1+γ)−γun+1)
−1[(1+γ)−n + bn−((1+γ)−γun+1)((1+γ)−n−1+bn)]

=((1 + γ)− γun+1)
−1[γ(un+1bn − bn) + γ(1 + γ)−n−1un+1]

and therefore

‖bn+1 − bn‖ 6 λ(γλ(1 + γ)−n−1 + λγ(1 + γ)−n−1) = 2λ(1 + γ)−n−1,

which entails that {bn} is a Cauchy sequence. On the other hand,

xn+1 = a−1
n ((1 + γ)− γun+1)y,

thus
xn+1 − xn = a−1

n ((1 + γ)− γun+1)y − a−1
n y = a−1

n γ(y − un+1y)

and therefore

‖xn+1 − xn‖ 6 ‖a−1
n ‖γ‖a−1

n ‖−1λ(1 + γ)−n−1 = (1 + γ)−n−1

so that {xn} is also a Cauchy sequence.

In the same situation as in the above theorem, we have

Corollary 1. If K is a compact of X0, then there is a ∈ A and a compact
subset C of X0 with K = a · C.

Proof. The Banach space Z = C(K,X0) of all continuous functions f : K →
X0 with the uniform norm and the operation (a · f)(y) = a · f(y), (a ∈ A, f ∈ Z,
y ∈ K), is a left Banach A-module. Since {uι} is bounded, we have ‖uι ·x−x‖ → 0
uniformly on compact subsets of X0, so that ‖uι · f − f‖ → 0 for any f ∈ Z.
Therefore Z0 = Z.

Let g ∈ Z be the function g(y) = y, y ∈ K. By the theorem, there are a ∈ A
and f ∈ Z such that g = a · f. Then K = a · C with C = f(K).
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Corollary 2. If {xn} is a sequence in X0 converging to 0, then there are
a ∈ A and another sequence {yn} in X0 converging to 0 such that xn = a · yn for
all n.

Proof. TakeK = {0, x1, . . . , xn, . . .} and keep the notations from the proof of
Corollary 1. As in that proof, there exist a ∈ A and f ∈ Z such that (a ·f)(x) = x
for all x ∈ K. Hence, with zn = f(xn), we have zn → f(0), a · zn = xn and
a · f(0) = 0. Consequently, yn = zn − f(0) → 0 and a · yn = xn for all n.

Let A be a Banach algebra with bounded left approximate unit. We can take
X = A and then, by the above theorem,

(1) A = X0 = {ab; a, b ∈ A}.

Thus, for any sequence {xn} in A, xn → 0, there are a ∈ A and a sequence {yn} in
A, yn → 0, such that xn = ayn. If A has also a bounded right approximate unit,
then similarly there are b ∈ A and a sequence {zn} in A, zn → 0, with yn = znb
and hence with xn = aznb.

3.2. Approximate units in C∗-algebras. Let A be a C∗-algebra and let
X be a subset of A. A net {uι}ι∈I in X is called an increasing left (respectively
right) approximate unit for X if uι ∈ X ∩ A+, ‖uι‖ 6 1, ι 6 κ ⇒ uι 6 uκ and
‖uιx − x‖ → 0 (respectively ‖xuι − x‖ → 0) for every x ∈ X . An increasing left
and right approximate unit for X is called simply increasing approximate unit for
X .

If X is selfadjoint, then any increasing left (right) approximate unit for X is
an increasing approximate unit for X since ‖xuι − x‖ = ‖uιx

∗ − x∗‖, x ∈ X.
Each (left, right) approximate unit for X plays the same role for the norm

closure X of X .

Theorem. Let A be a C∗-algebra. Then:
(i) Every left (respectively right) ideal N of A contains an increasing right

(respectively left) approximate unit for N .
(ii) Every face F of A+ contains an increasing right approximate unit for NF .
(iii) For every facial subalgebra M of A, {v ∈ M∩A+; ‖v‖ < 1} is an increasing

approximate unit for M .

Proof. (i) Let N be a left ideal. Consider the set Λ of all finite subsets of N ,
upward directed by inclusion and, for every λ = {x1, . . . , xn} ∈ Λ define

vλ =
n∑

k=1

x∗
kxk ∈ N and uλ = nfn(vλ) = (n−1 + vλ)

−1vλ ∈ N,

where fn are as in 2.7. By the properties of the functions fn we have ‖uλ‖ < 1,
uλ > 0 and λ ⊂ µ ⇒ uλ 6 uµ. For any λ = {x1, . . . , xn} ∈ Λ and any x ∈ λ we
have

(x(1 − uλ))
∗(x(1 − uλ)) 6

n∑

k=1

(xk(1− uλ))
∗(xk(1− uλ)) = (1− uλ)vλ(1− uλ)

= n−2(n−1 + vλ)
−2vλ 6 4−1n−1.
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It follows that ‖xuλ − x‖2 = ‖(x(1− uλ))
∗(x(1− uλ))‖ 6 4−1n−1 and hence

lim
λ∈Λ

‖xuλ − x‖ = 0.

(ii) If N = NF in the proof of (i), then vλ ∈ F and uλ 6 nvλ ∈ F, thus
uλ ∈ F.

(iii) Since v = {v ∈ M ∩ A+; ‖v‖ < 1} is upward directed (2.10) and, as
M = lin(M ∩A+), it suffices to show that lim

v∈v

‖xv−x‖ = 0 for x ∈ M ∩A+. Then,

owing to 2.6, we see that

‖vx− x‖2 = ‖x(1− v)2x‖ 6 ‖x(1− v)x‖

and the net {‖x(1− v)x‖}v∈v is monotone decreasing. Therefore it is sufficient to
show that its infimum is zero.

With fn as in 2.7 we have ‖nfn(x)‖ 6 1 and nfn(x) 6 nx ∈ M ∩ A+. As
M ∩ A+ is a face we infer that nfn(x) ∈ M ∩ A+, hence nfn(x) ∈ v.

Now,
0 6 x(1− nfn(x))x = (1 + nx)−1x2

6 n−1x,

so that ‖x(1− nfn(x))x‖ 6 n−1‖x‖ → 0 as n → +∞.
{u ∈ A+; ‖u‖ < 1} is called the canonical approximate unit of A. If A is

separable, then one can take a dense sequence {xn} in N (or in M , or in A) and
the proof of (i) shows that un = u{x1,...,xn} is a countable left (right) approximate
unit for N (or for M , or for A).

For further information concerning approximate units in C∗-algebras see
Corollary 3/4.15.

3.3. Let A be a C∗-algebra and u = {uι} be a bounded increasing net in A.
Then clearly

Nu = {x ∈ A; lim
ι

‖xuι − x‖ = 0}

is a closed left ideal of A.
If u is an increasing right approximate unit for a left ideal N of A, then

Nu = N

since N ⊂ Nu so that N ⊂ Nu and Nu ⊂ N as uι ∈ N.

Lemma. Let A be a C∗-algebra, a ∈ A+ and let Na be the smallest closed
left ideal of A containing a. Then

un = (n−1 + a)−1a = nfn(a); n ∈ N,

is an increasing right approximate unit for Na.

Proof. By the properties of the functions fn (2.7), u = {un} is an increasing
net in A+, un ∈ Na and ‖un‖ 6 1. On the other hand, a− aun = n−1un tends to
0 as n → +∞, so that a ∈ Nu and Na ⊂ Nu.
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3.4. Proposition. Let A be a C∗-algebra, x ∈ A, a ∈ A+ and suppose that
x∗x 6 a. Then x ∈ Na and for any 0 < β < 1/2 there is y ∈ A, ‖y‖ 6 ‖a1/2−β‖,
such that x = yaβ.

Proof. Let v = {vι} be any increasing right approximate unit for Na. Then

(1− vι)x
∗x(1− vι) 6 (1 − vι)a(1− vι) → 0,

so that x ∈ Nv = Na by 3.3.
In particular, taking x = a1/2 we have a1/2 ∈ Na. It follows that aγ ∈ Na

for any γ > 0 and Na = Naγ .
Now let 0 < β < 1/2. By Lemma 3.3, un = (n−1 + aβ)−1aβ is an increasing

right approximate unit for Na = Naβ , so that

x = lim
n
(x(n−1 + aβ)−1)aβ .

Put yn = x(n−1 + aβ)−1 and dnm = (n−1 + aβ)−1 − (m−1 + aβ)−1. Then 0 6

(yn − ym)∗(yn − ym) = dnmx∗xdnm 6 dnmadnm = (a(1/2)−β(un − um))2 → 0.
Therefore {yn} is a Cauchy sequence, so it converges to some y ∈ A and x = yaβ .

On the other hand,

‖yn‖
2 = ‖y∗nyn‖ = ‖(n−1 + aβ)−1x∗x(n−1 + aβ)−1‖

6 ‖(n−1 + aβ)−1a(n−1 + aβ)−1‖

= ‖a1/2(n−1 + aβ)−1‖2 6 ‖a(1/2)−β‖2,

so that ‖y‖ 6 ‖a(1/2)−β‖.

Corollary 1. If x ∈ A and 0 < γ < 1, then x = y|x|γ for some y ∈ A,
‖y‖ 6 ‖x‖(1−γ).

Corollary 2. If a, b ∈ A+ and b 6 a then b = a1/4ca1/4 for some c ∈ A+,
‖c‖ 6 ‖a‖1/2.

Proof. We have (b1/2)∗(b1/2) = b 6 a, so that b1/2 = ya1/4 with y ∈ A,
‖y‖ 6 ‖a‖1/4 and b = a1/4y∗ya1/4, ‖y∗y‖ 6 ‖a‖1/2.

3.5. Algebraic ideals and faces. Let A be a C∗-algebra. A face of A+ is
called an algebraic face if x1/2 ∈ F whenever x ∈ F. Then x2

n

∈ F , (n ∈ Z), so
that xα ∈ F for all α > 0 because F is hereditary.

A left (or right, or two-sided) ideal N of A is called an algebraic left (or right,
or two-sided) ideal if x1/2 ∈ N whenever x ∈ N ∩ A+. From Proposition 3.4 it
follows that any closed ideal is algebraic. We shall therefore study algebraic ideals
in order to clarify the structure of closed ideals.

For X,Y ⊂ A we shall denote X · Y = {xy; x ∈ X, y ∈ Y } and XY =
lin(X · Y ).
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3.6. Proposition. Let A be a C∗-algebra and F be an algebraic face of
A+. Then NF ∩ A+ = F and

NF = A · F, MF = N∗
FNF = N∗

F ∩NF = F ·A · F.

If F is an invariant algebraic face, then F is strongly invariant and NF = MF .

Proof. By Proposition 2.9 we know that F ⊂ MF = linF = N∗
FNF ⊂

N∗
F ∩NF .

For x ∈ A we have: x ∈ NF ∩ A+ ⇒ x2 ∈ F ⇒ x ∈ F ⇒ x ∈ NF ∩ A+.
Thus, NF ∩A+ = F.

If x ∈ NF , then x∗x ∈ F , so that |x|1/2 ∈ F and x = y|x|1/2 for some y ∈ A
by Proposition 3.4. Thus, NF = A · F.

Consider x ∈ MF . Then x is a finite sum, x =
∑
k

λkxk with λk ∈ C, xk ∈ F .

Put a =
∑
k

xk ∈ F . Then a1/4 ∈ F and, by Corollary 2/3.4, xk = a1/4cka
1/4 with

ck ∈ A, so that

x = a1/4
(∑

k

λkck

)
a1/4 ∈ F · A · F.

Thus, MF ⊂ F · A · F and clearly F ·A · F ⊂ N∗
F ∩NF .

On the other hand, consider x ∈ N∗
F ∩NF , x = x∗ and write x = x+ − x−.

Then
(x+)2 + (x−)2 = x2 ∈ F,

so that x+, x− ∈ F . Thus, N∗
F ∩NF ⊂ linF = MF .

Let F be an invariant algebraic face. If x∗x ∈ F , then (xx∗)2 = x(x∗x)x∗ ∈ F
since F is invariant and x∗x ∈ F since F is algebraic. Thus, F is strongly invariant
and MF = linF is a two-sided ideal by Proposition 2.9, so that

NF = A · F ⊂ MF ⊂ NF .

Note that an invariant face is algebraic if and only if NF = MF .

3.7. Proposition. Let A be a C∗-algebra. If N is an algebraic left ideal
of A, then F = N ∩ A+ is an algebraic face of A+, N = NF and

(1) N = A · (N ∩ A+), N∗N = N∗ ∩N = (N ∩ A+) ·A · (N ∩ A+).

Every algebraic two-sided ideal is a strongly facial ideal.

Proof. If b ∈ A+ and b 6 a ∈ N ∩A+, then a1/4 ∈ N ∩A+ and b = a1/4ca1/4

for some c ∈ A+ by Corollary 2/3.4, so that b ∈ N ∩ A+. Thus, F = N ∩ A+ is a
face.

If x ∈ N , then x∗x ∈ N ∩ A+ = F , hence x ∈ NF . Conversely, by Proposi-
tion 3.6, NF = A · F = A · (N ∩ A+) ⊂ N . Thus, N = NF and (1) follows using
again 3.6.

Finally, if N is an algebraic two-sided ideal, then F = N ∩A+ is an invariant
algebraic face, whence a strongly invariant face (3.6) and we have

N = NF = MF = linF = lin(N ∩A+)

so that N is a strongly facial ideal.
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3.8. Proposition. Let A be a C∗-algebra and let N (respectively J) be an
algebraic left (respectively two-sided) ideal of A. Then

J ∩N = JN = J ·N.

Proof. Clearly, J ·N ⊂ JN ⊂ J ∩N . If x ∈ J ∩N then |x|1/4 ∈ J ∩N and
x = y|x|1/2 for some y ∈ A, by Corollary 1/3.4. Then

x = (y|x|1/4)|x|1/4 ∈ J ·N.

In particular, J = J · J · · · · · J for any algebraic two-sided ideal J .
Also, if J is an algebraic two-sided ideal of A and I is an algebraic two-sided

ideal of J , then I is an algebraic two-sided ideal of A, since

A · I · A = A · I · I · I · A ⊂ J · I · J ⊂ I.

3.9. Closed ideals. Let A be a C∗-algebra. Recall that any closed ideal of
A is algebraic (3.5).

(i) If N is a closed left ideal, then by 3.7, F = N ∩ A+ is a closed face,
N = NF and

N = A · (N ∩ A+), N∗N = N∗ ∩N = (N ∩ A+) ·A · (N ∩ A+).

Conversely, if F is a closed face, then NF = {x ∈ A; x∗x ∈ F} is a closed
left ideal and NF ∩ A+ = F (2.9, 3.6).

Therefore the mappings F 7→ {x ∈ A; x∗x ∈ F} and N 7→ N ∩ A+ are
mutually inverse one-to-one correspondences between

{F : closed faces of A+} and {N : closed left ideals of A}.

(ii) Closed facial subalgebras are called facial (or hereditary) C∗-subalgebras.
If F is a closed face, then MF = N∗

FNF = N∗
F ∩NF is a facial C∗-subalgebra

and conversely, if M is a facial C∗-subalgebra, then M+ = M ∩A+ is closed.
If F is a closed invariant face, then linF = MF = NF is a closed two-sided

ideal (3.6, 3.7) and conversely, the positive part of a closed two-sided ideal is a
closed invariant face.

Owing to 2.9, we see that the mappings F 7→ linF , M 7→ M ∩ A+ are
mutually inverse one-to-one correspondences between

{F : closed faces of A+} and {M : facial C∗-subalgebras of A},

and also between

{F : closed invariant faces of A+} and {M : closed two-sided ideals of A}.

In particular, any closed two-sided ideal is selfadjoint.
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(iii) By the way, we have seen that for each closed left ideal N , M = N∗ ∩N is
a facial C∗-subalgebra and any facial C∗-subalgebra is of this form. Moreover, we
have also (see 2.9):

M = (N∗ ∩N)2.

(iv) For an arbitrary left ideal N we have

N∗N = N∗ ∩N = N
∗
∩N = N

∗
N.

Indeed, N
∗
∩N = N

∗
N since N is closed and clearly N∗N ⊂ N∗ ∩N ⊂ N

∗
∩N .

Note that N
∗
∩N is a C∗-subalgebra. If x ∈ (N

∗
∩N)+, then x1/2 ∈ N , so there

is a sequence yn ∈ N converging to x1/2 and it follows that y∗nyn ∈ N∗N tends to
x, whence x ∈ N∗N .

(v) The closure F of a face F is again a face and

NF = NF , MF = MF .

Indeed, F = MF ∩A+ = (N∗
FNF ) ∩A+, so that F = (N∗

FNF )
+ = (N∗

F ∩NF )
+ =

NF ∩ A+ is a face and NF = NF . Also

MF = N∗
FNF = N∗

F NF = N∗
F
NF = MF .

If NF is a two sided ideal, then F is a closed invariant face, so that

MF = MF = NF = NF .

In particular, NF is dense in A if and only if MF is dense in A.

3.10. Let X be a Banach space and Y be a closed subspace of X . Denote by
X ∋ x 7→ x/Y ∈ X/Y the quotient mapping of X onto the quotient vector space
X/Y . Then X/Y becomes a Banach space with the norm

‖x/Y ‖ = inf{‖x+ y‖; y ∈ Y }; x ∈ X.

Proposition. Let N be a closed left ideal of a C∗-subalgebra A and {uι}ι∈I

be an increasing right approximate unit for N . Then

‖x/N‖ = lim
ι

‖x− xuι‖; x ∈ A.

Proof. Let a ∈ N . Since ‖a− auι‖ → 0, we have

‖x/N‖ = inf{‖x+ b‖; b ∈ N} 6 lim inf
ι

‖x− xuι‖ 6 lim sup
ι

‖x− xuι‖

= lim sup
ι

‖(x+ a)(1− uι)‖ 6 ‖x+ a‖.

Taking the infimum over all a ∈ N we get the desired equality.
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Corollary. Let L (respectively R) be a closed left (respectively right) ideal
of a C∗-algebra A. Then L+R is closed.

Proof. Let Φ : A → A/L be the quotient map. Since L + R = Φ−1(Φ(R)),
it is enough to show that Φ(R) is closed in A/L. Consider an increasing right
approximate unit {uι} for L. Let y ∈ Φ(R). Then y = Φ(z) for some z ∈ R,
‖y‖ = lim

ι
‖z − zuι‖, xι = z − zuι ∈ R and y = Φ(xι) for each ι. Thus, there is

x ∈ R such that
Φ(x) = y and ‖x‖ 6 2‖y‖.

If a sequence {yn} ⊂ Φ(R) converges to y ∈ A/L, then one may assume ‖yn −
yn−1‖ 6 2−n and, using the above remark, we may define a sequence {xn} ⊂ R so
that

Φ(xn) = yn − yn−1 and ‖xn‖ 6 2‖yn − yn−1‖ 6 2−n+1.

Then x =
∞∑
n=1

xn ∈ R and y = Φ(x) ∈ Φ(R).

3.11. Quotient C∗-algebras. Another important consequence of Proposi-
tion 4.10 is the following theorem.

Theorem. Let A be a C∗-algebra and J be a closed two-sided ideal of A.
Then the ∗-algebra A/J endowed with the quotient norm is a C∗-algebra.

Proof. Since J is selfadjoint (3.9.(ii)), A/J is indeed a ∗-algebra. Since J is
closed, A/J is Banach algebra. Let {uι} be an increasing approximate unit for J .
Using Proposition 3.10, for every x ∈ A we obtain

‖x/J‖2 = lim
ι

‖x(1− uι)‖
2 = lim

ι
‖(1− uι)x

∗x(1 − uι)‖

6 lim
ι

‖x∗x(1 − uι)‖ = ‖(x∗x)/J‖ = ‖(x/J)∗(x/J)‖.

Corollary 1. Let π be a ∗-homomorphism of a C∗-algebra A into a
C∗-algebra B. Then π(A) is a C∗-algebra of B and

ρ : A/Kerπ ∋ x/Kerπ 7→ π(x) ∈ π(A)

is a ∗-isomorphism.

Proof. The map ρ : A/Kerπ → π(A) ⊂ B is an injective ∗-homomorphism.
Since A/Kerπ and B are C∗-algebras, ρ is isometric by Corollary 1.15, so that
π(A) = ρ(A/Kerπ) is closed.

Corollary 2. Let π be a ∗-homomorphism of a C∗-algebra A into a C∗-
algebra B. Then, for every S ⊂ A we have

π(C∗(S)) = C∗(π(S)).

Proof. Indeed, by Corollary 1, π(C∗(S)) is a C∗-subalgebra of B containing
π(S), hence π(C∗(S)) ⊃ C∗(π(S)).

Conversely, π−1(C∗(π(S))) is clearly a C∗-subalgebra of A containing S,
hence π−1(C∗(π(S))) ⊃ C∗(S), so C∗(π(S)) ⊃ π(π−1(C∗(π(S)))) ⊃ π(C∗(S)).
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Corollary 3. Let A be a C∗-algebra, J be a closed two-sided ideal of A
and B be a C∗-subalgebra of A. Then B + J is a C∗-subalgebra of A.

Proof. Let π : A → A/J be the quotient map. By Corollary 1, π(B) is
closed, hence B + J = π−1(π(B)) is closed.

Let A be a comutative C∗-algebra with Gelfand spectrum Ω. We shall iden-
tify A with C0(Ω).

There is a bijective correspondence between the closed ideals J of A and the
closed subsets ω of Ω given by

J 7→ ωJ = {t ∈ Ω; x(t) = 0 for all x ∈ J},

ω 7→ Jω = {x ∈ A; x(t) = 0 for all t ∈ ω}.

Indeed, let ω ⊂ Ω be a closed set. Clearly, ω ⊂ ωJω
. If t ∈ Ω \ ω, then by

Tietze-Urysohn theorem there exists x ∈ A with x(ω) = {0} and x(t) 6= 0. Then
x ∈ Jω and x(t) 6= 0, hence t 6∈ ωJω

. This shows that ω = ωJω
.

On the other hand, let J be a closed ideal of A. Then JωJ
can be identified

with C0(Ω\ωJ), so J ⊂ JωJ
can be regarded as a closed ∗-subalgebra of C0(Ω\ωJ).

For every t ∈ Ω \ ωJ there exists x ∈ J with x(t) 6= 0. If s ∈ Ω \ ωJ , s 6= t, there
exists y ∈ A with y(t) = 1 and y(s) = 0. Then xy ∈ J , (xy)(t) 6= 0 and (xy)(s) = 0.
By the Stone-Weierstrass theorem we conclude J = C0(Ω \ ωJ ), that is J = JωJ

.
Let J be a closed ideal of A and ω = ωJ . By the above, the Gelfand spectrum

of the C∗-algebra J is homeomorphic with Ω\ω. Using again the Stone-Weierstrass
theorem and Corollary 1, we see that the map

A/J ∋ x/J 7→ x|ω ∈ C0(ω)

is a surjective ∗-isomorphism, so we may identify A/J and C0(ω). Thus, the
Gelfand spectrum of A/J can be identified with ω. Note that, with the above
identifications, the quotient map A 7→ A/J is simply the restriction map

C0(Ω) ∋ x 7→ x|ω ∈ C0(ω).

3.12. Lemma. Let A be a C∗-algebra. If x, y ∈ A, a ∈ A+, x∗x 6 a and
y ∈ Na, then

zn = xa1/2(n−1 + a)−1y∗

is a Cauchy sequence.

Proof. By Lemma 3.3, un = a(n−1+a)−1 is an increasing right approximate
unit for Na. Put dnm = ((n−1 + a)−1 − (m−1 + a)−1)y∗. Then

0 6 (zn − zm)∗(zn − zm) = d∗nma1/2x∗xa1/2dnm

6 dnma2dnm = (y(un − um))(y(un − um))∗ 7→ 0,

which proves the lemma.
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3.13. Proposition. Let A be a C∗-algebra. If

(1)

p∑

i=1

x∗
i xi 6

q∑

j=1

y∗j yj , (xi, yj ∈ A; 1 6 i 6 p, 1 6 j 6 q),

then there are zij ∈ xiAy∗j , (1 6 i 6 p, 1 6 j 6 q), such that

xix
∗
i =

q∑

j=1

zijz
∗
ij , (1 6 i 6 p),(2)

yjy
∗
j >

p∑

i=1

z∗ijzij , (1 6 j 6 q).(3)

Moreover, the equality in (1) entails the equality in (3).

Proof. Let a =
∑
j

y∗j yj. By Lemma 3.3 and Proposition 3.4, un = a(n−1 +

a)−1 is an increasing right approximate unit for Na and xi, yj ∈ Na, (1 6 i 6 p,
1 6 j 6 q). By Lemma 3.12, the sequences

zijn = xia
1/2(n−1 + a)−1y∗j

are convergent to elements zij ∈ xiAy∗j , (1 6 i 6 p, 1 6 j 6 q). We have

xix
∗
i = lim

n
(xiun)(xiun)

∗ = lim
n

xi(unu
∗
n)x

∗
i

= lim
n

xia
1/2(n−1 + a)−1

(∑

j

y∗j yj

)
(n−1 + a)−1a1/2x∗

i

= lim
n

∑

j

zijnz
∗
ijn =

∑

j

zijz
∗
ij

and
yjy

∗
j = lim

n
(yjun)(yjun)

∗ = lim
n

yj(unu
∗
n)y

∗
j

> lim
n

yj(n
−1 + a)−1a1/2

(∑

j

x∗
i xi

)
a1/2(n−1 + a)−1y∗j

= lim
n

∑

i

z∗ijnzijn =
∑

i

z∗ijzij .

If A is commutative one obtains in particular the Riesz decomposition prop-
erty:

a, b, c ∈ A+ and a 6 b+c ⇒ there are b′, c′ ∈ A+ with b′ 6 b, c′ 6 c and a = b′+c′.

A non-commutative C∗-algebra does not satisfy this property (see Corol-
lary 1/4.18, below), but it satisfies the non-commutative Riesz decomposition
property expressed by the above proposition.
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3.14. Proposition. Let A be a C∗-algebra. If {Jι} is any family of strongly
facial ideals of A, then the algebraic sum

∑
ι
Jι is a strongly facial ideal of A and

(∑

ι

Jι

)
∩ A+ =

∑

ι

(Jι ∩A+).

Proof. Denote Fι = Jι ∩ A+ and put J =
∑
ι
Jι, F =

∑
ι
Fι. Clearly, F is

a convex cone, F ⊂ J ∩ A+ and J = linF . If F is a face, then the equality
F = J ∩ A+ is forced. Therefore it is sufficient to prove that F is a strongly
invariant face.

Consider x ∈ A, x∗x 6 b ∈ F . Then

b = y∗1y1 + · · ·+ y∗mym, (y∗j yj ∈ Fιj ; 1 6 j 6 m),

and, by Proposition 3.13, there are zj ∈ A, (1 6 j 6 m), such that

xx∗ = z1z
∗
1 + · · ·+ zmz∗m and z∗j zj 6 yjy

∗
j , (1 6 j 6 m).

Since Fιj is a strongly invariant face and y∗j yj ∈ Fιj , we have also yjy
∗
j ∈ Fιj and

then successively, z∗j zj ∈ Fιj , z
∗
j zj ∈ Fιj , xx

∗ ∈ F.

By Lemma 2/2.9, it follows that F is indeed a strongly invariant face.

Since any closed two-sided ideal is strongly facial (3.9.(ii)), the above propo-
sition and Corollary 2/3.11 entail:

Corollary. If J1, . . . , Jn are closed two-sided ideals, then J1 + · · ·+ Jn is
a closed two-sided ideal and

(J1 + · · ·+ Jn)
+ = J+

1 + · · ·+ J+
n .

3.15. Let π be a ∗-homomorphism of a C∗-algebra A onto a C∗-algebra B.

It is easy to see that π can be uniquely extended to a ∗-homomorphism π̃ of Ã

onto B̃. Clearly, π̃(1
Ã
) = 1

B̃
.

Proposition. Let π be a ∗-homomorphism of a C∗-algebra A onto a C∗-

algebra B, a ∈ Ã+ and b = π̃(a) ∈ B̃+. Then

π({x ∈ A; x∗x 6 a}) = {y ∈ B; y∗y 6 b}.

Proof. Let y ∈ B, y∗y 6 b. Since π(A) = B, there is z ∈ A with π(z) = y

and since π̃(Ã+) = B̃+ (2.4), there is r ∈ Ãh, r 6 a with π̃(r) = y∗y. Set
h = z∗z − r = h+ − h−. We have π̃(h) = 0, so that π̃(h+) = 0 = π̃(h−), since
π̃ preserves functional calculus (1.18.(7)). As z∗z 6 a + h+ and a 6 a + h+, the
sequence

xn = z(a+ h+)1/2(n−1 + a+ h+)−1a1/2 ∈ A

is convergent by Lemma 3.12 to an element x ∈ A and we have:

x∗
nxn = a1/2(n−1 + a+ h+)−1(a+ h+)1/2z∗z(a+ h+)1/2(n−1 + a+ h+)−1a1/2

6 a1/2(n−1 + a+ h+)−1(a+ h+)2(n−1 + a+ h+)−1a1/2 6 a,
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so that x∗x 6 a. On the other hand,

π(x) = lim
n

π(xn) = lim
n

yb(n−1 + b)−1 = y,

since, by 3.3 and 3.4, {b(n−1+b)−1}n is an approximate unit for Nb and y ∈ Nb.

Corollary 1. Let π be a ∗-homomorphism of a C∗-algebra A onto a C∗-

algebra B. Then

π({x ∈ A; ‖x‖ 6 1}) = {y ∈ B; ‖y‖ 6 1}.

Note that the same assertion with strict inequalities follows immediately from

the definition of the quotient norm on A/Kerπ = B (Corollary 1/3.11).

Corollary 2. Let π be a ∗-homomorphism of a C∗-algebra A onto a C∗-

algebra B and {bn}n ⊂ B+ a norm-bounded increasing sequence. Then there exists

an increasing sequence {an}n ⊂ A+ such that

sup
n

‖an‖ = sup
n

‖bn‖, π(an) = bn; n > 1.

Proof. Let λ = sup
n

‖bn‖. By the proposition there exists a1 ∈ A+ such that

a 6 λ · 1
Ã

and π(a1) = b1.

Suppose we have already constructed a1, . . . , an ∈ A such that 0 6 a1 6 · · · 6
an 6 λ · 1

Ã
and π(ak) = bk, (1 6 k 6 n). By the proposition there exists x ∈ A+

with

x 6 λ · 1
Ã
− an and π(x) = bn+1 − bn.

Then putting

an+1 = an + x ∈ A,

we have 0 6 an 6 an+1 6 λ · 1
Ã
and π(an+1) = bn+1.

Corollary 3. Let π be a ∗-homomorphism of a C∗-algebra A onto a C∗-

algebra B.

(i) If F is a (closed) face of A+, then π(F ) is a (closed) face of B+ and

Mπ(F ) = π(MF ), Nπ(F ) = π(NF ).

(ii) If M is a (closed) facial subalgebra of A, then π(M) is a (closed) facial

subalgebra of B.

(iii) If N is a closed left ideal of A, then π(N) is a closed left ideal of B and

π(N∗ ∩N) = π(N)∗ ∩ π(N).

Proof. The proof is an easy combination of the above proposition with Corol-

lary 1/3.11 and the results in 3.9.
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3.16. Consider a ∗-homomorphism π of a C∗-algebra A onto a C∗-algebra
B and a1, a2 ∈ A+, b1 = π(a1), b2 = π(a2) ∈ B+. Then

π({x ∈ A+; x 6 a1, x 6 a2}) ⊂ {y ∈ B+; y 6 b1, y 6 b2},

but the equality does not hold in general. Proposition 3.1 shows that the equality
is true if a1 = a2 and the following example shows that it does not hold even if
b1 = b2.

Let H be a separable Hilbert space with a fixed orthonormal basis {ξn}n>1

and let {αn}, {βn} ⊂ R such that

0 6= αn = α2
n + β2

n and lim
n

αn = 0.

Let a1 be the orthogonal projection onto the closed linear span of {ξ2n}n>1, a2 =
a1 + c, where c ∈ B(H) is defined by

cξ2n−1 = αnξ2n−1 + βnξ2n, cξ2n = βnξ2n−1 − αnξ2n, (n > 1),

and A = C∗({a1, a2}), B = C. There is a ∗-homomorphism π : A 7→ B such that
π(a1) = π(a2) = 1, namely

π(x) = lim
n
(xξ2n|ξ2n); x ∈ A.

Then a1, a2 ∈ A+ and {y ∈ B+; y 6 π(a1), y 6 π(a2)} = [0, 1], while

{x ∈ B(H)+; x 6 a1, x 6 a2} = {0}.

Indeed, let x ∈ B(H)+, x 6 a1, x 6 a2. Then, for n > 1,

‖x1/2ξ2n−1‖
2 = (xξ2n−1|ξ2n−1) 6 (a1ξ2n−1|ξ2n−1) = 0,

so xξ2n−1 = 0. Thus, for n > 1 and λ ∈ C,

‖x1/2ξ2n‖
2 = (x(λξ2n−1 + ξ2n)|λξ2n−1 + ξ2n) 6 (a2(λξ2n−1 + ξ2n)|λξ2n−1 + ξ2n)

= |λ|2αn + (λ+ λ)βn + 1− αn.

Taking λ = −βnα
−1
n it follows that ‖x1/2ξ2n‖2 = (αn − α2

n − β2
n)α

−1
n = 0 so

xξ2n = 0. Consequently x = 0.
Moreover, with the above notations, the set {x ∈ K(H)+; x 6 a2 + c−} is

not upward directed (compare with Proposition 2.10).
Indeed, c = c∗ ∈ K(H) so c+, c− ∈ K(H)+. Also, c− 6 a2 + c−, c+ =

c + c− 6 a2 + c−. Suppose there is x ∈ K(H)+, x 6 a2 + c− with c+ 6 x,
c− 6 x. Then a2 + c− − x ∈ B(H)+ and a2 + c− − x 6 a1, a2 + c− − x 6 a2 so
a2 + c− − x = 0, that is x = a2 + c− 6∈ K(H), a contradiction.
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3.17. Proposition. Let A be a C∗-algebra and B be a C∗-subalgebra con-

taining an increasing approximate unit u for A. Then, for any a ∈ A+ and any

ε > 0 there is b ∈ B+ such that

a 6 b and ‖b‖ 6 ‖a‖+ ε.

Proof. We may assume ‖a‖ = 1. We shall construct inductively a sequence

{un; n = 1, 2, . . .} ⊂ u and a sequence {an; n = 0, 1, 2, . . .} ⊂ A so that

(i) a0 = a; an = an−1 − unan−1un, for n > 0;

(ii) ‖an‖ 6 ε/2n, for n > 0;

(iii) u1au1 6 u1; unan−1un 6 (ε/2n−1)un, for n > 1.

Indeed if a0, . . . , an−1 and u1, . . . , un−1 are already constructed, then there

is un ∈ u such that defining an by (i) the condition (ii) is satisfied. Since ‖an−1‖ 6

ε/2n−1, we have an−1 6 ε/2n−1 and condition (iii) follows.

Owing to (iii), set

b = u1 +

∞∑

n=2

(ε/2n−1)un.

Then b ∈ B+ and ‖b‖ 6 1 + ε. Using (i), (ii), (iii) we get

an = a−
n∑

k=1

ukak−1uk

and then

a =

∞∑

n=1

unan−1un.

It follows that a 6 b.

If in the above proposition A is commutative, then one can choose b ∈ B+ so

that a 6 b and ‖b‖ = ‖a‖. However, this is not possible in general, as the following

example shows.

Let H be a separable Hilbert space with an orthonormal basis {ξn}. Set

A = K(H) and B = {x ∈ A; each ξn is an eigenvector for x}. Denote by qn the

orthogonal projection on lin{ξ1, . . . , ξn}. Then {qn} is an approximate unit for A.

Consider now ξ =
∞∑

n=1

λnξn ∈ H , ‖ξ‖ = 1, λn 6= 0 for all n, and let p ∈ A be

the one-dimensional orthogonal projection corresponding to ξ. Assume that there

is b ∈ B, ‖b‖ = 1, b > p.

Then
∞∑

n=1

|λn|
2(bξn|ξn) = (bξ|ξ) > (pξ|ξ) =

∞∑

n=1

|λn|
2,

which entails (bξn|ξn) = 1 for all n, in contradiction with b ∈ K(H).
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Corollary. Let B be a C∗-subalgebra of the C∗-algebra A and let F (re-
spectively M , respectively N) be the face of A+ (respectively the facial subalgebra
of A, respectively the left ideal of A) generated by B+ (respectively by B). Then
F , M , N are closed and

MF = M = B+ ·A · B+, NF = N = A · B+.

Proof. Let u be an increasing approximate unit for B. Then Nu is a closed
left ideal of A (3.3) and Mu = N∗

u
∩Nu is a facial C∗-subalgebra of A (3.9.(iii)).

Since B ⊂ Mu and u is an approximate unit for Mu, the above proposition tell us
that any element of M+

u
is majorized by an element of B+. Therefore F = M+

u

and F is closed.
By 2.9, it is clear that M = MF , so that M = Mu is closed.
Obviously, A · B+ ⊂ N ⊂ Nu. If a ∈ Nu ∩ A+ = M+

u
, then a 6 b for some

b ∈ B+ so that, by Corollary 2/3.4, a = b1/4cb1/4 for some c ∈ A. It follows that
Nu ∩ A+ ⊂ A · B+ and, by 3.9.(i), Nu = A · (Nu ∩ A+) ⊂ A · B+. Therefore
N = A · B+ is closed.

Also, using again 3.9.(i), we obtain the equality M = B+ · A · B+.

3.18. Lemma. Let A be a C∗-algebra and P be a subset of A+ such that
x ∈ P ⇒ x1/2 ∈ P . Then the two-sided ideal J of A generated by P is a facial
ideal. In particular, J contains the invariant face F of A+ generated by P .

Proof. It is sufficient to show that F ⊂ J since then linF ⊂ J and linF is a

facial ideal (2.9). If a ∈ F , then there are λ > 0, bj ∈ P and uj ∈ Ã, uj unitary
elements, (1 6 j 6 m), such that

a 6 λ1u
∗
1b1u1 + · · ·+ λmu∗

mbmum.

By Proposition 13 there are zj ∈ A, (1 6 j 6 m), with

a = z1z
∗
1 + · · ·+ zmz∗m

and
z∗j zj 6 λju

∗
jbjuj , (1 6 j 6 m).

By Proposition 3.4 there are yj ∈ A, (1 6 j 6 m), with

zj = yj(λju
∗
jbjuj)

1/4 = yjλ
1/4
j u∗

jb
1/4
j uj, (1 6 j 6 m).

Since b
1/4
j ∈ P ⊂ J , it follows that zj ∈ J and hence a ∈ J .

3.19. The Pedersen ideal. Let A be a C∗-algebra and consider the set

F0(A) = {a ∈ A+; there is b ∈ A+ such that a = ab (= ba)}.

If A is unital, then clearly F0(A) = A+.
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If A is commutative, that is A = C0(Ω) with Ω a locally compact Hausdorff
space, then F0(A) consists of all positive continuous functions on Ω having compact
support.

Now, in the general case, an element a ∈ A+ belongs to F0(A) if and only
if there is a commutative C∗-subalgebra B of A such that a ∈ F0(B). Using the
Gelfand representation of B and the above remark, it is easy to check that

(1) a ∈ F0(A) ⇔ there is b ∈ F0(A) such that a = ab.

Denote by Cc((0,+∞))+ the set of all positive continuous functions on
(0,+∞) with compact support. Then

(2) x ∈ A+, f ∈ Cc((0,+∞))+ ⇒ f(x) ∈ F0(A).

Consider also

F (A) = the face of A+ generated by F0(A),

K(A) = linF (A).

Theorem. For every C∗-algebra A, K(A) is the smallest dense two-sided
ideal of a. Moreover,

(i) For any x ∈ A+ there is an increasing sequence {xn} in K(A)+ such that
‖x− xn‖ → 0.

(ii) The facial C∗-subalgebra (respectively the closed left ideal) of A generated
by any finite subset of K(A) is contained in K(A).
(iii) The facial C∗-subalgebra of A generated by any finite collection of C∗-

subalgebras of A contained in K(A) is again contained in K(A).
In particular, K(A) is an algebraic strongly facial ideal.

Proof. If u ∈ Ã is unitary and a ∈ F0(A), then a = ab for some b ∈ A+ and
u∗au = (u∗au)(u∗bu) ∈ F0(A). It follows that F (A) is an invariant face of A+, so
that K(A) is a facial ideal of A (2.9).

Let x ∈ A+. There is a sequence {fn} ⊂ Cc((0,+∞))+ such that fn(t) ↑ t
uniformly for t ∈ σ(x). Then fn(x) ∈ F0(A), {fn(x)} is increasing by (2), and
‖fn(x) − x‖ → 0 by functional calculus. Hence F (A) is dense in A and K(A) is
dense in A.

Let J be any dense two-sided ideal of A. Consider

P = {f(x∗x); x ∈ J, f ∈ Cc((0,+∞))+}.

As above, P is dense in {x∗x; x ∈ J}. For any z ∈ A there is a sequence {xn} in
J with xn → z, so that x∗

nxn → z∗z. It follows that P is dense in A+.
If f ∈ Cc((0,+∞))+, then there is g ∈ Cc((0,+∞))+ with f(t) = tg(t) for

all t ∈ (0,+∞). Hence f(x∗x) = x∗xg(x∗x) for any x ∈ J . It follows that P ⊂ J .
Clearly, P satisfies the condition of Lemma 3.18, therefore the invariant face

F of A+ generated by P is contained in J and is dense in A+.
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Now, if a ∈ F0(A), then a = ab = ba for some b ∈ A+. Since F is dense in
A+, there is c ∈ F with ‖b− c‖ < ε < 1. Then

0 6 a1/2(ε− (b− c))a1/2 = a1/2ca1/2 − (1− ε)a,

a 6 (1− ε)−1a1/2ca1/2,

therefore a ∈ F , because F is an invariant face. Hence F0(A) ⊂ F , F (A) ⊂ F ⊂ J
and K(A) = linF (A) ⊂ J .

Thus, K(A) is indeed the smallest dense two-sided ideal of A and also (i) is
proved.

Now, let x1, . . . , xm ∈ K(A). We shall show that the facial C∗-subalgebra
M generated by {x1, . . . , xm} is contained in K(A). Since every xi is a linear
combination of positive elements, each of them majorized by a sum of elements of
F0(A), we may and we shall assume x1, . . . , xm ∈ F0(A). Then, by (1), there are
bi ∈ F0(A) with xi = xibi = bixi, (1 6 i 6 m). Clearly, the facial C∗-subalgebra
M generated by {x1, . . . , xm} is equal to the facial C∗-subalgebra Ma generated
by a = x1 + · · ·+ xm. If y ∈ M+

a = Na ∩ A+, then by Lemma 3.12 the sequences

yin = x
1/2
i a1/2(n−1 + a)−1y1/2, (1 6 i 6 m; n ∈ N),

are convergent to elements yi ∈ A, (1 6 i 6 m). But yin = b
1/2
i yin, so that

yi = b
1/2
i yi, (1 6 i 6 m). As in the proof of 3.13 we obtain

y =
m∑

i=1

y∗i yi =
m∑

i=1

y∗i biyi ∈ F (A),

since bi ∈ F0(A) ⊂ F (A) and F (A) is invariant. Thus,

Ma = linM+
a ⊂ linF (A) = K(A).

If N is the closed left ideal generated by {x1, . . . , xm}, then N∩A+ = M+ ⊂ K(A)
by the above, so that N = A(N ∩A+) ⊂ K(A) (see 3.9).

Let B,C be C∗-subalgebras of A contained in K(A). The closed face Q of
A+ generated by B+ ∪C+ is the closure of the face of A+ generated by B+ ∪C+.
Thus, given x ∈ Q, there are:

yn ∈ B+, ‖yn‖ 6 1, zn ∈ C+, ‖zn‖ 6 1; βn, γn ∈ R, βn, γn > 0

and
xn ∈ A+, xn 6 βnyn + γnzn

such that x = lim
n

xn. Put

y =
∑

n

2−nyn ∈ B+, z =
∑

n

2−nzn ∈ C+.

Then y + z ∈ K(A) and x belongs to the facial C∗-subalgebra of A generated by
y+ z, hence x ∈ K(A). It follows that the facial C∗-subalgebra of A generated by
B ∪C is contained in K(A).

Finally, if x ∈ K(A) ∩ A+, then x1/2 belongs to the (facial) C∗-subalgebra
generated by x, so that x1/2 ∈ K(A). Hence K(A) is an algebraic facial ideal and
therefore it is an algebraic strongly facial ideal.
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K(A) is called the Pedersen ideal of A.

Corollary 1. Let π be a ∗-homomorphism of a C∗-algebra A onto a C∗-
algebra B. Then π(K(A)) = K(B).

Proof. π(K(A)) ⊂ K(B) by construction. Since K(A) is a dense facial ideal
of A, π(K(A)) is a dense (facial) ideal of B by Corollary 2/3.15. Using the theorem
we infer that K(B) ⊂ π(K(A)).

Corollary 2. Let A,B be C∗-algebras and π0 : K(A) → B be a ∗-homomor-
phism. Then π0 has a unique extension to a ∗-homomorphism π : A → B.

Proof. By the theorem, K(A) is the union of all C∗-subalgebras contained
in it. The restriction of π0 to every C∗-subalgebra of K(A) has norm 6 1 (1.9).
Therefore ‖π0‖ 6 1 and the result follows.

Corollary 3. Let A, B be C∗-algebras. If K(A),K(B) are ∗-isomorphic,
then A,B are ∗-isomorphic.

3.20. Notes. The use of approximate units as well as the first factorization the-
orems appeared in the frame of the classical convolution algebras L1(R) and L1(R/Z)
(see [130], Section 32, Notes). The most important contribution to the factorization
theory is due to P.J. Cohen [52] who proved a refined version of Theorem 3.1 in the
case X = A. Actually, if in the statement of Theorem 3.1 the bounded left approximate
unit is bounded by some λ > 0, then, for every y in the closed linear span of X0 and
every ε > 0, there exists a ∈ A, ‖a‖ 6 λ, and x ∈ A · y ⊂ X, ‖x − y‖ 6 ε, such that
y = ax ([130], 32.22). The useful results Corollary 1 and Corollary 2/3.1 appeared in
[134], [135]. In 3.1 we followed the lectures of B.E. Johnson [137]. For further results
concerning approximate units and factorization in general Banach algebras we refer to
[130], Section 32, [177], [230], [291].

The existence of increasing approximate units in arbitrary C∗-algebras has been
first proved by I.E. Segal [262] and the refinement of this result for ideals is due to J.
Dixmier [76] and F. Combes (cf. [78], 1.8). The canonical approximate unit of a facial
subalgebra (3.2) appeared in [242], Section 1.4.

There are two other important results concerning approximate units in C∗-algebras,
which we record below.

First, J.F. Aarnes and R.V. Kadison [3] proved that every separable C∗-algebra
A has a countable increasing approximate unit {un}n>1 which is “commutative”, i.e.,

unum = umun for all m,n > 1. Indeed, let {xk}k>1 be a norm-dense sequence in A and
put

a =

+∞∑

k=1

(2k‖x∗

kxk‖)
−1

x
∗

kxk ∈ A; un = a
1/n

, (n > 1).

Then a1/n ↑ sA∗∗(a) = 1A∗∗ (see Corollary 6/8.4 and 7.15.4), so that ϕ(yn) = ϕ(a1/n) →
ϕ(1A∗∗) = 1 for every state ϕ on A (see 4.7 and Corollary 6/8.4), and hence {un}n>1 is
a commutative countable increasing approximate unit for A, by Corollary 3/4.15. This
argument proves also the “if” part of the following statement: a C∗-algebra A has a
commutative countable increasing approximate unit {un}n>1 if and only if there exists a

“strictly positive” element a ∈ A, i.e., such that ϕ(a) > 0 for every state ϕ on A; the

“only if” part is immediate with a =
+∞∑
n=1

2−nun using again Corollary 3/4.15.
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The second result appeared implicitely in the articles of D. Voiculescu [338], D.
Olesen and G.K. Petersen [221], [243] and was explicitely stated in [9], [19] as follows:
every two-sided ideal J of a C∗-algebra A has an increasing approximate unit {uι}ι∈I ⊂ J
which is “quasi-central”, i.e., lim

ι
‖xuι − uιx‖ = 0 for all x ∈ A. For the proof (cf. [19])

the first remark is that given an arbitrary increasing approximate unit {vk}k∈K for J ,
its convex hull V = co{vk; k ∈ K} can be still viewed, in a natural way, as an increasing
approximate unit for J , and inf

v∈V
‖xv − vx‖ = 0 for all x ∈ A; in fact 0 is norm-adherent

to the convex set {xv − vx; v ∈ V } because in the contrary case there would exist a
bounded linear functional ϕ on A such that |ϕ(xv − vx| > δ > 0 for all v ∈ V and some
x ∈ A, in contradiction with the fact that lim

v∈V
(xv−vx) = 0. Now we assert that for every

x1, . . . , xn ∈ A, v ∈ V and ε > 0 there is w ∈ V , w > v such that ‖xjw − wxj‖ 6 ε for
each j = 1, . . . , n; this will clearly enable us to extract a subnet {uι}ι∈I of V such that
lim
ι

‖xuι − uιx‖ = 0 for all x ∈ A and, since V is an approximate unit for J , the same

must be true for {uι}ι∈I . To prove the assertion, note that the set W = {w ∈ V ; w > v}
is a convex increasing approximate unit for J and consider the C∗-direct product An of
n copies of A and x = (x1, . . . , xn) ∈ An; then the direct product Jn of n copies of J is a
two-sided ideal of An and {w̃ = w⊕ · · ·⊕w; w ∈ W } is a convex increasing approximate
unit for Jn, so that, by the above remark, there exists w ∈ W such that

max
j

‖xjw − wxj‖ = ‖xw̃ − w̃x‖ 6 ε.

Moreover, if A is separable, then every two-sided ideal J of A has a countable quasi-
central increasing approximate unit. Indeed, if {uι}ι∈I is any quasi-central increasing
approximate unit for J , {xk}k>1 a dense sequence in A and {bk}k>1 a dense sequence

in J , then by an obvious induction we can find an increasing sequence {ιm}m>1 ⊂ I

such that ‖uιmbk − bk‖ 6 1/m and ‖xkuιm − uιmxk‖ 6 1/m for every k = 1, . . . ,m, and
an easy approximation argument shows that the sequence {uιm}m>1 has the required
properties. These results should be compared with classical result contained in Corollary
(ii)/8.7.

The particularities of approximate unites in C∗-algebra (3.2, 3.3, 3.12) give rise
to stronger factorization results (3.4, 3.13) near to the classical polar decomposition
theorem (see 7.12, 7.13, 9.14). The material in (3.3, 3.4) is due to F. Combes [56], [57]
and the non-commutative Riesz decomposition (3.13; see also 9.15, Corollary 1/4.18) is
due to G.K. Pedersen ([234]; see also [57]). Some important particular cases of the results
presented in 3.5–3.9 have been obtained by I.E. Segal [283], J. Dixmier [71], [73], E.G.
Effros [84], R.T. Prosser [251]; in the achieved general form presented here, these results
are due F. Combes [57], [58], [59], [60], G.K. Pedersen [233], [234], [237] and N.H. Petersen
[244] to which we refer also for further results. We just mention that, generalizing the
results obtained by J. Dixmier [73] for two-sided ideals of W ∗-algebras (see Proposition
3.(ii)/8.7), F. Combes [58] showed that for every strongly invariant face F of a C∗-algebra
A and every λ > 0, the set Fλ = {xλ; x ∈ F} is still a strongly invariant face, defined
for every strongly facial ideal J of A its λth power as Jλ = lin(J ∩A+)λ and proved that

JλJµ = Jλ+µ, (λ,µ > 0).
The result of Corollary 3.14 has been conjectured by J. Dixmier ([78], first edition,

1.9.12) and proved for the first time by E. Størmer [299]. A very simple proof of this
result was given J. Bunce [36]. The proof we have presented and the generalization as
Proposition 3.14 are due to G.K. Pedersen [233], III, [234] and F. Combes [57].

The fact that the quotient of a C∗-algebra by a closed two-sided ideal is again a
C∗-algebra (Theorem 3.11) has been proved for the first time by I.E. Segal [283] and I.
Kaplansky [154]. The results in 3.10 and the present proof of Theorem 3.11 are due to
F. Combes [57] (cf. also [78], 1.8). For further results on quotient algebras see [243].
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The results in 3.15 are due to G.K. Pedersen [233], III, [234] and F. Combes [57].
The counterexamples in 3.16, given by J.R. Stephansson [292], give in particular a neg-
ative answer to a question raised by J. Dixmier ([71], p. 22; [77], Chapter III, Section 1,
Exercise 10; see [61] for a detailed discussion of similar properties).

The result of Proposition 3.17 and the example in 3.17 are due to C.A. Akemann
[7], while Corollary 3.17 is due to F. Combes [58].

Given a C∗-algebra A, the ideal K(A) (3.19) has been discovered by G.K. Pedersen
[233], I, [237] who proved that K(A) is the smallest dense facial ideal of A and, together
with N.H. Petersen [244], proved the statements (i)–(iii) from Theorem 3.19 and the
Corollaries in 3.19. The minimality and uniqueness of K(A) just as a dense two-sided
ideal of A has been pointed out by K.B. Laursen and A.M. Sinclair [175], by proving
Lemma 3.18. The terminology of “Pedersen ideal” has been introduced in [56]. For
further results concerning the determination of the Pedersen ideal in some concrete C∗-
algebras we refer to [56], [176], [237], [248]. Also, G.K. Pedersen [233], [237] introduced
and studied a certain locally convex topology τ on K(A) and defined a “C∗-integral”on
A as a τ -continuous linear functional on K(A). Several characterizations of C∗-integrals
appeared in these works and in the related work of F. Combes [56] on weights on C∗-
algebras.

For the elaboration of Section 3 we have used [302] to which we also refer for a
comprehensive exposition of the other above mentioned results.



Chapter 4

POSITIVE FORMS AND ∗-REPRESENTATIONS

4.1. ∗-representations. Let A be a ∗-algebra. Recall that a ∗-representa-
tion π of A on a Hilbert space H is a ∗-homomorphism π : A → B(H). Then
H is called the space of π (sometimes denoted as Hπ) and the cardinal of any
orthonormal basis of H is called the dimension of π, denoted as dimπ. The
commutant π(A)′ of π(A) in B(H) is the set of those T ′ ∈ B(H) which commute
with all π(x), x ∈ A. Clearly, π(A)′ is a ∗-subalgebra of B(H) closed in the weak
operator topology, in particular π(A)′ is a C∗-subalgebra of B(H).

Given a ∗-representation π : A → B(H) we obtain a ∗-representation π̃ :

Ã→ B(H), called the canonical extension of π, by putting π̃(x+λ) = π(x)+λ1H
for x ∈ A, λ ∈ C if A 6= Ã.

Two ∗-representations π1, π2 of A on Hilbert spaces H1, H2 respectively are
called (unitarily) equivalent, denoted as π1 ≃ π2, if there is a unitary operator
U : H1 → H2 such that π2(x) = Uπ1(x)U

∗, for all x ∈ A.
Given a family {πι : A→ B(Hι)}ι∈I of ∗-representations such that for every

x ∈ A then numerical set {‖πι(x)‖; ι ∈ I} is bounded, we can form a new ∗-
representation π : A → B(H) where H is the Hilbert space direct sum of the
Hι’s and, for each x ∈ A, π(x) ∈ B(H) is the unique bounded linear operator
on H such that π(x)|Hι = πι(x), ι ∈ I. Then π is called the direct sum of the
∗-representations πι and is denoted by

⊕
ι∈I

πι.

In particular, if πι are all equal to a fixed ∗-representation π0, then
⊕
ι∈I

πι is

called a multiple of π0 and is denoted by (card I) π0.
Owing to 1.13.(2), we see that we can form the direct sum of any family of

∗-representations of any Banach ∗-algebra.
Let π : A → B(H) be a ∗-representation and let K be a closed subspace of

H , stable under π(A). Then H ⊖ K is also stable under π(A) since for ξ ∈ K,
η ∈ H ⊖K, x ∈ A, we have π(x∗)ξ ∈ K so that (π(x)η|ξ) = (η|π(x∗)ξ) = 0. We
obtain a ∗-subrepresentation πK : A→ B(H) of π by putting πK(x) = π(x)|K for
x ∈ A. Clearly, π ≃ πK ⊕ πH⊖K .

For a ∗-representation π : A → B(H) consider the closed subspaces He, H0

of H defined by

He = the closed subspace generated by {π(x)ξ; x ∈ A, ξ ∈ H}

H0 = {η ∈ H ; π(x)η = 0 for all x ∈ A}.

Then He is stable under π(A) (also under π(A)′ and H0 = H ⊖ He, as easily
verified. He is called the essential subspace of π. If H = He, then π is called
non-degenerated. Since πHe is non-degenerated πH0

is identically zero and π is
equivalent to their direct sum, we see that
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Lemma 1. Any ∗-representation of A is equivalent to the direct sum of a non-

degenerated ∗-representation and an identically zero representation. Moreover, this

decomposition is unique up to a unitary equivalence.

If A ⊂ B(H), then A is called non-degenerated if the identity representation
of A is non-degenerated.

Let π : A → B(H) be a ∗-representation. A vector ξ ∈ H is called cyclic

for π if the subspace π(A)ξ is dense in H . If there is a cyclic vector for π, then
π is called a cyclic ∗-representation. A cyclic ∗-representation is non-degenerated.
Moreover, an obvious argument based on Zorn’s lemma shows that:

Lemma 2. Any non-degenerated ∗-representation of A is equivalent to a di-

rect sum of cyclic ∗-representations.

A ∗-representation π : A→ B(H) is called topologically irreducible if π(A)′ =
{λ1H ; λ ∈ C}. If K is a closed subspace of H stable under π(A), then the or-
thogonal projection of H onto K belongs to π(A)′. Therefore, if π is topologically
irreducible, then {0} and H are the only closed subspace of H stable under π(A),
that is any non-zero vector in H is cyclic for π. This property characterizes topo-
logically irreducible ∗-representations, but we postpone the proof for Section 7.22,
where a much more detailed analysis of irreducibility will be given. Although each
finite dimensional ∗-representation is equivalent to a direct sum of (topologically)
irreducible ∗-representations, this is not true for all ∗-representations.

The class of all ∗-representations (respectively of all topologically irreducible
∗-representations) of a given ∗-algebra A will be denoted by Rep(A) (respectively

by Irr(A)).

Consider now a Banach ∗-algebra A with a bounded left approximate unit
{uι}ι∈I and a ∗-representation π : A→ B(H). By Theorem 3.1, π(A)H is then a
closed subspace of H , i.e.

(1) He = π(A)H.

Assume that π is non-degenerated. Then, using Theorem 1.12, for any x ∈ A and
any ξ ∈ H we obtain

(2) ‖π(uι)π(x)ξ − π(x)ξ‖ 6 ‖π‖ ‖uιx− x‖ ‖ξ‖ → 0.

Since by (1) π(A)H = H , it follows that π(uι)η → η for all η ∈ H (this can
also be obtained with an easy approximation argument). In other words, {π(uι)}
converges to 1H in the strong operator topology. We state this fact for further
reference.

Lemma 3. If π : A → B(H) is a non-degenerated ∗-representation of a

Banach ∗-algebra A, then π(uι)
so
−→ 1H for any bounded left approximate unit

{uι} of A.
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4.2. Forms and weights. Let A be a ∗-algebra. A complex linear functional
on A will be called shortly a form on A.

For every form ϕ on A and every a, b ∈ A we can consider the form ϕ(a · b) =
a · ϕ · b on A defined by

ϕ(a · b)(x) = (a · ϕ · b)(x) = ϕ(axb); x ∈ A.

The forms ϕ(a ·) = a · ϕ and ϕ(· b) = ϕ · b are defined similarly.
The adjoint form ϕ∗ of ϕ is defined by

ϕ∗(x) = ϕ(x∗); x ∈ A.

The form ϕ is called selfadjoint (or hermitean) if ϕ = ϕ∗. Clearly, ϕ is selfad-
joint if and only if it takes real values on all selfadjoint elements of A. Every form
ϕ has a unique decomposition ϕ = Reϕ+ i Imϕ with Reϕ = (ϕ+ ϕ∗)/2, Imϕ =
(ϕ− ϕ∗)/2i selfadjoint forms.

The form ϕ is called positive, denoted as ϕ > 0, if ϕ(x∗x) > 0 for all x ∈ A,
i.e. if ϕ takes positive values on positive elements of A. For two forms ϕ, ψ we
write ϕ 6 ψ if ψ−ϕ > 0. If Ah = A+ −A+, then any positive form is selfadjoint;
recall that this happens whenever A2 = A (2.8), for instance if A is unital or if A
is a C∗-algebra.

Given a ∗-representation π : A → B(H) and a vector ξ ∈ H , we obtain a
positive form ϕπ,ξ on A by the formula

ϕπ,ξ(x) = (π(x)ξ|ξ); x ∈ A.

In particular, if A ⊂ B(H) and π is the identity representation, then the positive
form ϕπ,ξ is denoted by ωξ, i.e.:

ωξ(x) = (xξ|ξ); x ∈ A.

Thus, in the general case we have ϕπ,ξ = ωξ ◦ π. The forms ωξ ◦ π, ξ ∈ H , are
called associated to π. If A ⊂ B(H), the forms ωξ, ξ ∈ H , are called vector forms

on A.
A weight ϕ on A+ is a mapping ϕ : A+ → [0,+∞] such that

ϕ(x + y) = ϕ(x) + ϕ(y); x, y ∈ A+,

ϕ(λx) = λϕ(x); x ∈ A+, λ ∈ R+, (0 · (+∞) = 0).

In what follows the ∗-algebra A is assumed to satisfy the Combes’s axiom
(2.8). Then, given a weight ϕ on A+,

Fϕ = {x ∈ A+; ϕ(x) < +∞}

is a face of A+ and, by Proposition 2.9,

Nϕ = NFϕ = {x ∈ A; ϕ(x∗x) < +∞}
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is a left ideal of A and moreover

Mϕ = N∗
ϕNϕ = linFϕ

is a facial subalgebra of A with Mϕ∩A+ = Fϕ. Since Mϕ = linFϕ, we can extend
ϕ by linearity to a form, still denoted by ϕ, on the ∗-algebra Mϕ.

The weight ϕ is called finite if Fϕ = A+. In this case Mϕ = A2. If A2 = A,
then Mϕ = A and ϕ extends by linearity to a positive form on A, thus the finite
weights on A+ are exactly the restrictions of positive forms on A.

The weight ϕ is called a trace if

ϕ(x∗x) = ϕ(xx∗); x ∈ A.

In this case Fϕ is a strongly invariant face of A+ and Mϕ, Nϕ are selfadjoint
(two-sided) ideals of A.

4.3. The GNS construction. In this section we describe a general funda-
mental construction which gives a canonical way to associate ∗-representations to
weights.

Let A be a ∗-algebra. Let Nθ be a left ideal of A and let θ be a pre-inner

product on Nθ, i.e. a mapping

Nθ ×Nθ ∋ (a, b) → θ(a, b) ∈ C

with the properties

θ
( n∑

i=1

λiai,

m∑

j=1

µjbj

)
=

n∑

i=1

m∑

j=1

λiµjθ(ai, bj); ai, bj ∈ Nθ, λi, µj ∈ C,

θ(a, a) > 0; a ∈ Nθ.

Then θ defines a pre-Hilbert structure on Nθ, in particular

θ(b, a) = θ(a, b); a, b ∈ Nθ,(1)

|θ(a, b)| 6 θ(a, a)1/2θ(b, b)1/2; a, b ∈ Nθ.(2)

Assume moreover that θ satisfies the conditions:
(i) for every x ∈ A there exists λ(x) > 0 such that

θ(xa, xa) 6 λ(x)θ(a, a); a ∈ Nθ,

(ii) θ(xa, b) = θ(a, x∗b); a, b ∈ Nθ; x ∈ A.

From (i) it follows that Lθ = {a ∈ Nθ; θ(a, a) = 0} is a left ideal. For each
a ∈ Nθ denote by aθ the canonical image of a in Nθ/Lθ. Then

(aθ|bθ)θ = θ(a, b); a, b ∈ Nθ,
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is a well defined inner product on Nθ/Lθ. Denote by Hθ the associated Hilbert
space, i.e. the completion of Nθ/Lθ with respect to the norm

‖aθ‖θ = (aθ|aθ)
1/2
θ , (a ∈ Nθ).

Since Nθ and Lθ are left ideals, every x ∈ A defines a linear operator π0
θ(x)

on Nθ/Lθ by
π0
θ(x)aθ = (xa)θ ; a ∈ Nθ,

and we have

(3) θ(xa, b) = (π0
θ(x)aθ |bθ)θ; a, b ∈ Nθ.

The condition (i) insures that π0
θ(x) is bounded, so it extends to a unique bounded

linear operator πθ(x) ∈ B(Hθ). The condition (ii) shows that πθ(x)
∗ = πθ(x

∗).
We thus get a ∗-representation πθ : A → B(Hθ) relied to the original data

Nθ and θ by the formula (3).
Now let ϕ be a weight on the ∗-algebra A, assumed to satisfy Combes’ axiom.

Then Nϕ is a left ideal and

(a|b)ϕ = ϕ(b∗a); a, b ∈ Nϕ,

defines a pre-inner product ( · | · )ϕ on Nϕ. By Combes’ axiom, for each x ∈ A
there is λ(x) > 0 such that a∗x∗xa 6 λ(x)a∗a, for all a ∈ A. It follows that ( · | · )ϕ
satisfies condition (i). Also, condition (ii) is satisfied:

(xa|b)ϕ = ϕ(b∗xa) = ϕ((x∗b)∗a) = (a|x∗b)ϕ; a, b ∈ Nϕ, x ∈ A.

Consequently, we obtain a ∗-representation πϕ : A → B(Hϕ), called the GNS

(Gelfand, Năımark, Segal) representation associated to ϕ, such that

(4) ϕ(b∗xa) = (πϕ(x)aϕ|bϕ)ϕ; x ∈ A, a, b ∈ Nϕ.

Note also the following particular cases of relations (1), (2):

ϕ(a∗b) = ϕ(b∗a); a, b ∈ Nϕ;(5)

|ϕ(b∗a)|2 6 ϕ(a∗a)ϕ(b∗b); a, b ∈ Nϕ.(6)

Relation (6) is known as the Schwarz inequality. Since Mϕ = N∗
ϕNϕ relation (5)

can be rewritten as

(5′) ϕ(x∗) = ϕ(x); x ∈Mϕ.

A family F of weights on A+ will be called sufficient if

x ∈ A, ϕ(a∗x∗xa) = 0 for all ϕ ∈ F, a ∈ Nϕ ⇒ x = 0.
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If A is a Banach ∗-algebra, then by (4) the family F is sufficient if and only if the
direct sum ∗-representation

⊕
ϕ∈F

πϕ (see 4.1 and 1.13.(2)) is injective.

The family F will be called separating if

x ∈ A, ϕ(x∗x) = 0 for all ϕ ∈ F ⇒ x = 0.

Clearly, every separating family of positive forms is sufficient. A weight ϕ on A+

is called faithful if {ϕ} is separating, i.e. if

x ∈ A, ϕ(x∗x) = 0 ⇒ x = 0.

In particular, the above results hold for any positive form ϕ on A, in which
case Nϕ = A. If in addition A is unital, then from (5) and (6) with b = 1, we infer

ϕ(x∗) = ϕ(x); x ∈ A,(7)

|ϕ(x)|2 6 ϕ(1)ϕ(x∗x); x ∈ A.(8)

Moreover, put ξϕ = 1ϕ ∈ Hϕ. Then ξϕ is a cyclic vector for πϕ and from (4) with
a = b = 1, we get

(9) ϕ(x) = (πϕ(x)ξϕ|ξϕ)ϕ; x ∈ A,

that is ϕ = ωξϕ ◦ πϕ.
Note that every U∗-algebra, in particular every Banach ∗-algebra, in particu-

lar ... every C∗-algebra, satisfies Combes’s axiom (2.8). Therefore for each weight,
in particular for each positive form, on such an algebra there exists the associated
GNS representation.

If ϕ is a positive form on an involutive Banach algebra A with a left approx-
imate unit, but not necessarily unital, then, as we shall see below (4.5), there still
exists a cyclic vector ξϕ ∈ Hϕ for πϕ such that (9) holds; also (7) holds and a
relation similar to (8) is true (4.5).

Whenever it holds, the construction of the ∗-representation πϕ : A→ B(Hϕ)
and of the cyclic vector ξϕ ∈ Hϕ for πϕ is essentially unique, as the following
proposition shows.

Proposition. Let A be a ∗-algebra and let π1, π2 be ∗-representations of A
on Hilbert spaces H1, H2 with cyclic vectors ξ1, ξ2 respectively, such that

(π1(x)ξ1|ξ1) = (π2(x)ξ2|ξ2); x ∈ A.

Then there is a unique unitary operator U : H1 → H2 such that

Uξ1 = ξ2 and π2(x) = Uπ1(x)U
∗; x ∈ A.

Proof. For every y ∈ A we have

‖π2(y)ξ2‖
2 = (π2(y

∗y)ξ2|ξ2) = (π1(y
∗y)ξ1|ξ1) = ‖π1(y)ξ1‖

2.

Since ξ1 (respectively ξ2) is cyclic for π1 (respectively π2), it follows that the map
U0 : π1(y)ξ1 7→ π2(y)ξ2, (y ∈ A), extends to a unitary operator U : H1 → H2 and,
for x, y ∈ A, we have

π2(x)π2(y)ξ2 = π2(xy)ξ2 = Uπ1(xy)ξ1 = Uπ1(x)U
∗π2(y)ξ2,

(ξ2|π2(y)ξ2) = (ξ1|π1(y)ξ1) = (Uξ1|Uπ1(y)ξ1) = (Uξ1|π2(y)ξ2),

so that U has the required properties. The uniqueness of U is immediate.
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For instance, let π : A → B(H) be a cyclic ∗-representation of the unital ∗-
algebraA with cyclic vector ξ ∈ H and let ϕ = ωξ◦π. Then the GNS representation
πϕ : A → B(Hϕ) exists (condition (ii) is satisfied with λ(x) = ‖π(x)‖2), we can
define ξϕ = 1ϕ ∈ Hϕ and, modulo a unitary equivalence, πϕ = π, ξϕ = ξ.

4.4. We turn now to the case of Banach ∗-algebras.
Let A be a Banach ∗-algebra and ϕ be a weight on A+. Consider the GNS

representation πϕ : A → B(Hϕ) associated to ϕ. Owing to 4.3.(4) and 1.13.(1),
for a, b ∈ Nϕ and x ∈ A we get

(1)
ϕ(b∗xa) 6 ‖πϕ(x)‖ ‖aϕ‖ϕ‖bϕ‖ϕ‖π

A
env(x)‖ϕ(a

∗a)1/2ϕ(b∗b)1/2

6 rA(x
∗x)1/2ϕ(a∗a)1/2ϕ(b∗b)1/2.

Thus, for every a, b ∈ Nϕ the linear functional ϕ(b∗ · a) on A is bounded and

(2) ‖ϕ(b∗ · a)‖ 6 ‖πAenv‖ϕ(a
∗a)1/2ϕ(b∗b)1/2; a, b ∈ Nϕ.

Suppose moreover that the Banach ∗-algebra A has bounded left approximate

units and also bounded right approximate units. Then every positive form ϕ on A

is bounded.

Indeed, if {xn} is a sequence in A, xn → 0, then, by the remarks after
Corollary 2/3.1, there are a, b ∈ A and a sequence {yn} in A, yn → 0, such that
xn = b∗yna for all n, so ϕ(xn) = ϕ(b∗yna) → 0 by the continuity of ϕ(b∗ · a).

Now let A be an involutive Banach algebra and ϕ be a weight on A+. Then
‖πAenv‖ 6 1, so by (1)

(3) ‖ϕ(b∗ · a)‖ 6 ϕ(a∗a)1/2ϕ(b∗b)1/2; a, b ∈ Nϕ.

In particular, if A is unital and ϕ is a positive form on A, then ‖ϕ‖ = ϕ(1).
If ϕ is a continuous form the involutive Banach algebra A, then ϕ∗ is also

continuous and

(4) ‖ϕ∗‖ = ‖ϕ‖.

It follows that a form ϕ on A is continuous if and only if Reϕ and Imϕ are both
continuous.

If ϕ is a continuous selfadjoint form on A, then ϕ|Ah is a continuous real
functional on Ah and

(5) ‖ϕ‖ = ‖ϕ|Ah‖.

Indeed, given ε > 0 there is x ∈ A, ‖x‖ 6 1, with ϕ(x) > ‖ϕ‖ − ε. Then
Rex = (x+ x∗)/2 ∈ Ah, ‖Rex‖ 6 1, so that

‖ϕ|Ah‖ > |ϕ(Rex)| = ϕ(x) > ‖ϕ‖ − ε
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and the assertion follows.

4.5. We now consider the case of an involutive Banach algebra A with a left
approximate unit {uι}ι∈I . Then {u∗ι }ι∈I is a right approximate unit for A.

A weight ϕ on A+ is called lower norm semicontinuous if for each λ > 0 then
convex set {x ∈ A+; ϕ(x) 6 λ} is norm closed. If ϕ is lower norm semicontinuous
and {xι} is a net in A+, σ(A,A∗)-convergent to x ∈ A+, then

ϕ(x) 6 lim inf
ι

ϕ(xι).

Proposition. Let ϕ be a lower norm semicontinuous weight on A. Then

the GNS representation associated to ϕ is non-degenerated.

Proof. Let a ∈ Nϕ. Using 4.3.(4) we get

‖πϕ(u
∗
ιuι)aϕ − aϕ‖

2
ϕ = ϕ((a∗u∗ιuι − a∗)(u∗ι uιa− a))

= ϕ(a∗(u∗ιuι)
2a)− 2ϕ(a∗u∗ιuιa) + ϕ(a∗a)

6 2ϕ(a∗a− a∗u∗ιuιa).

Since a∗u∗ιuιa→ a∗a, we have ϕ(a∗a) 6 lim inf
ι

ϕ(a∗u∗ιuιa), hence

0 6 lim inf
ι

‖πϕ(u
∗
ιuι)aϕ − aϕ‖

2
ϕ 6 lim sup

ι
‖πϕ(u

∗
ιuι)aϕ − aϕ‖

2
ϕ 6 0,

that is {πϕ(u∗ιuι)aϕ} converge to aϕ in Hϕ.

In the case of positive forms, the associated GNS representation has more
particularities:

Theorem. Let ϕ be a positive form on A. Then:

(i) ϕ is bounded and ‖ϕ‖ = lim
ι
ϕ(uι) = lim

ι
ϕ(u∗ι uι).

(ii) For every x ∈ A we have

ϕ(x∗) = ϕ(x),(1)

|ϕ(x)|2 6 ‖ϕ‖ϕ(x∗x).(2)

(iii) There is a unique extension of ϕ to a positive form ϕ̃ on Ã such that ϕ̃(1)=
‖ϕ‖.
(iv) Let πϕ : A → B(Hϕ) be the associated GNS representation. There exists

ξϕ ∈ Hϕ, ‖ξϕ‖ϕ = ‖ϕ‖1/2, such that for every net {xκ}κ∈K in A with ‖xκ‖ 6

1, (κ ∈ K), and ϕ(xκ) → ‖ϕ‖, we have

(3) (xκ)ϕ → ξϕ in the norm of Hϕ.

Moreover,

(4) πϕ(x)ξϕ = xϕ; x ∈ A,
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so ξϕ is a cyclic vector for πϕ and

(5) ϕ(x) = (πϕ(x)ξϕ|ξϕ); x ∈ A.

Proof. The boundedness of ϕ was proved in 4.4 in a more general situation.
Using the continuity of ϕ we obtain (1) and (2):

ϕ(x∗) = lim
ι
ϕ(uιx

∗) = lim
ι
ϕ(xu∗ι ) = ϕ(x),

|ϕ(x)|2 = lim
ι
ϕ(uιx)|

2
6 ϕ(x∗x) sup

ι
ϕ(uιu

∗
ι ) 6 ‖ϕ‖ϕ(x∗x).

If A = Ã, then ‖ϕ‖ = ϕ(1) by (2). Assume A 6= Ã and for each x + λ ∈ Ã

define ϕ̃(x + λ) = ϕ(x) + λ‖ϕ‖. Then ϕ̃ is a form on Ã extending ϕ, ϕ̃(1) = ‖ϕ‖
by definition and ϕ̃ is positive because, by (1), (2),

ϕ̃((x+ λ)∗(x+ λ)) = ϕ(x∗x+ λx+ λx∗) + |λ|2‖ϕ‖

= ϕ(x∗x) + 2Re(λ̃ϕ(x)) + |λ|2‖ϕ‖

> ϕ(x∗x) − 2|λ| ‖ϕ‖1/2ϕ(x∗x)1/2 + |λ|2‖ϕ‖

= (ϕ(x∗x)1/2 − |λ| ‖ϕ‖1/2)2 > 0.

The pre-Hilbert structure of Ã associated to ϕ̃ induces on A its own pre-
Hilbert structure, associated to ϕ. Let {xκ} be any net in A with ‖xκ‖ 6 1 for all
κ and ϕ(xκ) → ‖ϕ‖. Using (2) we get also ϕ(x∗κxκ) → ‖ϕ‖, hence

ϕ̃((xκ − 1)∗(xκ − 1)) = ϕ(x∗κxκ)− ϕ(x∗κ)− ϕ(xκ) + ‖ϕ‖ → 0.

It follows that A is dense in the pre-Hilbert space Ã. So we may identify Hϕ and

H
ϕ̃
. Then ξϕ = 1

ϕ̃
∈ Hϕ, ‖ξϕ‖ϕ = ‖ϕ‖1/2 and for every {xκ} as above, (3) holds.

Moreover, for each x ∈ A we have

xϕ = x
ϕ̃
= π

ϕ̃
(x)1

ϕ̃
= lim

κ
(xxκ)ϕ̃ = lim

κ
(xxκ)ϕ = πϕ(x)ξϕ,

that is (4) holds. Also (5) holds:

ϕ(x) = ϕ̃(x) = (π
ϕ̃
(x)1

ϕ̃
|1
ϕ̃
)
ϕ̃
= (πϕ(x)ξϕ|ξϕ)ϕ.

Since πϕ is non-degenerated, by Lemma 3/4.1 we have

πϕ(uι)ξϕ → ξϕ,

so ϕ(uι) = (πϕ(uι)ξϕ|ξϕ)ϕ → (ξϕ|ξϕ)ϕ = ‖ϕ‖ and using (2) we get also ϕ(u∗ιuι)→
‖ϕ‖.
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Note that

(6) (uι)ϕ → ξϕ, (u∗ι )ϕ → ξϕ, (u∗ιuι)ϕ → ξϕ, (uιu
∗
ι )ϕ → ξϕ.

Also, by (2), for every positive form ϕ on A we have

(7) ‖ϕ‖ = sup{ϕ(x); x ∈ A+, ‖x‖ 6 1}.

The positive form ϕ̃ is called the canonical extension of ϕ to Ã. Note that

‖ϕ̃‖ = ϕ̃(1) = ‖ϕ‖. Let ψ be any positive form on Ã with ψ|A = ϕ. Then

ψ(1) = ‖ψ‖ > ‖ϕ‖ and it follows that ψ > ϕ.

Sometimes it is necessary to consider also the involutive Banach algebra with

adjoined unit A⊕C, even if A is unital (1.5). So we remark that given a positive

form ϕ on A, the formula

ψ(x + λ) = ϕ(x) + λ‖ϕ‖; x ∈ A, λ ∈ C,

still defines a positive form on A ⊕ C, the proof being the same as above and

clearly, ‖ψ‖ = ‖ϕ‖.

Corollary 1. Let ϕ, ψ be positive form on A. Then

‖ϕ+ ψ‖ = ‖ϕ‖+ ‖ψ‖ and ˜(ϕ+ ψ) = ϕ̃+ ψ̃.

Proof. Use (i) and (iii) of the theorem.

As an application, let ϕ be a positive form on A, let ψ1 be a positive form

on Ã with ψ1 6 ϕ̃ and ϕ1 = ψ1|A. Then ψ1 = ϕ̃1. Indeed, ϕ̃ = ψ1 + ψ2 for

some positive form ψ2 on Ã with restriction ϕ2 = ψ2|A. We have ϕ = ϕ1 + ϕ2,

ψ1(1) > ‖ϕ1‖, ψ2(1) > ‖ϕ2‖ and, by Corollary 1,

ϕ̃(1) = ψ1(1) + ψ2(1) > ‖ϕ1‖+ ‖ϕ2‖ = ‖ϕ1 + ϕ2‖ = ‖ϕ‖ = ϕ̃(1),

which forces the equality ψ1(1) = ‖ϕ1‖, i.e. ψ1 = ϕ̃1.

Corollary 2. Let π : A → B(H) be a non-degenerated ∗-representation,
ξ ∈ H and ϕ = ωξ ◦ π. Then ‖ϕ‖ = ‖ξ‖2 and ϕ̃ = ωξ ◦ π̃.

Proof. By (i) of the theorem and by Lemma 3/4.1 we have

‖ϕ‖ = lim
ι
ϕ(uι) = lim

ι
(π(uι)ξ|ξ) = (ξ|ξ) = ‖ξ‖2.

Then (ωξ ◦ π̃)|A = ϕ and (ωξ ◦ π̃)(1) = ‖ξ‖2 = ‖ϕ‖, hence ωξ ◦ π̃ = ϕ̃.
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Corollary 3. Let π : A→ B(H) be a ∗-representation. Then

‖π(x)‖ = supϕ(x∗x)1/2, x ∈ A,

where ϕ runs over all positive forms associated to π with ‖ϕ‖ = 1.

Proof. By Lemma 1/4.1 we may assume π non-degenerated. If ϕ = ωξ ◦ π
then ‖ϕ‖ 6 1 ⇔ ‖ξ‖ 6 1 by Corollary 2 above. The result follows since

‖π(x)‖ = sup
‖ξ‖61

‖π(x)ξ‖ = sup
‖ξ‖61

(ωξ ◦ π)(x
∗x)1/2, x ∈ A.

Since any C∗-algebra has an approximate unit (Theorem 3.2) all the above
results hold for C∗-algebras. In particular,

Corollary 4. Every positive form on a C∗-algebra is bounded.

4.6. Proposition. Let ϕ be a bounded form on a unital C∗-algebra A.

Then

ϕ is positive ⇔ ‖ϕ‖ = ϕ(1).

Proof. If ϕ is positive, then ‖ϕ‖ = ϕ(1) by Theorem 4.5.

Conversely, assume that ϕ(1) = ‖ϕ‖ = 1 and ϕ(x) 6∈ [0,+∞) for some
x ∈ A+. There is a closed ball D = {λ ∈ C; |λ − λ0| 6 r} with σ(x) ⊂ D
and ϕ(x) 6∈ D. The element x − λ0 is normal and its spectrum is contained in
{λ ∈ C; |λ| 6 r}, so that ‖x− λ0‖ = r(x − λ0) 6 r. It follows that

|ϕ(a)− λ0| = |ϕ(a− λ0)| 6 ‖a− λ0‖ 6 r,

a contradiction.

4.7. Let A be an involutive Banach algebra with a left approximate unit
{uι}ι∈I . The σ(A∗, A)-topology on A will be abbreviated as A-topology. The
convex hull of a subset X of A is denoted by coX and its A-closure by coAX . If
X is convex, exX denotes the set of extreme points of X .

Let Q(A) be the set of all positive forms ϕ on A with ‖ϕ‖ 6 1. Then Q(A)
is an A-closed convex subset of the unit ball of A∗ so, by Alaoglu’s theorem, Q(A)
is an A-compact convex subset of A∗.

A positive form ϕ on A is called a state if ‖ϕ‖ = 1. The set of all states
is denoted by S(A). Clearly, S(A) ⊂ Q(A). Using Corollary 1/4.5 we see that
S(A) is convex, but S(A) need not be A-closed. However, if A is unital, then for
ϕ ∈ A∗, ‖ϕ‖ 6 1, we have ϕ ∈ S(A) ⇔ ϕ(1) = 1, so that in this case S(A) is also
A-compact.

By the Krein-Milman theorem, the set exQ(A) of extreme points of Q(A) is
non-void and Q(A) is the A-closed convex hull of exQ(A).
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Proposition. Let ϕ ∈ Q(A). Then ϕ ∈ exQ(A) if and only if either ϕ = 0,
or ϕ ∈ S(A) and any positive form ψ on A, majorized by ϕ is of the form ψ = λϕ
for some 0 6 λ 6 1.

Proof. If ϕ = 0, then ϕ ∈ exQ(A) since ψ ∈ Q(A) and ψ 6 ϕ entail
ψ(x∗x) = 0 for all x ∈ A, so |ψ(x)| 6 ‖ψ‖ψ(x∗x) = 0, hence ψ = 0.

If ϕ satisfies the other condition of the statement and ϕ = αϕ1 + (1 − α)ϕ2

with ϕ1, ϕ2 ∈ Q(A), 0 < α < 1, then αϕ1 6 ϕ so that αϕ1 = λϕ for some
0 6 λ 6 1. By Corollary 1/4.5 we have ‖ϕ‖ = α‖ϕ1‖+(1−α)‖ϕ2‖. Since ‖ϕ‖ = 1
and ‖ϕ1‖ 6 1, ‖ϕ2‖ 6 1 we get ‖ϕ1‖ = 1. It follows that α = λ, ϕ1 = ϕ, ϕ2 = ϕ.
Therefore ϕ ∈ exQ(A).

Conversely, if ϕ ∈ exQ(A), ϕ 6= 0, then clearly ‖ϕ‖ = 1, i.e. ϕ ∈ S(A). Let
ψ be a positive form on A, ψ 6 ϕ. Then ϕ = λψ1 + (1 − λ)ψ2 where λ = ‖ψ‖
and ψ1 = λ−1ψ ∈ Q(A), ψ2 = (1 − λ)−1(ϕ − ψ) ∈ Q(A). It follows that ψ1 = ϕ,
ψ = λϕ.

The non-zero extreme points of Q(A) are called pure states of A and the set
of all pure states is denoted by P (A). By extension, a non-zero positive form ϕ on
A is called pure if ϕ/‖ϕ‖ is a pure state. Then ϕ is pure if and only if any positive
form majorized by a multiple of ϕ is a multiple of ϕ.

Let ϕ be a positive form on A and let ϕ̃ be its canonical extension to a

positive form on Ã. Owing to the remark made after Corollary 1/4.5, it is easy to
see that

ϕ is pure ⇔ ϕ̃ is pure.

Moreover, let ψ ∈ P (Ã) with ϕ = ψ|A 6= 0. Then ϕ̃ 6 ψ hence ϕ̃ = λψ for some

0 6 λ 6 1 and necessarily λ = 1 since ϕ̃|A = ψ|A 6= 0. If A 6= Ã, there is just one

pure state ψ0 on Ã with ψ0|A = 0 and this is defined by ψ0(x + λ) = λ, (x ∈ A,
λ ∈ C). Thus

(1) P (Ã) = {ϕ̃; ϕ ∈ P (A)} ∪ {ψ0}.

By the Krein-Milman theorem,

(2) Q(A) = coA(P (A) ∪ {0}).

S(A) is a convex set and clearly exS(A)=S(A)∩ exQ(A)=P (A). A routine
approximation argument shows that

(3) S(A) ⊂ coA(P (A).

If A is unital, then S(A) is also A-compact so, again by the Krein-Milman theorem,

(4) S(A) = coAP (A) if A is unital.

Note that the equality (4) is definitely false for non-unital C∗-algebras,
namely the zero form is then A-adherent to P (A) (see Proposition 4.17, below);
this fact will sharpen (2) and will provide a new proof for (3) in the C∗-algebra
case.
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Corollary. Let B be a C∗-subalgebra of the C∗-algebra A and

C = {x ∈ A; xy = yx for all y ∈ B}.

If ϕ is a state of A and if ϕ|B is a pure positive form on B, then

(5) ϕ(yz) = ϕ(y)ϕ(z); y ∈ B, z ∈ C.

Proof. Clearly, C = {x ∈ A; xy = yx, (∀) y ∈ B} is a C∗-subalgebra of A,
so C is linearly spanned by its positive part. Thus, in proving (5), we may assume
z ∈ C+, ‖z‖ 6 1. Furthermore we may assume ϕ(z) > 0 because, by the Schwarz
inequality, ϕ(z) = 0 entails ϕ(yz) = 0 for all y ∈ A. Similarly, we may assume
ϕ(z) 6= 1. Put λ1 = ϕ(z), λ2 = 1− ϕ(z).

Now ϕ|B ∈ exQ(B), the mappings

ψ1 : B ∋ y 7→ λ−1
1 ϕ(yz) = λ−1

1 ϕ(z1/2yz1/2)

ψ2 : B ∋ y 7→ λ−1
2 ϕ(y(1 − z)) = λ−1

2 ϕ((1 − z)1/2y(1− z)1/2)

are states of B and
ϕ|B = λ1ψ1 + λ2ψ2,

hence ϕ|B = ψ1, that is ϕ(y) = ϕ(z)−1ϕ(yz) for all y ∈ B.

4.8. The majorization of positive forms can be expressed in terms of the cor-
responding GNS representations. This will provide an important caracterization
of pure states.

Proposition. Let A be a ∗-algebra satisfying the Combes axiom and let ϕ, ψ
be two weights on A+ such that ψ 6 ϕ, i.e.

ψ(x) 6 ϕ(x); x ∈ A+.

There exists a unique T ′ ∈ πϕ(A)
′, 0 6 T ′ 6 1, such that

(1) ψ(b∗a) = (T ′aϕ|T
′bϕ)ϕ; a, b ∈ Nϕ.

Proof. Since ψ 6 ϕ, we have Nϕ ⊂ Nψ, Lϕ ⊂ Lψ, so that we can define a
linear mapping

S′
0 : Nϕ/Lϕ ∋ aϕ 7→ aψ ∈ Nψ/Lψ; a ∈ Nϕ,

and since

‖S′
0aϕ‖

2
ψ = ‖aψ‖

2
ψ = ψ(a∗a) 6 ϕ(a∗a) = ‖aϕ‖

2
ϕ; aϕ ∈ Nϕ,

S′
0 extends to a bounded linear operator S′ : Hϕ → Hψ, ‖S′‖ 6 1. We have

S′∗S′ ∈ B(Hϕ), 0 6 S′∗S′ 6 1 and also T ′ = (S′∗S′)1/2 ∈ B(Hϕ), 0 6 T ′ 6 1.
For any a, b ∈ Nϕ we get

ψ(b∗a) = (aψ|bψ)ψ = (S′aϕ|S
′bϕ)ψ = (S′∗S′aϕ|bϕ)ϕ = (T ′aϕ|T

′bϕ)ϕ.

Then, for any a, b ∈ Nϕ and any x ∈ A, we obtain

(S′∗S′πϕ(x)aϕ|bϕ)ϕ = ψ(b∗xa) = ψ((x∗b)∗a) = (πϕ(x)S
′∗S′aϕ|bϕ)ϕ.

This shows that S′∗S′ ∈ πϕ(A)
′. Futhermore, T ′ ∈ πϕ(A)

′ since πϕ(A)
′ is a

C∗-subalgebra of B(Hϕ).
From (1) it follows that the numbers (T ′2aϕ|bϕ)ϕ, (a, b ∈ Nϕ), are uniquely

determined by ψ, hence T ′2 is determined by ψ and T ′ is its unique positive square
root.
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Corollary 1. Let A be an involutive Banach algebra with a left approxi-
mate unit {uι}ι∈I and let ϕ, ψ be positive forms on A with ψ 6 ϕ. There exists a
unique T ′ ∈ πϕ(A)

′, 0 6 T ′ 6 1, such that

(2) ψ(x) = (πϕ(x)T
′ξϕ|T

′ξϕ); x ∈ A.

Proof. By the proposition, there is a unique T ′ ∈ πϕ(A)
′, 0 6 T ′ 6 1, such

that (1) holds. Then

(3) ψ(uιx) = (T ′xϕ|T
′(u∗ι )ϕ)ϕ; x ∈ A.

By Theorem 4.5 and by 4.5.(6), we have xϕ = πϕ(x)ξϕ and (u∗ι )ϕ → ξϕ in Hϕ, so
that (2) follows from (3) taking the limit over ι ∈ I.

Equation (2) entails equation (1), so that the uniqueness follows by the propo-
sition.

Equation (2) can be rewritten as

(4) ψ(x) = (πϕ(x)X
′ξϕ|ξϕ)ϕ; x ∈ A,

with X ′ = T ′2 ∈ πϕ(A)
′, 0 6 X ′ 6 1, Conversely, given X ′ ∈ πϕ(A)

′, 0 6 X ′ 6

1, (4) defines a positive form ψ on A, ψ 6 ϕ, which we denote by ψ = ϕX′ .
Clearly, the assignement X ′ → ϕX′ establishes an affine bijection between {X ′ ∈
πϕ(A)

′; 0 6 X ′ 6 1} and {ψ ∈ A∗; 0 6 ψ 6 ϕ}.
We now specialize to the case of C∗-algebras in order to obtain similar results

for positive forms majorized by a weight. The restriction is necessary only because
we need approximate units for left ideals.

Let ϕ be a weight on the C∗-algebra A. If f is a positive form on A, f 6 ϕ,
from (1) we then obtain

‖T ′aϕ‖ϕ 6 ‖f‖1/2‖a‖; a ∈ Nϕ.

Let T ′
ϕ be the set all T ′ ∈ πϕ(A)

′ such that there is a positive real number
λT ′ with

‖T ′aϕ‖ϕ 6 λT ′‖a‖; a ∈ Nϕ.

Clearly, T ′
ϕ is a left ideal of the C∗-algebra πϕ(A)

′.
Let {uι}ι∈I be a right approximate unit for the left ideal Nϕ of A. For

T ′ ∈ T ′
ϕ and a ∈ Nϕ it follows that

πϕ(a)T
′(uι)ϕ = T ′(auι)ϕ → T ′aϕ.

Thus, if ak ∈ Nϕ, ξk ∈ Hϕ, (1 6 k 6 n), and ζ =
n∑
k=1

πϕ(a
∗
k)ξk ∈ πϕ(N

∗
ϕ)Hϕ, then

∣∣∣
n∑

k=1

(ξk|T
′(ak)ϕ)ϕ

∣∣∣ = lim
ι

|(ζ|T ′(uι)ϕ)ϕ| 6 λT ′‖ζ‖ϕ.

Hence the map ζ 7→
n∑
k=1

(ξk|T ′(ak)ϕ)ϕ defines a bounded linear functional on

πϕ(N
∗
ϕ)Hϕ and therefore there is a unique vector η ∈ πϕ(N∗

ϕ)Hϕ such that

(ξ|T ′aϕ)ϕ = (ξ|πϕ(a)η)ϕ; a ∈ Nϕ, ξ ∈ Hϕ,

i.e. T ′aϕ = πϕ(a)η for all a ∈ Nϕ. In particular, putting f = ωη ◦ πϕ, we obtain
a positive form on A such that f(b∗a) = (T ′aϕ|T ′bϕ)ϕ for all a, b ∈ Nϕ. We have
proved
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Corollary 2. Let ϕ be a weight on the C∗-algebra A.

(i) For every positive form f on A, f 6 ϕ, there is a unique T ′ ∈ T ′
ϕ, 0 6 T ′ 6

1, and a unique vector η ∈ πϕ(N∗
ϕ)Hϕ such that

f(b∗a) = (T ′aϕ|T
′bϕ)ϕ; a, b ∈ Nϕ,

f(x) = (ωη ◦ πϕ)(x); x ∈Mϕ.

(ii) For every T ′ ∈ T ′
ϕ, 0 6 T ′ 6 1, there is a unique positive form f 6 ϕ on A

and a unique vector η ∈ πϕ(N∗
ϕ)Hϕ such that

f(b∗a) = (T ′aϕ|T
′bϕ)ϕ; a, b ∈ Nϕ,

T ′aϕ = πϕ(a)η; a ∈ Nϕ.

4.9. As announced, the next result characterizes the pure positive forms in
terms of their associated GNS representations.

Proposition. Let A be an involutive Banach algebra with a left approximate

unit and let ϕ be a positive form on A. Then ϕ is pure if and only if πϕ is a non-

zero topologically irreducible ∗-representation.

Proof. Assume that ϕ is pure and consider X ′ ∈ πϕ(A)
′, 0 6 X ′ 6 1. Then

equation 4.8.(4) defines a positive form ψ = ϕX′ 6 ϕ. The purity of ϕ entails
ψ = λϕ for some 0 6 λ 6 1, i.e. ϕX′ = ϕλ1, so X

′ = λ1 by (4.8). Since πϕ(A)
′

is a C∗-algebra, it follows that πϕ(A)
′ consists of scalar operators only and hence

πϕ is topologically irreducible. Since ϕ 6= 0, we have (πϕ(x)ξϕ|ξϕ) = ϕ(x) 6= 0 for
some x ∈ A, hence πϕ is also non-zero.

Conversely, assume that πϕ is non-zero and topologically irreducible. Then
clearly ϕ 6= 0. By 4.8, every positive form ψ 6 ϕ is of the form ψ = ϕX′ with
X ′ ∈ πϕ(A)

′, 0 6 X ′ 6 1. Since πϕ(A)
′ reduces to scalar operators, it follows that

ψ is a multiple of ϕ. Hence ϕ is pure.

Corollary. Given a topologically irreducible ∗-representation π of an in-

volutive Banach algebra A with a left approximate unit on a Hilbert space H, every

non-zero positive form on A associated to π is pure.

Proof. Indeed, let ξ ∈ H , ξ 6= 0, and ϕ = ωξ ◦ π. Then ξ is cyclic for π and,
by Proposition 4.3, we have πϕ = π, ξϕ = ξ, modulo a unitary equivalence. Thus
πϕ is topologically irreducible and ϕ is pure by the proposition.

In particular, given a pure positive form ϕ on A and a ∈ Ã, the positive form
ϕ(a∗ · a) is either zero or is also pure since ϕ(a∗ · a) = ωa

ϕ̃

◦ πϕ.

Let A be a commutative C∗-algebra and Ω be its Gelfand spectrum. Then
P (A) = Ω. Indeed, every character t ∈ Ω is a non-zero one-dimensional, a fortiori
topologically irreducible ∗-representation of A hence t ∈ P (A). Conversely, any
non-zero topologically irreducible ∗-representation π of A is one-dimensional since
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π(A) ⊂ π(A)′ and π(A)′ reduces to the scalars. By the above it follows that every
ϕ ∈ P (A) is multiplicative, hence a character (see also Corollary 4.7).

4.10. Some proofs in the theory of C∗-algebra are base on certain simple gen-
eral results concerning positive linear functionals on ordered (topological) vector
spaces, which we record in this section.

A convex cone X+ in a vector space X will be always assumed pointed in 0.
We write x 6 y instead of y− x ∈ X+ and a linear functional which is > 0 on X+

will be called positive. Given a subspace Y of X , positivity in Y is understood
with respect to the cone Y + = Y ∩X+.

Proposition 1. Let X be a complete metrizable topological real vector space
and let X+ be a closed convex cone in X such that X = X+ − X+. Then any
positive linear functional ϕ on X is continuous.

Proof. Let V be a countable basis of circled neighborhoods of 0 for the
topology τ of X . Define

V ′ = (X+ ∩ V )− (X+ ∩ V ); V ∈ V.

Then it is easy to check that V′ = {V ′; V ∈ V} is a countable basis of circled
neighborhoods of 0 for a certain vector space topology τ ′ on X , which is finer
than τ . If {xn} is a τ ′-Cauchy sequence in X , then we can write xn = x+n − x−n
with {x+n }, {x

−
n } ⊂ X+ both being τ -Cauchy sequence. Since X is τ -complete

and X+ is closed, {x+n } and {x−n } are both τ -convergent in X+, which means that
{xn} is τ ′-convergent in X . Thus (X, τ), (X, τ ′) are both complete metrizable
topological vector spaces and, since τ ′ is finer that τ , the open mapping theorem
shows that τ ′ = τ .

Therefore, in order to prove the τ -continuity of ϕ, it is enough to show that
the restriction of ϕ to X+ is τ -continuous at 0. Let d be a translation invariant
metric for (X, τ) and put |x| = d(x, 0), (x ∈ X). If ϕ|X+ is not continuous at
0, then there is a sequence {xκ} in X+ with |xκ| 6 2−k and ϕ(xκ) > 1. By the

completeness of X , the series
∞∑
k=1

xκ converges to an element x ∈ X . Since X+ is

closed,

x−
n∑

k=n

xκ =

∞∑

k=n+1

xκ ∈ X+

so that, by the positivity of ϕ, ϕ(x) > ϕ
( n∑
k=1

xκ

)
> n, which is a contradiction.

If A is a C∗-algebra, then X = Ah and X+ = A+ satisfy the assumptions of
Proposition 1. We thus obtain another proof of Corollary 4/4.5.

Proposition 2. Let X be a real locally convex space, X+ be a closed convex
cone in X and x ∈ X, x /∈ X+. There is a continuous positive linear functional ϕ
on X with ϕ(x) < 0.

Proof. By the Hahn-Banach theorem we find a continuous linear functional
ϕ on X and a real number α such that ϕ(x) < α and ϕ(y) > α for all y ∈ X+.
Then α 6 ϕ(0) = 0, hence ϕ(x) < 0. If ϕ(y) < 0 for some y ∈ X+, then ϕ(λy) < α
for sufficiently large λ > 0, which is impossible since λy ∈ X+.
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Proposition 3. Let X be a real vector space, Y be a subspace of X and X+

be a convex cone in X such that

Y +X+ = X.

Then every positive linear functional ψ on Y extends to a positive linear functional

on X.

Proof. The assumption means that for every x ∈ X there is y ∈ Y with

x 6 y. Define

p(x) = inf{ψ(y); y ∈ Y, x 6 y}; x ∈ X.

Then p is a seminorm on X and p(y) = ψ(y) for each y ∈ Y . By the Hahn-Banach

theorem, there is a linear functional ϕ on X such that ϕ|Y = ψ and ϕ(x) 6 p(x)

for all x ∈ X . If x ∈ X+, then p(−x) 6 ψ(0) = 0, so that ϕ(−x) 6 0 and

ϕ(x) > 0.

4.11. The Gelfand-Năımark-Segal theorem. This section contains the

fundamental result on C∗-algebras.

Theorem. Let A be a C∗-algebra. There is a family {πι}ι∈I of topologically

irreducible ∗-representation of A such that the direct sum representation
⊕
ι∈I

πι is

isometric.

Proof. Let x ∈ A, x 6= 0. By Proposition 2/4.10 applied to X = Ah and

X+ = A+ we get a positive form ϕx on A with ϕx(−x∗x) 6= 0. Owing to 4.7.(2)

we may assume that ϕx is pure, in which case the GNS representation πϕx is

topologically irreducible (Proposition 4.9). Since

‖πϕx(x)ξϕx‖
2
ϕx = ϕx(x

∗x) 6= 0,

we have πϕx(x) 6= 0. Therefore the direct sum representation of the πϕx ’s, (x ∈ A,

x 6= 0), is injective and consequently isometric by Corollary 1.15.

The key in the proof was of course the GNS construction together with

Theorem 2.4 which clarified the structure of A+.

As announced (1.3), it follows that every C∗-algebra is isometrically ∗-isomor-

phic to a Gelfand-Năımark algebra.

Therefore, in working with a C∗-algebra A we may assume that A ⊂ B(H)

for some Hilbert space H .

4.12. As a first application we obtain formulas giving the norm of an element

in a C∗-algebra.



Consequences: positivity, selfadjointness, the ∗-operation 79

Proposition. Let A be a C∗-algebra. For every x ∈ A we have

(1)
‖x‖ = sup{‖π(x)‖; π ∈ Rep(A)} = sup{‖π(x)‖; π ∈ Irr(A)}

= sup{ϕ(x∗x)1/2; ϕ ∈ Q(A)} = sup{ϕ(x∗x)1/2; ϕ ∈ P (A)}.

For every x ∈ A, x∗ = x, we have

(2) ‖x‖ = sup{|ϕ(x)|; ϕ ∈ Q(A)} = sup{|ϕ(x)|; ϕ ∈ P (A)}.

Proof. Using Theorem 4.11, Corollary 3/4.5 and 4.7.(2), we obtain (1). To
prove (2) we may assume A ⊂ B(H) for some Hilbert space H . Then, by 2.5.(1),

‖x‖ = sup{|(xξ|ξ)|; ξ ∈ H, ‖ξ‖ = 1} 6 sup{|ϕ(x)|; ϕ ∈ Q(A)} 6 ‖x‖.

This proves the first equality in (2) and the second follows using again 4.7.(2).

Corollary 1. A C∗-algebra A is commutative if and only if every topolog-

ically irreducible ∗-representation of A is one-dimensional.

Proof. If the condition is satisfied, then π(xy−yx) = 0 for every topologically
irreducible ∗-representation π of A and every x, y ∈ A. Therefore ‖xy − yx‖ = 0,
(x, y ∈ A), by (1). The converse was already proved (4.9).

If A is an involutive Banach algebra with a left approximate unit then the
proof of the proposition shows that the right sides of formula (1) are all equal
to ‖x‖∗, where ‖ · ‖∗ is the greatest C∗-seminorm on A (1.13). Let C∗

env(A) be
the envelopping C∗-algebra of A and πAenv : A → C∗

env(A) be the canonical ∗-
homomorphism (1.13).

Corollary 2. Let A be an involutive Banach algebra with a left approxi-

mate unit. The mapping

S(C∗
env(A)) ∋ ψ → ψ ◦ πAenv ∈ S(A)

is a bijection, bicontinuous with respect to the corresponding weak topologies.

Proof. Let ϕ ∈ S(A) and x ∈ A. Using 4.5.(2) and the above remark, we get

|ϕ(x)| 6 ϕ(x∗x)1/2 6 ‖x‖∗.

Therefore there is a continuous form ψ on C∗
env(A), ‖ψ‖ 6 1, with ϕ = ψ ◦ πAenv.

Also, 1 = ‖ϕ‖ 6 ‖ψ‖ ‖πAenv‖ 6 ‖ψ‖, thus ‖ψ‖ = 1. For each y ∈ C∗
env(A) there is a

sequence {xn} in A such that πAenv(xn) → y and we have ψ(y∗y) = lim
n
ϕ(x∗nxn) >

0, hence ψ is positive. The bicontinuity assertion is clear.

4.13. Theorem 4.11 allows to characterize the positivity and the selfadjoint-
ness in A by means of (pure) states.
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Proposition. Let A be a C∗-algebra and x ∈ A. Then:

(i) x > 0 ⇔ ϕ(x) > 0 for all ϕ ∈ P (A);

(ii) x = 0 ⇔ ϕ(x) = 0 for all ϕ ∈ P (A);

(iii) x∗ = x⇔ ϕ(x) ∈ R for all ϕ ∈ P (A).

Proof. We may assume A ⊂ B(H) for some Hilbert space H . For any ξ ∈ H ,
ωξ is a positive form on A. If ϕ(x) > 0 for all ϕ ∈ P (A), then ϕ(x) > 0 for all
positive forms ϕ on A by 4.7.(2), in particular (xξ|ξ) = ωξ(x) > 0 for all ξ ∈ H ,
which means that x > 0 (2.5.(ii)).

This proves (i) and clearly (i) ⇒ (ii) ⇒ (iii).

Corollary 1. Let A be a C∗-algebra and x ∈ A. Then x∗ = x if and only if

(1) lim
06=t∈R, t→0

t−1(‖1 + itx‖ − 1) = 0 in Ã.

Proof. By Gelfand representation, ‖1+ a‖ = 1+ ‖a‖ for every a ∈ A, a > 0.
If x ∈ A, x∗ = x, and t ∈ R then t2x2 > 0 and

‖1 + itx‖2 = ‖(1 + itx)∗(1 + itx)‖ = ‖1 + t2x2‖ = 1 + t2‖x2‖

hence

‖1 + itx‖ = (1 + t2‖x2‖)1/2,

and (1) becomes obvious.

Conversely, assume that (1) holds. For every state ϕ on A and every t ∈ R,
t > 0, we have

−ϕ(Imx) = t−1(Re ϕ̃(1 + itx)− 1) 6 t−1(‖1 + itx‖ − 1).

Using (1) we get ϕ(Im x) > 0. Arguing similarly with t ∈ R, t < 0, we obtain
ϕ(Im x) 6 0. Therefore ϕ(Im x) = 0 for any state ϕ on A and the proposition
shows that Imx = 0, hence x∗ = x.

Corollary 2. Let A,B be unital C∗-algebras and Φ : A → B be a linear

mapping such that Φ(1) = 1 and ‖Φ(x)‖ = ‖x‖ for every normal element x ∈ A.
Then Φ is a selfadjoint map, i.e.

Φ(x∗) = Φ(x)∗ for all x ∈ A.

Proof. It is sufficient to show that Φ(Ah) ⊂ Bh. Let x ∈ A, x∗ = x and
t ∈ R. Then 1 + itx is a normal element and, by the assumptions

‖1 + itΦ(x)‖ = ‖Φ(1 + itx)‖ = ‖1 + itx‖.

An application of Corollary 1 shows that Φ(x)∗ = Φ(x).
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Corollary 3. Let π : A → B be an isometric algebra isomorphism of a

C∗-algebra A onto a C∗-algebra B. Then π is a ∗-isomorphism.

Proof. By assumption, A and B are simultaneously unital or not unital. If

they are unital, then the result follows at once from Corollary 2. Suppose A and

B are not unital and extend π to an algebra isomorphism π̃ : Ã → B̃ by putting

π̃(1) = 1. Owing to the definition of the norm on the associate unital C∗-algebra

(1.5), for x ∈ A, λ ∈ C, we get

‖π̃(x + λ)‖ = ‖π(x) + λ‖ = sup{‖(π(x) + λ)π(y)‖; y ∈ A, ‖π(y)‖ 6 1}

= sup{‖π(xy + λy)‖; y ∈ A, ‖π(y)‖ 6 1}

= sup{‖xy + λy‖; y ∈ A, ‖y‖ 6 1} = ‖x+ λ‖.

Hence π̃ is also isometric and the result follows.

Corollary 4. The ∗-operation in a C∗-algebra A is uniquely determined

by the norm and the algebric structure of A.

Proof. Apply Corollary 3 to the identity mapping on A.

4.14. A result related to Proposition 4.13 is the following

Proposition. Let A be a unital C∗-algebra and let F be a subset of S(A)

such that

(1) x ∈ Ah and ϕ(x) > 0 for all ϕ ∈ F ⇒ x > 0.

Then:

coAF = S(A);(2)

F
A
⊃ P (A);(3)

‖x‖ = sup{ϕ(x∗x)1/2; ϕ ∈ F} for all x ∈ A.(4)

Proof. For ϕ ∈ S(A) and x ∈ A we have ϕ(x) 6 1 if and only if ϕ(1−x) > 0.

Using the assumption we see that, for x ∈ Ah′

ϕ(x) 6 1, (∀)ϕ ∈ F ⇔ ϕ(x) 6 1, (∀)ϕ ∈ S(A).

Therefore F and S(A) have the same polar set in Ah and (2) follows by the bipolar

theorem.

Since P (A) = exS(A), (3) follows from (2) by Milman’s converse of the

Krein-Milman theorem ([81], V.8.5).

Finally, (4) follows from (3) using Proposition 4.12.
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Corollary. Let {πι : A → B(Hι)}ι∈I be a family of ∗-representation of

C∗-algebra A such that π =
⊕
ι∈I

πι is injective and let

E = {ωξ ◦ πι; ι ∈ I, ξ ∈ Hι}.

(i) Every ϕ ∈ S(A) is an A-limit of states of the form ϕ1 + · · · + ϕn with

ϕk ∈ E, (1 6 k 6 n, n ∈ N).
(ii) Every ϕ ∈ P (A) is an A-limit of states in E.

Proof. By Lemma 1/4.1 we may suppose each πι non-degenerated. Then π
is non-degenerated. Owing to Corollary 1 and Corollary 2/4.5 it is easy to see
that, without restricting the generality, we may assume that the C∗-algebra A is
unital.

If x ∈ Ah and ϕ(x) > 0 for all ϕ ∈ E, then πι(x) > 0 for ι ∈ I, so that
π(x) > 0, and x > 0. Therefore the proposition applies to F = E ∩ S(A) and
yields the desired results.

Note that the above corollary applies in particular to the identity represen-
tation of a Gelfand-Năımark algebra.

4.15. Kadison’s function representation. Let A be a C∗-algebra. Denote
by A∗

h the real Banach space of all self-adjoint forms on A∗. By the last remark
in 4.4, A∗

h can be identified to the dual space of the real Banach space Ah. Also,
denote by A∗

+ the closed convex cone of all positive forms on A. Recall that Q(A) ⊂
A∗

+ ⊂ A∗
h ⊂ A∗, Q(A) is an A-compact convex set and exQ(A) = P (A)∪{0} (4.7).

Denote by A(Q(A)) the set of all A-continuous affine real functions f on
Q(A) with f(0) = 0. Then A(Q(A)) is an ordered real Banach space with the
structure inherited from C(Q(A)).

Proposition. The mapping Φ : Ah → A(Q(A)) defined by

[Φ(x)](ϕ) = ϕ(x); x ∈ Ah, ϕ ∈ Q(A)

is an isometric linear order isomorphism of Ah onto A(Q(A)).

Proof. Clearly, Φ(x) ∈ A(Q(A)) for all x ∈ Ah and Φ is linear. Also, Φ is
isometric by Proposition 4.12.(2) and x > 0 ⇔ Φ(x) > 0 by Proposition 4.13.

Therefore Φ(Ah) is a closed real subspace of A(Q(A)). Let f ∈ A(Q(A))
and ε > 0. Consider the sets

X = {(ϕ, f(ϕ)) ∈ Q(A)× R; ϕ ∈ Q(A)},

Y = {(ϕ, f(ϕ) + ε) ∈ Q(A)× R; ϕ ∈ Q(A)}.

Both sets are convex compact subset of A∗
h × R, where A∗

h is endowed with the
Ah-topology, and X ∩Y = ∅. By the Hahn-Banach theorem, there is a continuous
linear functional F on A∗

h × R and λ ∈ R such that

(1) supF (X) < λ < inf F (Y ).
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Put α = F (0, 1). By (1), 0 < λ < F (0, ε) = εα, hence α > 0. Consequently, we
can define a linear functional g on A∗

h by

g(ψ) = −α−1F (ψ, 0); ψ ∈ A∗
h.

Since g is Ah-continuous, there exists x ∈ Ah such that g(ψ) = ψ(x) for all ψ ∈ A∗
h.

For this x and for every ψ ∈ A∗
h we have

F (ψ, ψ(x) + α−1λ) = F (ψ, 0) + F (0, g(ψ)) + F (0, α−1λ)

= F (ψ, 0) + g(ψ)α+ α−1λα = F (ψ, 0)− F (ψ, 0) + λ = λ.

Hence by (1), for every ϕ ∈ Q(A) we have

F (ϕ, f(ϕ)) < F (ϕ, ϕ(x) + α−1λ) < F (ϕ, f(ϕ) + ε),

F (ϕ, 0) + f(ϕ)α < F (ϕ, 0) + (ϕ(x) + α−1λ)α < F (ϕ, 0) + (f(ϕ) + ε)α,

f(ϕ) < ϕ(x) + α−1λ < f(ϕ) + ε.

Taking ϕ = 0, we infer that 0 < α−1λ < ε, hence

−ε < −α−1λ < ϕ(x) − f(ϕ) < ε− α−1λ < ε; ϕ ∈ Q(A),

that is ‖f − Φ(x)‖ 6 ε.
Thus Φ(Ah) is also dense in A(Q(A)) and hence Φ(Ah) = A(Q(A)).

If A is unital, then Q(A) can be replaced by S(A) in the above proposition.
Indeed, every function from A(S(A)) can be extended to an element of A(Q(A)).

It is possible to extend the definition of Φ to the whole A by the same formula:
Ψ(x)(ϕ) = ϕ(x), (x ∈ A, ϕ ∈ Q(A)). However, Ψ is no more isometric, as the
following example shows. If A =M2 and

x =

[
0 0
1 0

]
,

then, ‖x‖ = 1 and ‖Ψ(x)‖ = 1/2.

Corollary 1. We have

(2) {ψ ∈ A∗
h; ‖ψ‖ 6 1} = co(Q(A) ∪ (−Q(A))),

that is, for every ψ ∈ A∗
h there exist ϕ1, ϕ2 ∈ A∗

h such that

ψ = ϕ1 − ϕ2, ‖ψ‖ = ‖ϕ1‖+ ‖ϕ2‖.

Proof. Denote the left hand side of (2) by (A∗
h)1. Since Q(A) and −Q(A) are

both Ah-compact and convex, it follows that co(Q(A)∪(−Q(A))) is an Ah-compact
convex subset of (A∗

h)1. If ψ ∈ (A∗
h)1 does not belong to co(Q(A) ∪ (−Q(A))),

then by Hahn-Banach theorem we find an element x ∈ Ah such that

ψ(x) > 1 and ϕ(x) 6 1 for all ϕ ∈ co(Q(A) ∪ (−Q(A))).

By the proposition (i.e. by 4.12.(2)) we infer that ‖x‖ 6 1, so that |ψ(x)| 6

‖ψ‖ · ‖x‖ 6 1, a contradiction.
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A more precise result will be presented in 8.11. An obvious consequence of
Corollary 1 is: A∗

h = A∗
+ −A∗

+.

Remark that any lower A-semicontinuous affine real function f on Q(A)
attains its lower bound m on exQ(A) since the set K = {ϕ ∈ Q(A); f(ϕ) = m} is
A-compact and convex and it is easy to see that ∅ 6= exK ⊂ exQ(A).

Corollary. Let {xι}ι∈I be an increasing net in Ah and x ∈ Ah. If ϕ(x) =
sup
ι
ϕ(xι) for all ϕ ∈ P (A), then ‖x− xι‖ → 0.

Proof. By Proposition 4.13.(i), then assumption entails xι 6 x, (ι ∈ I).
Thus, for the lower A-semicontinuous affine real function f on Q(A) defined by
f(ϕ) = sup

ι
Φ(xι)(ϕ), (ϕ ∈ Q(A)), we have f 6 Φ(x). Hence f − Φ(x) is lower

A-semicontinuous, affine, f − Φ(x) 6 0 and f − Φ(x) = 0 on exQ(A). By the
above remark, f − Φ(x) attains its lower bound on exQ(A), hence f = Φ(x).
Using Dini’s theorem, it follows that {Φ(xι)} converges uniformly to Φ(x). By the
proposition, we conclude ‖x− xι‖ → 0.

The next result is a characterization of increasing approximate units in C∗-
algebras.

Corollary. Let {uι}ι∈I be an increasing net in A+. Then {uι} is an ap-

proximate unit for A if and only if ϕ(uι) → 1 for all ϕ ∈ P (A).

Proof. By Proposition 4.12.(2) the assumption entails ‖uι‖ 6 1, ι ∈ I.
Let a ∈ A. If ϕ ∈ P (A), then either ϕ(a∗ ·a) = 0 or ϕ(a∗ ·a) is a pure positive

form (4.9) and ‖ϕ(a∗ · a)‖ = ϕ(a∗a). By the assumption, ϕ(a∗uιa) → ϕ(a∗a).
Using Corollary 2, we get

‖a− uιa‖
2
6 ‖(1− uι)

1/2a‖2 = ‖a∗a− a∗uιa‖ → 0.

4.16. Proposition. Let A be a C∗-algebra and B be a C∗-subalgebra of A.

Then:

(i) every state of B can be extended to a state of A;

(ii) every pure state of B can be extended to a pure state of A.

Proof. (i) Passing to C∗-algebras with adjoined units we may assume that
A is unital and B contains the unit 1 of A (see the discussion after Theorem 4.5).
Then each x ∈ Ah is majorized by ‖x‖ · 1 ∈ Bh, so that Bh + A+ = Ah and
Proposition 3/4.10 applies to show that any positive form ψ on B extends to a
positive form ϕ on A and we have

‖ϕ‖ = ϕ(1) = ψ(1) = ‖ψ‖.

(ii) If ψ ∈ P (B), then the set K = {ϕ ∈ Q(A); ϕ|B = ψ} is non-void,
σ(A∗

h, Ah)-compact and convex, so that exK 6= ∅. It is easy to see that exK ⊂
exQ(A) = P (A) ∪ {0} and the assertion follows since 0 /∈ K.
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Corollary. Let A be a C∗-algebra, B be a C∗-subalgebra and ρ : B →
B(K) be a (topologically irreducible) ∗-representation. Then there is a (topologi-
cally irreducible) ∗-representation π : A→ B(H) and an isometric linear operator
V : K → H such that

ρ(y) = V ∗π(y)V, y ∈ B.

Proof. Owing to Lemma 1 and Lemma 2/4.1, we may assume that ρ has a
cyclic vector η ∈ K, ‖η‖ = 1. Then ψ = ωη ◦ ρ is a (pure) state of B and, by the
proposition, there is a (pure) state ϕ of A with ψ = ϕ|B.

Now π = πϕ is a (topologically irreducible) ∗-representation of A on H =
Hϕ. Let H0 be the closure of the subspace {π(y)ξϕ, y ∈ B}. Then π|B is a ∗-
representation of B on H0 with cyclic vector ξ = the orthogonal projection of ξϕ
on H0 and

((π|B)(y)ξ|ξ) = ϕ(y) = ψ(y) = (ρ(y)η|η)

and the desired result follows by Proposition 4.3.

4.17. Let C be a commutative C∗-subalgebra of a C∗-algebra A and Ω be
the Gelfand spectrum of C. Every character t ∈ Ω is a pure state of C (4.9) and
by Proposition 4.16 it can be extended to a pure state ϕt of A, which is therefore
multiplicative on C. A direct computation shows that for every z ∈ C,

‖πϕt(z)ξϕt − ϕt(z)ξϕt‖
2
ϕt = 0,

that is,
πϕt(z)ξϕt = ϕt(z)ξϕt .

Hence the direct sum of all πϕ’s with ϕ ∈ P (A) gives a realization of A on
some Hilbert space H such that for every normal x ∈ A and every λ ∈ σ(x) there
is 0 6= ξ ∈ H with

xξ = λξ.

Another consequence of the above remark is:

Proposition. If A is a non-unital C∗-algebra, then the zero form is
σ(A∗, A)-adherent to P (A).

Proof. We have to show that for every x1, . . . , xn ∈ A and every ε > 0 there
is ϕ ∈ P (A) with |ϕ(xκ)| 6 ε, (1 6 k 6 n). Since A is the linear span of A+, we
may suppose x1, . . . , xn ∈ A+ and then it suffices to show ϕ(x1 + · · ·+ xn) 6 ε.

Thus, let x ∈ A, 0 6 x 6 1, let ε > 0 and let Ã be the associate unital
C∗-algebra of A.

Assume first that x = p is a projection. Since A 6= Ã, there is y ∈ A with
(1−p)y(1−p) 6= 0 so that (4.12) there is a pure state ψ ofA with ψ((1−p)y(1−p)) 6=
0. Then ϕ = ψ((1 − p) · (1 − p)) is a non-zero pure (4.9) positive form on A and
ϕ(p) = 0.

In the general case, let C = C0(Ω) be the commutative C∗-subalgebra of A
generated by x. If C is unital, then its unit p is a projection in A, 0 6 x 6 p and
by the above there is ϕ ∈ P (A) with ϕ(p) = 0, hence ϕ(x) = 0. If C is not unital,
then Ω is not compact and x is a function vanishing at infinity on Ω, hence x(t) 6 ε
for some t ∈ Ω. Now, there exists ϕt ∈ P (A) with ϕt|C = t, so ϕt(x) 6 ε.
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Using this proposition we obtain an improvement of 4.7.(2) in the case of
non-unital C∗-algebra (compare with 4.7.(4)):

(1) Q(A) = coAP (A) if A is a non unital C∗-algebra.

Thus a C∗-algebra A is unital if and only if S(A) is A-compact.

4.18. Non-commutativity. The fact that a C∗-algebra is not commutative
is best expressed by the following result:

Theorem. Let A be a C∗-algebra. Then A is not commutative if and only

if there is u ∈ A, u 6= 0 with u2 = 0.

Proof. If A is commutative, then every element of A is normal so that, if
u ∈ A and u2 = 0, then ‖u‖ = lim

n
‖un‖1/n = 0 and u = 0.

Conversely, assume that

(1) u ∈ A, u2 = 0 ⇒ u = 0.

Moreover, suppose that there is a ∈ A, a∗ = a, and a topologically irreducible
∗-representation π : A → B(H) such that π(a) is not a scalar operator. Then
σ(π(a)) contains at least two points, say s ∈ σ(π(a)), t ∈ σ(π(a)), t 6= s. There
are f, g ∈ C0(R) such that

f(s) 6= 0, g(t) 6= 0 but fg = 0.

We have

(2) f(π(a)) 6= 0, g(π(a)) 6= 0

and (f(a)yg(a))2 = 0, (y ∈ A), which by (1) entails f(a)yg(a) = 0, (y ∈ A). In
particular,

(3) f(π(a))π(y)g(π(a)) = 0, y ∈ A.

By (2), there is ξ ∈ H with g(π(a))ξ 6= 0. Let e be the orthogonal projection of
H onto the closed subspace generated by π(A)g(π(a))ξ. Then eH is stable under
π(A) and, if {uι} is an approximate unit for A, then, by Lemma 3/4.1,

0 6= g(π(a))ξ = lim
ι
π(uι)g(π(a))ξ ∈ eH.

Therefore e ∈ π(A)′ and e 6= 0. By (3) and (2) we have

eH ⊂ Ker f(π(x)) 6= H,

so that e 6= 1H . Thus e is a non-scalar operator in π(A)′ which contradicts the
topological irreducibility of π.

It follows that π(A) = C1H for every topologically irreducible ∗-representation
π of A. Owing to Corollary 2/4.12 we infer that A is commutative.
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Recall that an ordered real vector space X is called “lattice ordered” if for
each x ∈ X there is an element x ∨ 0 ∈ X such that x ∨ 0 > 0, x ∨ 0 > x and

y ∈ X, y > 0, y > x⇒ y > x ∨ 0.

It is easy to see that

(4) x = (x ∨ 0)− ((−x) ∨ 0).

Also, X is said to have the “Riesz decomposition property” if given x, y, z ∈ X
with 0 6 x 6 y + z, y > 0, z > 0, there are y′, z′ ∈ X such that x = x′ + z′,
0 6 y′ 6 y, 0 6 z′ 6 z.

Given a C∗-algebra A, the real vector space Ah and its dual space A∗
h are

ordered by the convex cones A+ and A∗
+ respectively.

Corollary 1. Let A be a C∗-algebra. The following conditions are equiva-

lent:

(i) A is commutative;

(ii) for some t ∈ R, t > 1, we have: a, b ∈ A, 0 6 a 6 b⇒ at 6 bt;
(iii) Ah is lattice ordered;

(iv) Ah has the Riesz decomposition property;

(v) A∗
h is lattice ordered;

(vi) A∗
h has the Riesz decomposition property.

Proof. If A is commutative, then A = C0(Ω) for some locally compact Haus-
dorff space Ω and A∗ = M(Ω), the space of all bounded regular Borel measures
on Ω, so that assertions (ii) to (vi) are clear in this case.

Conversely, assume that A is not commutative. By the theorem, there is
u ∈ A, ‖u‖ = 1, with u2 = 0. Define p, q, r ∈ Ah by

p = u∗u, q = (u∗u)1/2u∗ + u(u∗u)1/2, r = uu∗.

For any α, β, γ ∈ R, γ > 0, we have

αp+βq+γr=(βγ−1/2(u∗u)1/2+γ1/2u)(βγ−1/2(u∗u)1/2+γ1/2u)∗+(αγ−β2)γ−1u∗u.

If αp+ βq + γr is positive, then

(γ1/2(u∗u)1/2 − βγ−1/2u)∗(αp+ βq + γr)(γ1/2(u∗u)1/2 − βγ−1/2u)

is also positive and, using the above equality we get (αγ − β2)(u∗u)1/2 > 0.
Consequently,

(5) αp+ βq + γr > 0 ⇔ αγ − β2
> 0.

(ii) ⇒ (i). If (ii) holds for some t > 1 then, by iteration (ii) holds with t
replaced by any tn, (n ∈ N), hence (ii) holds for some t > 2. Owing to Proposi-
tion 2.7, it follows that (ii) holds with t = 2.
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However, assuming A non-commutative, take a = 4p+2q+r and b = 8p+2r.
Then, by (5), 0 6 a 6 b, but a2 66 b2 since u∗(b2 − a2)u = −(uu∗)3.

(iii) ⇒ (i). First note that if (iii) holds then

x ∈ Ah, x = a− b, a > 0, b > 0, ab = 0 ⇒ x ∨ 0 = a.

Indeed, let a′ = x ∨ 0 and b′ = (−x) ∨ 0. Since a > x, a > 0, we have a > a′ > 0
and similarly b > b′ > 0. Since ab = 0, it follows that a′b′ = 0. Using (4) we get

x = a′ − b′, a′ > 0, b′ > 0, a′b′ = 0.

By Proposition 2.3, a′ = a, b′ = b.
Now assume that (iii) holds but A is not commutative and take x = p − r,

y = 2p+21/2q+ r. By the above, x∨ 0 = p. However, by (5), y > 0, y > x, y 6> p,
a contradiction.

(iv) ⇒ (iii). Suppose that (iv) holds and let x ∈ Ah. Write x = a − b,
a > 0, b > 0, ab = 0, by Proposition 2.3. We shall prove that x ∨ 0 exists, namely
x ∨ 0 = a. Clearly, a > 0, a > x. Let y ∈ Ah such that y > 0, y > x. Then

0 6 a = (a− b) + b 6 y + b,

so there are a1, a2 ∈ Ah such that a = a1 + a2, 0 6 a1 6 y, 0 6 a2 6 b. Since
0 6 a2 6 a, 0 6 a2 6 b and ab = 0, it follows that a2 = 0. Consequently,
y > a1 = a.

(v) ⇒ (i). We may assume that A ⊂ B(H) for some Hilbert space H .
Suppose that (v) holds but A is not commutative. Denote H1 = Keru and H2 =
H ⊖H1. Then H2 ⊂ Keru∗. By (5), p+ 21/2q + r 6> 0, hence there are ξ1 ∈ H1,
ξ2 ∈ H2 such that

((p+ 21/2q + r)(ξ1 + ξ2)|ξ1 + ξ2) < 0.

Consider ϕ, ψ, θ ∈ A∗
h defined by

ϕ(x) = (xξ2|ξ2)− (xξ1|ξ1), x ∈ A,

ψ(x) = (x(ξ1 + 21/2ξ2)|ξ1 + 21/2ξ2), x ∈ A,

θ(x) = (xξ2|ξ2), x ∈ A,

and put ϕ′ = ϕ ∨ 0. Since

(ψ − ϕ)(x) = (x(21/2ξ1 + ξ2)|2
1/2ξ1 + ξ2), x ∈ A,

we have ψ > 0, ψ > ϕ, so ψ > ϕ′. On the other hand, θ > 0, θ > ϕ, so θ > ϕ′.
Now we have successively

(pξ2|ξ2) = ϕ(p) 6 ϕ′(p) 6 θ(p) = (pξ2|ξ2)
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hence ϕ′(p) = (pξ2|ξ2) = θ(p),

0 6 ϕ′(r) 6 θ(r) = 0,

hence ϕ′(r) = 0 = θ(r), and since by (5) p± q + r > 0,

0 6 (θ − ϕ′)(p± q + r) = ∓ϕ′(q),

hence ϕ′(q) = 0. Consequently,

0 6 (ψ − ϕ′)(p+ q + r) = ((p+ 21/2q + r)(ξ1 + ξ2)|ξ1 + ξ2) < 0,

a contradiction.
(vi) ⇒ (v). Suppose that (vi) holds and let ψ ∈ A∗

h. By Corollary 1/4.15
there exist ϕ1, ϕ2 ∈ A∗

+ such that ψ = ϕ1−ϕ2, ‖ψ‖ = ‖ϕ1‖+‖ϕ2‖.We shall prove
that ψ ∨ 0 exists, namely ψ ∨ 0 = ϕ1. Clearly, ϕ1 > 0, ϕ1 > ψ. Now let ϕ ∈ A∗

h
be such that ϕ > 0, ϕ > ψ. Then

0 6 ϕ1 = (ϕ1 − ϕ2) + ϕ2 6 ϕ+ ϕ2,

hence there are θ1, θ2 ∈ A∗
h such that ϕ1 = θ1 + θ2, 0 6 θ1 6 ϕ, 0 6 θ2 6 ϕ2.

Since ψ = ϕ1 − ϕ2 = θ1 − (ϕ2 − θ2) and, by Corollary 1/4.5, ‖ϕ1‖ = ‖θ1‖+ ‖θ2‖;
‖ϕ2‖ = ‖ϕ2 − θ2‖+ ‖θ2‖, we have

‖ψ‖ 6 ‖θ1‖+ ‖ϕ2 − θ2‖ = ‖ϕ1‖+ ‖ϕ2‖ − 2‖θ2‖ = ‖ψ‖ − 2‖θ2‖.

Consequently, θ2 = 0, thus ϕ > θ1 = ϕ1.

Remark that for an arbitrary ordered real Banach space we have (iii) ⇒ (iv)
⇒ (v) (see [275]), so in the above corollary it would be sufficient to prove only (v)
⇒ (i) and (vi) ⇒ (v).

Let A be an arbitrary C∗-algebra. For every a, b ∈ Ah, ‖a‖ 6 1, ‖b‖ 6 1, we
have

(6) ‖a+ b‖ 6 1 + 2‖ab‖.

Indeed, for any integer n > 0,

‖a2
n

+ b2
n

‖ = ‖(a2
n

+ b2
n

)2‖1/2 6 (2‖ab‖+ ‖a2
n

+ b2
n

‖)1/2

hence, putting α0 = ‖a+ b‖ and

αn = (2 ‖ab‖+ (2‖ab‖+ · · ·+ (2‖ab‖︸ ︷︷ ︸
n times

+‖a2
n

+ b2
n

‖)1/2 · · ·)1/2)1/2, n > 1,

we have
‖a+ b‖ = α0 6 α1 6 α2 6 · · · .

Consequently, the sequence {αn} converges and it is easy to see that its limit is
2−1((1 + 8‖ab‖)1/2 + 1). Thus,

‖a+ b‖ 6 2−1((1 + 8‖ab‖)1/2 + 1) 6 1 + 2‖ab‖.

Therefore for every C∗-algebra A 6= {0} we can define kA > 0 as the greatest
lower bound of all k > 0 such that

a, b ∈ Ah, ‖a‖ 6 1, ‖b‖ 6 1 ⇒ ‖a+ b‖ 6 1 + k‖ab‖,

and, by the above, 1 6 kA 6 2. There is a commutativity criterion for A in terms
of kA:
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Corollary 2. Let A be a C∗-algebra. Then A is commutative if and only

if, for any selfadjoint a, b ∈ A, ‖a‖ = ‖b‖ = 1,

(7) ‖a+ b‖ 6 1 + ‖ab‖.

Proof. If A is commutative, then (7) holds for all a, b ∈ A with ‖a‖ = ‖b‖ = 1,
as can be seen by Gelfand representation.

If A is not commutative, then by the theorem there is u ∈ A, ‖u‖ = 1,
u2 = 0. For α, β > 0, α+ β = 1, define

a = u∗u, b = α(u∗u+ uu∗) + β(u + u∗).

Clearly, ‖a‖ = 1. Since (u∗u)(uu∗) = 0 = (uu∗)(u∗u), we have

‖u+ u∗‖2 = ‖(u+ u∗)2‖ = ‖u∗u+ uu∗‖ = max{‖u∗u‖, ‖uu∗‖} = 1

by Gelfand representation, hence ‖b‖ 6 1. Owing to 2.6.(5) we get

‖ab‖2 = ‖abba‖ = ‖α2(u∗u)4 + β2(u∗u)3‖ = α2 + β2,

hence ‖ab‖ = (α2 + β2)1/2.
Using again 2.6.(5) we obtain, for γ > 0,

(8) ‖u∗ + γuu∗‖2 = ‖uu∗ + γ2(uu∗)2‖ = 1 + γ2

and, for λ, µ, ν > 0,

(9)
‖λu∗uu∗ + µ(uu∗)2 + ν(uu∗)‖2

= ‖λ2(uu∗)3 + µ2(uu∗)4 + 2µν(uu∗)3 + ν2(uu∗)2‖ = λ2 + (µ+ ν)2.

By (8) and (9) we have

2‖b‖2 = ‖b‖2‖u∗+uu∗‖2>‖b(u∗+uu∗)‖2 = ‖(α+β)u∗uu∗+α(uu∗)2+β(uu∗)‖2 = 2

so that ‖b‖ > 1, hence ‖b‖ = 1. Also,

(1 + γ2)‖a+ b‖2 = ‖a+ b‖2‖u∗ + γuu∗‖2 > ‖(a+ b)(u∗ + γuu∗)‖2

= ‖(1 + α+ βγ)u∗uu∗ + αγ(uu∗)2 + β(uu∗)‖2

= (1 + α+ βγ)2 + (αγ + β)2,

so that ‖a+ b‖2 > ((1 + α+ βγ)2 + (αγ + β)2)(1 + γ2)−1.
For α = 2/3, β = 1/3 and γ = 1/3 we get

‖a+ b‖ > ((1+α+βγ)2+(αγ+β)2)1/2(1+γ2)−1/2 > 1+(α2+β2)1/2 = 1+ ‖ab‖

which contradicts (7).
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4.19. Let A be a C∗-algebra and n > 1 be an integer. Then the ∗-algebra
Mn(A) (2.12) is a C

∗-algebra.
Indeed, by 4.11 we may assume that A ⊂ B(H) for some Hilbert space H . If

H(n) is the Hilbert space direct sum of n copies ofH , then every [xij ] ∈Mn(B(H))

acts on H(n) by

[xij ][ξk] =
[∑

j

xkjξj

]
; ξ1, . . . , ξn ∈ H,

and in this way Mn(B(H)) can be identified to B(H(n)). Hence Mn(B(H)) is a
C∗-algebra. For [xij ] ∈Mn(B(H)) we have

(1) ‖xhk‖ 6 ‖[xij ]‖ 6 max
j

(∑

i

‖xij‖
2
)1/2

; 1 6 h, k 6 n.

Using (1) it is easy to see thatMn(A) is a closed ∗-subalgebra ofMn(B(H)), which
proves our assertion.

Since A⊗Mn is ∗-isomorphic toMn(A) (2.12), it follows that A⊗Mn is also
a C∗-algebra.

4.20. C∗-tensor product. In this section we introduce the most usual no-
tion of tensor product of C∗-algebra. To this end, we first recall the construction
and the properties of the Hilbert space tensor product of Hilbert spaces.

Let H,K be complex Hilbert space. On the tensor product H ⊗ K of the
vector space H,K there exists a unique scalar product such that

(ξ1 ⊗ η1|ξ2 ⊗ η2) = (ξ1|ξ2)(η1|η2); ξ1, ξ2 ∈ H, η1, η2 ∈ K,

and the Hilbert space completion of H ⊗K with respect to this scalar product is
denoted by H ⊗K and called the Hilbert space tensor product of H and K.

Let a ∈ B(H), b ∈ B(K). Each ζ ∈ H ⊗K can be written as ζ =
n∑
k=1

ξk ⊗ ηk

with ξ1, . . . , ξn ∈ H and mutually orthogonal η1, . . . , ηn ∈ K. Then

‖(a⊗ 1K)ζ‖2 =
n∑

k=1

‖aξk‖
2‖ηk‖

2
6 ‖a‖2

n∑

k=1

‖ξk‖
2‖ηk‖

2 = ‖a‖2‖ζ‖2.

Similarly, ‖(1H ⊗ b)ξ‖ 6 ‖b‖ ‖ζ‖ for all ζ ∈ H ⊗ K. It follows that a ⊗ b =
(a⊗ 1K)(1H ⊗ b) can be uniquely extended to a bounded linear operator a⊗ b on
H ⊗K. Moreover

‖a⊗ b‖ = ‖a‖ ‖b‖; a ∈ B(H), b ∈ B(K).

It is easy to see that

B(H)×B(K) ∋ (a, b) 7→ a⊗ b ∈ B(H ⊗K)

is a bounded bilinear mapping with norm equal to one and

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2; a1, a2 ∈ B(H); b1, b2 ∈ B(K),

(a⊗ b)∗ = a∗ ⊗ b∗; a ∈ B(H), b ∈ B(K).

In particular, if a ∈ B(H), b ∈ B(K) are normal (respectively selfadjoint, respec-
tively positive, respectively unitary, respectively projection), then the same is true
for a⊗ b ∈ B(H ⊗K).
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Lemma 1. The mapping

B(H)⊗B(K) ∋
n∑

k=1

ak ⊗ bk 7→
n∑

k=1

ak⊗ bk ∈ B(H ⊗K)

is an injective ∗-homomorphism.

Proof. Let x ∈ B(H) ⊗ B(K), x 6= 0. There exist linearly independent

a1, . . . , an ∈ B(H) and non-zero b1, . . . , bn ∈ B(K) such that x =
n∑
k=1

ak ⊗ bk.

Then there exists η ∈ K with b1η 6= 0. Assume that {b1η, . . . , bmη}, (1 6 m 6 n),
is a maximal linearly independent subset of {b1η, . . . , bnη} and write

bkη =

m∑

j=1

λkjbjη; 1 6 k 6 n.

Since λ11 = 1 and {a1, . . . , an} are linearly independent, we have

a =

n∑

k=1

λk1ak 6= 0.

Thus there exists ξ ∈ H with aξ 6= 0. Then ξ ⊗ η ∈ H ⊗K and

( n∑

k=1

ak ⊗ bk

)
(ξ ⊗ η) =

n∑

k=1

akξ ⊗
( m∑

j=1

λkjbjη
)
=

m∑

j=1

( n∑

k=1

λkjak

)
ξ ⊗ bjη

= aξ ⊗ b1η +
m∑

j=2

( n∑

k=1

λkjak

)
ξ ⊗ bjη 6= 0

because aξ 6= 0 and {b1η, . . . , bmη} are linearly independent.
This proves that the map in question is injective and this is the only non-

trivial assertion of the lemma.

We shall identify B(H)⊗B(K) with a ∗-subalgebra of B(H ⊗K).
Now let A,B be C∗-algebras. By Theorem 4.11 there exist isometric ∗-

representations ρ0 : A→ B(H0), σ0 : B → B(K0). Put

‖x‖ρ0,σ0
= ‖(ρ0 ⊗ σ0)(x)‖B(H0 ⊗K0)

; x ∈ A⊗B.

By Lemma 1, ‖ · ‖ρ0,σ0
is a C∗-norm and a cross-norm on A ⊗ B. The

corresponding C∗-algebra completion of A⊗B is denoted by

A⊗ρ0,σ0
B.

Clearly, this C∗-algebra is ∗-isomorphic to the norm-closure of ρ0(A) ⊗ σ0(B) in
B(H0 ⊗K0).
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Lemma 2. For every ϕ ∈ S(A) and every ψ ∈ S(B) we have

|(ϕ⊗ ψ)(x)| 6 ‖x‖ρ0,σ0
; x ∈ A⊗B.

Proof. Without restricting the generality, we may suppose that ρ0 and σ0
are non-degenerated. Then by Corollary 4.14.(i) it is suficient to consider only
ϕ, ψ of the form

ϕ =

n∑

i=1

ωxii ◦ ρ0 with ξ1, . . . ξn ∈ H0,

n∑

i=1

‖ξi‖
2 = 1,

ψ =

m∑

j=1

ωηj ◦ σ0 with η1, . . . , ηm ∈ K0,

m∑

j=1

‖ηj‖
2 = 1.

In this case, for every x ∈ A⊗B we have

|(ϕ⊗ ψ)(x)| =
∣∣∣
∑

i,j

((ρ0 ⊗ σ0)(x)(ξi ⊗ ηj)|ξi ⊗ ηj)
∣∣∣

6
∑

ij

‖(ρ0 ⊗ σ0)(x)‖ ‖ξi‖
2‖ηj‖

2 = ‖x‖ρ0,σ0
.

Lemma 3. For every ∗-representations ρ : A → B(H), σ : B → B(K), we
have

(1) ‖(ρ⊗ σ)(x)‖B(H ⊗K) 6 ‖x‖ρ0,σ0
; x ∈ A⊗B.

If in addition ρ, σ are both isometric, then

(2) ‖(ρ⊗ σ)(x)‖B(H ⊗K) = ‖x‖ρ0,σ0
; x ∈ A⊗B.

Proof. By Lemma 1 and Lemma 2/4.1 we may suppose that ρ and σ are
cyclic ∗-representations with cyclic vectors ξ ∈ H , ‖ξ‖ = 1 and η ∈ K, ‖η‖ = 1,
respectively. Then ϕ = ωξ ◦ ρ ∈ S(A), ψ = ωη ◦ σ ∈ S(B) and, by Proposition 4.3,
ρ ≃ πϕ, σ ≃ πψ. It follows that the ∗-representations ρ ⊗ σ and πϕ ⊗ πψ of the
∗-algebra A⊗B are unitarily equivalent, in particular

(3) ‖(ρ⊗ σ)(x)‖B(H ⊗K) = ‖(πϕ ⊗ πψ)(x)‖B(Hϕ ⊗Hψ)
; x ∈ A⊗B.

Now, by Lemma 2, ϕ ⊗ ψ is ‖ · ‖ρ0,σ0
-continuous on A ⊗ B and hence it

extends to a positive form θ on the C∗-algebra A⊗ρ0,σ0
B. By the construction of

the GNS representations, Hθ can be identified with Hϕ⊗Hψ in such a way that

(4) πθ(x) = (πϕ ⊗ πψ)(x); x ∈ A⊗B.

Since πθ is a ∗-representation of the C∗-algebra A ⊗ρ0,σ0
B, by Theorem 1.9 we

get

(5) ‖πθ(x) 6 ‖x‖ρ0,σ0
; x ∈ A⊗B.

Thus, (1) follows form (3), (4), (5) and (2) follows form (1) by interchanging
the roles of ρ, ρ0 and σ, σ0 respectively.
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By Lemma 3 we conclude that there exists a unique C∗-norm ‖·‖C∗ on A⊗B
such that

‖x‖C∗ = ‖(ρ⊗ σ)(x)‖; x ∈ A⊗B,

for every injective ∗-representation ρ, σ of A,B respectively. The C∗-algebra com-
pletion of A⊗ B with respect to ‖ · ‖C∗ is denoted by A ⊗C∗ B and is called the
C∗-tensor product (or the spatial tensor product) of the C∗-algebra A and B.

We record the main conclusions in the following

Theorem. Let A,B,M,N be C∗-algebra. If ρ : A→M and σ : B → N are
∗-homomorphisms, then the ∗-homomorphism

ρ⊗ σ : A⊗B →M ⊗N

can be uniquely extended to a ∗-homomorphism

A⊗C∗ B →M ⊗C∗ N

still denoted by ρ⊗ σ.
If ρ and σ are injective ∗-homomorphisms, then the extension ρ ⊗ σ is an

injective ∗-homomorphism.
If ρ and σ are ∗-homomorphisms, then the extension ρ ⊗ σ is a ∗-homo-

morphism.

In particular, if A is a C∗-subalgebra of M and B is a C∗-subalgebra of N ,
the A ⊗C∗ B can be identified with the C∗-subalgebra C∗(A ⊗ B) of M ⊗C∗ N ,
that is we may consider

A⊗C∗ B ⊂M ⊗C∗ N.

Let A,B be C∗-algebras.

Corollary 1. For every x ∈ A⊗B we have

‖x‖C∗ = sup{‖(ρ⊗ σ)(x)‖; ρ ∈ Rep(A), σ ∈ Rep(B)},(6)

‖x‖C∗ = sup{‖(ρ⊗ σ)(x)‖; ρ ∈ Irr(A), σ ∈ Irr(B)}.(7)

Proof. Use the definition of ‖ · ‖C∗ , the above theorem and Theorem 4.11.

Corollary 2. For every bounded linear functionals ϕ ∈ A∗, ψ ∈ B∗ the
linear functional ϕ ⊗ ψ on A ⊗ B can be uniquely extended to a bounded linear
functional on A⊗C∗ B, still denoted by ϕ⊗ ψ and we have

(8) ‖ϕ⊗ ψ‖ 6 4‖ϕ‖ ‖ψ‖.

If, ϕ, ψ are positive forms on A,B respectively, then ϕ ⊗ ψ is a positive form on
A⊗C∗ B and we have

(9) ‖ϕ⊗ ψ‖ = ‖ϕ‖ ‖ψ‖.

Proof. Let ϕ ∈ A∗
+, ψ ∈ B∗

+. By Theorem 4.5 we have ϕ = ωξϕ ◦ πϕ and

ψ = ωξψ ◦ πψ where ξϕ ∈ Hϕ, ‖ξϕ‖ = ‖ϕ‖1/2 and ξψ ∈ Hψ , ‖ξψ‖ = ‖ψ‖1/2. Then

(ϕ⊗ ψ)(x) = (ωξϕ⊗ξψ ◦ (πϕ ⊗ πψ))(x); x ∈ A⊗B.

By the Theorem it follows that ϕ ⊗ ψ is ‖ · ‖C∗-continuous, so (10) holds for all
x ∈ A⊗C∗ B. Using Corollary 2/4.5 we get

‖ϕ⊗ ψ‖ = ‖ξϕ ⊗ ξψ‖
2 = ‖ξϕ‖

2‖ξψ‖
2 = ‖ϕ‖ ‖ψ‖.

Now, for arbitrary ϕ ∈ A∗, ψ ∈ B∗, the desired conclusion follows by using
Corollary 1/4.15.
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The relation (8) will be improved in Proposition 4/8.11 and the assertion
concerning the tensor product of positive forms will be extended in Proposition 5.4.

By Corollary 2, the vector space A∗ ⊗ B∗ can be identified with a vector
subspace of (A⊗C∗ B)∗.

Corollary 3. For every x ∈ A⊗B we have

‖x‖C∗ = sup{θ(x∗x)1/2; θ ∈ S(A⊗C∗ B) ∩ (A∗ ⊗B∗)},(11)

‖x‖C∗ = sup{θ(x∗x)1/2; θ ∈ Q(A⊗C∗ B) ∩ (A∗ ⊗B∗)},(12)

‖x‖C∗ = sup
{ (ϕ⊗ ψ)(y∗x∗xy)1/2

(ϕ⊗ ψ)(y∗y)1/2
; ϕ ∈ P (A), ψ ∈ P (B),(13)

y ∈ A⊗B, (ϕ⊗ ψ)(y∗y) 6= 0
}
.

Proof. Let {uι}ι, {vκ}κ be approximate units for A,B respectively. Using the
subcrose property of ‖ · ‖C∗ , it is easy to check that {uι⊗ vκ}ι,κ is an approximate
unit for A⊗C∗ B. Using this remark and Theorem 4.5 it follows that

(ϕ ⊗ ψ)(y∗y)/(ϕ⊗ ψ)(y∗y) ∈ S(A⊗C∗ B) ∩ (A∗ ⊗B∗)

for all ϕ ∈ A∗
+, ψ ∈ B∗

+ and all y ∈ A ⊗ B with (ϕ ⊗ ψ)(y∗y) 6= 0. On the other

hand, by Proposition 4.12, θ(x∗x)1/2 6 ‖x‖C∗ for all θ ∈ Q(A ⊗C∗ B). These
prove the inequalities > in (11), (12), (13).

Conversely, it is sufficient to prove the inequality 6 in (13). If ρ ∈ Irr(A),
σ ∈ Irr(B) and ξ ∈ Hρ, η ∈ Hσ with ‖ξ‖ = 1, ‖η‖ = 1, then ϕ = ωξ ◦ ρ ∈ P (A),
ψ = ωη ◦ σ ∈ P (B) and the vector subspace {(ρ ⊗ σ)(y)(ξ ⊗ η); y ∈ A ⊗ B} is
dense in Hρ⊗Hσ. Hence

‖(ρ⊗ σ)(x)‖ = sup

{
‖(ρ⊗ σ)(xy)(ξ ⊗ η)‖

‖(ρ⊗ σ)(y)(ξ ⊗ η)‖
; y ∈ A⊗B, (ρ⊗ σ)(y)(ξ ⊗ η) 6= 0

}

= sup

{
(ϕ⊗ ψ)(y∗x∗xy)1/2

(ϕ⊗ ψ)(y∗y)1/2
; y ∈ A⊗B, (ϕ⊗ ψ)(y∗y) 6= 0

}
.

Thus, the desired inequality in (13) follows form (7).

Corollary 4. For every x ∈ A ⊗C∗ B, x 6= 0, there exist ϕ ∈ P (A), and
ψ ∈ P (B) such that (ϕ⊗ ψ)(x) 6= 0.

Proof. Suppose A,B act on Hilbert spaces H,K respectively. Since x 6= 0,
there exist ξ1, ξ2 ∈ H , η1, η2 ∈ K such that

(ωξ1,ξ2 ⊗ ωη1,η2)(x) = (x(ξ1 ⊗ η1)|ξ2 ⊗ η2) 6= 0.

Thus, there are ϕ ∈ A∗, ψ ∈ B∗ with (ϕ ⊗ ψ)(x) 6= 0. Since every bounded
linear form on a C∗-algebra is a linear combination of states (Corollary 1/4.15)
and every state is a pointwise limit of convex combinations of pure states (4.7.(3)),
the desired result follows.
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By Corollary 4, A∗ ⊗ B∗ separates the points of A ⊗C∗ B. It follows that
A∗ ⊗B∗ is (A⊗C∗ B)-dense in (A⊗C∗ B)∗.

Corollary 5. Let A,B be commutative C∗-algebras with Gelfand spectra

ΩA,ΩB respectively. Then the Gelfand spectrum of A ⊗C∗ B is homeomorphic to

ΩA × ΩB .
In other words

C0(ΩA)⊗C∗ C0(ΩB) is ∗-isomorphic to C0(ΩA × ΩB).

Proof. We identify A with C0(ΩA) and B with C0(ΩB). Then every element

x =
n∑
k=1

ak ⊗ bk ∈ A⊗B defines a function x(· , ·) on ΩA × ΩB by

x(s, t) =

n∑

k=1

ak(s)bk(t); s ∈ ΩA, t ∈ ΩB

and the map x 7→ x(· , ·) is a ∗-homomorphism of A⊗B into C0(ΩA×ΩB). Using
the Stone-Weierstrass theorem, it is easy to check that

{x(· , ·); x ∈ A⊗B} is a norm-dense ∗-subalgebra of C0(ΩA × ΩB).

On the other hand, using formula (13) and the last remark in 4.9, for every x ∈
A⊗B we get

‖x‖C∗ = sup{|x(s, t)|; s ∈ ΩA, t ∈ ΩB} = ‖x(· , ·)‖C0(ΩA×ΩB)}.

Hence the map x→ x(· , ·) extends to a ∗-isomorphism of A⊗C∗ B onto C0(ΩA ×
ΩB).

Note that usual associativity and distributivity properties are valid for the
above defined C∗-tensor product and the direct product of C∗-algebras.

In general, given two C∗-algebras A,B, on the ∗-algebra A ⊗ B there exist
several different C∗-norms. A C∗-algebra A is called nuclear if for every C∗-algebra
B the only C∗-norm on A ⊗ B is ‖ · ‖C∗ . The variety of C∗-norms on A ⊗ B, as
well as the property of nuclearity will be analysed in another place. For other
properties of the C∗-tensor product A ⊗C∗ B see Corollary 1/5.3, Sections 6.10
and 8.8, and Proposition 4/8.11.

4.21. Notes. For the classical theory of positive forms and ∗-representations (4.1,
4.2, 4.5, 4.6, 4.7, 4.9, 4.11, 4.12, 4.14, 4.16) we refer to the fundamental contribution of
I.M. Gelfand, M.A. Năımark [106] and I.E. Segal [282], to the articles [27], [107], [108],
[114], [154], [210], [211], [212] and to the monographs [33], [78], [80], [213], [258]. In our
exposition of these topics we used mainly the book of J. Dixmier [78].

The GNS construction for weights (4.3) and the study of majorization of weights
(4.8) are due to F. Combes [56]. The main result in 4.4 belongs to N.Th. Varopoulos
[335] (see also [353]). The characterization of positive functionals given in 4.6 has been
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noticed by H.F. Bohnenblust and S. Karlin [27]. They also proved Corollary 3 and
Corollary 4/4.13, but in our exposition we followed the approach of G. Lumer [184]
which contains also the results of Corollary 1 and Corollary 2/4.13. For the Kadison
function representation we refer to [141], [58], [246], [247]. The result of Corollary 1/4.15
is due to Z. Takeda [312] and A. Grothendieck [119] (see 8.10). The characterization of
increasing approximate units (Corollary 3/4.15 and Corollary 2/4.15) have been obtained
by C.A. Akemann [5]. The main result in 4.17 is due to J. Glimm (cf. [78], 2.12.13) and
the precise characterization of non-commutativity (Theorem 4.18) is due to I. Kaplansky
(cf. [78], second edition, 2.12.21). The results contained in Corollary 1/4.18 appeared in
[104], [214], [287] but the proof is that from [65] (see also [39]). The inequality 4.18.(6)
is due to D.C. Taylor [322] and C.M. McGregor [65]. For the general results in 4.10 we
used [49], [81], [83].

The C∗-tensor product (or the spatial tensor product) of two C∗-algebras A,B
(4.20) has been introduced by T. Turumaru [333]. Subsequently, M. Takesaki [318]
proved that ‖ · ‖C∗ is the smallest C∗-norm on the algebraic tensor product A ⊗ B
and A. Guichardet [120] considered also the greatest C∗-norm on A ⊗ B. Moreover,
M. Takesaki [318] introduced (under a different terminology) the notion of nuclear C∗-
algebra and showed that every “type I” ([78], [112], [157]; in particular, commutative, or
finite dimensional) C∗-algebra is nuclear (see [121]). An important contribution to the
theory of tensor products is due to E.G. Effros [85] and E.C. Lance [171] and has been
further developed in [44], [45], [46], [47], [88], [172], [329]. In our exposition we have used
[346].

J.R. Ringrose [206] conjectured that a linear functional on a C∗-algebra A, which
is bounded on each commutative ∗-subalgebra of A, is also bounded on the whole of A
and proved this conjecture in several particular cases. The general case has been settled
affirmatively by J. Cuntz [66] for a class of operator algebras strictly larger than the class
of C∗-algebras.

R.V. Kadison [146] proved a remarkable tranzitivity theorem (see [113]; [78], 2.8;
[274], 1.21.16) which entails in particular that every topologically irreducible ∗-represen-
tation π of a C∗-algebra A on a Hilbert space H is algebraically irreducible, i.e., π(A)ξ =
H for any non-zero ξ ∈ H . An approach to this theorem will be given in 7.22.

Further references: [3], [7], [53], [54], [55], [124], [148], [153], [282], [314].



Chapter 5

COMPLETELY POSITIVE

LINEAR MAPPINGS

5.1. Let Φ be a linear mapping between ∗-algebras A,B. Then Φ is called
selfadjoint if Φ(Ah) ⊂ Bh and is called positive if Φ(A+) ⊂ B+. If A2 = A
(e.g., if A is unital or if A is a C∗-algebra), then any positive linear mapping is
selfadjoint since Ah = A+ − A+ in this case. Clearly, Φ is selfadjoint if and only
if Φ(x∗) = Φ(x)∗ for all x ∈ A.

Let n ∈ N. Recall that Mn(A) is also a ∗-algebra ∗-isomorphic to the ∗-
algebra A⊗Mn (2.12):

Mn(A) ∋ [xij ] 7→
n∑

i,j=1

xij ⊗ eij ∈ A⊗Mn

where {eij} is the system of matrix units in Mn. Consequently we shall identify
Mn(A) and A⊗Mn. Given a linear mapping Φ : A→ B, we define Φn :Mn(A) →
Mn(B) by

Φn([xij ]) = [Φ(xij)]; [xij ] ∈Mn(A).

Clearly, Φn = Φ⊗ idMn
, that is

Φn

(∑

ij

xij ⊗ eij

)
=

∑

ij

Φ(xij)⊗ eij ;
∑

ij

xij ⊗ eij ∈ A⊗Mn.

Then Φ is called n-positive if Φn is positive. The set of all n-positive linear map-
pings Φ : A → B is denoted by Pn(A,B). It is easy to see that Pn(A,B) ⊂
Pn−1(A,B), but the converse is not generally true.

The linear mapping Φ is called completely positive if it is n-positive for all
n ∈ N. The set of all completely positive linear mappings Φ : A → B is denoted
by CP (A,B).

Since any positive element ofMn(A) is a sum of elements of the form [x∗i xj ],
with xi, . . . , xn ∈ A, (Proposition 2.12), it follows that Φ ∈ Pn(A,B) if and only if

(1) [Φ(x∗i xj)] ∈Mn(B)+ for all x1, . . . , xn ∈ A.

Assume now that B = B(H) for some Hilbert space H . Then Mn(B) =
B(H(n)) where H(n) is the Hilbert space direct sum of n copies of H (2.12). An
element Y ∈ B(H(n)) is positive if and only if (Y ξ|ξ) > 0, ξ ∈ H(n), and any
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ξ ∈ H(n) has the form ξ = [ξk] with ξ1, . . . , ξn ∈ H . It follows that a linear

mapping Φ : A→ B(H) is n-positive if and only if, for every [xij ] ∈Mn(A)
+ and

every ξ1, . . . , ξn ∈ H ,

(2)
∑

ij

(Φ(xij)ξj |ξi) > 0

or equivalently

(3)
∑

ij

(Φ(x∗i xj)ξj |ξi) > 0 for all x1, . . . , xn ∈ A, ξ1, . . . , ξn ∈ H.

For any x1, . . . , xn ∈ A and any λ1, . . . , λn ∈ C we have

∑

ij

λjλix
∗
i xj =

(∑

k

λkxk

)∗(∑

k

λkxk

)
∈ A+.

Using this it readily follows that every positive form on A is completely positive.

In what follows we shall consider only mappings between C∗-algebras. Recall

that if A is a C∗-algebra then Mn(A) is also a C∗-algebra (4.19).

5.2. Proposition. Any positive linear mapping Φ : A → B between C∗-

algebras is bounded.

Proof. For every positive form ψ on B, ψ ◦Φ is a positive, hence continuous

(Corollary 4/4.5), form on A. Since any form on B is a linear combination of

positive ones (Corollary 1/4.5), it follows that {ψ ◦ Φ; ψ ∈ B∗, ‖ψ‖ 6 1} is a

family of bounded linear mappings A→ C. Moreover,

|(ψ ◦ Φ)(x)| 6 ‖Φ(x)‖ for all ψ ∈ B∗, ‖ψ‖ 6 1.

By the Banach-Steinhauss Theorem, there is µ > 0 such that ‖ψ ◦ Φ‖ 6 µ for all

ψ ∈ B∗, ‖ψ‖ 6 1. Hence

‖Φ(x)‖ = sup{|ψ(Φ(x))|; ψ ∈ B∗, ‖ψ‖ 6 1} 6 µ‖x‖, x ∈ A

and Φ is bounded.

A general fact is contained in the last part of the proof: any weakly contin-

uous linear mapping between Banach spaces is norm continuous.

5.3. The Stinespring dilation. For completely positive linear mappings

into B(H) there is an important extension of the GNS construction which is de-

scribed below.
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Theorem. Let A be a C∗-algebra, H be a Hilbert space and Φ : A→ B(H)
be a linear mapping. Then Φ is completely positive if and only if there exist a
Hilbert space H, a ∗-representation π : A → B(K) and a bounded linear operator
V : H → K such that:

Φ(x) = V ∗π(x)V for all x ∈ A,(1)

K = the closed linear span of π(A)V H,(2)

‖V ‖ = ‖Φ‖1/2.(3)

Moreover, conditions (1) and (2) determine the triple {π, V,K} uniquely up to a
unitary equivalence.

Proof. It is clear that (1) defines a linear mapping Φ of A into B(H) which
satisfies 5.1.(3), hence Φ ∈ CP (A,B(H)).

Conversely, let Φ ∈ CP (A,B(H)) and {uι} be an approximate unit for A.
Consider the vector space tensor product A⊗H and, for a1, . . . , an, b1, . . . , bm ∈ A,
ξ1, . . . ξn, η1, . . . ηm ∈ H , define

( n∑

j=1

aj ⊗ ξj

∣∣∣
m∑

i=1

bi ⊗ ηi

)
Φ
=

∑

ij

(Φ(b∗i aj)ξj |ηi)H .

Since Φ ∈ CP (A,B(H), ( · | · )Φ is a pre-inner product on A⊗H .
For each x ∈ A define a linear operator π0(x) on A⊗H by

π0(x)
( n∑

k=1

ak ⊗ ξk

)
=

n∑

k=1

xak ⊗ ξk;

n∑

k=1

ak ⊗ ξk ∈ A⊗H.

On the other hand, for each p =
n∑

k=1

ak ⊗ ξk ∈ A⊗H , define

ϕp(x) =
∑

ij

(Φ(a∗i xaj)ξj |ξi), x ∈ A.

Since Φ ∈ CP (A,B(H)), ϕp is a positive form on A. Using Theorem 4.5 and the
continuity of Φ (Proposition 5.2), we get

‖ϕp‖ = lim
ι
ϕp(uι) =

∑

ij

(Φ(a∗i aj)ξj |ξi)H = (p|p)H ,

so that, for any x ∈ A,

(4) (π0(x)p|π0(x)p)Φ = ϕp(x
∗x) 6 ‖ϕp‖ ‖x

∗x‖ = ‖x‖2(p|p)Φ.

This shows that the subspace L = {p ∈ A ⊗H ; (p|p)Φ = 0} is stable under
π0(x), x ∈ A, so that every π0(x) can be factored to a linear operator, still denoted
by π0(x), on the quotient space (A ⊗ H)/L. Moreover, ( · | · )Φ induces an inner
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product on (A⊗H)/L and (4) shows that every π0(x) is bounded with respect to
it on (A⊗H)/L. In order to avoid notational complications we will denote by the
same symbol an element of A⊗H and its canonical image in (A⊗H)/L.

Let K be the Hilbert space completion of (A ⊗ H)/L. Then each π0(x);
x ∈ A, extends to a bounded linear operator π(x) on K and, as easily verified,
π : A→ B(K) is a non-degenerated ∗-representation.

For every ξ ∈ H , ωξ ◦ Φ is a positive form on A, hence {uι} is convergent
with respect to the pre-Hilbert structure defined on A by ωξ ◦ Φ (4.5). Since

‖uι ⊗ ξ − uκ ⊗ ξ‖2K = (Φ(uι − uκ)
∗(uι − uκ)ξ|ξ)H = ‖uι − uκ‖

2
ωξ◦Φ

it folows that {uι ⊗ ξ} converges in K to some V ξ ∈ K. Since

‖uι ⊗ ξ‖2K = (Φ(u∗ιuι)ξ|ξ)H 6 ‖Φ‖ ‖ξ‖2H,

it follows that ‖V ξ‖K 6 ‖Φ‖1/2‖ξ‖H .
We thus obtain a bounded linear operator V : H → K,

(5) ‖V ‖ 6 ‖Φ‖1/2.

For b ∈ A, η ∈ H , ξ ∈ H we have

(V ∗(b⊗η)|ξ)H = (b⊗η|V ξ)K = lim
ι
(b⊗η|uι⊗ξ)K = lim

ι
(Φ(u∗ι b)η|ξ)H = (Φ(b)η|ξ)H

hence V ∗(b⊗ η) = Φ(b)η. For x ∈ A; ξ ∈ H , it follows that

V ∗π(x)V ξ = lim
ι
V ∗π(x)(uι ⊗ ξ) = lim

ι
V ∗(xuι ⊗ ξ) = lim

ι
Φ(xuι)ξ = Φ(x)ξ.

This proves (1). Then (2) can be satisfied simply replacing K by the closed
linear span of π(A)V H and (3) follows from (1) and (5).

For the uniqueness assertion, remark that condition (1) entails

∥∥∥
∑

k

π(xk)V ξk

∥∥∥
2

K
=

∑

ij

(Φ(x∗i xj)ξj |ξi)H

for any x1, . . . , xn ∈ A, ξ1, . . . , ξn ∈ H . Therefore, if {π′, V ′,K ′} is another triple
satisfying (1) and (2), then the mapping

π(A)V H ∋
∑

k

π(xk)V ξk 7→
∑

k

π′(xk)V
′ξk ∈ π′(A)V ′H

extends to a unitary operator U : K → K ′ such that

V ′ = UV ; π′(x) = Uπ(x)U∗, x ∈ A.
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We shall refer to the triple {π, V,K} as to the Stinespring dilation of Φ. It
will be also denoted by {πΦ, VΦ,KΦ}.

Since π is non-degenerated, {π(uι)} is strongly operator convergent to 1K
by Lemma 3/4.1. It follows that

(6) Φ(uι)
so
−→ V ∗V, Φ(u∗ιuι)

so
−→ V ∗V.

In particular, if A is unital,

(7) Φ(1) = V ∗V, ‖Φ‖ = ‖Φ(1)‖

and if moreover Φ(1) = 1H , then V is an isometry, H can be identified with a
subspace of K and π appears clearly as a dilation of Φ.

Also, (1) shows that Φ can be extended to a unique element, called the

canonical extension. Φ̃ ∈ CP (Ã, B(H)) such that Φ̃(1) = V ∗V . Moreover, it is

easy to see that A⊗H is dense in Ã⊗H with respect to ( · | · )Φ, namely, for each
ξ ∈ H , {uι ⊗ ξ}ι converges to 1⊗ ξ. Thus,

(8) V ξ = 1⊗ ξ, ξ ∈ H.

As in the case of positive forms (Corollary 1/4.5), for Φ,Ψ ∈ CP (A,B(H)) we
have Φ + Ψ ∈ CP (A,B(H)) and

(9) V ∗
Φ+ΨVΦ+Ψ = V ∗

ΦVΦ + V ∗
ΨVΨ,

˜(Φ + Ψ) = Φ̃ + Ψ̃.

Corollary 1. Let A,B,M,N be C∗-algebras. If Φ : A → M , Ψ : B → N
are completely positive linear mappings, then the linear mapping

Φ⊗Ψ : A⊗B → M ⊗N

can be uniquely extended to a completely positive linear mapping

A⊗C∗ B →M ⊗C∗ N,

still denoted by Φ⊗Ψ, and we have

‖Φ⊗Ψ‖ = ‖Φ‖ ‖Ψ‖.

Proof. By 4.11 and 4.20 we may suppose, without restricting the generality,
that M = B(H), N = B(K) for some Hilbert spaces H,K. Let {ρ, U,H ′},
{σ, V,K ′} be the Stinespring dilations of Φ, Ψ respectively. Then

(10) (Φ⊗Ψ)(x) = (U ⊗V )∗(ρ⊗ σ)(x)(U ⊗V ); x ∈ A⊗B.

Using Theorem 4.20, we infer that

‖(Φ⊗Ψ)(x)‖ 6 ‖U‖2‖V ‖2‖(ρ⊗ σ)(x)‖ 6 ‖Φ‖ ‖Ψ‖ ‖x‖C∗; x ∈ A⊗B,
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hence Φ⊗Ψ is ‖ · ‖C∗-bounded on A⊗B. Therefore Φ⊗Ψ extends to a bounded
linear mapping on A ⊗C∗ B and equation (10) is valid for all x ∈ A ⊗C∗ B. By
the theorem it follows that

Φ⊗Ψ : A⊗C∗ B → M ⊗C∗ N

is completely positive. It is easy to check that {ρ ⊗ σ, U ⊗V,H ′ ⊗K ′} is the
Stinespring dilation of Φ⊗Ψ. Using (3) we get

‖Φ⊗Ψ‖ = ‖U ⊗V ‖2 = ‖U‖2‖V ‖2 = ‖Φ‖ ‖Ψ‖.

In particular, if Φ ∈ CP (A,B), then Φn ∈ CP (Mn(A),Mn(B)) and

(11) ‖Φn‖ = ‖Φ‖; n ∈ N.

For a positive form ϕ on A we have |ϕ(x)|2 6 ‖ϕ‖ϕ(x∗x), (x ∈ A). For Φ ∈
CP (A,B) the analogous result is

(12) [Φ(xi)
∗Φ(xj)] 6 ‖Φ‖[Φ(x∗i xj)]; x1, . . . , xn ∈ A, n ∈ N,

where the inequality is understood inMn(B). Indeed, we may suppose B = B(H).
For ξ1, . . . , ξn ∈ H we have

([Φ(xi)
∗Φ(xj)][ξk]|[ξk])H(n) =

∑

ij

(Φ(xi)
∗Φ(xj)ξj |ξi)H =

∥∥∥
∑

k

Φ(xk)ξk

∥∥∥
2

H

6 ‖VΦ‖
2

∥∥∥
∑

k

πΦ(xk)VΦξk

∥∥∥
2

K

= ‖Φ‖
∑

ij

(Φ(x∗i xj)ξj |ξi)H

= ‖Φ‖([Φ(x∗i xj)][ξk]|[ξk])H(n) .

In particular, if Φ ∈ CP (A,B), then

(13) Φ(x)∗Φ(x) 6 ‖Φ‖Φ(x∗x), x ∈ A.

Every positive form on a C∗-subalgebra B of A has a norm preserving extension
to a positive form on A (Proposition 4.16). The analogous result is

Corollary 2. If B is a C∗-subalgebra of A and Ψ ∈ CP (B,B(H)), then
there exists Φ ∈ CP (A,B(H)) such that Φ|B = Ψ and ‖Φ‖ = ‖Ψ‖.

Proof. Let {πΨ, VΨ,KΨ} be the Stinespring dilation of Ψ. By Corollary 4.16
there is a Hilbert space K, an isometric linear operator W : KΨ → K and a
∗-representation π : A→ B(K) such that

πΨ(y) =W ∗π(y)W, y ∈ B.
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Then the desired extension Φ ∈ CP (A,B(H)) of Ψ is given by

Φ(x) = V ∗
ΨW

∗π(x)WVΨ; x ∈ A.

5.4. The Arveson theorem. Let A be a unital C∗-algebra and S be a

selfadjoint vector subspace of A which contains the unit of A. A linear functional

on S which is positive on S∩A+ can be still extended to a positive form on A, the
proof being the same as for Proposition 4.16. There is an important generalization

of this result for completely positive linear mappings into B(H). A slight extension

of the definitions is necessary.

Let Ψ : S → B(H) be a linear mapping. Then Ψ is called positive if Ψ(S ∩
A+) ⊂ B(H)+. Note that in this case Ψ is automatically selfadjoint, i.e. Ψ(a)∗ =

Ψ(a) for a∗ = a ∈ S. Indeed, both ‖a‖ · 1 − a and ‖a‖ · 1 belong to S ∩ A+ so

Ψ(a) = Ψ(‖a‖ · 1)−Ψ(‖a‖ · 1− a) is a selfadjoint operator.

For each n ∈ N, Mn(S) = S ⊗Mn is a unital selfadjoint vector subspace

of Mn(A) = A ⊗ Mn and Ψn = Ψ ⊗ idMn
is a linear mapping of Mn(S) into

Mn(B(H)) = B(H(n)). Then Ψ is called completely positive if every Ψn is positive,

that is if ∑

ij

(Ψ(xij)ξj |ξi) > 0, ξ1, . . . , ξn ∈ H

whenever [xij ] ∈ Mn(S) is positive. The set of all completely positive linear

mappings S → B(H) is denoted by CP (S,B(H)).

Theorem. Let S be a unital selfadjoint subspace of a unital C∗-algebra A.

For every Ψ0 ∈ CP (S,B(H)) there exists Φ0 ∈ CP (A,B(H)) such that Φ0|S = Ψ0

and ‖Φ0‖ = ‖Ψ0‖.

Proof. Let Ω = CP (A,B(H)) and let BC(Ω) denote the vector space of all
complex functions on Ω. The subset BR(Ω) of all real functions is an ordered real

vector space under pointwise ordering.

Consider the subset YC of BC(Ω) consisting of all functions g of the form

(1) g(Φ) =
∑

ij

(Φ(xij)ξj |ξi); Φ ∈ Ω

with n ∈ N, [xij ] ∈Mn(S) and ξ1, . . . , ξn ∈ H .

Consider also the subset XC of BC(Ω) consisting of all functions f such that
there exists g ∈ YC with

(2) |f(Φ)| 6 g(Φ); Φ ∈ Ω.

Then YC (and consequently XC) is a vector subspace of BC(Ω). Evidently,

λg ∈ YC whenever g ∈ YC, λ ∈ C. Let g′ ∈ YC and g′′ ∈ YC be defined as in (1) by
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n′, [x′ij ], ξ
′
1, . . . , ξ

′
n′ and n′′, [x′′ij ], ξ

′′
1 , . . . , ξ

′′
n′′ respectively. Then g = g′ + g′′ ∈ YC,

g being defined as in (1) by n = n′ + n′′ and

(3)

xij =




x′ij if 1 6 i, j 6 n′

x′′i−n′,j−n′ if n′ + 1 6 i, j 6 n′ + n′′

0 otherwise;

ξk =

{
ξ′k if 1 6 k 6 n′

ξ′′k−n if n′ + 1 6 k 6 n′|n′′.

Let YR = YC ∩BR(Ω), XR = XC ∩BR(Ω). Then XR is an ordered real vector
space, YR is a subspace of XR and, clearly

YC = YR + iYR, XC = XR + iXR.

Now, for g ∈ YC defined as in (1), put

(4) ψC(g) =
∑

ij

(Ψ0(xij)ξj |ξi)

where Ψ0 ∈ CP (S,B(H)) is the given map.
We claim that ψR = ψC|YR is a well defined positive R-linear functional on

Y . To prove this it is sufficient to show that

(5) g ∈ YR, g > 0 ⇒ ψR(g) > 0,

since then g = 0 ⇒ ψR(g) = 0, i.e. ψR is well defined and the linearity follows
using (3).

Let g ∈ YR be as in (1) and let ζ1, . . . , ζm, (m 6 n) be an orthonormal basis of

the vector subspace of H spanned by ξ1, . . . , ξn. Write ξi =
m∑

h=1

λihζh, (1 6 i 6 n).

Then an elementary computation shows that, for some [zhk] ∈Mm(S),

g(Φ) =
∑

hk

Φ(zhkζk|ζh), and ψC(g) =
∑

hk

(Ψ0(zhk)ζk|ζh).

Thus, in proving (5) we may and shall assume that the vectors ξ1, . . . , ξn
appearing in (1) and (4) form an orthonormal system in H . In this case we show
that the matrix [xij ] ∈Mn(S) appearing in (1) and (4) is positive whenever g > 0.
This obviously entails ψR(g) > 0 by the complete positivity of Ψ0.

So, let A ⊂ B(K) for some Hilbert space K and let η1, . . . , ηn ∈ K. Since
ξ1, . . . , ξn are linearly independent, there is a unique bounded linear operator V :
H → K such that V ξk = ηk, (1 6 k 6 n), and V = 0 on the orthogonal
complement of the vector subspace spanned by ξ1, . . . , ξn in H . Then the mapping
ΦV : A→ B(H) defined by

ΦV (x) = V ∗xV ; x ∈ A ⊂ B(K),
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belongs to CP (A,B(H)) (Theorem 5.3), i.e. Φv ∈ Ω. Since g > 0 we get

([xij ][ηk]|[ηk])K(n) =
∑

ij

(xijηj |ηi)K =
∑

ij

(ΦV (xij)ξj |ξi)H = g(ΦV ) > 0.

This shows that [xij ] is positive and hence proves (5).
Therefore ψR is indeed a positive R-linear functional on YR. It is clear that

XR and YR satisfy the condition of Proposition 3/4.10 so that ψR has an extension
to a positive R-linear functional denoted by ϕR on XR. Furthermore, ϕR can be
uniquely extended to a C-linear functional denoted by ϕC on XC and ϕC|YC = ψC.
Note that whenever f ∈ XC and g ∈ YR are related by (2) we have

(6) |ϕC(f)| 6 2ψR(g).

We now want to define the required extension Φ0 of Ψ0. To this end, for
a ∈ A and ξ, η ∈ H we put

fa;ξ,η(Φ) = (Φ(a)ξ|η); Φ ∈ Ω.

It is easy to see that |fa; ξ,η(Φ)| 6 ga;ξ,η(Φ), (Φ ∈ Ω), with ga; ξ,η ∈ YR defined as
in (1) by n = 4 and xij = δij‖a‖/2, ξk = ξ + ikη, (1 6 i, j, k 6 4; δij = Delta
Kronecker; i2 = −1). Hence fa;ξ,η ∈ XC and, owing to (6)

(7) |ϕC(fa; ξ,η)| 6 2ψR(ga; ξ,η) 6 2‖Ψ0‖ ‖a‖(‖ξ‖
2 + ‖η‖2).

For fixed a ∈ A, the assignment H × H ∋ (ξ, η) 7→ ϕC(fa; ξ,η) ∈ C is linear in ξ
and conjugate linear in η, so that (7) entails

|ϕC(fa; ξ,η)| = |ϕC(fa; sξ,tη)| 6 4‖Ψ0‖ ‖a‖ ‖ξ‖ ‖η‖;
(
t−1 = s = (‖η‖/‖ξ‖)1/2

)
.

It follows that there exists a unique Φ0(a) ∈ B(H) with

(8) (Φ0(a)ξ|η) = ϕC(fa; ξ,η); ξ, η ∈ H.

Evidently, the mapping Φ0 : A → B(H) is linear. If a ∈ S, then fa; ξ,η ∈ YC so
that

(Φ0(a)ξ|η) = ϕC(fa; ξ,η) = ψC(fa; ξ,η) = (Ψ0(a)ξ|η); ξ, η ∈ H

and hence Φ0(a) = Ψ0(a). To see that Φ0 is completely positive, let [aij ] ∈Mn(A)
be positive and let ξ1, . . . , ξn ∈ H . Then

(∑

ij

faij; ξj ,ξi

)
(Φ) =

∑

ij

(Φ(aij)ξj |ξi) > 0; Φ ∈ Ω,

hence
∑

ij

(Φ0(aij)ξj |ξi) =
∑

ij

ϕC(faij ; ξj ,ξi) = ϕR

(∑

ij

faij ; ξj ,ξi

)
> 0

by the positivity of ϕR.
Finally, ‖Φ0‖ = Φ0(1) = Ψ0(1) 6 ‖Ψ0‖ 6 ‖Φ0‖ so that Ψ0 is automatically

bounded and ‖Φ0‖ = ‖Ψ0‖.
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Remark that the above proof yields a one-to-one correspondence between
CP (S,B(H)) and the positive linear functionals on YR.

5.5. We have seen that any positive form is completely positive. Moreover,

Proposition. Let A,B be C∗-algebras. If B is commutative, then any pos-
itive linear mapping Φ : A→ B is completely positive.

Proof. By Gelfand representation we may assume B = C0(Ω) for some lo-
cally compact Hausdorff space Ω. Let x1, . . . , xn ∈ A and λ, . . . , λn ∈ C. Then∑
ij

λiλjx
∗
i xj ∈ A+ and the positivity of Φ entails

∑
ij

λiλjΦ(x
∗
i xj) > 0, that is

∑

ij

λiλjΦ(x
∗
i xj)(t) > 0; t ∈ Ω.

This means that, for every t ∈ Ω, the matrix [Φ(x∗i xj)(t)] ∈ Mn is positive. By
2.5.(iii) it follows that the element

[Φ(xixj)] ∈ C0(Ω,Mn) =Mn(C0(Ω)) =Mn(B)

is positive. This proves the proposition.

5.6. On the other hand,

Proposition. Let A,B be C∗-algebras. If A is commutative, then any pos-
itive linear mapping Φ : A→ B is completely positive.

Proof. Let A = C0(Ω) for some locally compact Hausdorff space Ω and let
B ⊂ B(H) for some Hilbert space H .

Consider ξ1, . . . , ξn ∈ H . Using the Riesz-Kakutani theorem we get a boun-
ded positive Borel measure µ on Ω such that

∫

Ω

x(t) dµ(t) =
∑

k

(Φ(x)ξk |ξk); x ∈ A.

Using the classical Randon-Nikodym theorem, we obtain µ-integrable functions
dij on Ω such that

(1)

∫

Ω

x(t)dij(t) dµ(t) = (Φ(x)ξj |ξi); x ∈ A, 1 6 i, j 6 n.

For any x ∈ A, x > 0 and any λ1, . . . , λn ∈ C we have
∫

Ω

x(t)
(∑

ij

λiλjdij(t)
)
dµ(t) =

∑

ij

λiλj(Φ(x)ξj |ξi)

=
(
Φ(x)

(∑

k

λkξk

) ∣∣∣
(∑

k

λkξk

))
> 0.
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By a routine measure-theoretic argument we infer that there is a µ-negligible subset
N of Ω such that

(2)
∑

ij

λiλjdij(t) > 0 for all λ1, . . . λn ∈ C and all t ∈ Ω \N.

Let x1, . . . , xn ∈ A. Owing to (1) and (2) we obtain

∑

ij

(Φ(x∗i xj)ξj |ξi) =

∫

Ω

(∑

ij

xi(t)xj(t)dij(t)
)
dµ(t) > 0.

Therefore [Φ(x∗i xj)] ∈Mn(B)+ for all x1, . . . , xn ∈ A and Φ ∈ CP (A,B).

5.7. By the last two sections we have P1(A,B) = CP (A,B) whenever either
A or B is commutative. Conversely,

Proposition. Let A,B be C∗-algebras. If P1(A,B) = P2(A,B), then either
A or B is commutative.

Proof. Let A ⊂ B(H), B ⊂ B(K) for some Hilbert spaces H,K. Assume
that neither A nor B is commutative. Since A is not commutative, there is u ∈
A, u 6= 0, u2 = 0, by Theorem 4.18. Let ζ ∈ H , ζ orthogonal to Keru, ξ1 = uζ 6= 0
and a1 = u∗u. Then a1 ∈ A+, a1ξ1 = 0 and a1u

∗ξ1 6= 0. Since u∗ is a linear
combination of positive elements, there is a2 ∈ A+ with a1a2ξ1 = ξ2 6= 0. Thus,

(1) a1, a2 ∈ A+, ξ1, ξ2 ∈ H and a1ξ1 = 0, a1a2ξ1 = ξ2 6= 0.

Similarly we get

(2) b1, b2 ∈ B+, η1, η2 ∈ K and b2η1 = 0, b2b1η1 = η2 6= 0.

Define the mappings Φ : A→M2, Ψ :M2 → B by

Φ(x) = [(xξh|ξk)] ∈M2; x ∈ A,

Ψ([λhk]) =
∑

hk

λhkbhbk ∈ B; [λhk] ∈M2.

It is clear that Φ and Ψ are positive linear mappings, hence

Ψ ◦ Φ ∈ P1(A,B).

The element [aiaj ] ∈ M2(A) is positive. Put [yij ] = (Ψ ◦ Φ)2([aiaj ]) ∈ M2(B).
Then

yij =
∑

nk

(aiajξh|ξk)bhbk; i, j ∈ {1, 2},

and an easy computation based on (1) shows that

(3) y11 = ‖a1ξ2‖
2b22, y12 = ‖ξ2‖

2b1b2 + α b22, y21 = ‖ξ2‖
2b1b2 + α b22
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where α = (a2ξ2|a1ξ2). Let ε > 0, ζ1 = η1 ∈ K, ζ2 = −εη2 ∈ K. Then, by (3)

and (2),

([yij ][ζk]|[ζk]) = (y11ζ1|ζ1) + (y12ζ2|ζ1) + (y21ζ1|ζ2) + (y22ζ2|ζ2)

= 0− ε‖ξ2‖
2‖η2‖

2 − ε‖ξ2‖
2‖η2‖

2 + ε2(y22η2|η2)

= −2ε‖ξ2‖
2‖η2‖

2 + ε2(y22η2|η2).

For sufficiently small ε > 0, the result is not positive, so that

Ψ ◦ Φ /∈ P2(A,B).

5.8. The Kadison inequality. Combining Proposition 5.6 with the Stine-

spring dilation theorem we obtain an important consequence:

Proposition. Let Φ be a positive linear mapping between C∗-algebras A

and B. For every normal element x ∈ A we have

(1) Φ(x)∗Φ(x) 6 ‖Φ‖Φ(x∗x).

Proof. The restriction of Φ to the commutative C∗-algebra C generated by

x is a positive, and hence a completely positive (5.6), linear mapping, so that the

result follows by 5.3.(13).

Remark that (1) holds with ‖Φ‖ replaced by ‖Φ|C‖.

In particular, if a ∈ A is selfadjoint, then

(2) Φ(a)2 6 ‖Φ‖Φ(a2).

5.9. Proposition. Let A,B be C∗-algebras and Φ ∈ Pn(A,B). For every

x1, . . . , xn−1, y ∈ A and every ε > 0 we have, in Mn−1(B):

[Φ(x∗i y)(Φ(y
∗y) + ε)−1Φ(y∗xj)] 6 [Φ(x∗i xj)],(1)

[Φ(x∗i )Φ(y
∗xj)] 6 ‖Φ(y∗y)‖ [Φ(x∗i xj)],(2)

[Φ(xi)
∗Φ(xj)] 6 ‖Φ‖ [Φ(x∗i xj)].(3)

Proof. Let B ⊂ B(H) for some Hilbert space H . Let ξ1, . . . , ξn−1 ∈ H ,

ξn = −(Φ(y∗y) + ε)−1
n−1∑
k=1

Φ(y∗xk)ξk ∈ H and xn = y. Since Φ is n-positive, we

have

(4)

n∑

i,j=1

(Φ(x∗i xj)ξj |ξi) > 0.
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Substituing in (4) the definitions of ξn, xn and rearranging the terms, one obtains
the first inequality below, the others being clear:

n−1∑

i,j=1

(
Φ(x∗i xj)ξj |ξi

)

>

n−1∑

i,j=1

(
Φ(x∗i y)

{
2(Φ(y∗y) + ε)−1 − (Φ(y∗y) + ε)−2Φ(y∗y)

}
Φ(y∗xj)ξj |ξi

)

=
n−1∑

i,j=1

(
Φ(x∗i y)

{
2(Φ(y∗y) + ε)−1 + ε(Φ(y∗y) + ε)−2

}
Φ(y∗xj)ξj |ξi

)

>

n−1∑

i,j=1

(
Φ(x∗i y)(Φ(y

∗y) + ε)−1Φ(y∗xj)ξj |ξi
)
.

This proves (1). Since (Φ(y∗y)+ ε)−1 > ‖Φ(y∗y)+ ε‖−1, (2) follows from (1)
letting ε→ 0.

Let {uι}ι∈I be an approximate unit forA. Then (3) follows from (2) replacing
y by uι and taking the limit over ι ∈ I.

In particular, if Φ ∈ P2(A,B), then for every x ∈ A

(5) Φ(x)∗Φ(x) 6 ‖Φ‖ · Φ(x∗x).

Corollary. Let A,B be C∗-algebras and Φ : A→ B be an isometric linear
isomorphism such that Φ and Φ−1 are both 2-positive. Then Φ is a ∗-isomorphism.

Proof. Indeed, using (5) for Φ and Φ−1, we get

Φ(x∗x) = Φ(x)∗Φ(x) ; x ∈ A,

and then by polarization (2.8.(1)) we obtain the multiplicativity of Φ.

Owing to (2) we see that a linear isomorphism Φ between unital C∗-algebras
such that Φ(1) = 1 and Φ,Φ−1 are both 2-positive is automatically isometric (see
also Proposition 6.4), hence a ∗-isomorphism.

A linear isomorphism Φ between C∗-algebras is called a (complete) order
isomorphism if both Φ and Φ−1 are (completely) positive. Thus in particular, any
isometric (or unit preserving) complete order isomorphism is a ∗-isomorphism.

5.10. The linear mappings Φ : A→ B which satisfy

Φ(x)∗Φ(x) 6 Φ(x∗x); x ∈ A,

have received special attention and were called Schwartz maps. Clearly, every
Schwartz map is positive and hence selfadjoint. We have seen that any Φ ∈
P2(A,B), ‖Φ‖ 6 1, is a Schwartz map.
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Proposition. Let A,B be C∗-algebras and Φ : A→ B be a Schwartz map.
For a ∈ A the following conditions are equivalent:

(i) Φ(a)∗Φ(a) = Φ(a∗a);
(ii) Φ(x∗a) = Φ(x)∗Φ(a) and Φ(a∗x) = Φ(a)∗Φ(x) for all x ∈ A.

Proof. Clearly (ii) ⇒ (i). Conversely assume that (1) holds and let x ∈ A,
t ∈ R. Since Φ is a Schwartz map we have

t(Φ(a)∗Φ(x) + Φ(x)∗Φ(a)) = Φ(ta+ x)∗Φ(ta+ x)− t∗Φ(a)∗Φ(a)− Φ(x)∗Φ(x)

6 Φ((ta+ x)∗(ta+ x)) − t2Φ(a∗a)− Φ(x)∗Φ(x)

= tΦ(a∗x+ x∗a) + (Φ(x∗x) − Φ(x)∗Φ(x)).

Dividing this inequality by t >
< 0 and letting |t| → ∞ we get

(1) Φ(a)∗Φ(x) + Φ(x)∗Φ(a) = Φ(a∗x) + Φ(x∗a).

Replacing here a by −ia and then multiplying by i we obtain

(2) Φ(a)∗Φ(x)− Φ(x)∗Φ(a) = Φ(a∗x)− Φ(x∗a).

Then (ii) follows from (1) and (2).

The setM(Φ) of all a ∈ A satisfying (i) is a closed subalgebra (not necessarily
selfadjoint) of A and the restriction of Φ to M(Φ) is an algebra homomorphism.
M(Φ) is sometimes called “the multiplicative domain” of Φ.

Given a C∗-subalgebra B of a C∗-algebra A, a linear mapping Φ : A→ B is
called a linear projection of A onto B if Φ(A) = B and Φ ◦ Φ = Φ. Then clearly
Φ(b) = b for all b ∈ B.

Corollary. Let Φ : A→ B be a linear projection of C∗-algebra A onto its
C∗-subalgebra B. The following conditions are equivalent:

(i) Φ is a Schwartz map;
(ii) Φ is positive and, for all a ∈ A, b ∈ B

(3) Φ(ab) = Φ(a)b, Φ(ba) = bΦ(a).

Proof. If b ∈ B, then b∗b ∈ B and Φ(b)∗Φ(b) = b∗b = Φ(b∗b) so that (i) ⇒
(ii) by the proposition. Conversely, if Φ satisfies (ii), then for any a ∈ A,

0 6 Φ((Φ(a)− a)∗(Φ(a)− a)) = −Φ(a)∗Φ(a) + Φ(a∗a).

5.11. Let A be a C∗-algebra, H be a Hilbert space, and Φ : A → B(H) be
a linear mapping. Assume that

⊕
ι∈I

Hι with each Hι stable under Φ(A). Then Φ

is completely positive if and only if, for every ι ∈ I, the mapping

Φι : A ∋ x 7→ Φ(x)|Hι ∈ B(Hι)

is completely positive.
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Indeed, if [xij ] ∈Mn(A)
+ and ξk =

⊕
ι∈I

ξιk ∈ H , ξιk ∈ Hι, (1 6 k 6 n; ι ∈ I),

then ∑

ij

(Φ(xij)ξj |ξi) =
∑

ι∈I

∑

ij

(Φ(xij)ξ
ι
j |ξ

ι
i) > 0.

Owing to Theorem 4.11 we infer that, in proving the complete positivity of
a linear mapping Φ : A → B, we may assume B ⊂ B(H) for some Hilbert space
H and Bξ = H for some ξ ∈ H .

The following proposition gives more examples of completely positive linear
mappings, including those considered in Corollary 5.10.

Proposition. Let A,B be C∗-algebras and Φ : A → B be a positive linear
mapping such that:

(1) (∀) a ∈ A, (∃) a′ ∈ A with Φ(xa′) = Φ(x)Φ(a), (∀) x ∈ A.

Then Φ is completely positive.

Proof. Due to (1), Φ(A) is a ∗-subalgebra of B and we may assume Φ(A)
dense in B. By the above remark, we may consider B ⊂ B(H) for some Hilbert

space H and Bξ = H for some ξ ∈ H . Then Φ(A)ξ = H .

Let xk ∈ A, ak ∈ A and ξk = Φ(akξ), (1 6 k 6 n). We have
∑

ij

(Φ(x∗i xj)ξj |ξi) =
∑

ij

(Φ(a∗i )Φ(x
∗
i xj)Φ(aj)ξ|ξ) =

∑

ij

(Φ(a′i
∗
xja

′
j)ξ|ξ)

=
(
Φ
(∑

ij

a′i
∗
x∗i xja

′
j

)
ξ|ξ

)
> 0,

since
∑
ij

a′i
∗
x∗i xja

′
j 6 0 and Φ is positive.

This proves that Φ is completely positive.

5.12. Matrix ordered spaces. Completely positive linear mappings can be
considered in a more general frame-work which appears to be useful in studying
C∗-algebra, especially for tensor products.

We begin by some definitions and notation. Let V,W be complex vector
spaces. Then L(V,W ) denotes the vector space of all linear mappings V → W
and Vd = L(V,C). If V,W are normed vector spaces, then B(V,W ) denotes the
normed vector space of all bounded linear mappings V →W and V ∗ = B(V,C).

The vector spaces V and V ′ are in duality if there exists a bilinear map
V × V ′ ∋ (v, v′) 7→ 〈v, v′〉 ∈ C such that for every v ∈ V , v 6= 0, there exists
v′ ∈ V ′ with 〈v, v′〉 6= 0 and for every v′ ∈ V ′, v′ 6= 0, there exists v ∈ V with
〈v, v′〉 6= 0. For instance, C and C are put in duality by the multiplication map.
If (V, V ′) and (W,W ′) are pairs of vector spaces in duality, then BV ′,W ′(V,W )
denotes the vector space of all (V ′,W ′)-continuous linear mappings V → W and
V δ = BV ′,C(V,C). Clearly, V

δ can be identified to V ′ and V δδ can be identified to
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V . For every Φ ∈ BV δ,W δ (V,W ) we denote by Φδ ∈ BW,V (W
δ, V δ) the transposed

map. Then
δ : BV δ,W δ (V,W ) ∋ Φ 7→ Φδ ∈ BW,V (W

δ, V δ)

is a linear isomorphism.
By Mm(V ) we denote the vector space of all m×m matrices v = [vij ] with

vij ∈ V , (1 6 i, j 6 m). For v1 ∈ Mm1
(V ) and v2 ∈ Mm2

(V ) we define their
direct sum v1 ⊕ v2 ∈Mm1+m2

(V ) by

v1 ⊗ v2 =

[
v1 0
0 v2

]
.

Every linear mapping Φ : V → W defines a linear mapping Φm : Mm(V ) →
Mm(W ) by Φ([vij ]) = [Φ(vij)], ([vij ] ∈Mm(V )).

If (V, V δ) is a pair of vector spaces in duality, then (Mm(V ), Mm(V δ)) is
also a pair of vector spaces in duality with pairing

〈[vij ], [fij ]〉 =
∑

i,j

〈vij , fij〉; [vij ] ∈Mm(V ), [fij ] ∈Mm(V δ),

and we can identify Mm(V )δ to Mm(V δ). In particular, taking V = V δ = C, we
see that there exists a canonical identification of (Mm)δ = (Mm)d with Mm,

∆ :Mm → (Mm)d

such that 〈[βij ],∆([αij ])〉 =
∑
i,j

αijβij , ([αij ], [βij ] ∈Mm).

If (V, V δ), (W,W δ) are pairs of vector spaces in duality and Φ ∈ BV δ,W δ (V,W ),

then (Φm)δ = (Φδ)m for each m ∈ N.
If V is a ∗-vector space (1.1), then Mm(V ) becomes a ∗-vector space with

∗-operation [vij ]
∗ = [v∗ji]. If V,W are ∗-vector spaces, then L(V,W ) becomes a

∗-vector space with ∗-operation Φ∗(v) = Φ(v∗)∗, (v ∈ V, Φ ∈ L(V,W )). Note that
if Φ ∈ L(V,W ) is selfadjoint, then also Φm ∈ L(Mm(V ),Mm(W )) is selfadjoint.
Clearly, C with complex conjugation is a ∗-vector space, hence V d is also a ∗-vector
space.

Let (V, V δ) be a pair of vector spaces in duality and assume that V is a
∗-vector space. Then V δ is called a ∗-vector dual of V if f ∈ V δ ⊂ V d ⇒ f∗ ∈ V δ.
In this case V δ is itself a ∗-vector space and v ∈ V (respectively f ∈ V δ) is
selfadjoint if and only if 〈v, f〉 ∈ R for all f ∈ (V δ)h (respectively v ∈ Vh). Note
that (Vh, (V

δ)h) is a pair of real vector spaces in duality, Vh is V δ-closed in V and
(V δ)h is V -closed in V δ. If V,W are ∗-vector spaces with ∗-vector duals V δ,W δ

respectively and Φ ∈ BV δ,W δ (V,W ), then (Φ∗)δ = (Φδ)∗.
An ordered ∗-vector space is a ∗-vector space V endowed with a convex cone

V + ⊂ Vh. Given two ordered ∗-vector spaces V,W , a linear mapping Φ : V → W
is called positive if Φ = Φ∗ and Φ(V +) ⊂ W+. The set of all positive linear
mappings V → W is a convex cone L(V,W )+ ⊂ L(V,W )h, thus L(V,W ) is an
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ordered ∗-vector space. A linear isomorphism Φ : V → W such that Φ = Φ∗ and
Φ(V +) =W+ is called an order isomorphism.

Let V be an ordered ∗-vector space with a ∗-vector dual V δ ⊂ V d. Then
V δ becomes an ordered ∗-vector space with the dual positive cone V δ

+ = V δ ∩ V d
+

and with this structure V δ is called an ordered ∗-vector dual of V . Note that
V δ
+ = −(V +)0, where (V +)0 is the polar set of V + in V δ. Thus, regarding V = V δδ

as a ∗-vector dual of the ordered ∗-vector space V δ and using the bipolar theorem
we get

(1) V δδ
+ = the V δ-closure of V +.

Hence V is an ordered ∗-vector dual of V δ if and only if V + is V δ-closed in V .
Let V be a vector space, v = [vij ] ∈Mm(V ) and γ = [γkl] be a complexm×n

matrix. Then an element γ∗ ·v ·γ ∈Mn(V ) is defined by the formal multiplication
of matrices:

γ∗ · v · γ =
[∑

i,j

γirγjsvij

]
∈Mn(V ).

We now introduce the central notion of this section. A matrix ordered space
is a ∗-vector space V together with a convex cone Mm(V )+ ⊂ Mm(V )h in each
Mm(V ) such that, for every m,n ∈ N and every complex m× n matrix γ,

v ∈Mm(V )+ ⇒ γ∗ · v · γ ∈Mn(V )+.

The example motivating this definition is the following. Let H be a Hilbert
space and N be a selfadjoint vector subspace of B(H). For each m,Mm(N) is a
selfadjoint subspace of B(H(m)), hence an ordered ∗-vector space with operator
involution and order. Every complex m × n matrix γ defines a bounded linear
operator Γγ : H(n) → H(m).

Γγ([ξk]) =
[∑

j

γijξj

]
; ξ1, . . . , ξn ∈ H.

If x ∈Mm(N) ⊂ B(H(m)), then γ∗ · x · γ ∈Mn(N) ⊂ B(H(n)) is nothing but the
operator Γ∗

γ · x · Γγ , hence x > 0 ⇒ γ∗ · x · γ > 0. Thus, every selfadjoint vector
subspace of B(H) is a matrix ordered space. In particular, B(H),Mn, and every
C∗-algebra is a matrix ordered space.

Let V be a matrix ordered space. Then

(2) v1 ∈Mm1
(V )+, v2 ∈Mm2

(V )+ ⇒ v1 ⊗ v2 ∈Mm1+m2
(V )+.

Indeed, v1 ⊗ v2 = (γ1)∗v1γ1 + (γ2)∗v2γ2, where

γ1 =




1 . . . 0
...

. . .
...

0 . . . 1︸ ︷︷ ︸
m

0 . . . 0
...

...
0 . . . 0︸ ︷︷ ︸

n




}
m, γ2 =




0 . . . 0
...

...
0 . . . 0︸ ︷︷ ︸

m

1 . . . 0
...

. . .
...

0 . . . 1︸ ︷︷ ︸
n




}
n.
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Let V,W be matrix ordered spaces. A linear mapping Φ : V → W is called
completely positive if Φn is positive for all n ∈ N. The convex cone CP (V,W ) of
all completely positive linear mappings V → W is contained in L(V,W )+. Thus
we have two different structures of ordered ∗-vector space on L(V,W ) defined by
the convex cones L(V,W )+ and CP (V,W ) respectively. A linear isomorphism Φ :
V →W is called a complete order isomorphism if both Φ and Φ−1 are completely
positive.

Let V be a matrix ordered space with a ∗-vector dual V δ. Then V δ, together
with the convex cones Mm(V )δ+ in Mm(V δ) =Mm(V )δ is a matrix ordered space

and with this structure V δ will be called a matrix ordered dual of V . Indeed, let
f = [fij ] ∈ Mm(V δ)+, let γ = [γkl] be a complex m× n matrix and denote by tγ

the transposed n×m matrix. Then γ∗ · f · γ =
[∑

i,j

γirγjsfij

]
∈ Mn(V

δ) and, if

v = [vrs] ∈Mn(V )+, then

〈v, γ∗·f ·γ〉=
∑

r,s

∑

i,j

γirγjs〈vrs, fij〉=
∑

i,j

〈∑

r,s

γirγjsvrs, fij

〉
=〈(tγ)∗v(tγ), f〉 > 0,

hence γ∗ · f · γ ∈Mn(V
δ)+.

Using (1) we see that, given a matrix ordered space V with a ∗-vector dual
V δ, V is identical as a matrix ordered space with the matrix ordered dual V δδ of
V δ if and only if each convex cone Mm(V )+ is Mm(V )δ-closed. In this case, we
say that (V, V δ) are dual matrix ordered spaces. Note that (V, V δ) are dual matrix
ordered spaces whenever V is finite dimensional.

Also, for every C∗-algebra A, (A,A∗) are dual matrix ordered spaces.

Proposition 1. Let V be a matrix ordered space and n ∈ N. Then the
mapping Θ :Mm(V ) → L(Mm, V ) defined by

Θ(v)α =
∑

i,j

αijvij ; α = [αij ] ∈Mm, V = [vij ] ∈Mm(V )

is an order isomorphism with respect to the convex conesMm(V )+ and CP (Mm, V ).

Proof. Clearly, Θ is a linear isomorphism and

Θ−1(Φ) = [Φ(eij ] ∈Mm(V ); Φ ∈ L(Mm, V ),

where {eij} is the system of matrix units in Mm. If Φ ∈ L(Mm, V ) is completely
positive, then Φm : Mm(Mm) → Mm(V ) is positive, so Θ−1(Φ) = Φ([eij ]) ∈
Mm(V )+ because [eij ] ∈Mm(Mm)+ (see 2.12).

Let v = [vij ] ∈ Mm(V )+, n ∈ N, and α ∈ Mn(Mm)+. We have to show
that Θ(v)n(α) ∈ Mn(V

+). By Corollary 2.12 we may suppose α = [α∗
rαs] with

αr = [αrij ] ∈Mm, (1 6 r 6 n). Then

Θ(v)n(α) = [Θ(v)(α∗
rαs)] =

[∑

i,j

(α∗
rαs)ijvij

]
=

[∑

i,j

(∑

h

αrhiαshj

)
vij

]

=
[∑

h

∑

i,j

αrhiαshjvij

]
=

∑

h

[∑

i,j

αrhiαshjvij

]
=

∑

h

(γh)∗v γh,
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where γh is the complex m × n matrix with entries γhkl = γlhk, (1 6 k 6 m,
1 6 l 6 n; 1 6 h 6 m). Since V is a matrix ordered space, it follows that
Θ(v)n(α) ∈Mm(V )+.

Using Corollary 2.12 as in the above proof it is easy to see that

Proposition 2. For each m ∈ N, the mapping ∆ :Mm →Md
m defined by

〈β,∆(α)〉 =
∑

i,j

αijβij; α = [αij ], β = [βij ] ∈Mm

is a complete order isomorphism.

Proposition 3. Let (V, V δ) and (W,W δ) be two dual matrix ordered spaces.
Then Φ ∈ BV δ,W δ (V,W ) is completely positive if and only if Φδ ∈ BW,V (W

δ, V δ)
is completely positive. In other words, the map

δ : BV δ,W δ (V,W ) → BW,V (W
δ, V δ)

is an order isomorphism relative to complete positivity.

Proof. Since (V, V δ) and (W,W δ) are dual matrix ordered spaces, it is suf-
ficient to show that Φδ is completely positive whenever Φ is. So, let n ∈ N,
F ∈ Mn(W

δ)+ and X ∈ Mn(V )+. Then Φn(X) ∈ Mn(W )+ by the complete
positivity of Φ and hence

〈X, (Φδ)n(F )〉 = 〈X, (Φn)
δ(F )〉 = 〈Φn(X), F 〉 > 0.

Proposition 4. Let (V, V δ) be dual matrix ordered spaces and m ∈ N. Then
the mapping Λ :Mm(V ) → BV,Md

m
(V δ,Mm) defined by

Λ(v)f = [f(vij)]; f ∈ V δ, v = [vij ] ∈Mm(V )

is an order isomorphism with respect to the convex cones Mm(V )+ and
CP (V δ,Mm) ∩BV,Md

m
(V δ,Mm).

Proof. This follows, using Propositions 1, 2 and 3, from the commutative
diagram

Mm(V )
Θ
−→ L(Mm, V ) = BMd

m
,V δ(Mm, V )

Λ ց
yδ

BV,Wd
m
(V δ,Mm) = BV,Mm

(V δ,Md
m)

where we have identified Mm and Md
m via ∆.

5.13. As an application, in this section we explicitate some consequences of
the results from 5.12 for linear mappings between a C∗-algebra A and a full matrix
algebra Mm, (m ∈ N).

Recall that (A,A∗) is a dual matrix ordered space (5.12) and Mm(A) is a
C∗-algebra (4.19).

By {eij}16i,j6m we denote the system of matrix units in Mm.
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Proposition 1. Let A be a C∗-algebra, m ∈ N and Φ :Mm → A be a linear
mapping. The following statements are equivalent:

(i) Φ is completely positive;
(ii) Φ is m-positive;
(iii) [Φ(eij)] ∈Mm(A)+;
(iv) there exist xij ∈ A, (1 6 i, j 6 m), such that

Φ(eij) =

m∑

k=1

x∗kixkj ; 1 6 i, j 6 m.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) because [Φ(eij)] = Φm([eij ]), [eij ] ∈ Mm(Mm)+ by 2.12 and Φm

is positive by assumption.
(iii) ⇒ (i) by Proposition 1/5.12.
(iii) ⇔ (iv) because every positive element of the C∗-algebra Mm(A) is of

the form [xij ]
∗[xij ] with xij ∈ A, (1 6 i, j 6 m).

Since every selfadjoint element of Mm(A) is the difference of two positive
elements (2.3) it follows that every selfadjoint linear mapping Mm → A is the
difference of two completely positive linear mappings Mm → A.

Corollary. Let A,B be C∗-algebras, π : A→ B be a surjective ∗-homomor-
phism and m ∈ N. For every completely positive linear mapping Ψ : Mm → B
there exists a completely positive linear mapping Φ :Mm → A such that

Ψ = π ◦ Φ and ‖Φ‖ 6 ‖Ψ‖.

If in addition A is unital and Ψ(1Mn
)=1B, then Φ can be chosen so that Φ(1Mn

)=
1A.

Proof. Assume that ‖Ψ‖ = 1. Passing, if necessary, to C∗-algebras with
adjoint units (1.5), we may also assume that A is unital. Then B is also unital
and π(1A) = 1B.

By the proposition, there exist yij ∈ B, (1 6 i, j 6 m), with

Ψ(eij) =

m∑

k=1

y∗kiykj ; 1 6 i, j 6 m.

Since π is surjective, there exist xij ∈ A such that π(xij) = yij , (1 6 i, j 6 m).
Again by the proposition, the linear mapping Θ :Mm → A defined by

Θ(eij) =

m∑

k=1

x∗kixkj ; 1 6 i, j 6 m,

is completely positive and clearly Ψ = π ◦Θ.
Consider the continuous function f : R → R defined by

f(t) = 1 for t 6 1, f(t) = t−1/2 for t > 1.
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Let a = f(Θ(1Mm
)) ∈ A+ and define Φ :Mn → A by

Φ(·) = aΘ(·) a.

Then Φ is linear and completely positive. Since ‖Ψ‖ = 1, we have

π(a) = π(f(Θ(1Mm
))) = f(π(Θ(1Mm

))) = f(Ψ(1Mm
)) = 1B

hence Ψ = π ◦ Φ. On the other hand, using 5.3.(7) we obtain

‖Φ‖ = ‖Φ(1Mm
)‖ = ‖f(Θ(1Mm

))Θ(1Mm
)f(Θ(1Mm

))‖ 6 ‖1A‖ = 1

because 0 6 tf(t)2 6 1 for t > 0.
Finally, assume that Ψ(1Mm

) = 1B. Then the equality ‖Ψ‖ = 1 is automatic.
Let Θ : Mm → A be an arbitrary contractive completely positive linear mapping
such that π ◦ Θ = Ψ and let ϕ be an arbitrary state of Mm. Then the mapping
Φ :Mm → A defined by

Φ(·) = ϕ(·)(1A − Θ(1Mm
)) + Θ(·)

is linear, completely positive, Φ(1Mm
) = 1A and π ◦ Φ = Ψ.

Consider now a linear mapping Φ : A→Mm. Then Φ defines a matrix [ϕij ]
of linear forms on A by

Φ(x) = [ϕij(x)]; x ∈ A.

It is easy to see that Φ is bounded if and only if all ϕij are bounded. In this case
Φδ : Mm → A is defined by

Φδ(eij) = ϕij ; 1 6 i, j 6 m.

Proposition 2. Let A be a C∗-algebra, m ∈ N and Φ : A → Mm be a
bounded linear mapping. The following statements are equivalent:

(i) Φ is completely positive;
(ii) Φ is m-positive;
(iii) [ϕij ] = Φδ

m([eij ]) ∈Mm(A∗)+;
(iv) for every x1, . . . , xm ∈ A we have

m∑

i,j=1

ϕij(x
∗
i xj) > 0.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii). By assumption, Φm :Mm(A) →Mm(Mm) is positive. Then also

Φδ
m :Mm(Mm) →Mm(A)δ =Mm(A∗) is positive, hence Φδ

m([eij ]) ∈Mm(A∗)+.
(iii) ⇒ (i). By Proposition 1/5.12, from (iii) we infer that Φδ : Mm → A∗ is

completely positive. Since A = Aδδ = (A∗)δ and Φδδ = Φ, by Proposition 3/5.12
it follows that also Φ : A→ Mm is completely positive.

(iii) ⇔ (iv) because Mm(A∗) = Mm(A)∗ and every positive element of
Mm(A) is a sum of matrices of the form [x∗i xj ] with x1, . . . , xn ∈ A (2.12).
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Since every selfadjoint element of Mm(A)∗ is the difference of two positive
elements (Corollary 1/4.15), it follows that every selfadjoint linear mapping A→
Mm is the difference of two completely positive linear mappings A→ Mm.

Remark that, for Mm-valued completely positive linear mappings, the result
analogous to the corollary of Proposition 1 is nothing but a particular case of
Corollary 2/5.3.

5.14. Tensor Products of Matrix Ordered Spaces. Let (V, V δ), (W,W δ)
be pairs of vector spaces in duality. Denote by V ⊗W the vector space tensor
product. For ϕ ∈ (V ⊗W )d, v ∈ V and w ∈W we define ϕw ∈ V d and vϕ ∈ W d by

ϕw(v
′) = ϕ(v′ ⊗ w); v′ ∈ V,

vϕ(w
′) = ϕ(v ⊗ w′); w′ ∈W.

Put

(V ⊗W )δ = {ϕ ∈ (V ⊗W )d; ϕw ∈ V δ, vϕ ∈W δ for all v ∈ W, v ∈ V }.

We shall identify V d ⊗W d with a vector subspace of (V ⊗W )d. Under this
identification it is clear that

(1) V δ ⊗W δ ⊂ (V ⊗W )δ.

Moreover, if V (or W ) is finite dimensional, then

(2) V δ ⊗W δ = (V ⊗W )δ.

Indeed, let v1, . . . , vn be a linear basis in V and let fj ∈ V d = V δ be the jth-
coordinate function on V relative to this basis. If ϕ ∈ (V ⊗W )δ, then gj =vjϕ ∈

W δ, (1 6 j 6 n), and ϕ =
n∑

j=1

fj ⊗ gj ∈ V δ ⊗W δ.

Note that (V ⊗ W, (V ⊗W )δ) and (V ⊗ W,V δ ⊗W δ) are pairs of vector

spaces in duality. Indeed, let u ∈ V ⊗W, u 6= 0, and write u =
n∑

k=1

vk ⊗ wk with

v1, . . . , vn ∈ V linearly independent and u1, . . . , wn ∈W , w1 6= 0. There is g ∈W δ

with g(w1) 6= 0 and there is f ∈ V δ with f(v1) 6= 0 and f(vk) = 0 for k 6= 1. Then
ϕ = f ⊗ g ∈ V δ ⊗W δ ⊂ (V ⊗W )δ and ϕ(u) = f(v1)g(w1) 6= 0.

If V,W are ∗-vector spaces, then V ⊗W endowed with the ∗-operation

( n∑

k=1

vk ⊗ wk

)∗

=

n∑

k=1

v∗k ⊗ w∗
k; vk ∈ V, wk ∈W, n ∈ N,

is a ∗-vector space. Note that if u =
∑
k

vk ⊗wk is selfadjoint, then u =
∑
k

(Re vk ⊗

Rewk − Im vk ⊗ Imwk), so

(3) (V ⊗W )h = Vh ⊗Wh.



120 Completely Positive Linear Mappings

If V,W are ∗-vector spaces with ∗-vector duals V δ,W δ respectively, then
(V ⊗W )δ and V δ ⊗W δ are ∗-vector duals of V ⊗W . This is clear for V δ ⊗W δ

because (f ⊗ g)∗ = f∗ ⊗ g∗, for all f ∈ V d, g ∈ W d. If ϕ ∈ (V ⊗ W )δ, then
(ϕ∗)w = (ϕw∗)∗ ∈ V δ and v(ϕ

∗) = (v∗ϕ)∗ ∈ W δ for all v ∈ V , w ∈ W , hence
ϕ∗ ∈ (V ⊗W )δ.

Now let V,W be matrix ordered spaces. For v = [vij ] ∈Mm(V ), w = [wij ] ∈
Mm(W ) denote

v × w =
∑

i,j

vij ⊗ wij ∈ V ⊗W.

Note that, for v ∈ Mm(V ), v1 ∈ Mm1
(V ), v2 ∈ Mm2

(V ) and w ∈ Mm(W ),
w1 ∈Mm1

(W ), w2 ∈Mm2
(W ), we have

(v × w)∗ = v∗ × w∗,

v1 × w1 + v2 × w2 = (v1 ⊕ v2)× (w1 ⊕ w2).

Owing to 5.12.(2), it follows that

(V ⊗W )+ = {v × w; v ∈Mm(V )+, w ∈Mm(W )+, m ∈ N}

is a convex cone contained in (V ⊗W )h. Thus V ⊗W becomes an ordered ∗-
vector space.

Let A,B be C∗-algebras. Then A,B are matrix ordered spaces, so A ⊗ B
becomes an ordered ∗-vector space. On the other hand, by 2.11, A ⊗ B is a ∗-
algebra and, by 2.8, a natural preorder structure is defined on A⊗B. These two
structures coincide because an element u ∈ A × B is positive with respect to the
∗-algebra preorder structure if and only if it is of the form

u =
n∑

k=1

( m∑

i=1

aik ⊗ bik

)∗( m∑

i=1

aik ⊗ bik

)
=

n∑

k=1

m∑

i,j=1

a∗ikajk ⊗ b∗ikbjk

with aik ∈ A, bik ∈ B, (1 6 i 6 m, 1 6 k 6 n), that is

u =

n∑

k=1

[a∗ikajk]× [b∗ikbjk]

with [a∗ikajk] ∈ Mm(A)+, [b∗ikbjk] ∈ Mm(B)+, which means that w is a positive
element of the ordered ∗-vector space A⊗B.

If V,W are matrix ordered spaces with ∗-vector duals V δ,W δ respectively,
then (V ⊗W )δ is an ordered ∗-vector dual of V ⊗W . For ϕ ∈ (V ⊗W )δ we define

Lϕ : V →W δ and Rϕ :W → V δ

by
〈w,Lϕ(v)〉 = 〈v ⊗ w,ϕ〉 = 〈v,Rϕ(w)〉; v ∈ V, w ∈ W.
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Note that the mappings

L : (V ⊗W )δ ∋ ϕ 7→ Lϕ ∈ BV δ,W (V,W δ),

R : (V ⊗W )δ ∋ ϕ 7→ Rϕ ∈ BW δ,V (W,V
δ),

are linear bijections. Moreover, it is easy to see that L (respectively R) is a home-
omorphism with respect to the (V ⊗W )-topology on (V ⊗W )δ and the point W -
topology on BV δ,W (V,W δ) (respectively the point V -topology on BW δ,V (W,V

δ)).

Consider again two C∗-algebras A,B. The dual spaces Aδ = A∗, Bδ = B∗

are ∗-vector duals, thus they are also matrix ordered spaces. By definition, (A⊗B)δ

is then the set of all bilinear functionals ϕ : A×B → C which are separately norm
continuous and an easy application of the Banach-Steinhauss theorem shows that
(A×B)δ consists of those ϕ ∈ (A⊗B)δ such that

|||ϕ||| = sup{|ϕ(a⊗ b)|; a ∈ A, ‖a‖ 6 1, b ∈ B, ‖b‖ 6 1} < +∞.

Furthermore, ϕ 7→ |||ϕ||| is a norm on (A⊗B)δ and the mappings

L : (A⊗B)δ ∋ ϕ 7→ Lϕ ∈ B(A,B∗),

R : (A⊗B)δ ∋ ϕ 7→ Rϕ ∈ B(B,A∗),

are isometric linear (surjective) isomorphisms.
Let ϕ ∈ (A⊗B)d+. For each fixed b ∈ B+ (respectively a ∈ A+), the map ϕb

(respectively aϕ) is a positive form on the C∗-algebra A (respectively B). Owing
to Corollary 4/4.5 we infer that ϕ ∈ (A⊗B)δ, hence

(4) (A⊗B)d+ = (A⊗B)δ+.

An element ϕ ∈ (A ⊗ B)d+ is called a state on A ⊗ B if |||ϕ||| = 1. By (4), every
positive linear functional on the ∗-algebra A⊗B is a multiple of some state.

Owing to Corollary 2.12 it is easy to check that a linear mapping Φ : A→ B∗

is completely positive if and only if

(5)

n∑

i,j=1

〈b∗i bj,Φ(a
∗
i aj)〉 > 0; a1, . . . , an ∈ A, b1, . . . , bn ∈ B, n ∈ N.

Proposition 1. Let V,W be matrix ordered spaces with matrix ordered duals
V δ,W δ respectively and let ϕ ∈ (V ⊗ W )δ. Then the following conditions are
equivalent:

(i) ϕ ∈ (V ⊗W )δ+;

(ii) Lϕ : V →W δ is completely positive;
(iii) Rϕ :W → V δ is completely positive.

Proof. First note that Lϕ∗ = L∗
ϕ, hence ϕ is selfadjoint if and only if Lϕ is

selfadjoint. Then ϕ ∈ (V ⊗W )δ+ ⇔ 〈u, ϕ〉 > 0, (∀)u ∈ (V ⊗W )+ ⇔ 〈v×w,ϕ〉 > 0,
(∀) v ∈ Mm(V )+, w ∈ Mm(W )+, m ∈ N ⇔ 〈w, (Lϕ)m(v)〉 > 0, (∀) v ∈ Mm(V )+,
w ∈Mm(W )+, m ∈ N ⇔ Lϕ is completely positive.

This proves (i) ⇔ (ii) and similarly, (i) ⇔ (iii).
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Let V,W be matrix ordered spaces with matrix ordered duals V δ,W δ respec-
tively. Then V ⊗W ⊂ (V δ ⊗W δ)δ, so every u ∈ V ⊗W defines linear mappings

Lu : V δ →W δδ =W and Ru :W δ → V δδ = V,

namely, if u =
∑
k

vk ⊗ wk, f ∈ V δ and g ∈W δ, then

Lu(f) =
∑

k

f(vk)wk and Ru(g) =
∑

k

g(wk)vk.

Remark that the mappings

L : V ⊗W ∋ u 7→ Lu ∈ BV,W δ (V δ,W )

R : V ⊗W ∋ u 7→ Ru ∈ BW,V δ(W δ, V )

are linear injections.
Clearly, (V ⊗W )+ ⊂ (V ⊗W )∩ (V δ⊗W δ)δ+, but this inclusion can be strict.

Proposition 2. Let V,W be matrix ordered spaces with matrix ordered du-
als V δ,W δ respectively and let u ∈ V ⊗W . Then the following conditions are
equivalent:

(i) u ∈ (V ⊗W )+;
(ii) there exist m ∈ N and completely positive mappings Φ ∈ L(Mm,W ),Ψ ∈

BV,Md
m
(V δ,Mm) such that Lu = Φ ◦Ψ:

Mm

Ψ ր ց Φ

V δ Lu−→ W ;

(iii) there exist m ∈ N and completely positive mappings Φ ∈ L(Mm, V ), Ψ ∈
BW,Md

m
(W δ,Mm) such that Ru = Φ ◦Ψ:

Mm

Ψ ր ց Φ

W δ Ru−→ V.

Proof. (i)⇒ (ii). If u ∈ (V⊗W )+, then u = v×w for some v ∈Mm(V )+, w ∈
Mm(W )+, m ∈ N. By Propositions 1 and 4/5.12, Φ = Θ(w) ∈ L(Mm,W ) and
Ψ = Λ(v) ∈ BV,Md

m
(Vδ,Mm) are completely positive and it is easy to check that

Lu = Φ ◦Ψ.
(ii) ⇒ (i). Let Lu = Φ ◦Ψ for some completely positive Φ ∈ L(Mm,W ),Ψ ∈

BV,Md
m
(V δ,Mm). Using again Propositions 1 and 4/5.12 we get v ∈ Mm(V )+,

w ∈ Mm(W )+ such that Φ = Θ(w) and Φ = Λ(v). Then Lu = Φ ◦ Ψ = Θ(w) ◦
Λ(v) = L(v×w), hence u = v × w ∈ (V ⊗W )+.

The proof of (i) ⇔ (iii) is similar.
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Corollary 1. Let V be a matrix ordered space and m ∈ N. Then:

(i) the mapping R : V ⊗Mm ∋ u 7→ Ru ∈ L(Md
m, V ) is an order isomorphism

with respect to the convex cones (V ⊗Mm)+ and CP (Md
m, V );

(ii) the mapping Ω : V ⊗ Mm ∋
∑
i,j

vij ⊗ eij 7→ [vij ] ∈ Mm(V ) is an order

isomorphism with respect to the convex cones (V ⊗Mm)+ and Mm(V )+.

Proof. (i) If u ∈ (V ⊗ Mm)+, then Ru ∈ CP (Md
m, V ) by Proposition 2.

Conversely, if u ∈ V ⊗Mm and Ru is completely positive, then Ψ = ∆−1 :Md
m →

Mm is a complete order isomorphism (Proposition 2/5.12), Φ = Ru ◦∆ :Mm → V
is completely positive and Ru = Φ ◦Ψ, hence u ∈ (V ⊗Mm)+ by Proposition 2.

(ii) It is easy to check that the diagram

V ⊗Mm
Ω

−→ Mm(V )

R
y

yΘ

L(Md
m, V ) = L(Mm, V )

where Mm and Md
m are identified via ∆, is commutative. Thus the desired result

following using (1) and Proposition 1/5.12.

Corollary 2. Let V,W be matrix ordered spaces with matrix ordered duals
V δ,W δ respectively and let u ∈ V ⊗ W . Assume that either V or W is finite
dimensional. Then the following conditions are equivalent:

(i) u belongs to the (V ⊗W )δ-closure of (V ⊗W )+;

(ii) Lu : V δ →W is a limit of mappings of the form Φ◦Ψ with Φ ∈ L(Mm,W ),
Ψ ∈ BV,Md

m
(V δ,Mm) completely positive, m ∈ N, relative to the point W δ-topology

on L(V δ,W );

(iii) Ru :W δ → V is a limit of mappings of the form Φ◦Ψ with Φ ∈ L(Mm, V ),
Ψ ∈ BW,Md

m
(W δ,Mm) completely positive, m ∈ N, relative to the point V δ-topology

on L(W δ, V ).

Proof. Since either V or W is finite dimensional, we have (V ⊗W )δ = V δ ⊗
W δ (5.12.(2)). Thus, a net {uι} from (V ⊗W )+ is (V ⊗W )δ-convergent to u if
and only if

〈uι, f ⊗ g〉 → 〈u, f ⊗ g〉 for all f ∈ V δ, g ∈W δ,

that is, if and only if

〈Luι
(f), g〉 → 〈Lu(f), g〉 for all f ∈ V δ, g ∈W δ.

Thus (i) ⇔ (ii) follows from Proposition 2. Similarly, (i) ⇔ (iii).

5.15. Matrix quotients. Let m ∈ N. We shall identify Mm and Md
m via

the map ∆ : Mm ⇒ Md
m (see Proposition 2/5.12). Consider a matrix system
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N ⊂ Mm, i.e. a selfadjoint subspace N of Mm which contains the unit of Mm.
Then N , as well as Nd are matrix ordered spaces. Set

K = N0 =
{
β ∈Mm;

∑

i,j

αijβij = 0, for all α ∈ N
}
.

Then K is a selfadjoint subspace of Mm. Let π : Mm → Mm/K be the canonical
quotient map. We can define a ∗-operation on Mm/K by putting π(α)∗ = π(α∗),
(α ∈Mm), and then Mm/K becomes a ∗-vector space. For every n ∈ N, the map
πn : Mn(Mm) → Mn(Mm/K) is linear, selfadjoint and Kerπn = Mn(K). Thus
we may identify Mm(Mm)/Mn(K) and Mn(Mm/L) as ∗-vector spaces. With
this identification we define the positive cone in Mn(Mm/K) by Mn(Mm/K)+ =
πn(Mn(Mm)+). The ∗-vector space Mm/K endowed with these convex cones will
be called a matrix-quotient.

Let η = res :Md
m → Nd be the restriction map. Then the map ξ :Mm/K →

Nd defined by
ξ(π(α)) = η(∆(α)); α ∈Mm,

is a well defined linear isomorphism of Mm/K onto Nd. Moreover,

Proposition. ξ :Mm/K → Nd is a complete order isomorphism.

Proof. Fix n ∈ N and consider the diagram

Mn(Mm)
∆n−→ Mn(M

d
m)

πn

y
yηn

Mn(Mm/K)
ξn
−→ Mn(N

d)

By identifying Mn(M
d
m) with Mn(Mm)d and Mn(N

d) with Mn(N)d, ηn identifies
to the restriction map rès : Mn(Mm)d → Mn(N)d. Thus, we have to show that
an element ψ ∈ Mn(N)d is positive if and only if ψ = rèsϕ for some positive
ϕ ∈Mn(Mm)d.

Clearly, ϕ ∈Mn(Mm)d+ entails ψ = rèsϕ ∈Mn(N)d+.

Conversely, let ψ ∈ Mn(N)d. If α ∈ Mn(N), ‖α‖ 6 1 and λ ∈ C, |λ| = 1,
then Re(λα) 6 ‖Re(λα)‖ 6 1, hence Reλψ(α) 6 ψ(1) and for a suitable choice of
λ we get |ψ(α)| 6 ψ(1). It follows that ‖ψ‖ = ψ(1). By the Hahn-Banach theorem
there exists ϕ ∈Mn(Mm)d such that rès ϕ = ψ and ‖ϕ‖ = ‖ψ‖. Since ‖ϕ‖ = ϕ(1)
and Mn(Mm) is a C∗-algebra, by Proposition 4.6 we infer that ϕ is positive.

Corollary. Every matrix-quotient is a matrix ordered space.

5.16. Notes. The concept of a completely positive linear mapping between C∗-
algebras has been introduced by W.F. Stinespring [293] who proved Theorem 5.3 for
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unital C∗-algebras as well as Proposition 5.5 for positive linear functionals and Propo-
sition 5.6, thus showing that Theorem 5.3 contains as particular cases both the GNS
construction and the Năımark dilation theorem [209]. In the general case, Theorem 5.3
has been considered in [93], 2.1, [172], Section 4 and Proposition 5.5 appeared in [17],
I, 1.2.2, [296], 6.1. For some extensions of these results to more general ∗-algebras we
refer to [93], [94], [228], [229], [250], II. Recall that another important extension of the
Năımark dilation theorem is the known unitary dilation of a linear contraction, due to
B. Sz.-Nagy [311].

The Cauchy-Schwarz type inequality (5.8.(1)), which is now an easy consequence
of 5.6, 5.3, has been previously discovered by R.V. Kadison [143] who used it in studying
the linear isometries between operator algebras (see Chapter 6). In Proposition 5.9 we
collected several related inequalities ([42], [92], [182]) and in 5.10 we listed the main
properties of the Schwartz maps ([42], [226]; this term has been introduced in [226]).
There is another extension of the Kadison inequality (5.8.(2)) which says ([14], [42],
[68], [69]) that if Φ : A → B is a unit-preserving positive linear map between unital
C∗-algebras and f : (−λ, λ) → R is an “operator convex function” ([14], [23], [68], [69],
[79]; for instance, f(t) = t is operator convex), then Φ(f(a)) > f(Φ(a)) for all a ∈ Ah,
‖a‖ 6 λ; also ([42]), Φ(a−1) > Φ(a)−1 for any invertible a ∈ A+. For another property
of Schwartz maps we refer to [362].

In proving the complete positivity of positive linear “pseudo-multiplicative” map-
pings (5.11) we followed the arguments of M.D. Choi [40] (cf. [301], Theorem 2.2). The
complete positivity of “conditional expectations” (or linear projections of norm one; see
8.3 and Corollary 5.10) is also asserted in [204], Theorem 5.

The simplest example of a positive but not 2-positive linear map is the trans-
position map on M2 ([17], I, p. 144). M.D. Choi [40], [41] has made a sistematic
study of n-positive linear maps. Then, M.D. Choi [41] proved Proposition 5.7 and,
using the map Φ : Mn → Mn defined by Φ(x) = (n − 1)(trace x) − x, showed that
Pn−1(Mn,Mn) 6= Pn(Mn,Mn). On the other hand, M.D. Choi [41] extended Propo-
sition 5.5 and Proposition 5.6 by showing that Pn(A,Mn(C)) = CP (A,Mn(C)) and
Pn(Mn(C), B) = CP (Mn(C), B) whenever C is a commutative C∗-algebra. Moreover,
M.D. Choi [41] made the following nice conjecture which seems to be still unsolved: “if
Pn(A,B) = Pn+1(A,B), then Pn(A,B) = CP (A,B), (n > 1)”; also he conjectured the
following extension of Proposition 5.7: “if Pn(A,B) = Pn+1(A,B), then either A is a
quotient space or B is a subalgebra of Mn(C) for certain commutative C, (n > 1)”. Of
course, a first example of a positive but not completely positive linear mapping was given
by W.F. Stinespring [293].

Together with a detailed discussion of the Stinespring dilation theorem in the unital
case, W.B. Arveson ([17], I) extended the notion of complete positivity to linear mappings
defined on selfadjoint vector subspaces, proved the remarkable extension theorem (5.4),
introduced the concept of “boundary representations” and, as an application, obtained
a classification up to unitary equivalence of certain Hilbert space operators which are
neither normal, nor compact. The proof of Theorem 5.4 we have presented (cf. [308])
retains the main ideas of the original proof ([17]), but avoids the complications related
to weak topologies. As remarked in [17], the requirement 1A ∈ S in Theorem 5.4 can be
weakened. A generalization of the Arveson theorem removing this requirement appears
in [250], II. For C∗-subalgebras, the Arveson theorem reduces to Corollary 2/5.3 which is
a simple application of the Stinespring dilation theorem combined with the corresponding
result for ∗-representations (cf. [172], Section 4).

The Arveson theorem has important implications in the structure theory of oper-
ator algebras and, more generally, of “operator systems” (i.e., unital selfadjoint vector
subspaces of B(H)). The relatively simple structure of completely positive linear map-
pings (5.3), together with the result of M.D. Choi [42] contained in Corollary 5.9, showed
that they should be the appropriate morphisms in the category of operator systems. An
operator system S is called injective if, whenever R ⊂ T are operator systems, any mor-
phism R → S can be extended to a morphism T → S. A consequence of the Arveson
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theorem is that an operator system S ⊂ B(H) is injective if and only if there is a linear
projection of norm one of B(H) onto S. The interest of such and related properties
appeared previously in several papers dealing with examples of non-injective operator
algebras (e.g. [123], [277]) and with tensor products of operator algebras ([85], [88],
[171]). On the other hand, W.B. Arveson [18] pointed out a very useful connection of the
“completely positive lifting problem” (see Corollary 5.13, for a sample) with the problem
whether the Brown-Douglas-Fillmore Ext of a C∗-algebra is a group ([19], [34]).

Based on these studies, M.D. Choi and E.G. Effros [44] developed an extensive
theory of injectivity in operator spaces and ([45], [46], [47]) applied it in order to clarify
the notion of a nuclear C∗-algebra. Subsequently, A. Connes [63] proved, among other
fundamental results, that for W ∗-algebras, the injectivity is equivalent to the very strong
and concrete property of “hyperfiniteness”. Extending from the commutative case the
result of [34], D. Voiculescu [338] proved that Ext(A) is a unital semigrup for any sep-
arable C∗-algebra, M.D. Choi and E.G. Effros [48] showed that Ext(A) is even a group
if A is nuclear and simpler proofs of this last result appeared in [19], [339]. Excellent
accounts on these topics can be found in [19], [86], [87].

Almost all the material included in 5.12–5.15 is borrowed from [44]. The statements
of Proposition 1 and Proposition 2/5.13 are implicit in the article of M.D. Choi [43] who
also showed that a linear map Φ : Mn → Mm is completely positive if and only if it
admits an expression Φ(a) =

∑
i

v∗i avi where vi are n×m matrices. Also, Corollary 5.13

is a first step in proving that Ext(A) is a group for A nuclear (cf. [339]).
There are several applications of completely positive linear mappings in problems

related to mathematical physics (see, e.g., [96], [97], [98], [99], [100], [178], [179], [180],
[181], [182]).

Further references: [51], [296], [301], [343], [344].



Chapter 6

LINEAR ISOMETRIES

6.1. In studying linear isometries between C∗-algebras one is primarily in-
terested in the structure of the closed unit ball A1 of a C∗-algebra A. As usually,
the set of all extreme points of a convex set S ⊂ A is denoted by ex(S).

Lemma. Let A be a C∗-algebra and X be a closed real vector subspace of

A such that for every x ∈ X, X contains the ring generated by x and x∗. If

x ∈ ex(X ∩A1), then x is a partial isometry and

X ∩ [(1− xx∗)A(1− xx∗)] = {0}.

Proof. Put e = x∗x and suppose e2 6= e. Then there exists λ0 ∈ σ(e),
0 < λ0 < 1. Let f be a positive continuous function on [0, 1] such that f(0) = 0,
f(λ0) 6= 0 and sup{λ(1 ± f(λ))2; λ ∈ [0, 1]} 6 1. With a = f(e) we have ea 6= 0.
On the other hand, ‖e(1± a)2‖ 6 1, hence

‖x± xa‖2 = ‖(x∗ ± ax∗)(x± xa)‖ = ‖e(1± a)2‖ 6 1.

By the assumption on X we have xa ∈ X , hence x ± xa ∈ X ∩ A1. Since
x = 2−1(x + xa) + 2−1(x − xa), by the extremality of x, it follows that x =
x+xa = x−xa. Thus xa = 0 hence ea = 0, a contradiction. Consequently, e2 = e
so that x is a partial isometry.

Now suppose that there exists b ∈ X ∩ [(1− xx∗)A(1− x∗x)], ‖b‖ = 1. Since
x∗x and xx∗ are projections, we have successively xx∗b = bx∗x = 0, b∗xx∗b =
bx∗xb∗ = 0, x∗b = xb∗ = 0. By Corollary 1.14 we infer that x± b ∈ X ∩A1. Since
x = 2−1(x + b) + 2−1(x − b), the extremality of x entails x = x + b = x − b, so
b = 0, a contradiction.

Theorem. Let A be a C∗ algebra and x ∈ A. Then

(i) ex(A1) 6= ∅ ⇔ A is unital;

(ii) x ∈ ex(A1) ⇔ (1− xx∗)A(1 − x∗x) = {0}.

Proof. Suppose that there exists x ∈ ex(A1). Denote e = x∗x, f = xx∗,
u = f +e−fe and consider an approximate unit {uι} for A. By the above lemma,
(1− f)A(1 − f) = {0}, so

uι = fuι + uιe− fuιe→ f + e− fe = u.

It follows that u is a unit element for A.
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Conversely assume that A is unital. Let a, b ∈ A1, a+ b = 2. Then Re a +
Re b = 2, hence Re a,Re b commute. By Gelfand representation we get Rea =
Re b = 1. Since a, b ∈ A1, this entails a = b = 1. Consequently 1 ∈ ex(A1).

By the above lemma, x ∈ ex(A1) ⇒ (1− xx∗)A(1 − x∗x) = {0}.
Let x ∈ A be such that (1 − xx∗)A(1 − x∗x) = {0}. Then x∗x(1 − x∗x)2 =

x∗(1 − xx∗)x(1 − x∗x) = 0, so e = x∗x is a projection. Hence f = xx∗ is also a
projection, x ∈ A1 and x = fx = xe (1.6). Suppose that 2x = p + q for some
p, q ∈ A1. Then

(pe+ qe)∗(pe+ qe) = (ep∗pe+ eq∗qe) + (ep∗qe+ eq∗pe),

4e = 4ex∗xe = (pe + qe)∗(pe+ qe) 6 2(ep∗pe+ eq∗qe) 6 4e,

so that
ep∗pe+ eq∗qe = 2e = ep∗qe+ eq∗pe.

Since e is the unit of eAe, hence an extreme point in (eAe)1,

ep∗pe = eq∗qe = ep∗qe+ eq∗pe = e,

thus ((p− q)e)∗((p− q)e) = 0 and pe = qe. Similarly, fp = fq. It follows that

p− q = (1− f)(p− q)(1− e) ∈ (1− xx∗)A(1 − x∗x) = {0},

hence p = q = x. Therefore x ∈ ex(A1).

In particular, every isometry or coisometry in a unital C∗-algebra A is an
extreme point of A1. It is easy to check that unitaries are the only normal and

the only invertible extreme points of A1.

6.2. Jordan algebras. Let A be a C∗-algebra. We say that J is a Jordan
algebra in A if J is a real vector subspace of Ah and for every x, y ∈ J the “Jordan
product” 2−1(xy + yx) belongs to J . Since

x2 = 2−1(xx+ xx) and xy + yx = (x+ y)2 − x2 − y2,

a real vector subspace J of Ah is a Jordan algebra if and only if x2 ∈ J whenever
x ∈ J .

Let J be a Jordan algebra in A. Consider also the “Lie product”

[x, y] = xy − yx; x, y ∈ A.

Then

x ∈ J, n > 1 integer ⇒ xn ∈ J ;(1)

x, y ∈ J ⇒ xyx ∈ J ;(2)

x, y, z ∈ J ⇒ xyz + zyx ∈ J ;(3)

x, y, z ∈ J ⇒ [[x, y], z] ∈ J ;(4)

x, y ∈ J ⇒ [x, y]2 ∈ J.(5)



Jordan algebras 129

Indeed, (1) can be proven by induction using

(6) xn+1 = 2−1(xnx+ xxn);

assertion (2) follows from (1) using

(7) 2xyx = (y + x)3 + (y − x)3 − 2y3 − 2(yx2 + x2y);

assertion (3) follows from (2) using

(8) xyz + zyx = (x+ z)y(x+ z)− xyx − zyz;

assertion (4) follows from (3) using

(9) [[x, y], z] = (xyz + zyx)− (yxz + zxy);

and finally (5) follows from (2) using

(10) [x, y]2 = (x(yxy) + (yxy)x) − xy2x− yx2y.

We say that J is unital if there exists u ∈ J such that ux = xu = x for all
x ∈ J . If J is unital, then its unit 1J = u is unique and is a projection of A.
Moreover, 1J is the unit element of the C∗-subalgebra C∗(J) of A generated by J .

Let J be a norm-closed Jordan algebra in A. By 1.16.(8) we have

(11) x ∈ J, f ∈ C (σ(x) ∪ {0}) , f real, f(0) = 0 ⇒ f(x) ∈ J

that is
x ∈ J ⇒ C∗({x})h ⊂ J.

More generally, if S is a family of mutually commuting elements of J , then

C∗(S)h ⊂ J.

In particular, if J is a unital norm-closed Jordan algebra in A, then

(12) x ∈ J, x invertible in C∗(J) ⇒ x−1 ∈ J.

Remark that if J is a norm closed vector subspace of Ah generated by a
convex cone C such that x2 ∈ J for every x ∈ C, then J is a Jordan algebra.

Indeed, if y is an element of the real vector subspace generated by C, then
y = x1 − x2 for some x1, x2 ∈ C, so

y2 = 2x21 + 2x22 − (x1 + x2)
2 ∈ J.

Since X is norm dense in J , it follows that z ∈ J ⇒ z2 ∈ J .
Also, let J be a norm closed real vector subspace of Ah which contains an

element u such that ux = xu = x for all x ∈ J and assume that J is the norm
closed linear hull of a convex cone C such that u ∈ C and x−1 ∈ J whenever x ∈ C
is invertible in C∗(J). Then J is a Jordan algebra, because for every x ∈ C we
have

x2 = norm-lim
t→0

t−2((u+ tx)−1 − u+ tx) ∈ J.

The most typical example of norm-closed Jordan algebras in A are the real parts
of C∗-subalgebras of A. A norm-closed Jordan algebra J in A is the real part of
a C∗-subalgebra of A if and only if

(13) x, y ∈ J ⇒ i(xy − yx) ∈ J.

Indeed, B = J + iJ is then a C∗-subalgebra of A and J = Bh.
Note that not every norm-closed Jordan algebra in A is the real part of a

C∗-subalgebra of A. For instance, let A = M2. Then the set J ⊂ A of all real
symmetric matrices is a Jordan algebra in A, but J does not satisfy (13).



130 Linear Isometries

Theorem. Let A be a C∗-algebra, J be a norm-closed Jordan algebra in A
and x ∈ J . Then

(i) ex(J1) 6= ∅ ⇔ J is unital;

(ii) x ∈ ex(J1) ⇔ x2 is the unit of J .

Proof. Let x ∈ ex(J1). By (1) we can apply Lemma 6.1 with X = J to get
J ∩ [(1 − x2)A(1 − x2)] = {0}. But using (1) and (2), for any y ∈ J we obtain

(1− x2)y(1− x2) = y − (x2y + yx2) + x2yx2 ∈ J,

so (1 − x2)J(1 − x2) = {0}. Consequently, for any y ∈ J we get successively
(1 − x2)y2(1 − x2) = 0, y(1 − x2) = 0, y = yx2 = x2y. We conclude that J is
unital and x2 is the unit of J .

Conversely, assume that J is unital and let x ∈ J such that x2 is the unit of J .
Then x2 is the unit of the C∗-subalgebra B of A generated by J . By Theorem 6.1
it follows that x ∈ ex(B1) ∩ J ⊂ ex(J1).

In particular, if A is a C∗-algebra and x ∈ ex(Ah ∩ A1), then the Jordan
algebra Ah is unital with unit x2, i.e. A is unital and x2 = 1. Therefore selfadjoint
unitaries are the only extreme points of Ah ∩A1.

Also, remark that the extreme points of A+ ∩ A1 are exactly the projections

of A. Indeed, if e ∈ A is a projection and 2e = a + b with a, b ∈ A+ ∩ A1, then
a, b ∈ (eAe)1 so that a = b = e since by Theorem 6.1 e is an extreme point of
(eAe)1. Conversely, if x ∈ ex(A+ ∩ A1), then x ∈ ex(B+ ∩ B1), where B is the
C∗-subalgebra generated by x, and using the Gelfand representation of B we see
that x is a projection.

6.3. Russo-Dye theorem. Let A be a unital C∗-algebra. Denote by U(A)
the unitary group of A, by coU(A) its convex hull and by coU(A) its norm closed
convex hull. Consider also

exp(iAh) = {exp(ia); a ∈ A, a = a∗} ⊂ U(A)

and its convex hull co exp(iAh), respectively its norm-closed convex hull
co exp(iAh). Recall that (2.8.(4))

(1) {x ∈ A; ‖x‖ < 2−1} ⊂ co exp(iAh) ⊂ coU(A).

The following theorem contains a much stronger result:

Theorem. Let A be a unital C∗-algebra. Then

(i) {x ∈ A; ‖x‖ < 1} ⊂ co exp(iAh) ⊂ coU(A);
(ii) {x ∈ A; ‖x‖ 6 1} = co exp(iAh) = coU(A).

Proof. Let x ∈ A, ‖x‖ < r < 1. For λ ∈ C, λ < 1

r , define

ux(λ) = (1− xx∗)−
1
2 (λ+ x)(1 + λx∗)−1(1− xx∗)

1
2 .
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Then {λ ∈ C; |λ| < 1

r } ∋ λ 7→ ux(λ) ∈ A is an analytic function so that, by the
Cauchy integral formula,

(2) ux(0) =
1

2π

∫ 2π

0

ux(e
it)dt.

Using successively the elementary identities

(1 + λx∗)−1(λ+ x) = x+ λ(1 + λx∗)−1(1− xx∗); |λ| 6 1,

(1− xx∗)x = x(1− x∗x)

(λ + x)(1 + λx∗)−1 = x+ λ(1− xx∗)(1 + λx∗)−1; |λ| 6 1,

it is easy to verify that, for λ ∈ C, |λ| = 1,

(ux(λ))
−1 = (1− xx∗)

1
2 (1 + λx∗)−1(λ+ x)(1 − x∗x)−

1
2

= (1− xx∗)−
1
2 [(1− xx∗)(1 + λx∗)−1(λ + x)(1 − x∗x)−1](1− x∗x)

1
2

= (1− xx∗)−
1
2 (λ+ x)(1 + λx∗)−1(1− x∗x)

1
2 = ux(λ),

hence ux(λ) ∈ U(A). From (1 − xx∗)x = x(1 − x∗x) by functional calculus we

infer (1− xx∗)−
1
2x = x(1− x∗x)−

1
2 , which in turn gives ux(0) = x.

Thus (2) and the classical approximation of an integral by Riemann sums
shows that x ∈ co {ux(λ); λ ∈ C, |λ| = 1}. Hence

(3) {x ∈ A; ‖x‖ < 1} ⊂ coU(A).

Let v ∈ U(A), 0 < t < 1 and put x = tv. Since x∗x = xx∗ = t2, for each
λ ∈ C, |λ| = 1 we have ux(λ) = (λ+ x)(1 + λx∗)−1, so

(λ+ ux(λ))(1 + λx∗) = 2λ(1 + 2−1(λx∗ + λx)).

As ‖x‖ < 1, this shows that λ+ ux(λ) is invertible, hence ux(λ) is a unitary with
σ(ux(λ)) 6= C, so that ux(λ) ∈ exp(iAh) by 1.18.(6) for all λ ∈ C, |λ| = 1. It
follows that

tv = x ∈ co {ux(λ); λ ∈ C, |λ| = 1} ⊂ co exp(iAh).

Since 0 < t < 1 was arbitrary, we deduce

(4) U(A) ⊂ co exp(iAh).

By (3) and (4),

(5) {x ∈ A; ‖x‖ 6 1} = co exp(iAh) = coU(A).
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Consider again x ∈ A, ‖x‖ < 1. Then ‖sx‖ < 1 for some s > 1. By (5) there

is x1 ∈ co exp(iAh) with ‖sx− x1‖ < 2−1(s− 1). By (1) there is x2 ∈ co exp(iAh)

with sx− x1 = (s− 1)x2, that is,

x = s−1x1 + (1− s−1)x2 ∈ co exp(iAh).

In particular A1 = co ex(A1), a rather surprising fact since A1 is not neces-

sarily compact in some vector space topology on A.

Since A is the linear span of U(A) we can, for each x ∈ A, define

‖x‖U = inf
{ n∑

k=1

|λk|; x =
n∑

k=1

λkuk, λk ∈ C, uk ∈ U(A), n ∈ N

}
.

Corollary 1. For all x ∈ A, ‖x‖U = ‖x‖.

Proof. Clearly, ‖x‖ 6 ‖x‖U and ‖ · ‖U is positive homogeneous. For any

0 < t < 1, by the above theorem, t‖x‖−1x ∈ coU(A), hence t‖x‖−1‖x‖U =∥∥t‖x‖−1x
∥∥
U

6 1. Since 0 < t < 1 was arbitrary, it follows that ‖x‖−1‖x‖U 6 1,

i.e. ‖x‖U 6 ‖x‖.

Corollary 2. Let Φ be a linear mapping of A into a normed space X.

Then

‖Φ‖ = sup{‖Φ(u)‖; u ∈ U(A)}.

Proof. Let α = sup{‖Φ(u)‖; u ∈ U(A)}. Clearly, α 6 ‖Φ‖. On the other

hand it is easy to see that ‖Φ(x)‖ 6 α‖x‖U , x ∈ A, hence ‖Φ‖ 6 α by Corollary 1.

6.4. An important consequence of the Russo-Dye theorem is the following

Proposition. Let A,B be unital C∗-algebras and Φ : A 7→ B be a linear

mapping such that Φ(1) = 1. Then

Φ is positive ⇔ ‖Φ‖ = 1.

Proof. Assume that Φ is positive. Using the Kadison inequality (Proposi-

tion 5.8), we get for each u ∈ U(A)

‖Φ(u)‖2 = ‖Φ(u)∗Φ(u)‖ 6 ‖Φ(u∗u)‖ = ‖Φ(1)‖,

hence, by Corollary 2 of 6.3, ‖Φ‖ = ‖Φ(1)‖ = 1.

Conversely, assume ‖Φ‖ = 1. For any ψ ∈ S(B) we have (ψ ◦ Φ)(1) 6

‖ψ ◦ Φ‖ 6 1 = (ψ ◦ Φ)(1), hence ψ ◦ Φ ∈ S(A) by Proposition 4.6. Owing to

Proposition 4.13.(i) we infer that Φ is positive.
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Remark that in the first part of the proof we have in fact proved that if A
is a unital C∗-algebra, B is an arbitrary C∗-algebra and Φ : A 7→ B is a positive
linear mapping, then ‖Φ‖ = ‖Φ(1)‖.

6.5. Function representation for Jordan algebras. Let A be a C∗-
algebra and J be a norm closed Jordan algebra in A. Denote by J+ the closed
convex cone of all x ∈ J , x > 0. Since x ∈ J ⇒ x+, x− ∈ J , we have J =
J+ −J+. By Proposition 1/4.10 it follows that every positive linear functional on
J is bounded.

As easily verified, a linear functional ϕ on J is positive if and only if for
each x ∈ J there exists a positive form on C∗({x}) which coincides with ϕ on
C∗({x})h ⊂ J . Using 4.5.(6) we infer that, for every positive linear functional ϕ
on J we have

‖ϕ‖ = sup{ϕ(x); x ∈ J+, ‖x‖ 6 1}.

If J has a unit element u, then a linear functional ϕ on J is positive if and only if
‖ϕ‖ = ϕ(u).

Denote by J∗ the dual space of the real Banach space J , by J∗
+ the J-closed

convex cone of all positive linear functionals on J , by Q(J) the J-compact convex
set of all ϕ ∈ J∗

+ with ‖ϕ‖ 6 1 and by S(J) the set of all ϕ ∈ J∗
+ with ‖ϕ‖ = 1;

if J is unital, then S(J) is a J-compact convex set. Finally, let A(Q(J)) be the
ordered real Banach space of all J-continuous affine real functions on Q(J) with
f(0) = 0.

Let B be the C∗-algebra obtained from A by adjoining the unit. Then
K = lin(J ∪ {1}) is a norm closed Jordan algebra in B and every ϕ ∈ J∗

+ can be
extended to some θ ∈ K∗

+ with θ(1) = ‖ϕ‖ = ‖θ‖. Thus, using Proposition 3/4.10
as in the proof of Proposition 4.16, we see that every ϕ ∈ J∗

+ can be extended to

some ψ ∈ A∗
+ with ‖ψ‖ = ‖ϕ‖.

Using this last remark and arguments similar to the proof of Proposition 4.15
we obtain the following extensions of Proposition 4.15:

Proposition. Let A be a C∗-algebra and J a norm closed Jordan algebra

in A. Then the mapping Φ : J 7→ A(Q(J)) defined by

[Φ(x)](ϕ) = ϕ(x); x ∈ J, ϕ ∈ Q(J)

is an isometric linear order isomorphism of J onto A(Q(J)).

6.6. Jordan homomorphisms. Let A,B be C∗-algebras and J,K be Jor-
dan algebras in A,B respectively. A linear mapping Φ : J 7→ K is called a Jordan

homomorphism if it preserves the Jordan product, i.e.,

Φ(xy + yx) = Φ(x)Φ(y) + Φ(y)Φ(x); x, y ∈ J.

As in 6.2 we see that Φ is a Jordan homomorphism if and only if

Φ(x2) = Φ(x)2; x ∈ J.
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Moreover, if Φ is a Jordan homomorphism, then, using 6.2.(6)–(10) we obtain

x ∈ J, n > 1 integer ⇒ Φ(xn) = Φ(x)n;(1)

x, y ∈ J ⇒ Φ(xyx) = Φ(x)Φ(y)Φ(x);(2)

x, y, z ∈ J ⇒ Φ(xyz + zyx) = Φ(x)Φ(y)Φ(z) + Φ(z)Φ(y)Φ(x);(3)

x, y, z ∈ J ⇒ Φ([[x, y], z]) = [[Φ(x),Φ(y)],Φ(z)];(4)

x, y ∈ J ⇒ Φ([x, y]2) = [Φ(x),Φ(y)]2.(5)

We have also

(6) x, y ∈ J, [x, y] = 0 ⇒ [Φ(x),Φ(y)] = 0.

Indeed, [Φ(x),Φ(y)]∗[Φ(x),Φ(y)] = −[Φ(x),Φ(y)]2 = 0 by (5), so [Φ(x),Φ(y)] = 0.
Furthermore, if J is norm closed, then

(7) x, y ∈ J, [x, y] = 0 ⇒ Φ(xy) = Φ(x)Φ(y).

Indeed, if x commutes with y, then also (x+)
1
2 , (x−)

1
2 ∈ J commute with y, so by

(2), (6) and (1) we have

Φ(x+y) = Φ((x+)
1
2 y(x+)

1
2 ) = Φ((x+)

1
2 )Φ(y)Φ((x+)

1
2 ) = Φ(x+)Φ(y)

and similarly Φ(x−y) = Φ(x−)Φ(y). A bijective Jordan homomorphism is called
a Jordan isomorphism.

Proposition. Let A,B be C∗-algebras, J be a norm closed Jordan algebra

in A and Φ : J 7→ Bh be a Jordan homomorphism. Then

(i) ‖Φ‖ 6 1;
(ii) Φ(J) is a norm-closed Jordan algebra in B;

(iii) if x ∈ J and f ∈ C(σ(x) ∪ {0}) is real with f(0) = 0 then

Φ(f(x)) = f(Φ(x));

(iv) if J is unital, then Φ(J) is unital and Φ(1J) = 1Φ(J). In this case, if x ∈ J

is invertible in C∗(J), then Φ(x) is invertible in C∗(Φ(J)) and Φ(x)−1 = Φ(x−1);
(v) if a, b ∈ J , a 6 b, and y ∈ Φ(J), Φ(a) 6 y 6 Φ(b), then there exists x ∈ J ,

a 6 x 6 b, such that Φ(x) = y.

Proof. If S is a family of mutually comuting elements of J , then C∗(S)h ⊂ J
and, by (7), Φ coincides on C∗(S) with a ∗-homomorphism of C∗(S) into B.

Hence (i), (iii), (iv) follow from the corresponding statements for C∗-algebras
and ∗-homomorphisms.

Clearly, Φ(J) is a Jordan algebra in B. Let y ∈ Bh be norm-adherent to

Φ(J). Then there is a sequence {xn}n in J such that
∞∑
n=1

‖Φ(xn)‖ < +∞ and y =

∞∑
n=1

Φ(xn). By the remark at the beginning of the proof and by Corollary 1/3.15,
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for each n there exists an element zn ∈ C∗(xn)h ⊂ J such that ‖zn‖ 6 ‖Φ(xn)||

and Φ(zn) = Φ(xn). Since
∞∑

n=0

‖zn‖ < +∞, we can consider z =
∞∑
n=0

zn ∈ J and

then we have Φ(z) =
∞∑

n=1

Φ(zn) =
∞∑
n=1

Φ(xn) = y. Consequently, Φ(J) is norm

closed.
Finally, let a, b ∈ J , a 6 b, and y ∈ Φ(J), Φ(a) 6 y 6 Φ(b). We must show

that there exists d ∈ J , 0 6 d 6 b − a, such that Φ(d) = y − Φ(a). Let z ∈ J be
such that Φ(z) = y and denote v = b− a− |b− z|. Then v = v+ − v− 6 b− a, so
v+ 6 b− a+ v−. Define, for each integer n > 1,

dn = (b− a)
1
2 (b− a+ v−)

1
2

(
1

n + b− a+ v−
)−1

v+

×
(
1

n + b− a+ v−
)−1

(b− a+ v−)
1
2 (b− a)

1
2 .

By 6.2.(2), all dn belong to J and 0 6 dn 6 b− a. By (iii),

Φ(v) = Φ(b)− Φ(a)− |Φ(b)− y| = y − Φ(a) > 0,

so Φ(v+) = Φ(v)+ = y−Φ(a) and Φ(v−) = Φ(v)− = 0. Using (2) and the remark
at the beginning of the proof we infer that

Φ(dn) = (Φ(b)− Φ(a))
(
1

n +Φ(b)− Φ(a)
)−1

(y − Φ(a))

×
(
1

n +Φ(b)− Φ(a)
)−1

(Φ(b)− Φ(a)).

It is easy to see that {dn} is a Cauchy sequence, so it converges to some d ∈ J and
0 6 d 6 b− a. Since {Φ(dn)} converges to y − Φ(a), we get Φ(d) = y − Φ(a).

Let A,B be C∗-algebras. If Φ : Ah 7→ Bh is a Jordan homomorphism, then
Φ can be extended to a unique linear mapping Ψ : A 7→ B such that

Ψ(x∗) = Ψ(x)∗, x ∈ A;

Ψ(xy + yx) = Ψ(x)Ψ(y) + Ψ(y)Ψ(y); x, y ∈ A.

Conversely, if Ψ : A 7→ B is a linear mapping satisfying the above conditions,
then the restriction of Ψ to Ah is a Jordan homomorphism of Ah into Bh. Such a
mapping Ψ is called a Jordan ∗-homomorphism of A into B.

A Jordan ∗-homomorphism satisfies statements (1) to (6) for all x, y, z ∈ A.
Only the proof of (6) is somewhat different. If x, y ∈ A and [x, y] = 0, then
[Ψ(x),Ψ(y)] commutes with all Ψ(z), z ∈ A, by (4), hence it is normal. On the
other hand, by (5), [Ψ(x),Ψ(y)]2 = 0, so the spectral radius of [Ψ(x),Ψ(y)] is 0
and consequently [Ψ(x),Ψ(y)] = 0.

In particular, the Jordan ∗-homomorphism Ψ maps normal elements into
normal elements and preserves continuous functional calculus for normal elements.

6.7. Isometries of Jordan algebras. Let A be a C∗-algebra and J be a
Jordan algebra in A. We say that z is a central element of J if z ∈ J and zx = xz
for all x ∈ J . Then z is central in the C∗-subalgebra of A generated by J .
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Theorem. Let A,B be C∗-algebras, J be a unital norm closed Jordan alge-

bra in A, K be a Jordan algebra in B and T : J 7→ K be a real linear bijection.

The following statements are equivalent:

(i) T is a unitary isometry.

(ii) K is unital and there exist a unitary central element v of K and a Jordan

isomorphism Φ : J 7→ K such that

T (x) = vΦ(x); x ∈ J.

Proof. (ii) ⇒ (i). Let x ∈ J . Then Φ coincides on C∗({x})h with an injective
∗-homomorphism of C∗({x}) into B, hence ‖T (x)‖ = ‖Φ(x)‖ = ‖x‖ by Corollary
1.15.

(i) ⇒ (ii). K is norm closed and using Theorem 6.2 we successively get:
1J ∈ ex(J1), T (1J) ∈ ex(K1), K is unital and T (1J) is unitary. Put v = T (1J)
and define a real linear mapping Φ : J 7→ K by

Φ(x) = Re (vT (x)) = 2−1(vT (x) + T (x)v); x ∈ J.

Then Φ is injective. Indeed, if x ∈ J and vT (x) = ib for some b ∈ Bh, then for
every t ∈ R we have

‖1J + tx‖ = ‖T (1J + tx)‖ = ‖v + tT (x)‖ = ‖v(1B + itb)‖ = (1 + t2‖b‖2)
1
2

so that lim
t→0

t−1(‖1J + tx‖ − 1) = 0. But ‖x+‖ 6 t−1(‖1J + tx‖ − 1) for t > 0 and

‖x−‖ 6 t−1(‖1J + tx‖ − 1) for t < 0, hence x+ = x− = 0, x = x+ − x− = 0.
Now let x ∈ J be arbitrary. Then vΦ(x) = 2−1(T (x) + vT (x)v) ∈ K, hence

there exists y ∈ J with vΦ(x) = T (y), that is, Φ(x) = vT (y). Since vT (y) is
selfadjoint,

Φ(x) = vT (y) = Re (vT (y)) = Φ(y).

By the injectivity of Φ it follows that x = y, so

Φ(x) = vT (x); x ∈ J.

Since vT (x) and T (x) are selfadjoint, v commutes with T (x) for all x ∈ J ,
so v is a central element of K. Thus Φ : J 7→ K is a linear bijection and, by
the definition of v, Φ(1J) = Φ(1K). Since Φ is an isometry, both Φ and Φ−1 are
positive. By the Kadison inequality (5.8) we have, for any x ∈ J , Φ(x)2 6 Φ(x2)
and x2 = Φ−1(Φ(x))2 6 Φ−1(Φ(x)2), Φ(x2) 6 Φ(x)2, hence Φ(x2) = Φ(x)2. Thus
Φ is a Jordan homomorphism.

Combining the above theorem with Proposition 6.5 we get

Corollary. Let A,B be C∗-algebras, J,K be norm closed Jordan algebras

in A, B respectively and assume that J is unital. Then the following statements

are equivalent:

(i) there exists a Jordan isomorphism of J onto K;

(ii) there exists an affine homeomorphism of Q(J) (with J-topology) onto Q(K)
(with K-topology);

(iii) there exists a linear isometry of J onto K.
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Clearly, we can replace in (ii) Q(J), Q(K) by S(J), S(K) respectively. Note
that the above results hold in particular for J = Ah, K = Bh. The results of this
section will be extended in 9.32 also for not necessarily unital norm-closed Jordan
algebras.

6.8. Isometries of C∗-algebras.We shall need a characterization of Jordan
∗-homomorphisms between unital C∗-algebras which is of independent interest:

Lemma. Let A,B be unital C∗-algebras and Ψ : A 7→ B be a linear map-

ping such that Ψ(1) = 1. Then Ψ is a Jordan ∗-homomorphism if and only if

Ψ(U(A)) ⊂ U(B) and in this case ‖Ψ‖ = 1.

Proof. If Ψ is a Jordan ∗-homomorphism, then by 6.6 for each u ∈ U(A)
we have Ψ(u)∗Ψ(u) = Ψ(u∗u) = Ψ(1) = 1 and similarly Ψ(u)Ψ(u)∗ = 1, so
Ψ(u) ∈ U(B).

Now suppose that Ψ(U(A)) ⊂ U(B). Then, by Corollary 2/6.3, ‖Ψ‖ = 1
and, by Proposition 6.4, Ψ is positive. In particular, Ψ(Ah) ⊂ Bh. Let x ∈ Ah,
‖x‖ < 1. By 2.8.(4) there exists u ∈ U(A) such that x = u + u∗. Consider also
y = i(u − u∗). Since Ψ(U(A)) ⊂ U(B), using the Kadison inequality (5.8) we
obtain

Ψ(u2) + Ψ((u∗)2) = Ψ(x2)− 2 > Ψ(x)2 − 2 = Ψ(u)2 +Ψ(u∗)2,

Ψ(u2) + Ψ((u∗)2) = −Ψ(y2) + 2 6 −Ψ(y)2 + 2 = Ψ(u)2 +Ψ(u∗)2,

hence Ψ(x2) = Ψ(x)2. Thus Ψ is a Jordan ∗-homomorphism.

Theorem. Let A be a unital C∗-algebra, B be a C∗-algebra and T : A 7→ B
be a linear bijection. Then the following statements are equivalent:

(i) T is an isometry;

(ii) B is unital and there exist a unitary v ∈ B and a Jordan ∗-homomorphism

Ψ : A 7→ B such that

T (x) = vΦ(x); x ∈ A.

Proof. (ii) ⇒ (i). By the above lemma, ‖Ψ‖ = ‖Ψ−1‖ = 1, so Ψ, and also T
is an isometry.

(i) ⇒ (ii). Using Theorem 6.1 we get successively 1 ∈ ex(A1), T (1) ∈ ex(B1),
B is unital and T (1) is a partial isometry. Let x ∈ A be such that T (x) =
1−T (1)∗T (1). Then T (x)T (1)∗ = 0 and T (x)T (x)∗ = 1−T (1)∗T (1) 6 T (1)T (1)∗,
so for each λ ∈ C we get

‖1 + λx‖ = ‖T (1) + λT (x)‖ = ‖(T (1) + λT (x))(T (1)∗ + λT (x))∗‖
1
2

= ‖T (1)T (1)∗ + |λ|2T (x)T (x)∗‖
1
2 = (1 + |λ|2‖T (x)‖2)

1
2 .

It follows that

lim
R∋t→0

t−1(‖1 + itx‖ − 1) = 0, lim
R∋t→0

t−1(‖1 + it(ix)‖ − 1) = 0,
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and by Corollary 1/4.13 we infer that both x and ix are selfadjoint, that is x = 0.

Hence T (1)∗T (1) = 1. Similarly, T (1)T (1)∗ = 1.

Thus v = T (1) ∈ B is unitary. Define a linear bijection Ψ : A 7→ B by

Ψ(x) = v∗T (x); x ∈ A.

Then Ψ is an isometry and Ψ(1) = 1, so Ψ is positive by Proposition 6.4, in

particular Ψ(Ah) = Bh. Applying Theorem 6.7 to the restriction of Ψ to Ah we

infer that Ψ is a Jordan ∗-homomorphism.

Corollary. Let A,B be unital C∗-algebras and Ψ : A 7→ B be a linear

bijection with Ψ(1) = 1. Then the following statements are equivalent:

(i) Ψ is an isometry;

(ii) Ψ is a Jordan ∗-isomorphism;

(iii) Ψ is an order isomorphism;

(iv) Ψ(U(A)) = U(B).

Proof. Clearly, (i) ⇔ (ii) by the theorem and (ii) ⇔ (iv) by the lemma. Since

a Jordan ∗-homomorphism Ψ satisfies Ψ(x2) = Ψ(x)2, x ∈ Ah, and each positive

element is of the form x2 for some x ∈ Ah, it is also clear that (ii) ⇒ (iii). Finally,

if Ψ and Ψ−1 are both positive, then ‖Ψ‖ = ‖Ψ−1‖ = 1 by Proposition 6.4, so Ψ

is isometric, i.e. (iii) ⇒ (i).

Remark that, by Theorem 6.7 and by the above theorem, if A,B are unital

C∗-algebras, then each real linear isometry of Ah onto Bh can be extended (by

complexification) to a complex linear isometry of A onto B.

The results of this section will also be extended for general C∗-algebras

(see 9.32) and a deep structure theorem for Jordan ∗-homomorphisms will be

given (see 9.31).

6.9. Proposition. Let Ψ be a linear mapping between C∗-algebras A,B.

Then Ψ is a ∗-homomorphism if and only if Ψ is a Jordan ∗-homomorphism and

a Schwartz map.

Proof. Let a ∈ Ah. If Ψ is a Jordan ∗-homomorphism, then Ψ(a2) = Ψ(a)2

and if Ψ is also a Schwartz map, this entails Ψ(ax) = Ψ(a)Ψ(x) for all x ∈ A, by

Proposition 5.10. This proves the sufficiency of the conditions and their necessity

is obvious.

Corollary. Every 2-positive Jordan ∗-homomorphism between C∗-algebras

is a ∗-homomorphism.

Proof. Use 5.9.(2).
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6.10. Let A,B be Banach spaces. A uniformly cross-norm on A⊗B is a norm
p on A ⊗B such that for every bounded linear mappings Φ : A 7→ A, Ψ : B 7→ B
the linear mapping Φ⊗Ψ : A⊗B 7→ A⊗B is p-bounded and

‖Φ⊗Ψ‖ = ‖Φ‖ ‖Ψ‖.

If A,B are C∗-algebras, then a C∗-norm on A⊗B is not necessarily uniformly
cross (compare with 2.11).

In fact if A and B are both unital, non-commutative and if there exists a
∗-antiisomorphism τ : B 7→ B, then no C∗-norm on A⊗B is uniformly cross.

Indeed, assume to the contrary that there exists a uniformly cross C∗-norm
p on A ⊗ B and denote by A ⊗p B the C∗-algebra completion of A ⊗ B. Let
ι : A 7→ A be the identity mapping. Since

‖ι‖ = ‖ι−1‖ = ‖τ‖ = ‖τ−1‖ = 1

and p is uniformly cross, it follows that the linear mappings ι⊗ τ and (ι⊗ τ)−1 =
ι−1 ⊗ τ−1 are p-bounded and

‖ι⊗ τ‖ = ‖(ι⊗ τ)−1‖ = 1.

Thus ι⊗ τ extends to a unit preserving linear isometry on the C∗-algebra A⊗pB.
By Corollary 6.8, ι⊗ τ is a Jordan ∗-isomorphism, in particular

(ι⊗ τ)(x2) = ((ι⊗ τ)(x))2 ; x ∈ A⊗B.

However, there exist a1, a2 ∈ A, b1, b2 ∈ B with a1a2 6= a2a1, b1b2 6= b2b1 and for

x = a1 ⊗ b1 + a2 ⊗ b2 ∈ A⊗B

we have
(ι⊗ τ)(x2) 6= ((ι⊗ τ)(x))2 ,

a contradiction.
At the same time, the above discussion shows that the tensor product of two

Jordan ∗-homomorphisms is not necessarily a Jordan ∗-homomorphism.
Moreover, we shall provide an example where ι⊗ τ is not ‖ · ‖C∗-bounded on

A⊗B.
Let H be a separable infinite dimensional Hilbert space with an orthonormal

basis {ξn}n=0,1,2,.... It is easy to check that for every x ∈ B(H) there exists a
unique τ(x) ∈ B(H) such that

(τ(x)ξi|ξj) = (xξj |ξi); i, j ∈ {0, 1, 2, . . .},

and the map τ : B(H) 7→ B(H) is a ∗-antiisomorphism. Let ι be the identity
mapping on B(H) and A = B = B(H).
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For k ∈ {1, 2, . . .} define vk ∈ B(H) by

vkξ = (ξ|ξ0)ξk; ξ ∈ H

and remark that

v∗kξ = (ξ|ξk)ξ0, (ξ ∈ H), and τ(v∗k) = vk.

Then xn =
n∑

k=1

vk ⊗ v∗k ∈ A ⊗ B, (ι ⊗ τ)(xn) =
n∑

k=1

vk ⊗ vk and, as easily

verified,
‖xn‖C∗ = ‖xn‖B(H⊗H) = 1

‖(ι⊗ τ)(xn)‖C∗ = ‖(ι⊗ τ)(xn)‖B(H⊗H) = n
1
2 ,

hence ι⊗ τ is not ‖ · ‖C∗-bounded.
Thus, the result expressed by Corollary 1/5.3 appears as a remarkable prop-

erty of completely positive linear mappings, especially because a similar result is
not true for very particular positive linear mappings.

6.11. Notes. The characterization of extreme points of the unit ball of an operator
algebra (6.1, 6.2) is due to R.V. Kadison [142]. The fact that the existence of extreme
points is equivalent to the existence of a unit element has been pointed out by S. Sakai
[267]. For the exposition in 6.1, 6.2 we used these sources and [242], 1.4.

The same characterization of extreme points (6.1) holds in every pre-C∗-algebra
([197]). Also, P.E. Miles [197] gives a detailed description of extreme points in concrete
operator algebras, as well as some applications to the type analysis of AW ∗-algebras.

The set EA =
{
x ∈ A; (1− x∗x)A(1− xx∗) = {0}

}
is considered by D. Yood [348]

for objects A which are not necessarily C∗-algebras. For instance, x ∈ EA ⇒ xn ∈ EA,
(n > 1), in any unital ∗-ring, x ∈ EA ⇒ r(x) > 1 in any unital Banach ∗-algebra, and
x ∈ EA ⇒ r(x) = 1 in C∗-algebras.

Let A be a Banach space. An element u ∈ A, ‖u‖ = 1, is called a vertex if
{f ∈ A∗; f(u) = 1 = ‖f‖} is a total subset of A∗. Any vertex is an extreme point of
the unit ball. An element u ∈ A, ‖u‖ = 1, is called a point of local uniform convexity if
lim
n

xn = lim
n

yn = u whenever xn, yn ∈ A, ‖xn‖ = ‖yn‖ = 1 and lim
n
(xn + yn) = 2u. The

use of numerical ranges ([32], p. 38) allows an easy proof of the following result: “the unit
element of any unital Banach algebra is a vertex and a point of local uniform convexity;
an element of a unital C∗-algebra is a vertex if and only if it is a unitary element” ([27],
[184]). Further results can be found in [10], [27], [126], [184], [197], [348], [359], [360],
[361].

Also the results concerning the relationship between linear isometries, order iso-
morphisms and Jordan isomorphisms (6.7, 6.8) are due to R.V. Kadison [142], [143]. The
proof of Theorem 6.7 completes the arguments from [143], Theorem 2. For the proof
of Theorem and Corollary 6.8, which is simpler than the original proof of R.V. Kadison
(because of the Russo-Dye theorem), we used [142], [143], [227], [231], [262] (see also
[196], [261]). Note that, in the commutative case, the results contained in 6.7, 6.8 give
several variants of the Banach-Stone theorem (see [81], V.8.8). In section 6.9 we included
some results from [42], [226]. The counterexamples given in 6.10 are from [218]. As we
already mentioned in the main text, the results from 6.7, 6.8 will be extended in 9.32
to arbitrary (not necessarily unital) operator algebras and further results and references
will be given in 9.31, 9.42.
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For the basic results concerning Jordan algebras and Jordan homomorphisms (6.2,
6.5, 6.6) we used [35], [58], [133], [141], [142], [145], [233], III, Section 4.

The remarkable equality {x ∈ A; ‖x‖ 6 1} = coU(A) from Theorem 6.3, as well as
its consequences (Corollary 1 and Corollary 2/6.3; Proposition 6.4) are due to B. Russo
and H.A. Dye [262]. The stronger result expressed by Theorem 6.3 is due to T.W. Palmer
[223] and the proof of Theorem 6.3 is that given by L.A. Harris [126]. As mentioned in
[33], p. 211, a more elementary proof of Theorem 6.3 on the same lines, can be obtained
via the standard approximation to the integral using nth roots of unity. The refined
form of the Russo-Dye theorem was an important tool in establishing the Vidav-Palmer
theorem (see 1.19). For further details and extensions to more general Banach ∗-algebras
we refer to [33], [126], [223], [224], [225], [226], [227], [253], [361].



Chapter 7

B(H)

As we have seen in Chapter 4, every C∗-algebra can be realized as a Gelfand-
Năımark algebra, i.e. as a norm closed ∗-algebra of bounded linear operators on a
complex Hilbert space. It is therefore natural to expect that the study of closures
of Gelfand-Năımark algebras with respect to topologies weaker then the norm
topology will be useful for the general theory of C∗-algebras. We are thus led to
the study of von Neumann algebras, which are Gelfand-Năımark algebras closed in
the weak operator topology. For this purpose, we begin with an examination of all
reasonable topologies on B(H). This is prepared by some general considerations.

7.1. Lemma. Let X be a complex vector space, 1 > ν < +∞, {pι}ι∈I be a

family of seminorms on X with the property

(1)
∑

ι∈I

pι(x) < +∞; x ∈ X

and ϕ be a linear functional on X with the property

(2) |ϕ(x)| 6
(∑

ι∈I

pι(x)
ν
) 1

ν

; x ∈ X.

Then there exists a family {ϕι}ι∈I of linear functionals on X such that

|ϕι(x)| 6 pι(x); ι ∈ I, x ∈ X(3)
∑

ι∈I

|ϕι(x)| 6
(∑

ι∈I

pι(x)
ν
) 1

ν

; x ∈ X(4)

ϕ(x) =
∑

ι∈I

ϕι(x); x ∈ X.(5)

Proof. Let X be a vector space of all families {xι}ι∈I with xι ∈ X such that∑
ι∈I

pι(xι)
ν < +∞ and define a seminorm p on X by

p({xι}ι∈I) =
(∑

ι∈I

pι(xι)
ν
) 1

ν

The set D of all {xι}ι∈I ∈ X with xι = xκ for all ι, κ ∈ I, is a vector subspace
of X and the mapping

ψ0 : D ∋ {xι}ι∈I 7→ ϕ(xι0); (ι0 ∈ I, arbitrary),
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is a linear functional on D. Using (2) and the Hahn-Banach theorem, we can
extend ψ0 to a linear functional ψ on X majorized by the seminorm p.

Define, for each ι ∈ I, a linear functional ϕι on X by ϕι(x) = ψ({xι}ι∈I),
where xι = x and xκ = 0 if κ 6= ι; x ∈ X .

It is clear that (3) holds. Let x ∈ X and, for each ι ∈ I, let αι ∈ C, |αι| = 1
such that |ϕι(x)| = αιϕι(x) = ϕι(αιx). Then

∑

ι

|ϕι(x)| =
∑

ι

ϕι(αιx) = ψ({αιx}ι) 6 p({αιx}ι) =
(∑

ι

pι(x)
ν
) 1

ν

.

This proves (4) and now (5) is imediate.

7.2. Let X be a complex Banach space, X∗ be its dual space and F be a
vector subspace of X∗. Then the F -topology on X is defined by the seminorms
pϕ, (ϕ ∈ F ) where

pϕ(x) = |ϕ(x)|; x ∈ X.

We denote by X1 the closed unit ball of X and by F the norm closure of F in X∗.

Proposition. Let X,F be as above and ϕ be a linear functional on X. Then

(i) ϕ ∈ F ⇔ ϕ is F -continuous;

(ii) ϕ ∈ F ⇔ the restriction of ϕ to X1 is F -continuous.

Proof. (i) If ϕ is F -continuous, then there exist non zero ψ1, . . . , ψn ∈ F
such that

|ϕ(x)| 6
n∑

j=1

pψj
(x); x ∈ X.

By Lemma 7.1 there are linear functionals ϕ1, . . . , ϕn on X such that ϕ =
n∑
j=1

ϕj and |ϕj(x)| 6 |ψj(x)|; x ∈ X , 1 6 j 6 n.

If xj ∈ X and ψj(xj) = 1, then for any x ∈ X ,

|ϕj(x− ψj(x)xj)| 6 |ψj(x− ψj(x)xj)| = 0

so ϕj = ϕj(xj)ψj ∈ F and ϕ =
n∑
j=1

ϕj ∈ F . The converse is trivial.

(ii) It is easy to check that the restriction of any ϕ ∈ F toX1 is F -continuous.
Conversely, assume that the restriction of ϕ toX1 is F -continuous. Then ϕ is norm
continuous, i.e. ϕ ∈ X∗. Let 0 < ε < 1. Since ϕ|X1 is F -continuous at 0, there
exist ψ1, . . . , ψn ∈ F such that

‖x‖ 6 1,

n∑

j=1

pψj(x) 6 1 ⇒ |ϕ(x)| 6 ε.
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Then
∣∣∣ϕ
((

‖x‖+
n∑
j=1

pψj(x)
)−1

x
)∣∣∣ 6 ε for all x ∈ X , thus

|ϕ(x)| 6 ε
(
‖x‖+

n∑

j=1

pψj(x)
)
6 ε‖x‖+

n∑

j=1

pψj
(x); x ∈ X.

Using Lemma 7.1 we find linear functionals ϕ1, ϕ2 on X such that

ϕ = ϕ1 + ϕ2

|ϕ1(x)| 6 ε‖x‖, (x ∈ X), and |ϕ2(x)| 6
n∑

j=1

pψj(x), (x ∈ X).

It follows that ϕ2 ∈ F and ‖ϕ− ϕ2‖ = ‖ϕ1‖ 6 ε. Since 0 < ε < 1 was arbitrary,
we obtain ϕ ∈ F .

In particular, if F is norm closed, then the linear functional ϕ on X is F -
continuous if and only if ϕ|X1 is F -continuous.

Corollary. Let X,F be as above. Then, on X1, the F -topology coincides

with the F -topology.

7.3. For symmetry reasons we introduce the following definition: a pair
(X,F ) is called a dual pair of normed (respectively Banach) spaces if X,F are
complex normed (respectively Banach) spaces and there exists a bilinear mapping

X × F ∋ (x, ϕ) 7→ 〈x, ϕ〉 ∈ C

such that
‖x‖ = sup{|〈x, ϕ〉|; ϕ ∈ F, ‖ϕ‖ 6 1}; x ∈ X

‖ϕ‖ = sup{|〈x, ϕ〉|; x ∈ X, ‖x‖ 6 1}; ϕ ∈ F.

In this case F can be identified to a norm closed vector subspace of X∗ such that
the pairing 〈 · , · 〉 is induced by the usual one between X and X∗. Moreover, the
F -topology on X is the Hausdorff. The following uniform boundedness result is
often useful.

Proposition. Let Y be a complex Banach space, (X,F ) be a dual pair of

Banach spaces and {Tι}ι∈I be a family in B(Y,X). Then the following statements

are equivalent:

(i) sup{‖Tι‖; ι ∈ I} < +∞;

(ii) sup{|〈Tι(y), ϕ〉|; ι ∈ I} < +∞ for all y ∈ Y , ϕ ∈ F.

Proof. Clearly (i) ⇒ (ii). Conversely assume that (ii) holds. Consider the
Banach space X = Y × F (‖(y, ϕ)‖ = max{‖y‖, ‖ϕ‖}, (y, ϕ) ∈ X ) and, for each
n ∈ N, define

Fn = {(y, ϕ) ∈ X ; |〈Tι(y), ϕ〉| 6 n for all ι ∈ I}
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Since X =
⋃
n
Fn, by the Baire property of X there is n0 ∈ N such that Fn0

has

non empty interior. Thus, there is (y0, ϕ0) ∈ X and ε > 0 such that, for every

y ∈ Y , ‖y‖ 6 1, every ϕ ∈ F , ‖ϕ‖ 6 1 and every α, β ∈ C with |α|, |β| 6 ε, we

have

(y0 + αy, ϕ0 + βϕ) ∈ Fn0

that is

|〈Tι(y0), ϕ0〉+ α〈Tι(y), ϕ0〉+ β〈Tι(y0), ϕ〉+ αβ〈Tι(y), ϕ〉| 6 n0

(ι ∈ I). Taking succesively α = β = 0, α = ε and β = 0, α = 0 and β = ε,

α = β = ε, we get |〈Tι(y0), ϕ0〉| 6 n0, ε|〈Tι(y), ϕ0〉| 6 2n0, ε|〈Tι(y0), ϕ〉| 6 2n0,

ε2|〈Tι(y), ϕ〉| 6 6n0. Thus for all ι ∈ I we have

‖Tι‖ = sup{|〈Tι(y), ϕ〉|; ‖y‖ 6 1, ‖ϕ‖ 6 1} 6 6n0/ε
2.

Corollary. Let Y be a complex Banach space, (X,F ) be a dual pair of

Banach spaces, Ω be an open subset of C and F : Ω → B(Y,X). Then the

following statements are equivalent:

(i) F is analitic for the norm topology on B(Y,X);

(ii) for all y ∈ Y , ϕ ∈ F the function Ω ∋ α 7→ 〈F (α)y, ϕ〉 ∈ C is analitic.

Proof. Let α ∈ Ω and V ⊂ Ω be a compact neighborhood of α. For β, γ ∈ V ,

α 6= β, β 6= γ, γ 6= α, define

G(α;β, γ) =
1

β − γ

[
1

β − α
(F (β)− F (α)) −

1

γ − α
(F (γ)− F (α))

]
.

If (ii) holds, then for each y ∈ Y , ϕ ∈ F , we have

sup{|〈G(α;β, γ)y, ϕ〉|; β, γ ∈ V, α 6= β, β 6= γ, γ 6= α} < +∞

using the above proposition we get

c = sup{‖G(α;β, γ)‖; β, γ ∈ V, α 6= β, β 6= γ, γ 6= α} < +∞

which means that

∥∥∥ 1

β − α
(F (β) − F (α))−

1

γ − α
(F (γ)− F (α))

∥∥∥ 6 c|β − γ|

for all β, γ ∈ V , α 6= β, β 6= γ, γ 6= α. It follows that F is norm derivable at α.

Thus (i) ⇒ (ii) and the converse is trivial.
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In particular, with Y = C, it follows that for every dual pair of Banach
spaces (X,F ) and every S ⊂ X we have

sup{‖x‖; x ∈ S} < +∞ ⇒ sup{|ϕ(x)|; x ∈ S} < +∞ for all ϕ ∈ F

and, for each open subset Ω of C, the analycity of a function F : Ω → X with
respect to norm topology is the same as the F -analycity.

7.4. The Krein-Shmulyan Theorem. Let (X,F ) be a dual pair of Banach
spaces. Assume that X1 is F -compact. Then each norm bounded F -closed part
of X is F -compact.

Define a locally convex topology τ on X by the seminorms

p{ϕn}(x) = sup
n

|〈x, ϕn〉|; x ∈ X,

where {ϕn} runs over all sequences in F with ‖ϕn‖ → 0

Lemma. Let (X,F ) be as above. If S is a subset of X such that S ∩ λX1 is
F -closed for all λ > 0 then S is τ-closed.

Proof. We have to show that for each x0 6∈ S there is a τ -neighborhood V
of 0 such that S ∩ (x0 + V ) = ∅. We may assume without loss that x0 = 0. Since
S ∩X1 is F -closed and 0 6∈ S ∩X1, there exists a finite set F0 ⊂ F such that

(S ∩X1) ∩ {x ∈ X ; |〈x, ϕ〉| 6 1 for all ϕ ∈ F0} = ∅.

Suppose that for some integer n > 1 there are mutually disjoint finite subsets
F0, . . . , Fn−1 of F such that ‖ϕ‖ 6 1/j whenever ϕ ∈ Fj , (1 6 j 6 n− 1) and

(S ∩ nX1) ∩
{
x ∈ X ; |〈x, ϕ〉| 6 1 for all ϕ ∈

n−1⋃

j=1

Fj

}
= ∅.

If for every finite subset F ′ of F \
n−1⋃
j=0

Fj with sup
{
‖ϕ‖; ϕ ∈ F ′

}
6

1

n , it

were

(1) (S ∩ (n+ 1)X1) ∩
{
x ∈ X ; |〈x, ϕ〉| 6 1 for all ϕ ∈

n−1⋃

j=0

Fj ∪ F
′
}
6= ∅

then by the F -compactness of (n+1)X1 it would exist xn+1 ∈ S ∩ (n+1)X1 such

that |〈xn+1, ϕ〉| 6 1 for all ϕ ∈
n−1⋃
j=0

Fj and for all ϕ ∈ F \
n−1⋃
j=0

Fj with ‖ϕ‖ 6
1

n .

This would imply ‖xn+1‖ 6 n so the existence of xn+1 would contradict (1).
Therefore, by induction we can find a sequence F0, F1, . . . , Fn, . . . of mutually

disjoint finite subsets of F such that sup{‖ϕ‖; ϕ ∈ Fn} 6 1

n and such that (1)
holds for all n > 1. Then

V =
{
x ∈ X ; |〈x, ϕ〉| < 1 for all ϕ ∈

∞⋃

n=0

Fn

}

is a τ -neighborhood of 0 and S ∩ V = ∅.
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Theorem. Let (X,F ) be a dual pair of Banach spaces such that X1 is F -
compact. If S is a convex subset of X such that S ∩λX1 is F -closed for all λ > 0,
then S is F -closed.

Proof. By the above lemma, S is τ -closed. Clearly, the τ -topology is stronger
than the F -topology. On the other hand, it is easy to see that the two topologies
coincide on X1. Using Proposition 7.2 it follows that every τ continuous linear
functional on X is also F -continuous. By a well known application of the Hahn-
Banach theorem we infer that the τ -closed convex set S is also F -closed.

7.5. We record a general compactness criterion which is often useful in prov-
ing that the closed unit ball of a Banach space is compact with respect to an
appropriate weak topology.

Proposition. Let Y,X be a complex vector space, F be a vector space of
linear functionals on X which separate the elements of X, {Sι}ι∈I be a family of

subsets of Y such that lin
( ⋃
ι∈I

Sι

)
= Y and {Rι}ι∈I be a family of F -compact

subsets of X. Then the set

L = {T ∈ L(Y,X); TSι ⊂ Rι for all ι ∈ I}

is compact with respect to the topology of pointwise F -convergence on L(Y,X).

Proof. For ι ∈ I and y ∈ Sι, let Rι,y = Rι endowed with the F -topology.
Then let Qι =

∏
y∈Sι

Rι,y and Q =
∏
ι∈I

Qι be endowed with the product topologies.

Then Q is compact and, as easily verified, the map

Φ : L ∋ T 7→ {{Ty}y∈Sι
}ι∈I ∈ Q

is a homeomorphism of L, endowed with the topology of pointwise F -convergence,
onto a subset Φ(L) of Q. Thus we have to prove that Φ(L) is closed.

Let {{xι,y}y∈Sι
}ι∈I ∈ Q be adherent to Φ(L). We have to show that xι,y =

T0(y) for some T0 ∈ L(X,Y ) and all y ∈ Sι, ι ∈ I. It is sufficient to prove that for
every family {λι,y}ι∈I, y∈Sι

⊂ C such that the set {(ι, y); ι ∈ I, y ∈ S, λι,y 6= 0} is
finite and

(1)
∑

ι∈I

∑

y∈Sι

λι,yy = 0

we have

(2)
∑

ι∈I

∑

y∈Sι

λι,yxι,y = 0.

Let ϕ ∈ f , ε > 0 and put λ =
∑
ι∈I

∑
y∈Sι

|λι,y|. By assumption there exists

T ∈ L(Y,X) such that |ϕ(xι,y − T (y))| < ε/λ whenever λι,y 6= 0 (ι ∈ I, y ∈ Sι).
Then, by (1),

∣∣∣ϕ
(∑

ι∈I

∑

y∈Sι

λι,yxι,y

)∣∣∣ =
∣∣∣
∑

ι∈I

∑

y∈Sι

λι,yϕ(xι,y − T (y))
∣∣∣ 6 ε

and (2) it follows.
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For instance, if X = C, I is a singleton, S = Y1 and R = {α ∈ C; |α| 6 1},
then it follows that (Y ∗)1 is Y -compact, i.e. the Alaoglu theorem.

7.6. Finally, we give a characterisation of those dual pairs (X,F ) of a Banach
spaces for which X1 is F -compact.

Theorem. Let X be a complex normed space and F be a vector subspace of

X∗. The following statements are equivalent:

(i) the map Φ : X → F ∗ defined by Φ(x)ϕ = ϕ(x), (x ∈ X, ϕ ∈ F ) is a linear

isometry of X onto F ∗;

(ii) F separates the elements of X and X1 is F -compact;

(iii) (X,F ) is a dual pair of normed spaces with respect to the natural pairing

and no norm closed vector subspace G of F , G 6= F separates the elements of X.

Proof. (i) ⇒ (ii) by Alaoglu’s theorem.
(ii) ⇒ (ii). By (ii), Φ is an injective contraction. Note that Φ is continuous

with respect to the F -topologies so, again by (ii), Φ(X1) is a convex F -compact
subset of (F ∗)1. If f ∈ (F ∗)1 \ Φ(X1), then by the Hahn-Banach theorem there
exist ϕ ∈ F , c ∈ R and ε > 0 such that Re f(ϕ) > c + ε and Reϕ(x) 6 c for all
x ∈ X1. Since X1 is circled, the second inequality entails c > 0 and ‖ϕ‖ 6 c, in
contradiction with the first inequality. Consequently, Φ(X1) = (F ∗)1 and so Φ is
an isometry of X onto F ∗.

(i) ⇒ (iii) by a simple application of the Hahn-Banach theorem.
(iii) ⇒ (i). Let 0 6= f ∈ F ∗. Since KerF is a proper norm closed vector

subspace of F , (iii) shows that Ker f does not separate the elements of X so there
is 0 6= x ∈ X such that Φ(x)ϕ = ϕ(x) = 0 whenever ϕ ∈ F and f(ϕ) = 0. It
follows that f = αΦ(x) for some α ∈ C, thus f ∈ Φ(X). Hence Φ is surjective
and, again by (iii), Φ is isometric.

Roughly speaking, for a dual pair (X,F ) of Banach spaces the following
conditions are equivalent: (i) X = F ∗, (ii) X1 is F -compact, (iii) F is “minimal
separating”.

7.7. Now let H be a complex Hilbert space. Besides the norm topology, the
following topologies are usually considered on B(H): the weak-operator topology

or wo-topology, defined by the seminorms

B(H) ∋ x 7→ |(xξ|η)|; ξ, η ∈ H ;

the strong-operator topology or so-topology defined by the seminorms

B(H) ∋ x 7→ ‖xξ‖; ξ ∈ H ;

the so∗-topology, defined by the seminorms

B(H) ∋ x 7→ ‖xξ‖+ ‖x∗ξ‖; ξ ∈ H.
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For ξ, η ∈ H let ωξ,η denote the linear functional on B(H) defined by

ωξ,η(x) = (xξ|η); x ∈ B(H).

We have already considered the functionals ωξ = ωξ,ξ, (ξ ∈ H).
Clearly, the wo-topology is the weak topology on B(H) defined by the func-

tionals ωξ,η, (ξ, η ∈ H). Also, the wo-topology is weaker than the so-topology and
the so-topology is weaker than the so∗-topology:

wo ≺ so ≺ so∗.

Theorem. A linear functional ϕ on B(H) is wo-continuous if and only if
it is so∗-continuous.

Proof. If ϕ is so∗-continuous, then

|ϕ(x)| 6
n∑

j=1

(‖xξj‖+ ‖x∗ξj‖); x ∈ B(H)

for some non zero vectors ξ1, . . . , ξn ∈ H . By Lemma 7.1 there exist linear func-
tionals ϕ1, . . . , ϕn, ψ1, . . . , ψn on B(H) such that

(1) ϕ =

n∑

j=1

ϕj +

n∑

j=1

ψj ,

|ϕj(x)| 6 ‖xξj‖ and |ψj(x)| 6 ‖x∗ξj‖ for all x ∈ B(H), 1 6 j 6 n.

For each j, the map H = B(H)ξj ∋ xξj 7→ ϕj(x) ∈ C is a well defined bounded
linear functional on H , hence there exists ηj ∈ H such that

ϕj(x) = (xξj |ηj) = ωξj ,ηj (x); x ∈ B(H).

Similarly, for each j there exists ζj ∈ H such that

ψj(x) = x(xζj |ξj) = ωζj ,ξj (x); x ∈ B(H).

By (1) it follows that ϕ is wo-continuous.
The converse is clear because wo ≺ so∗.

Let τwo denote the Mackey topology on B(H) associated to the wo-topology.
The above theorem shows that:

wo ≺ so ≺ so∗ ≺ τwo.

In particular, the closures of a convex subset of B(H) are the same in all these
topologies.

7.8. Owing to 7.2 we are led to consider the norm closure B(H)∗ of the vector
space of all wo-continuous linear functionals in B(H) and to define the w-topology
on B(H) by the seminorms

B(H) ∋ x 7→ |ϕ(x)|; ϕ ∈ B(H)∗.

Clearly, wo ≺ w.
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Lemma 1. B(H)1 is w-compact.

Proof. The wo-topology on B(H) is the topology of pointwise weak conver-
gence and, by Alaoglu’s theorem, H1 is weakly compact. Thus applying Propo-
sition 7.5 with Y = H , X = H , F = H∗, I a singleton, S = H1 and R = H1,
it follows that B(H)1 is wo-compact. But, by Corollary 7.2, on B(H)1 the w-
topology coincides with the wo-topology, hence B(H)1 is w-compact.

Lemma 2. For every ϕ ∈ B(H)∗ there exist ψ ∈ B(H)∗, ψ > 0, and a, b ∈
B(H)1 such that ϕ = ψ(a · b) and ψ = ϕ(a∗ · b∗).

Proof. Since B(H)1 is w-compact (Lemma 1), the set {u ∈ B(H)1; ϕ(u) =
‖ϕ‖} is non void, w-compact and convex. By the Krein-Milman theorem it con-
tains an extreme point v which, as easily verified, is also an extreme point of
B(H)1. By Theorem 6.1 we have (1 − vv∗)B(H)(1 − v∗v) = {0}. Since for every
ξ, η ∈ H there exists x ∈ B(H) with xξ = η, it follows that either vv∗ = 1 or
v∗v = 1.

Suppose that vv∗ = 1 and denote ψ = ϕ(v ·), a = v∗, b = 1. Then ψ(1) =
ϕ(v) = ‖ϕ‖ > ‖ψ‖, hence ‖ψ‖ = ‖ψ(1)‖ and, by Proposition 4.6, ψ > 0. For
every x ∈ B(H) we have ψ(x) = ϕ(vx) = ϕ(a∗xb∗) and ϕ(x) = ϕ(vv∗x) =
ψ(v∗x) = ψ(axb), which proves the lemma in this case. If v∗v = 1, then we can
take ψ = ϕ(· v), a = 1, b = v∗, and a similar argument works.

As easily verified, the so-topology is defined by the seminorm

B(H) ∋ x 7→ ψ(x∗x)
1
2 ; ψ wo -continuous, ψ > 0

and the so∗-topology is defined by the seminorms

B(H) ∋ x 7→ ψ(x∗x)
1
2 + ψ(xx∗)

1
2 ; ψ wo -continuous, ψ > 0.

It is therefore natural to consider, on B(H),
the s-topology, defined by the seminorms

B(H) ∋ x 7→ ϕ(x∗x)
1
2 ; ϕ ∈ B(H)∗, ϕ > 0

the s∗-topology, defined by the seminorms

B(H) ∋ x 7→ ϕ(x∗x)
1
2 + ϕ(xx∗)

1
2 ; ϕ ∈ B(H)∗, ϕ > 0.

Clearly,
so ≺ s, so∗ ≺ s∗.

On the other hand, let ϕ ∈ B(H)∗ and let ψ, a, b be as in Lemma 2. Then by the
Schwartz inequality, for each x ∈ B(H) we get

|ϕ(x)| = |ψ(axb)| 6 ψ(aa∗)
1
2ψ(b∗x∗xb)

1
2 = ψ(aa∗)

1
2 [ψ(b∗ · b)](x∗x)

1
2
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and consequently

w ≺ s ≺ s∗.

Theorem. A linear functional ϕ on B(H) is w-continuous if and only if it

is s∗-continuous.

Proof. If ϕ is s∗-continuous, then

|ϕ(x)| 6 [ρ(x∗x) + ρ(xx∗)]
1
2 ; x ∈ B(H)

for some ρ ∈ B(H)∗, ρ > 0. By the definition of B(H)∗, there is a sequence {ρn}

of wo-continuous linear functionals on B(H)1 such that
∞∑
n=1

‖ρn‖ < +∞ and

ρ(x) =

∞∑

n=1

ρn(x); x ∈ B(H).

By Lemma 2, for each n there exist θn ∈ B(H)∗, θn > 0, and an, bn ∈ B(H)1
such that ρn = θn(an · bn) and θn = ρn(a

∗
n · b∗n). Then θn are wo-continuous,

∞∑
n=1

‖θn‖ 6
∞∑
n=1

‖ρn‖ < +∞ and, for every x ∈ B(H) we have

|ϕ(x)| 6 [ρ(x∗x) + ρ(xx∗)]
1
2 =

[∑

n

θn(anx
∗xbn) +

∑

n

θn(anxx
∗bn)

] 1
2

6

[∑

n

θn(anx
∗xa∗n)

1
2 θn(b

∗
nx

∗xbn)
1
2 +

∑

n

θn(anxx
∗a∗n)

1
2 θn(b

∗
nxx

∗bn)
1
2

] 1
2

6

[(∑

n

θn(anx
∗xa∗n) + θn(anxx

∗a∗n)
) 1

2

·

·
(∑

n

θn(b
∗
nx

∗xbn) + θn(b
∗
nxx

∗bn)
) 1

2
] 1

2

6 2−1
[(∑

n

θn(an(x
∗x+ xx∗)a∗n)

) 1
2

+
(∑

n

θn(b
∗
n(x

∗x+ xx∗)bn)
) 1

2
]

6

[∑

n

θn(an(x
∗x+ xx∗)a∗n) +

∑

n

θn(b
∗
n(x

∗x+ xx∗)bn)
] 1

2

.

For each n ∈ N, ψn = θn(an · a∗n) + θn(b
∗
n · bn) is wo-continuous, positive,

∞∑
n=1

‖ψn‖ < +∞ and, by the above computation,

|ϕ(x)| 6
[ ∞∑

n=1

ψn(x
∗x+ xx∗)

] 1
2

; x ∈ B(H).
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Applying Lemma 7.1 with ν = 2 we get a sequence ϕn of linear functionals on
B(H) such that

|ϕn(x)| 6 ψn(x
∗x+ xx∗)

1
2 ; x ∈ B(H), n ∈ N,

∞∑
n=1

|ϕn(x)| 6
[ ∞∑
n=1

ψn(x
∗x+ xx∗)

] 1
2

; x ∈ B(H),

ϕ(x) =
∞∑
n=1

ϕn(x); x ∈ B(H).

Then each ϕn is so∗-continuous, hence wo-continuous (Theorem 7.7), ‖ϕn‖ 6

2
1
2 ‖ψn‖, thus

∞∑
n=1

‖ϕn‖ < +∞ and ϕ =
∞∑
n=1

ϕn is w-continuous.

The converse is clear because w ≺ s∗.

Let τw denote the Mackey topology on B(H) associated to the w-topology.
The above theorem shows that

w ≺ s ≺ s∗ ≺ τw.

In particular, the closures of a convex subset of B(H) are the same in all these
topologies.

By Corollary 7.2, on norm bounded subsets of B(H), the w-topology coin-
cides with the wo-topology. It follows that, on norm bounded sets, the s-topology
(respectively the s∗-topology) coincides with the so-topology (respectively the so∗-
topology).

On the other hand, by Proposition 7.2 and Theorem 7.4, the w-continuity
of linear functionals and the w-closedness of convex sets may be verified just on
bounded parts of B(H).

Using Lemma 1, it is easy to check that B(H)1 is complete relative to the
uniform structure associated to the s = so (respectively s∗ = so∗)-topology.

Let H be a separable complex Hilbert space and {ξn} be a norm-dense se-
quence of non-zero vectors in H . Then the topologies w and wo on B(H)1 are
defined by the metric

(x, y) 7→
∞∑

j,k=1

(2j+k‖ξj‖ ‖ξk‖)
−1|((x − y)ξj |ξk)|

hence B(H)1 is metrizable in this topology. The topologies so and s on B(H)1
are defined by the metric

(x, y) 7→
∞∑

j=1

(2j‖ξj‖)
−1‖(x− y)ξj‖

hence B(H)1 is metrizable also in this topology. Similarly, B(H)1 is metrizable in
the topologies so∗ and s∗. Note that all these metrics are complete.
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7.9. We record the following relation between the above topologies and the
algebraic operations in B(H)

(1) for each a ∈ B(H), the mapings

B(H) ∋ x 7→ ax ∈ B(H) and B(H) ∋ x 7→ xa ∈ B(H)

are continuous with respect to the topologies wo, so, so∗, w, s, s∗;
(2) the mappings

B(H)1 ×B(H) ∋ (x, y) 7→ xy ∈ B(H)

and
B(H)1 ×B(H)1 ∋ (x, y) 7→ xy ∈ B(H)

are continuous with respect to the topologies so, s, respectively so∗, s∗;
(3) the ∗-operation

B(H) ∋ x 7→ x∗ ∈ B(H)

is continuous with respect to the topologies wo, so∗, w, s∗.
Let H be an infinite dimensional complex Hilbert space, {ξn} be an orthonor-

mal sequence in H and {vn} ⊂ B(H), be defined by

vn(ξ) = (ξ|ξn)ξ1; ξ ∈ H, n ∈ N

then ‖vn‖ = 1, vn
so
−→ 0, hence vn

s
−→ 0, and v∗nξ1 = ξn, vnv

∗
nξ1 = ξ1. By (1),

vn
w

−→ 0, but (vnv
∗
nξ1|ξ1) = ‖v∗nξ1‖ = 1 for all n ∈ N. It follows that the mapping

B(H)1 ×B(H)1 ∋ (x, y) 7→ xy ∈ B(H)1

is not w (or wo)-continuous and also that the ∗-operation is not continuous with
respect to the topologies s and so.

A remarkable connection between topologies and algebraic operations in
B(H) is the following result:

Theorem (Kaplansky density theorem). Let A be a ∗-subalgebra of B(H)
and x ∈ B(H). If x is wo-adherent to A, then there exists a net {xι}ι∈I in A such

that ‖xι‖ 6 ‖x‖ (ι ∈ I), and xι
s∗
7−→ x. If moreover x is selfadjoint (respectively

positive), then the xι can be chosen also selfadjoint (respectively positive).

Proof. The norm closure B of A is a C∗-subalgebra of the wo-closureM of A
and we have to show that B1 is s

∗-dense inM1. By Theorem 7.8 and Corollary 7.2,
it suffices to show that B1 is wo-dense in M1. Moreover, by Lemma 1/7.8, M1

is wo-compact so, by the Krein-Milman theorem, it suffices to prove that every
extreme point v 6= 0 of M1 is wo-adherent to B1.

By 7.7 v is so∗-adherent to B, hence there exists a net {bι}ι∈I in B such that

bι
so∗
−→ v. Then

2bι(1 + b∗ι bι)
−1 wo

−→ 2v(1 + v∗v)−1.
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Indeed, for any ξ, η ∈ H ,

|([bι(1 + b∗ι bι)
−1 − v(1 + v∗v)−1]ξ|η)|

6 |((bι − v)(1 + b∗ι bι)
−1ξ|η)|+ |(v[(1 + b∗ι bι)

−1 − (1 + v∗v)−1]ξ|η)|

= |((1 + b∗ι bι)
−1ξ|(b∗ι − v∗)η)|

+ |((1 + b∗ι bι)
−1(v∗v − b∗ι bι)(1 + v∗v)−1ξ|v∗η)|

6 |((1 + b∗ι bι)
−1ξ|(b∗ι − v∗)η)|

+ |((1 + b∗ι bι)
−1(v∗ − b∗ι )v(1 + v∗v)−1ξ|v∗η)|

+ |((1 + b∗ι b1)
−1b∗ι (v − bι)(1 + v∗v)−1ξ|v∗η)|

6 ‖(1 + b∗ι bι)
−1‖ ‖ξ‖ ‖(b∗ι − v∗)η‖

+ ‖(1 + b∗ι bι)
−1‖ ‖(v∗ − b∗ι )v(1 + v∗v)−1ξ‖ ‖v∗‖ ‖η‖

+ ‖(1 + b∗ι bι)
−1b∗ι ‖ ‖(v − bι)(1 + v∗v)−1ξ‖ ‖v∗‖ ‖η‖

6 ‖ξ‖ ‖(b∗ι − v∗)η‖

+ ‖η‖ ‖(v∗ − b∗ι )v(1 + v∗v)−1ξ‖

+ 2−1‖η‖ ‖(v − bι)(1 + v∗v)−1ξ‖.

As 2bι(1 + b∗ι bι)
−1 ∈ B1, we see that 2v(1 + v∗v)−1 is wo-adherent to B1.

Since v = 2−1[2v(1+v∗v)−1]+2−1[2v−2v(1+v∗v)−1] and 2v(1+v∗v)−1 ∈M1,
2v − 2v(1 + v∗v)−1 ∈ M1, we have v = 2v(1 + v∗v)−1 by the extremality of v in
M1. Thus v is wo-adherent to B1.

If x is selfadjoint, then replacing xι by 2−1(xι+x∗ι ) we may assume that the
xι’s are selfadjoint.

If x is positive, then x = y∗y for some y ∈M and by the above there exists

a net {yι} in A with ‖yι‖ 6 ‖y‖ and yι
s∗
−→ y. Then

xι = y∗ι yι ∈ A, xι > 0, ‖xι‖ 6 ‖x‖ and xι
s∗
−→ x.

If H is separable, then nets can be replaced by sequences in the statement of
the theorem because of the so∗-metrizability of bounded subsets in B(H) (see 7.8).

7.10. An essential step in proving the Kaplansky density theorem (7.9) was
the continuity of the mapping x 7→ x(1 + x∗x)−1 from B(H) with so∗-topology
to B(H) with wo-topology. The restriction of the above map to normal operators
has stronger continuity properties and this will be extended in this section.

Let Ω ⊂ C and f : Ω → C be continuous. We say that f is operator

continuous if for every Hilbert space H the mapping

{x ∈ B(H); x normal, σ(x) ⊂ Ω} ∋ x 7→ f(x) ∋ B(H)

is so-continuous and also s-continuous.
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Lemma 1. The functions C ∋ λ 7→ λ, C ∋ λ 7→ λ and C ∋ λ 7→ (1 + |λ|2)−1

are operator continuous.

Proof. Let H be a Hilbert space and x, y ∈ B(H) be normal. Then for any
positive form ϕ on B(H) we have

ϕ((x − y)(x− y∗)) = ϕ(y∗y)− ϕ(x∗x) + ϕ((x− y)x∗) + ϕ((x − y)x∗)

6 (ϕ(y∗y)
1
2 + ϕ(x∗x)

1
2 )(ϕ(y∗y)

1
2 − ϕ(x∗x)

1
2 )

+ 2ϕ(1)
1
2ϕ(x(x − y)∗(x− y)x∗)

1
2

6 (ϕ(y∗y)
1
2 + ϕ(x∗x)

1
2 )ϕ((y − x)∗(y − x))

1
2

+ 2ϕ(1)
1
2 [ϕ(x · x∗)]((x − y)∗(x− y))

1
2

and

ϕ([(1 + x∗x)−1 − (1 + y∗y)−1]2)

= ϕ((1 + x∗x)−1[(y − x)∗y + x∗(y − x)](1 + y∗y)−2[y∗(y − x)

+ (y − x)∗x](1 + x∗x)−1)

6 [ϕ((1 + x∗x)−1 · (1 + x∗x)−1]((y − x)∗(y − x))

+ 2[ϕ(1 + x∗x)−1 · (1 + x∗x)−1]((y − x)∗(y − x))
1
2

× [ϕ((1 + x∗x)−1x∗ · x(1 + x∗x)−1]((y − x)(y − x)∗)
1
2

+ [ϕ((1 + x∗x)−1x∗ · x(1 + x∗x)−1]((y − x)(y − x)∗).

By the first set of inequalities, λ 7→ λ is operator continuous. Using this fact and
the second set of inequalities it is easy to check that also λ 7→ (1 + |λ|2)−1 is
operator continuous.

By Lemma 1, on the set {x ∈ B(H); x normal} the so-topology coincides
with the so∗-topology and the s-topology coincides with the s∗-topology.

Lemma 2. Every continuous function f : C → C with

sup{|f(λ)|(1 + |λ|)−1; λ ∈ C} < +∞

is operator continuous.

Proof. Denote by C the set of all operator continuous functions on C and by
Cb the set of all bounded functions in C. Using Lemma 1, it easy to verify that C
is a uniformly closed selfadjoint vector subspace of the ∗-algebra of all continuous
complex functions on C and that CbC ⊂ C. Hence Cb is a uniformly closed ∗-
subalgebra and, again by Lemma 1, it contains the functions λ 7→ (1+ |λ|2)−1 and
λ 7→ λ(1 + |λ|2)−1. By the Stone-Weierstrass theorem we infer that Cb ⊃ C0(C).

Now let f be as in the statement. Then λ 7→ f(λ)(1 + |λ|2)−1 belongs
to C0(C) ⊂ Cb. Since, by Lemma 1, λ 7→ λ belongs to C, the function λ 7→
f(λ)(1+ |λ|2)−1λ belongs to C. Actually, this function is in Cb, so its product with
λ 7→ λ, that is the function λ 7→ f(λ)(1 + |λ|2)−1|λ|2 is again in C. Consequently,
the function

λ 7→ f(λ) = f(λ)(1 + |λ|2)−1 + f(λ)(1 + |λ|2)−1|λ|2

belongs to C.
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We now prove the main result of this section (compare with 1.18.(4))

Theorem. Let Ω ⊂ C be such that (Ω \ Ω) ∩ Ω = ∅ and let f : Ω → C be a

continuous function such that

sup{|f(λ)|(1 + |λ|)−1;λ ∈ Ω} < +∞.

Then f is operator continuous.

Proof. Let H be a Hilbert space and x, y ∈ B(H) be normal operators such
that σ(x), σ(y) ⊂ Ω.

Since (Ω \ Ω) ∩ Ω = ∅, there exists a compact neighborhood N of σ(x) such

that (Ω \ Ω)∩N = ∅. Then Ω∩N = Ω∩N , hence Ω is closed in Ω∪N and, by the
Tietze-Urysohn extension theorem, f can be extended to a continuous function g
on Ω ∪ N . Let h : C → C be a continuous function such that supph ⊂ N and
h(λ) = 1 for λ ∈ σ(x). We obtain a continuous function with compact support
k : C → C by putting

k(λ) = g(λ)h(λ) for λ ∈ Ω ∪N, k(λ) = 0 for λ 6∈ Ω ∪N.

Consider also the functions l : C → C, F : Ω → C defined by

l(λ) = (1 + |λ|)(1 − h(λ)), F (λ) = f(λ)(1 + |λ|)−1.

By construction, l(x) = 0 and, by assumption, there exists some µ0 ∈ (0,+∞)
such that |F (λ)| 6 µ0 for all λ ∈ Ω. Since

f(λ) = f(λ)h(λ) + f(λ)(1 − h(λ)) = k(λ) + F (λ)l(λ), λ ∈ Ω,

it follows that

f(x)− f(y) = [k(x) − k(y)] + F (y)[l(x)− l(y)].

If y
so
−→ x, then k(y)

so
−→ k(x) and l(y)

so
−→ l(x) = 0 by Lemma 2, while ‖F (y)‖ re-

mains bounded by µ0, so that from the above equality we infer that f(y)
so
−→ f(x).

The same argument applies for the s-topology. Hence f is operator continuous.

7.11. By Theorem 7.9, if A is a ∗-subalgebra of B(H), then the closures of
A with respect to the topologies wo, so, so∗, w, s and s∗ are all equal and moreover
they are equal to the cone with vertex 0 generated by the closures of A1 in any
one of the topologies wo, so, so∗, w, s, s∗.

Clearly, the wo-closure of A is a C∗-subalgebra of B(H). We shall say that
A is non degenerated if the identity representation A ∋ x 7→ x ∈ B(H) is non
degenerated, i.e. if linAH is dense in H .
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Lemma. The wo-closure of a ∗-subalgebra A of B(H) has a unit element
e which is a projection in B(H). Moreover, e = 1H if and only if A is non
degenerated.

Proof. Let M be the wo-closure of A. By Lemma 1/7.8, M1 is wo-compact,
thusM1 contains an extreme point and so,M has a unit element e by Theorem 6.1.

If e = 1H , then there is a net {xι} in A, xι
so
−→ 1H , so that ξ = lim

ι
xιξ

for each ξ ∈ H , which shows that A is non degenerated. Conversely, if A is
non degenerated, then eH contains the dense subspace eAH = AH of H , hence
eH = H and e = 1H .

For an arbitrary subset S of B(H), its commutant S′ is defined by

S′ = {x′ ∈ B(H); x′x = xx′ for all x ∈ S}

and its bicommutant S′′ is (S′)′. By induction, the (n + 1)-commutant of S can
be defined as the commutant of the n-commutant of S. Since clearly (S′)′′ = S′,
it follows that:

the (2n− 1)-commutant of S = S′, n > 1;
the 2n-commutant of S = S′′, n > 1.

Hence the only non trivial problem concerning commutants is the relation
between S and S′′. We always have S ⊂ S′′. Moreover, S′′ is wo-closed and
contains 1H .

The following theorem is the fundamental result in the spatial theory of
operator algebras.

Theorem (von Neumann density theorem). Let A be a non degenerate ∗-
subalgebra of B(H). Then the wo-closure of A is A′′.

Proof. Let x ∈ A′′, ξ1, . . . , ξn ∈ H and ε > 0 be arbitrary.
Consider B(H(n)) = Mn(B(H)) (see 4.19) and, for each y ∈ B(H), denote

Diag(y) = [yij ] ∈ Mn(B(H)), where yij = δijy (Delta Kronecker, 1 6 i, j 6 n).

It is easy to see that Diag(A)′ ⊂ B(H(n)) consists of all matrices [yij ] with yij ∈
A′ ⊂ B(H) for all 1 6 i, j 6 n. Hence Diag(A′′) ⊂ Diag(A)′′. In particular,

Diag(x) ∈ Diag(A)′′.

Let ξ = [ξk] ∈ H(n) and denote by p ∈ B(H(n)) the orthogonal projection onto

Diag(A)ξ. As easily verified, p ∈ Diag(A)′, hence

Diag(x) p = pDiag(x).

On the other hand, A being non degenerated, 1H is wo-adherent to A, by the
above lemma. It follows that ξ ∈ Diag(A)ξ, i.e. pξ = ξ. Consequently,

Diag(x)ξ = Diag(x)pξ = p(Diag(x)ξ) ∈ pH(n) = Diag(A)ξ

and therefore there exists a ∈ A such that

‖Diag(x)ξ −Diag(a)ξ‖ 6 ε

hence
‖(x− a)ξk‖ 6 ε; 1 6 k 6 n.

This proves that A′′ is contained in the wo-closure of A. The converse inclusion
is trivial.
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Let M be a non degenerate ∗-subalgebra of B(H). As we have noted at the
begining of this section, the following conditions are equivalent:

1) M is wo-closed; 2) M is so-closed; 3) M is so∗-closed;
4) M is w-closed; 5) M is s-closed; 6) M is s∗-closed.

By Corollary 7.2, Theorem 7.7, Theorem 7.8 and Theorem 7.4, the above
conditions are also equivalent to any of the following ones:

7) M1 is wo-closed; 8) M1 is so-closed; 9) M1 is so∗-closed;
10) M1 is w-closed; 11) M1 is s-closed; 12) M1 is s∗-closed.

Finally, by the von Neumann density theorem, all above conditions are equiv-
alent to

13) M =M ′′

Note that conditions 4) to 12) are still equivalent for any convex subcone M
of B(H) with vertex 0.

By definition, a von Neumann algebra is non degenerate ∗-subalgebra M of
B(H) which satisfies the above equivalent conditions.

Note that a von Neumann algebra M ⊂ B(H) always contains the identity
operator 1H .

If M ⊂ B(H) is a von Neumann algebra, then its commutant M ′ is also a
von Neumann algebra.

For any S ⊂ B(H) we denote by R(S) the von Neumann algebra generated
by S, that is the wo-closed ∗-subalgebra of B(H) generated by S and 1H . If
S = S∗, then R(S) = S′′.

By Corollary 1/2.8 and by the von Neumann density theorem, we have the
following result:

Corollary. Let M ⊂ B(H) be a von Neumann algebra and x ∈ B(H).
Then

x ∈M ⇔ u∗xu = x for all unitaries u ∈M ′.

In particular, a projection e ∈ B(H) belongs to M if and only if ueH ⊂ eH
for all unitaries u ∈M ′.

Let M ⊂ B(H) be a von Neumann algebra and ξ ∈ H . Then we define the
cyclic projections

pξ = pMξ = the orthogonal projection onto M ′ξ

p′ξ = pM
′

ξ = the orthogonal projection onto Mξ.

By the above criterion we have pMξ ∈M , pM
′

ξ ∈M ′.

A vector ξ ∈ H is called cyclic (respectively separating) for M if p′ξ = 1H
(respectively pξ = 1H). More generally, a set S ⊂ H is called cyclic (respectively
separating) for M if the closure of linMS (respectively linM ′S) is H . It is easy
to see that S ⊂ H is separating for M if and only if

x ∈M, xξ = 0 for all ξ ∈ S ⇒ x = 0
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and this justifies the name “separating”. Finally, a vector ξ ∈ H is called bicyclic

if it is simultaneously cyclic and separating for M , that is if Mξ =M ′ξ = H.
Finally, note that if Mι ⊂ B(H), (ι ∈ I), are von Neumann algebras, then

M =
⋂
ι∈I

Mι ⊂ B(H) is also a von Neumann algebra and

R
(⋃

ι∈I

M ′
)′

=
⋂

ι∈I

M ′′
ι =

⋂

ι∈I

Mι =M

hence M ′ = R
( ⋃
ι∈I

M ′
ι

)
.

After having settled the main problems concerning the natural topologies
on B(H), we now examine the “geometry” of elements in B(H). Many problems
in operator algebras are succesively reduced from general operators to selfadjoint
operators and then to projections. The main tools used in doing so are the polar
decomposition for operators and the spectral theorem.

7.12. Let H be a complex Hilbert space and x ∈ B(H). Put

l(x) = the orthogonal projection onto xH ;

r(x) = the orthogonal projection onto (Kerx)⊥.

It is easy to see that

(1) r(x) = l(x∗).

Also, l(x) (respectively r(x)) is the smallest projection e in B(H) such that ex = x
(respectively xe = e). We say that l(x) is the left support of x and r(x) is the right
support of x.

If x is selfadjoint, then we denote s(x) = l(x) = r(x) and call it simply the
support of x. Note that

(2) l(x) = s(xx∗), r(x) = s(x∗x); x ∈ B(H)

thus for x normal we still can denote s(x) = l(x) = r(x) and call it the support

of x.
If x is positive, then s(xε) = s(x) for all ε > 0.
If x = v is a partial isometry, then

(3) l(v) = vv∗, r(v) = v∗v.

Theorem (Polar decomposition for operators). For every x ∈ B(H) there

exist a positive operator a ∈ B(H) and a partial isometry v ∈ B(H), uniquely

determined such that

(4) x = va and v∗v = s(a).
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Moreover, a = |x|.

Proof. Let a = |x| = (x∗x)
1
2 for every ξ ∈ H we have

‖xξ‖2 = (x∗xξ|ξ) = (a2ξ|ξ) = ‖aξ‖.

Therefore, putting v0(aξ) = xξ, (ξ ∈ H), we obtain a linear operator v0 :
aH → H which can be uniquely extended to an isometry, again denoted by v0, of
aH = s(a)H into H . Furthermore, there is a unique partial isometry v ∈ B(H)
such that v|s(a)H = v0 and v|(s(a)H)⊥ = 0. Then a and v satisfy (4).

If a and v satisfy (4), then x∗x = av∗va = as(a)a = a2, hence a = |x|, and v
acts necessarily as described above.

The relations

(5) x = v|x|, v∗v = s(|x|)

are called the polar decomposition of x. As easily verified,

x∗ = v∗(v|x|v∗), (v∗)∗v∗ = s(v|x|v∗)

is the polar decomposition of x∗. Thus |x∗| = v|x|v∗ and

(6) x = |x∗|v, vv∗ = s(|x∗|).

Also, note that

(7) l(x) = s(|x∗|) = vv∗, r(x) = s(|x|) = v∗v.

If x ∈ B(H) is selfadjoint with polar decomposition (5), then

(8) |x| = x+ − x− and v = s(x+)− s(x−)

in particular v = v∗. Note that s(x+)s(x−) = 0.
Now let x ∈ B(H) and letM ⊂ B(H) be a von Neumann algebra containing

x, for instanceM = R({x}). For every unitary element u ∈M ′ we have u∗xu = x,
which entails (u∗l(x)u)x = x, hence u∗l(x)u > l(x) and finally, replacing u by u∗,
we get u∗l(x)u = l(x). By Corollary 7.11 we infer that

l(x) ∈M and r(x) = l(x∗) ∈M.

Concerning the polar decomposition (5), we have |x| = (x∗x)
1
2 ∈M and for

every unitary u ∈M ′ we obtain u∗xu = x, u∗|x|u = |x|, u∗s(|x|)u = s(|x|), hence

x = (u∗vu)|x|, (u∗vu)∗(u∗vu) = s(|x|)

so that v = u∗vu by the uniqueness of the polar decomposition. Therefore v ∈M ,
again by Corollary 7.11.

Thus, the supports of x and the terms of the polar decomposition of x belong
to the same von Neumann algebras as x does.

7.13. Using the same method as for the polar decomposition, we obtain
another factorization result (compare with Proposition 3.4).
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Proposition. If x, x1, . . . , xn ∈ B(H) and x∗x = x∗1x1 + · · · + x∗nxn, then
there are z1, . . . , zn ∈ R({x, x1, . . . , xn}) such that

z∗1z1 + · · ·+ z∗nzn = s(xx∗) and xk = zkx for all 1 6 k 6 n.

Proof. Since ‖xkξ‖ 6 ‖xξ‖, (ξ ∈ H), the formulae

zk(xξ) = xkξ and zkη = 0 for η ∈ H ⊖ xH

define operators zk ∈ B(H), ‖zk‖ 6 1 such that

xk = zkx and zk(H ⊖ xH) = 0, (1 6 k 6 n).

It is easy to check that zk ∈ {x, x∗, xk, x
∗
k}

′′ = R({x, xk}), (1 6 k 6 n). The

positive operator
( n∑
k=1

z∗kzk

) 1
2

vanishes on H ⊖ xH and is isometric on xH , since

x∗
( n∑

k=1

z∗kzk

)
x = x∗x.

It follows that
n∑
k=1

z∗kzk = s(xx∗).

Corollary. If x, y ∈ B(H) and y∗y 6 x∗x, then there exists z ∈ R({x, y})
such that z∗z 6 s(xx∗) and y = zx.

7.14. A spectral measure defined on a locally compact Hausdorff space Ω
with values in B(H) is a B(H)-valued mapping e(·) defined on the family of all
Borel subsets of Ω such that

1) e(S) is a projection for every Borel set S ⊂ Ω,

e(∅) = 0 and e(Ω) = 1H ;

2) e(S1 ∩ S2) = e(S1)e(S2) for every Borel sets S1, S2 ⊂ Ω;
3) for each ξ ∈ H , the mapping S 7→ (e(S)ξ|ξ) = eξ(S), defined on the family

of all Borel subsets of Ω, is a regular Borel measure on Ω.
By 2), e(S1) commutes with e(S2) for any S1, S2 and

S1 ⊂ S2 ⇒ e(S1) 6 e(S2).

Using this and 3), it follows that

S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · ⇒ e
( ∞⋃

n=1

Sn

)
= s∗- lim

n
e(Sn)

hence e(·) is countably additive with respect to the s∗-topology.
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Let ξ, η ∈ H . Using the polarisation relation

(e(S)ξ|η) = 4−1

3∑

k=0

ik(e(S)(ξ + ikη)|ξ + ikη)

we see that S 7→ (e(S)ξ|η) = eξ,η(S) is a bounded regular Borel measure on Ω.
For mutually disjoint S1, . . . , Sn we have

n∑

j=1

|eξ,η(Sj)| 6
n∑

j=1

‖e(Sj)ξ‖ ‖e(Sj)η‖ 6

( n∑

j=1

‖e(Sj)ξ‖
2
) 1

2
( n∑

j=1

‖e(Sj)η‖
2
) 1

2

=
(
e
( n⋃

j=1

Sj

)
ξ|ξ

) 1
2
(
e
( n⋃

j=1

Sj

)
η|η

) 1
2

6 ‖ξ‖ ‖η‖.

It follows that the total variation ‖eξ,η‖ of eξ,η satisfies

(1) ‖eξ,η‖ 6 ‖ξ‖ ‖η‖; ξ, η ∈ H.

Denote by B(Ω) the set of all bounded complex Borel functions on Ω. Then B(Ω),
endowed with the pointwise algebraic operations, conjugation as ∗-operation and
with the sup-norm, becomes a C∗-algebra. The complex Borel step-functions form
a norm dense ∗-subalgebra of B(Ω). Using this it is easy to show that for every
f ∈ B(Ω) there exists a unique element e(f) ∈ B(H) such that

(2) (e(f)ξ|η) =

∫

Ω

f(ω) deξ,η(ω); ξ, η ∈ H.

Moreover, the map

B(Ω) ∋ f 7→ e(f) ∈ B(H)

is a ∗-homomorphism, called the Borel functional calculus associated to the spectral

measure e(·).
For every f ∈ B(Ω) and every ξ ∈ H we have

(3) ‖e(f)ξ‖2 =

∫

Ω

|f(ω)|2 deξ,ξ(ω).

Using (3) and the Lebesgue dominated convergence theorem, it is easy to see
that

(4)

if {fn} is a norm bounded sequence in B(Ω)
pointwise convergent to f ∈ B(Ω), then

e(fn)
s∗

−→ e(f).
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For f ∈ B(Ω) we have

e(f) = 0 ⇔ e(ff) = 0

⇔ e({ω ∈ Ω; |f(ω)|2 > n−1}) = 0 for all n > 1

⇔ e({ω ∈ Ω; f(ω) 6= 0}) = 0

⇔ e({ω ∈ Ω; f(ω) = 0}) = 1H ,

hence

(5)
the kernel of the Borel functional calculus associated to e(·)

= {f ∈ B(Ω); f(S) = {0} for some Borel set S ⊂ Ω, e(S) = 1H}.

Using (5) and Corollary 1/3.11 it follows that, for every f ∈ B(Ω)

(6) ‖e(f)‖ = inf
S⊂ΩBorel, e(S)=1H

sup
ω∈S

|f(ω)| 6 ‖f‖.

Finally we note that, for every f ∈ B(Ω)

(7) σ(e(f)) =
⋂

S⊂ΩBorel
e(S)=1H

{f(ω); ω ∈ S} ⊂ f(Ω).

Indeed, let S ⊂ Ω Borel, e(S) = 1H , denote by χS the characteristic function of S
and fix ω0 ∈ S. Then e(f) = e(fχS + f(ω0)χΩ\S) by (5), so

σ(e(f)) ⊂ σ(fχS + f(ω0)χΩ\S) = {f(ω); ω ∈ S}.

Conversely, suppose that 0 6∈ σ(e(f)). Then the positive operator e(|f |) = |e(f)| ∈
B(H) is invertible, so e(|f |) > ε1H for some ε > 0. Since e(1) = 1H , we get
e(|f |− ε) > 0. It follows that e({ω ∈ Ω; |f(ω)|− ε 6 −n−1}) = 0 for all n > 1 and
hence S = {ω ∈ Ω; |f(ω)| > ε} is a Borel subset of Ω with e(S) = 1H . Clearly,

0 6∈ {f(ω); ω ∈ Ω}.
In what follows we shall denote

e(f) =

∫

Ω

f(ω) de(ω); f ∈ B(Ω).

Theorem (The spectral theorem). Let Ω be a locally compact Hausdorff

space and π : C0(Ω) → B(H) be a non degenerate ∗-representation. There exists

a unique spectral measure e(·) defined on Ω with values in B(H) such that

(8) π(f) =

∫

Ω

f(ω) de(ω); f ∈ C0(Ω).

Proof. For every ξ, η ∈ H the map C0(Ω) ∋ f 7→ (π(f)ξ|η) ∈ C is a bounded
linear functional with norm 6 ‖ξ‖ ‖η‖ so, by the Riesz-Kakutani theorem, there
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exists a unique bounded regular Borel measure µξ,η on Ω such that ‖µξ,η‖ 6

‖ξ‖ ‖η‖ and

(9) (π(f)ξ|η) =

∫

Ω

f(ω) dµξ,η(ω); f ∈ C0(Ω).

The map H×H ∋ (ξ, η) 7→ µξ,η is linear in ξ conjugate linear in η and has a norm
6 1. Since, for f ∈ C0(Ω),

∫

Ω

f(ω) dµξ,η(ω) = (π(f)ξ|η) = (π(f)η|ξ) =

∫

Ω

f(ω) dµη,ξ(ω)

it follows that
µξ,η = µη,ξ; ξ, η ∈ H.

On the other hand, for f, g ∈ C0(Ω),
∫

Ω

f(ω) dµπ(g)ξ,η(ω) = (π(f)π(g)ξ|η) = (π(fg)ξ|η) =

∫

Ω

f(ω)g(ω) dµξ,η(ω)

hence
dµπ(g)ξ,η = g dµξ,η; ξ, η ∈ H, g ∈ C0(Ω).

For each Borel set S ⊂ Ω there exists a unique selfadjoint operator e(S) ∈ B(H),
‖e(S)‖ 6 1 such that

(10) (e(S)ξ|η) = µξ,η(S); ξ, η ∈ H.

For every Borel set S1 ⊂ Ω and every g ∈ C0(Ω) we have
∫

Ω

g(ω) dµξ,e(S1)η(ω) = (e(S1)π(g)ξ|η) = µπ(g)ξ,η(S1) =

∫

Ω

χS1
(ω)g(ω) dµξ,η(ω),

hence
dµξ,e(S1)η = χS1

dµξ,η; ξ, η ∈ H.

Consequently, if S2 is another Borel set, then

(e(S1)e(S2)ξ|η) = µξ,e(S1)η(S2) =

∫

Ω

χS2
(ω)χS1

(ω) dµξ,η(ω)

= µξ,η(S1 ∩ S2) = (e(S1 ∩ S2)ξ|η); ξ, η ∈ H.

It follows that
e(S1 ∩ S2) = e(S1)e(S2).

In particular, all e(S) are projection.
Since π is non degenerated, we get e(Ω) = 1H and clearly e(∅) = 0. Finally,

condition 3) follows from (10), hence e(·) is a spectral measure, and relation (8)
follows from (9) and (10).

The unicity of e(·) follows from the unicity part of Riesz-Kakutani theorem.
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The e(S)’s will be called the spectral projection of π.
Note that the Borel functional calculus associated to e(·) extends the ∗-

representation π : C0(Ω) → B(H) to a ∗-representation B(Ω) ∋ f 7→ e(f) ∈ B(H)
with the properties (3) to (7).

LetM ⊂ B(H) be a von Neumann algebra and suppose that π(C0(Ω)) ⊂M .
For every unitary element u ∈ M ′, the map S 7→ u∗e(S)u is a spectral measure
and

π(f) = u∗π(f)u = u∗
( ∫

Ω

f(ω) de(ω)
)
u =

∫

Ω

f(ω) d(u∗e(·)u)(ω)

for all f ∈ C0(Ω). By the unicity assertion of the above theorem we infer that
u∗e(S)u = e(S) for all Borel subsets S of Ω and all u ∈M ′, unitary. Consequently,
all spectral projections e(S) belong to M by Corollary 7.11. Therefore

(11) π(C0(Ω)) ⊂M ⇒ e(f) =

∫

Ω

f(ω) de(ω) ∈M ; f ∈ B(Ω).

Denote by Baire(Ω) the smallest class of bounded complex functions on Ω which is
closed under taking pointwise limits of uniformly bounded sequences and contains
C0(Ω). Then Baire(Ω) is a C∗-subalgebra of B(Ω).

By the above theorem and by the properties of the Borel functional calculus
associated to a spectral measure we get the following unicity result.

Corollary. Let Ω be a locally compact Hausdorff space and π : C0(Ω) →
B(H) be a non degenerate ∗-representation. Then there exists a unique extension

of π to a map

πBaire : Baire(Ω) → B(H)

such that for every norm bounded sequence {fn} in Baire(Ω) pointwise convergent

to f ∈ Baire(Ω) we have πBaire(fn)
wo
−→ πBaire(f).

Of course, πBaire(f) = e(f), (f ∈ Baire(Ω)), where e(·) is the spectral mea-
sure associated to π by the above theorem, so πBaire is a ∗-homomorphism and the
properties (3) to (7) and (11) are valid for πBaire instead of f 7→ e(f).

Finally, we remark that if Ω is a locally compact Hausdorff space with a

countable basis of open sets, then

Baire(Ω) = B(Ω).

Indeed, by the Urysohn-Tikhonov metrization theorem, Ω is metrisable. Let d(· , ·)
be a metric defining the topology of Ω and such that sup{d(ω, ρ); ω, ρ ∈ Ω} < +∞.
If D ⊂ Ω is open, then putting

fn(ω) = min
{
n inf
ρ∈Ω\D

d(ω, ρ), 1
}
; ω ∈ Ω, n > 1,

we get an increasing sequence {fn} of positive continuous functions on Ω which
converges pointwise to the characteristic function of D. It follows that the char-
acteristic function of any Borel set belongs to Baire(Ω), hence B(Ω) ⊂ Baire(Ω).
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Thus, if Ω has a countable open basis, then Baire(Ω) can be replaced by
B(Ω) in the above Corollary and πBaire may be denoted as πBorel.

7.15. Let x ∈ B(H) be a normal operator. By 1.16, the continuous functional
calculus for x is the unique ∗-representation C(σ(x)) ∋ f 7→ f(x) ∈ B(H) such
that

f0(λ) ≡ 1 ⇒ f0(x) = 1H and f1(λ) = λ⇒ f1(x) = x.

Moreover, f 7→ f(x) is injective. Applying to this ∗-representation the results of
7.14, we get

Theorem (Borel functional calculus for normal operators). Let x ∈ B(H)
be a normal operator. There exists a unique ∗-representation

B(σ(x)) ∋ f 7→ f(x) ∈ B(H)

such that

(i) f0(λ) ≡ 1 ⇒ f0(x) = 1H and f1(λ) = λ⇒ f1(x) = x;

(ii) if {fn} is a norm bounded sequence in B(σ(x)) pointwise convergent to

f ∈ B(σ(x)), then fn(x)
wo
−→ f(x).

Moreover, the map e(·) : S 7→ e(S) = χS(x) is a spectral measure on σ(x)
with values in B(H) and

(1) f(x) =

∫

σ(x)

f(λ) de(λ); f ∈ B(σ(x)).

The projections e(S) are called the spectral projections of the normal operator
x ∈ B(H).

By 7.14, the map f 7→ f(x) has the following properties:

(2) ‖f(x)ξ‖2 =

∫

σ(x)

|f(λ)|2 deξ,ξ(λ); f ∈ B(σ(x)), ξ ∈ H

(3)

if {fn} is norm bounded sequence in B(σ(x))
pointwise convergent to f ∈ B(σ(x)), then

fn(x)
s∗
−→ f(x);

(4)
the kernel of B(σ(x)) ∋ f 7→ f(x) ∈ B(H)

= {f ∈ B(σ(x)); f(S) = {0} for some Borel set S ⊂ σ(x), e(S) = 1H}

(5) ‖f(x)‖ = inf
S⊂σ(x)Borel, e(S)=1H

sup
λ∈S

|f(λ)| 6 ‖f‖
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(6) σ(f(x)) =
⋂

S⊂σ(x) Borel

e(S)=1H

{f(λ); λ ∈ S} ⊂ f(σ(x))

(7) f(x) ∈ R({x}) for all f ∈ B(σ(x)).

Since, as easily verified, {f ∈ B(R); f real, f(0) = 0} is the smallest class
of bounded real functions on R which is closed under taking pointwise limits of
uniformly bounded sequences and contains {f ∈ C0(R); f real, f(0) = 0}, from
1.16.(8) we infer that

(8)
x = x∗ ∈ B(H), f ∈ B(σ(x) ∪ {0}), f real , f(0) = 0 ⇒

[f |σ(x)](x) ∈ the s∗-closed real subalgebra of B(H) generated by x.

By the injectivity of C(σ(x)) ∋ f 7→ f(x) ∈ B(H), we get

(9) the support of the spectral measure e(·) is σ(x).

If f is a bounded complex Borel function defined on some subset S ⊃ σ(x)
of C, then we denote f(x) = [f |σ(x)](x).

Using the above theorem and 1.18, it is easy to verify the following state-
ments:

1) If x ∈ B(H) is normal, f ∈ B(σ(x)) and g is a bounded complex Borel

function on f(σ(x)) ⊃ σ(f(x)), then

(g ◦ f)(x) = g(f(x)).

2) If x, y ∈ B(H) are commuting normal operators, then for every f ∈
B(σ(x)) and every g ∈ B(σ(y)), the operators f(x) and g(y) commute.

3) If x ∈ B(H) is normal and y ∈ B(H) is such that x = xy = y∗x, then for

every f ∈ B(σ(x) ∪ {0})

f(x) = f(x)y + f(0)(1H − y) = y∗f(x) + f(0)(1H − y).

In particular, if f ∈ B(σ(x) ∪ {0}) and f(0) = 0 then

f(x) = f(x)y = y∗f(x).

4) If x ∈ B(H) is normal, then

s(x) = χC\{0}(x)

and, for every f ∈ B(σ(x) ∪ {0}) with f(0) = 0,

s(f(x)) 6 s(x).
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Moreover, if {fn} is a norm bounded sequence in B(C), pointwise convergent on

σ(x) to χC\{0}, then

fn(x)
s∗
−→ s(x).

In particular, for x > 0 we have

nx(1 + nx)−1 s∗
−→ s(x), x

1
n

s∗
−→ s(x).

5) If x ∈ B(H) is normal f(λ) = |λ| and g(λ) = sign(λ), then |x| = f(x)
and x = g(x)|x| is the polar decomposition of x.

6) Let M be a wo-closed ∗-subalgebra of B(H), x ∈ M normal and f ∈
B(σ(x) ∪ {0}), f(0) = 0. Then f(x) ∈M .

Indeed by Lemma 7.11,M has a unit element e which is a projection in B(H).
Since x = xe = ex, we have f(x) = f(x)e by 3). On the other hand, x belongs to
the von Neumann algebra M + C1H ⊂ B(H), hence f(x) ∈ (M + C1H)e =M.

7) Let x ∈ B(H) be normal, S ⊂ C and {fα}α∈S be a family in B(σ(x))
such that sup{‖fα‖; α ∈ S ∩K} < +∞ for each compact set K ⊂ C and such the
functions

S ∋ α 7→ fα(λ) ∈ C; λ ∈ σ(x),

are continuous and their restrictions to the interior of S are analytic. Then the
function

S ∋ α 7→ fα(x) ∈ B(H)

is s∗-continuous and its restriction to the interior of S is analytic.

8) For every x ∈ B(H), x > 0, and every α ∈ C, Reα > 0 we define the
element

xα = fα(x) ∈ B(H)

where

fα(λ) = exp(α lnλ) for λ ∈ (0,+∞) and fα(0) = 0.

Then, by 7), the function

α 7→ xα ∈ B(H)

is s∗-continuous on {α ∈ C; Re α > 0} and analytic on {α ∈ C; Re α > 0}.

9) If x ∈ B(H) is normal, then λ ∈ σ(x) is an eigenvalue of x if and only if

χ{λ}(x) 6= 0. Moreover, χ{λ}(x) is the orthogonal projection onto the eigenspace

of x corresponding to λ.

10) Let x ∈ B(H) be compact and normal. Then for every ε > 0 the
range of the spectral projection χ{λ∈σ(x),|λ|>ε}(x) is finite dimensional, hence
{λ ∈ σ(x); |λ| > ε} consists of eigenvalues with finite multiplicities. Let {λn}
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be the sequence of all non zero eigenvalues of x, each being repeated as its mul-

tiplicity indicates. Then there exists an orthonormal sequence {ξn} in H such

that

x =
∑

n

λn( ·|ξn)ξn.

Note that also for an arbitrary compact x ∈ B(H) and ε > 0 the set {λ ∈ σ(x),
|λ| > ε} consists of a finite number of eigenvalues with finite multiplicities (see
[81], VII.4).

7.16. In this section we point out some consequences of the Borel functional
calculus for von Neumann algebras.

Proposition 1. Let x ∈ B(H) be selfadjoint and α ∈ R. Then there exists

a projection e in the commutative von Neumann algebra R({x}) such that

xe > αe and x(1 − e) 6 α(1 − e).

Proof. Take e = χ[α,+∞](x) or e = χ(α,+∞)(x).

Proposition 2. Let x ∈ B(H), x > 0, and let {αn} ⊂ (0,+∞) be a decreas-

ing sequence, αn → 0. Then there exists an increasing sequence {en} of projections

in R({x}) such that

xen > αnen for all n and en
s∗
−→ s(x).

Proof. Take en = χ[αn,+∞](x), or en = χ(αn,+∞)(x), (n ∈ N).

Proposition 3. Let x ∈ B(H), 0 6 x 6 1H . Then there exists a sequence

{en} of projections in R({x}) such that

x =

∞∑

n=1

2−nen in the norm topology.

Proof. Using Proposition 1, we can construct inductively a sequence {en} of
projections in R({x}) such that

(
x−

n−1∑

j=1

2−jej

)
en > 2−nenv

(
x−

n−1∑

j=1

2−jej

)
(1− en) 6 2−n(1 − en).

Then, by induction

0 6 x−
n∑

j=1

2−jej 6 2−n

which entails the desired result.
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By Proposition 3, every von Neumann algebra is the norm-closed linear span
of all projections contained in it.

Proposition 4. Let u ∈ B(H) be unitary and θ0 ∈ R. Then there exists

x ∈ R({u}) selfadjoint such that

u = exp(ix) and σ(x) ⊂ {θ; θ0 − π 6 θ 6 θ0 + π, eiθ ∈ σ(u)}.

Proof. Consider the function f defined on the unit circle by

f(eiθ) = θ; θ0 − π 6 θ < θ0 + π.

Then f is a bounded real Borel function. Putting x = f(u), we get a selfad-
joint element x ∈ R({u}) with u = exp(ix) and moreover,

σ(x) ⊂ f(σ(u)) ⊂ {θ; θ0 − π 6 θ 6 θ0 + π, eiθ ∈ σ(u)}.

In particular, if for some 0 < ε 6 π we have σ(u) ⊂ {eiθ; θ0−ε 6 θ 6 θ0+ε},
then there exists x ∈ R({u}) selfadjoint with θ0 − ε 6 x 6 θ0 + ε, such that
u = exp(ix). Using this remark and the Kaplansky density theorem, it follows
easily the following completion of the Kaplansky density theorem.

Proposition 5 (J. Glimm, R.V. Kadison). Let A be a non degenerate C∗-

subalgebra of B(H). Then every unitary operator u ∈ B(H) wo-adherent to A is

s∗-adherent to the set

{exp(ix); x ∈ A selfadjoint , ‖1H − exp(ix)‖ 6 ‖1H − u‖}.

7.17. Let M ⊂ B(H) be a von Neumann algebra. Then

Z = ZM =M ∩M ′

is the common center of M and M ′. Clearly, Z is a von Neumann algebra. Since
Z ⊂ R(M ∪M ′)′ ⊂M ′ ∩M ′′ = Z, we have

Z ′ = R(M ∪M ′).

The elements of Z will be called central elements of M .
If ZM = C1M , then M is called a von Neumann factor or simply a factor.

For instance, using the von Neumann density theorem (7.11), it follows that B(H)
is a factor.

For each x ∈M we define its central support z(x) by

z(x) = the orthogonal projection onto lin (Mx)H.

It is easy to see that z(x) is the smallest central projection p of M such that
px = x. Also,

z(x) = z(l(x)) = z(r(x)).
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For x ∈ B(H), S ⊂ B(H) and a projection e ∈ B(H) we denote

xe = ex|eH ∈ B(eH),

Se = {xe; x ∈ S} ⊂ B(eH).

Theorem. Let M ⊂ B(H) be a von Neumann algebra with center Z and

e ∈M be a projection. Then

(i) the map M ′ ∋ x′ 7→ (x′)e ∈ B(eH) is a wo-continuous ∗-homomorphism

and its kernel is M ′(1− z(e));
(ii) Me ⊂ B(eH) and (M ′)e ⊂ B(eH) are von Neumann algebras;

(iii) (Me)
′ = (M ′)e;

(iv) the common center of Me and (M ′)e is Ze.

Proof. (i) Clearly, π : M ′ ∋ x′ 7→ (x′)e ∈ B(eH) is a wo-continuous ∗-
homomorphism of M ′ onto (M ′)e and Kerπ ⊃ M ′(1 − z(e)). If x′ ∈ Kerπ, then
x′e = ex′e = 0 and we infer succesively

x′(Me)H =M(x′e)H = {0},

x′z(e) = 0,

x′ = x′(1 − z(e)) ∈M ′(1− z(e)).

(ii) By Corollary 1/3.11, (M ′)e = π(M ′) is a C∗-subalgebra of B(eH) and, by
Corollary 1/3.15, [(M ′)e]1 = π((M ′)1). Using Lemma 1/7.8 and the wo-continuity
of π, it follows that [(M ′)e]1 is wo-compact and hence (M ′)e ⊂ B(eH) is a von
Neumann algebra (7.11).

Clearly, Me ⊂ ((M ′)e)
′. Conversely, let y ∈ ((M ′)e)

′. There exists x ∈
B(H), x = exe, such that y = xe. For every x

′ ∈M ′ we have xe(x
′)e = (x′)exe in

B(eH), hence xx′ = x′x in B(H), so x ∈ M ′′ = M and y = xe ∈ Me. Therefore
Me = ((M ′)e)′.

In particular, Me is a von Neumann algebra.
(iii) From (1) it follows also that (Me)

′ = ((M ′)e)
′′ = (M ′)e.

(iv) By (i), the map x′ 7→ (x′)e is a ∗-isomorphism of the ∗-algebra M ′z(e)
onto (M ′)e. It is easy to verify that the center ofM ′z(e) is Zz(e), hence the center
of (M ′)e is Ze.

The above theorem yields two metods to derive new von Neumann algebras
from a given von Neumann algebra.

Let M ⊂ B(H) be a von Neumann algebra and e ∈ M be a projection.
Then Me ⊂ B(eH) is called the reduced von Neumann algebra of M by e. Its
commutant (Me)

′ = (M ′)e will be denoted simply byM ′
e and its center is Ze. The

map x 7→ xe induces a ∗-isomorphism of the wo-closed ∗-subalgebra eMe of B(H)
onto Me. Hence the center of eMe is Ze.

Let M ⊂ B(H) be a von Neumann algebra and e′ ∈ M ′ be a projection.
Then Me′ ⊂ B(e′H) is called the induced von Neumann algebra of M by e′ and
the ∗-homomorphism

M ∋ x 7→ xe′ ∈Me′
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is called the canonical induction defined by e′. If M ⊂ B(H) is a von Neumann
factor, then every induction map defined on M is injective.

7.18. Let M ⊂ B(H), N ⊂ B(K) be von Neumann algebras. Then

M ⊗N =
{ n∑

k=1

ak⊗ bk; ak ∈M, bk ∈ N, n ∈ N

}

is a ∗-subalgebra of B(H ⊗K) which contains 1H ⊗K = 1H ⊗ 1K . The wo-closure

M ⊗N ofM ⊗N in B(H ⊗K) is a von Neumann algebra, called the tensor product
of von Neumann algebras M and N . Clearly,

M ⊗N = R({a⊗ b; a ∈M, b ∈ N}) = {a⊗ b; a ∈M, b ∈ N}′′.

The inclusion M ′⊗N ′ ⊂ (M ⊗N)′ is trivial. Actually, M ′ ⊗N ′ = (M ⊗N)′, this
being a fundamental result due to M. Tomita (see [320], [307]). Here we prove
only a very particular case.

Proposition 1. Let M ⊂ B(H) be a von Neumann algebra and K be a
Hilbert space. Then

(M ⊗B(K))′ =M ′ ⊗ C1K , ZM ⊗B(K) = ZM ⊗ C1K .

Proof. Let x′ ∈ (M ⊗B(K))′. Consider an orthonormal basis {ηι}ι∈I of K
and fix an index ι0 ∈ I. For every ι, κ ∈ I define uι : H → H ⊗K and eι,κ ∈ B(H)
by

uι(ξ) = ξ ⊗ ηι, (ξ ∈ H); eικ(η) = (η|ηκ)ηι, (η ∈ K).

Then for every ι, κ ∈ I, we have

u∗ιuκ = δικ1H , uιu
∗
κ = 1H ⊗ eικ.

Let
a′ = u∗ι0x

′uι0 ∈ B(H).

Since x′ ∈ (M ⊗B(K))′, we get

u∗ιx
′uκ = u∗ι0uι0u

∗
ιx

′uκ = u∗ι0x
′uι0u

∗
ιuκ = δικa

′; ι, κ ∈ I.

Consequently, for every ξ, ζ ∈ H and every ι, κ ∈ I, we obtain

(x′(ζ ⊗ ηκ)|ξ ⊗ ηι) = (x′(1H ⊗ eκκ)(ζ ⊗ ηκ)|(1H ⊗ eιι)(ξ ⊗ ηι))

= (x′uκu
∗
κ(ζ ⊗ ηκ)|uιu

∗
ι (ξ ⊗ ηι)) = (x′uκζ|uιξ)

= (u∗ιx
′uκζ|ξ) = δικ(a

′ζ|ξ) = ((a′ ⊗ 1K)(ζ ⊗ ηκ)|ξ ⊗ ηι)

hence
x′ = a′ ⊗ 1K .

Since x′ ∈ (M ⊗C1K), it follows that a′ ∈M . Thus, x′ ∈M ′ ⊗C1K . This proves
the first equality in the statement.

Let z ∈ ZM ⊗B(K). Then z ∈ (M ⊗B(K))′, hence z = c⊗ 1K for some

c ∈M ′. Also, z ∈M ⊗B(K) = (M ⊗B(K))′′ = (M ′⊗C1K)′, hence c ∈M ′′ =M .
Thus c ∈ ZM and z ∈ ZM ⊗ C1K . Since the inclusion ZM ⊗ C1K ⊂ ZM ⊗B(K) is

obvious, this proves the second equality in the statement.
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For every von Neumann algebra M ⊂ B(H) and every Hilbert space K, the
map x 7→ x⊗ 1K is a ∗-isomorphism of M onto M ⊗C1K called the amplification

of M by K.
The above proposition can be restated in a matrix language.
Let H be a Hilbert space and υ be a cardinal number. Consider a set I

with Card(I) = υ. Recall that the Hilbert space direct sumH(υ) of υ copies of H
consists of all families {ξι}ι∈I ⊂ H with

∑
ι∈I

‖ξι‖2 < +∞ and

({ξι}ι∈I |{ζι}ι∈I) =
∑

ι∈I

(ξι|ζι)

for all {ξι}ι∈I , {ζι}ι∈I ∈ H(υ).
To each x ∈ B(H(υ)) we can associate the “matrix elements” xικ ∈ B(H)

defined by
(xικξ|ζ) = (x{δκλξ}λ∈I | {διλζ}λ∈I); ξ, ζ ∈ H.

Then the “matrix” [xικ] determines uniquely x, namely

x{ξκ}κ∈I =
{∑

κ∈I

xικξκ

}
ι∈I

; {ξκ}κ∈I ∈ H(υ)

where the sums converge in the norm-topology of H . It is easy to check that

‖xικ‖ 6 ‖x‖ 6

(∑

λ,µ

‖xλµ‖
2
) 1

2

; ι, κ ∈ I.

Also for all x, y ∈ B(H(υ)), α ∈ C and ι, κ ∈ I we have

(x+ y)ικ = xικ + yικ(1)

(αx)ικ = αxικ(2)

(xy)ικ =
∑
λ∈I

xιλyλk in the so-topology of B(H)(3)

(x∗)ικ = (xκι)
∗(4)

the map B(H(υ)) ∋ x 7→ xικ ∈ B(H) is so-continuous.(5)

For S ⊂ B(H) we denote

Mυ(S) = {x ∈ B(H(υ)); xικ ∈ S for all ι, κ ∈ I}.

Diagυ(S) = {x ∈ B(H)(υ); xικ = δικxλλ ∈ S for all ι, κ, λ ∈ I}.

Using (1)–(5) we see that if S is an so-closed ∗-subalgebra of B(H), then Mυ(S)
and Diagυ(S) are so-closed ∗-subalgebras of B(H(υ)). Thus, if S ⊂ B(H) is a
von Neumann algebra, then Mυ(S) ⊂ B(H(υ)) and Diagυ(S) ⊂ B(H(υ)) are von
Neumann algebras. Note that

Mυ(B(H)) = B(H(υ)).
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The map Diagυ(S) ∋ x 7→ xιι ∈ S does not depend on ι ∈ I and is a bijection. Its
inverse map is denoted by

Diagυ(·) : S 7→ Diagυ(S).

If S is a ∗-subalgebra of B(H), then Diag(·) is a ∗-isomorphism.
Let {ηι}ι∈I be the canonical orthonormal basis of the Hilbert space ℓ2(I).

Then the map

U : H(υ) ∋ {ξι}ι∈I 7→
∑

ι∈I

ξι ⊗ ηι ∈ H ⊗ ℓ2(I)

is a unitary operator and the map

π : B(H(υ)) ∋ x 7→ UxU∗ ∈ B(H ⊗ ℓ2(I))

is a ∗-isomorphism. Clearly, π and π−1 are so-continuous and

π(Diagυ(a)) = a⊗ 1ℓ2(I); a ∈ B(H).

If M ⊂ B(H) is von Neumann algebra, then

(6)
π(Diagυ(M

′)) =M ′⊗C1ℓ2(I)

π(Mυ(M)) ⊃M ⊗B(ℓ2(I)).

Since Mυ(M) ⊂ Diagυ(M
′)′, by Proposition 1 we obtain

π(Mυ(M)) ⊂ (π(Diagυ(M
′))′ = (M ′ ⊗ C1ℓ2(I))

′ =M ⊗B(ℓ2(I)),

hence

(7) π(Mυ(M)) =M ⊗B(ℓ2(I)).

Thus, Proposition 1 can be rephrased as follows

Proposition 2. Let M ⊂ B(H) be a von Neumann algebra and υ be a

cardinal number. Then

Mυ(M)′ = Diagυ(M
′), ZMυ(M) = Diagυ(ZM ).

Recall that if n ∈ N is a finite cardinal number, then every matrix [xik]
with elements of B(H) defines an element of B(H(n)) (4.19). Thus, for every von
Neumann algebra M ⊂ B(H), the C∗-algebra Mn(M) from 4.19 is ∗-isomorphic
to the von Neumann algebra Mn(M) ⊂ B(H(n)). Alternatively, this means that
the algebraic tensor product

M ⊗Mn ⊂ B(H ⊗ ℓ2({1, . . . , n}))
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is a von Neumann algebra.
Let {Mι ⊂ B(Hι)}ι∈I be a family of von Neumann algebras and denote by

H the Hilbert space direct sum of the family {Hι}ι∈I . We identify in the usual
way each Hι with a closed vector subspace of H . Then the set

{x ∈ B(H); xHι ⊂ Hι, x
∗Hι ⊂ Hι, x|Hι ∈Mι for all ι ∈ I}

is a von Neumann algebra M ⊂ B(H) called the direct product von Neumann
algebra of the family {Mι ⊂ B(Hι)}ι∈I .

It is easy to check that the commutant M ′ ⊂ B(H) of M is the set

{x′ ∈ B(H); x′Hι ⊂ Hι, x
′∗Hι ⊂ Hι, x

′|Hι ∈M ′
ι for all ι ∈ I}

that is the direct product of the commutants M ′
ι ⊂ B(Hι).

On the other hand, it is easy to see thatM is ∗-isomorphic to the C∗-algebra
direct product of the family {Mι}ι∈I of C∗-algebras (1.4).

The usual associativity and distributivity properties are valid for tensor prod-
ucts and direct products of von Neumann algebras.

7.19. In this section we record some properties of the tensor product of von
Neumann algebras. Let H,K be Hilbert spaces.

(1) For every S ⊂ B(H), T ⊂ B(K) we have

R(S)⊗R(T ) = R((S ⊗ 1K) ∪ (1H ⊗ T )).

Indeed, we may suppose that S, T are ∗-subalgebras and contain the identity op-
erators. Then R(S) (respectively R(T )) is the so-closure of S (respectively T )
and using Kaplansky density theorem (7.9) it follows that S ⊗ T is so-dense in
R(S)⊗R(T ).

Using (1) it is easy to obtain the following connection between tensor prod-
ucts and reduction (respectively induction):

(2) LetM ⊂ B(H), N ⊂ B(K) be von Neumann algebras. If e ∈M , f ∈M ,
e′ ∈M ′, f ′ ∈ N ′ are projections, then e⊗ f ∈M ⊗N and e′ ⊗ f ′ ∈ (M ⊗N)′ are
projections and

(M ⊗N)e⊗ f =Me⊗Nf , (M ⊗N)e′ ⊗ f ′ =Me′ ⊗Nf ′ .

(3) Let M ⊂ B(H), N ⊂ B(H) be von Neumann algebras. Then

(M ⊗B(K)) ∩ (N ⊗B(K)) = (M ∩N)⊗B(K).

Indeed, using Proposition 1/7.18 and the last remark in 7.11, we get

(M ⊗B(K)) ∩ (N ⊗B(K)) = (M ′ ⊗ C1K)′ ∩ (N ′ ⊗ C1K)′

= ((M ′ ∪N ′)⊗ C1K)′ = (R(M ′ ∪N ′)⊗ C1K)′

= R(M ′ ∪N ′)′ ⊗B(K) = (M ∩N)⊗B(K).

By 7.18, (3) can be restated as follows:
(4) LetM ⊂ B(H), N ⊂ B(H) be von Neumann algebras and υ be a cardinal

number. Then
Mυ(M) ∩Mυ(N) =Mυ(M ∩N).

The properties (1)–(3) have obvious reformulations for direct products instead of
tensor products.

7.20. The following result is an important tool in studing tensor products.
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Proposition. Let M ⊂ B(H) be a von Neumann algebra and n ∈ N. For

xij ∈M , x′ij ∈M ′, (1 6 i, j 6 n), the following statements are equivalent:

(i)
n∑
k=1

xikx
′
kj = 0; 1 6 i, j 6 n.

(ii) There exist zij ∈ ZM , (1 6 i, j 6 n) such that

n∑

k=1

xikzkj = 0; 1 6 i, j 6 n,

n∑

k=1

zikx
′
kj = x′ij ; 1 6 i, j 6 n.

Proof. It is clear that (ii) implies (i).
Conversely, assume that (i) holds. Consider the elements

x = [xij ] ∈Mn(M), x′ = [x′ij ] ∈Mn(M
′).

Then xx′ = 0, hence r(x)l(x′) = 0.
Let p be the orthogonal projection of H(n) onto the closed linear span of

Diagn(M)r(x)H(n).

For y ∈ Diagn(M) and y′ ∈ Diagn(M
′) we have

yDiagn(M)r(x)H(n) ⊂ Diagn(M)r(x)H(n),

y′Diagn(M)r(x)H(n) = Diagn(M)r(x)y′H(n) ⊂ Diagn(M)r(x)H(n),

because by 7.12 r(x) ∈ Mn(M) and by 7.18 y′ ∈ Mn(M)′. Using again 7.18 and
7.19.(4), we obtain

p ∈ Diagn(M)′ ∩Diagn(M
′)′ =Mn(M

′) ∩Mn(M) =Mn(M) =Mn(ZM ).

On the other hand, p > r(x), hence xp = x. Also, since r(x)l(x′) = 0 and
l(x′) ∈Mn(M

′) = Diagn(M)′, we have

l(x′)Diagn(M)r(x)H(n) = Diagn(M)l(x′)r(x)H(n) = 0

so l(x′)p = 0, hence px′ = pl(x′)x′ = 0.
Let z = 1−p ∈Mn(ZM ) and let zij ∈ ZM , (1 6 i, j 6 n), such that z = [zij ].

Then the assertion (ii) follows from xz = 0 and zx′ = x′.

In particular, for x ∈M , x′ ∈M ′ it follows that

(1) xx′ = 0 ⇔ z(x)z(x′) = 0.

This result can be also obtained by using Theorem 7.17.(i).



177

Corollary 1. Let M ⊂ B(H) be a von Neumann factor. There exist a
unique ∗-isomorphism π of the ∗-algebra M ⊗M ′ onto the ∗-subalgebra of B(H)
generated by M ∪M ′ such that

π(x ⊗ x′) = xx′; x ∈M, x′ ∈M ′.

Proof. If x1, . . . , xn ∈ M , x′1, . . . , x
′
n ∈ M ′ and

n∑
k=1

xkx
′
k = 0 then by the

proposition there exist λij ∈ C, (1 6 i, j 6 n), with

n∑

i=1

λijxi = 0; 1 6 j 6 n,

n∑
j=1

λijx
′
j = x′i; 1 6 i 6 n.

If moreover x1, . . . , xn are lineary independent, then all λij are zero, so all x′j are
zero. Consequently, the equation

π
( n∑

k=1

xk ⊗ x′k

)
=

n∑

k=1

xkx
′
k

(x1, . . . , xn ∈M , x′1, . . . , x
′
n ∈M ′, n ∈ N), defines the required ∗-isomorphism.

This result can be applied in the theory of C∗-tensor products:

Corollary 2. Let M ⊂ B(H) be a von Neumann factor and A ⊂ M,B ⊂
M ′ be C∗-subalgebras. Assume that A (or B) is nuclear. Then there exists a
unique ∗-isomorphism

ρ : A⊗C∗ B → C∗(A ∪B)

such that
ρ(a⊗ b) = ab; a ∈ A, b ∈ B.

Proof. By Corollary 1, there exists an injective ∗-homomorphism π : A⊗B →
B(H) such that

π(a⊗ b) = ab; a ∈ A, b ∈ B.

Then x 7→ ‖π(x)‖ is a C∗-norm on A ⊗ B. Since A (or B) is nuclear, it follows
that

‖π(x)‖ = ‖x‖C∗ ; x ∈ A⊗B.

Consequently, π can be extended to a ∗-isomorphism ρ ofA⊗C∗B onto C∗(A∪B).

7.21. Let be A a wo-dense C∗-subalgebra of a von Neumann algebraM and
x ∈ M . According to the Kaplansky density theorem (7.9) there exists a ∈ A
with ‖a‖ 6 ‖x‖ arbitrarily close to x with respect to the s∗-topology. The main
goal of this section is to prove a similar result claiming that, for M,A, x as above,
a projection e ∈ M and δ > 0, there exists a projection e > f ∈ M arbitrarily
close to e with respect to the s∗-topology such that xf = af for some a ∈ A
with ‖a‖ 6 (1 + δ)‖x‖. This is a non-commutative extension of the classical
Lusin theorem from the measure theory. For its proof we need, similarly as in
the classical situation, a non-commutative extension of the Egorov theorem about
“quasi-uniform convergence”:



178 B(H)

Lemma 1. Let be M ⊂ B(H) a von Neumann algebra, S ⊂M , x an element
of the s∗-closure of S in M , e ∈ M a projection, ϕ a w-continuous positive form
on B(H) and ε > 0. Then there exist a projection e > f ∈ M and a sequence
{xn}n>1 in S such that

ϕ(e − f) 6 ε,

lim
n→∞

‖xf − xnf‖ = lim
n→∞

‖fx− fxn‖ = 0.

Proof. Let {xι}ι∈I be a net in S such that xι
s∗
7−→ x.

Denoting

a(1)ι = e(x− xι)
∗(x− xι)e+ e(x− xι)(x − xι)

∗e,

we have s(a
(1)
ι ) 6 e and a

(1)
ι

w
−→ 0. By Proposition 1/7.16, for every ι ∈ I there

exists a projection e > e
(1)
ι ∈ R({a

(1)
ι }) ⊂M such that

a(1)ι e(1)ι 6
1

2
e1ι and a(1)ι (e− e(1)ι ) >

1

2
(e− e(1)ι ).

Since ϕ(e− e
(1)
ι ) 6 2ϕ(a

(1)
ι ) → 0, there exists ι1 ∈ I with ϕ(e− e

(1)
ι1 ) 6 ε

2
.

Now, denoting
a(2)ι = e(1)ι1 a

(1)
ι e(1)ι1 ,

we have s(a
(2)
ι ) 6 e

(1)
ι1 and a

(2)
ι

w
−→ 0. Again by Proposition 1/7.16, for every ι ∈ I

there exists a projection e
(1)
ι1 > e

(2)
ι ∈ R({a

(2)
ι }) ⊂M such that

a(2)ι e(2)ι 6
1

22
e(2)ι and a(2)ι (e(1)ι1 − e(2)ι ) >

1

22
(e(1)ι1 − e2ι ).

Since ϕ(e
(1)
ι1 − e

(2)
ι ) 6 22ϕ(a

(2)
ι ) → 0, there exists ι2 ∈ I with ϕ(e

(1)
ι1 − e

(2)
ι2 ) 6 ε

22
.

Using induction, we get a sequence {ιn}n>1 in I and a sequence of projections
in M

e > e(1)ι1 > e(2)ι2 > · · ·

such that

e(n)ιn a
(1)
ιn e

(n)
ιn 6

1

2n
e(n)ιn for all n > 1,

ϕ(e − e(1)ι1 ) 6
ε

2
and ϕ(e(n−1)

ιn−1
− e(n)ιn ) 6

ε

2n
, n > 1.

Putting

f =
∧

n>1

e(n)ιn 6 e and xn = xιn , n > 1,

we have then
ϕ(e − f) 6 ε

and

‖(x− xn)f‖
2
6

1

2n
, ‖f(x− xn)‖

2
6

1

2n
for all n > 1.

For every C∗-algebra A we denote by Uo(A) the set of all finite products

of unitaries of the form exp(ix) ∈ Ã with x ∈ A selfadjoint. Clearly, Uo(A) is a

normal subgroup of the group U(Ã) of all unitaries in Ã.
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Lemma 2. For every C∗-algebra A, Uo(A) is norm-closed in A.

Proof. First we notice that Uo(Ã) = {λ ∈ C; |λ| = 1} · Uo(A) is an open,

hence also closed subgroup of U(Ã). Indeed, this follows from the fact that every

u ∈ Uo(Ã) with ‖1
Ã
−u‖ < 2 is of the form u = exp(i y) for some selfadjoint y ∈ Ã,

what is easily seen by using the Gelfand representation of C∗({u}) ⊂ Ã.
If A is unital, the above remark completes the proof. Let us therefore assume

that A is not unital and let ω denote the linear functional on Ã which vanishes on
A and carries 1

Ã
in 1. Then ω is a ∗-homomorphism.

Now let

u ∈ Uo(A) ⊂ Uo(Ã) = Uo(Ã) = {λ ∈ C; |λ| = 1} · Uo(A)

be arbitrary. Then u = λ v for some λ ∈ C and v ∈ Uo(A). But ω maps Uo(A),

hence also Uo(A) in {1} and it follows that 1 = ω(u) = λω(v) = λ.

Next we prove that if a unitary element of a unital C∗-algebra M is suffi-
ciently close to 1M on some projection f ∈ M then there exists another unitary
in M , which is equal with the given one on f and arbitrarily close to 1M :

Lemma 3. Let M be a unital C∗-algebra, u, v ∈ M unitaries, and f ∈ M a

projection such that

‖(u− v)f‖ <
1

2
.

Then there exists a partial isometry w ∈M such that we have

w∗w = 1M − f, ww∗ = 1M − v∗ufu∗v

and, for the unitary v∗uf + w,

‖1M − (v∗uf + w)‖ 6 3‖(u− v)f‖.

Proof. Denoting x = (1M − v∗ufu∗v)(1M − f), we have

‖1M − f − x‖ = ‖v∗ufu∗v(1M − f)‖ = ‖(1M − f)v∗uf‖

= ‖(1M − f)v∗(u − v)f‖ 6 ‖(u− v)f‖.

Similarly,

‖1M − v∗ufu∗v − x‖ = ‖(1M − v∗ufu∗v)f‖ = ‖(u∗v − fu∗v)f‖

= ‖(1M − f)u∗(v − u)f‖ 6 ‖(u− v)f‖.

Since x∗x 6 1M − f , it follows that

‖1M − f − |x|‖ 6 ‖1M − f − x∗x‖ 6 ‖1M − f − x‖+ ‖(1M − v∗ufu∗v)x− x∗x‖

6 ‖(u− v)f‖+ ‖1M − v∗ufu∗v − x‖ 6 2‖(u− v)f‖ < 1,
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so, |x| is invertible in (1M−f)M(1M−f), having there an inverse b. Let us denote
w = xb. Then

w|x| = xb|x| = x and w∗w = bx∗xb = b|x|2b = 1M − f.

In particular, w is a partial isometry.
Now

‖1M − v∗ufu∗v − xx∗‖ 6 ‖1M − v∗ufu∗v − x‖ + ‖x(1M − f)− xx∗‖

6 ‖(u− v)f‖+ ‖1M − f − x‖ 6 2‖(u− v)f‖ < 1

implies that xx∗ is invertible in (1M − v∗ufu∗v)M(1M − v∗ufu∗v) and, taking
into account that

xx∗ = w‖x‖2w∗
6 ‖x‖2ww∗ = ‖x‖2xb2x∗ 6 ‖x‖2‖b‖2xx∗,

it follows that the projection ww∗ is equal to 1M − v∗ufu∗v.
Finally,

‖1M−(v∗uf+w)‖ 6 ‖1M−f−x‖+‖f−v∗uf‖+‖w(|x|−(1M−f))‖ 6 3‖(u−v)f‖.

Now we are ready to prove the announced Lusin type theorem:

Theorem (Non-commutative Lusin theorem). Let M ⊂ B(H) be a von

Neumann algebra, A ⊂ M a wo-dense C∗-subalgebra, e ∈ M a projection, ϕ a

w-continuous positive form on B(H), and ε, δ > 0.
(i) If x ∈M then there exist

a projection e > f ∈M with ϕ(e − f) 6 ε,

a ∈ A with ‖a‖ 6 (1 + δ)‖x‖

such that

af = xf, fa = fx.

(ii) If x in (i) is selfadjoint, then a can be chosen selfadjoint.

(iii) If u ∈M is unitary then there exist

a projection e > f ∈M with ϕ(e − f) 6 ε,

v ∈ Uo(A) with ‖1M − v‖ 6 (1 + δ)‖1M − u‖

such that

vf = uf.

Proof. Clearly, (i) ⇒ (ii), so we have to prove only (i) and (iii). Let us first
prove (i).

According to the Kaplansky density theorem, x belongs to the s∗-closure of
the closed ball of radius ‖x‖ in A, so by Lemma 1 there exist

a projection e > f1 ∈M with ϕ(e− f1) 6
ε

2
,

a1 ∈ A with ‖a1‖ 6 ‖x‖
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such that

‖(x− a1)f1‖ 6
1

2

δ‖x‖
√
2
, ‖f1(x− a1)‖ 6

1

2

δ‖x‖
√
2
.

Putting x1 = (x− a1)f1 + f1(x− a1)− f1(x− a1)f1, we have

‖x1‖ =
√
‖x∗1x1‖

=
√
‖ (f1(x− a1)∗(1− f1) + (x − a1)∗f1) ((1− f1)(x− a1)f1 + f1(x− a1)) ‖

6
√
‖(x− a1)f1‖2 + ‖f1(x− a1)‖2 6

1

2
δ ‖x‖.

A reasoning similar to the above one, with x, e replaced respectively by x1, f1,
yields the existence of

a projection f1 > f2 ∈M with ϕ(f1 − f2) 6
ε

22
,

a2 ∈ A with ‖a2‖ 6 ‖x1‖

such that

‖(x1 − a2)f2‖ 6
1

22
δ‖x‖
√
2
, ‖f2(x1 − a2)‖ 6

1

22
δ‖x‖
√
2
.

Putting x2 = (x1−a2)f2+f2(x1−a2)−f2(x1−a2)f2, we have then ‖x2‖ 6 1

22
δ‖x‖.

Using induction, we get a sequence of projections in M

e = fo > f1 > f2 > · · ·

and a sequence {ak}k>1 in A such that, putting

xo = x and xk = (xk−1 − ak)fk + fk(xk−1 − ak)− fk(xk−1 − ak)fk, k > 1,

we have

ϕ(fk−1 − fk) 6
ε

2k
, k > 1,

‖a1‖ 6 ‖x‖ and ‖ak‖ 6
1

2k−1
δ‖x‖, k > 2,

‖(xk−1 − ak)fk‖ 6
1

2k
δ‖x‖
√
2
, ‖fk(xk−1 − ak)‖ 6

1

2k
δ‖x‖
√
2
, k > 1.

Let us denote

f =
∧

k>1

fk 6 e and a =

∞∑

k=1

ak ∈ A.



182 B(H)

Then

ϕ(e− f) =

∞∑

k=1

ϕ(fk−1 − fk) 6 ε and ‖a‖ 6

∞∑

k=1

‖ak‖ 6 (1 + δ)‖x‖.

Furthermore, for 1 6 k 6 n we have xkfn = (xk−1−ak)fn, hence (xk−1−xk)fn =
akfn. It follows successively, for every n > 1,

(x− xn)fn =
n∑

k=1

akfn,

(
x−

n∑

k=1

ak

)
fn = xnfn = (xn−1 − an)fn,

∥∥∥
(
x−

n∑

k=1

ak

)
f
∥∥∥ 6

∥∥∥
(
x−

n∑

k=1

ak

)
fn

∥∥∥ = ‖(xn−1 − an)fn‖ 6
1

2n
δ‖x‖
√
2
.

Passing to limit for n → ∞, we conclude that ‖(x − a)f‖ = 0. Similarly we get
also ‖f(x− a)‖ = 0.

Now we go to prove (iii). The proof will be a multiplicative counterpart of
the proof of (i).

According to Proposition 5/7.16, u belongs to the s∗-closure of the set of all
v ∈ Uo(A) with ‖1M − v‖ 6 ‖1M − u‖, so by Lemma 1 there exist

a projection e > f1 ∈M with ϕ(e− f1) 6
ε

2
,

v1 ∈ Uo(A) with ‖1M − v1‖ 6 ‖1M − u‖

such that

‖(u− v1)f1‖ 6
δ

4δ + 3 · 2
‖1M − u‖ <

1

2
.

Now Lemma 3 implies the existence of a unitary u1 ∈M such that

u1f1 = v∗1uf1 and ‖1M − u1‖ 6 3‖(u− v1)f1‖ 6
δ

2
‖1M − u‖.

Replacing u, e respectively by u1, f1, a reasoning similar to the above one
yields first the existence of

a projection f1 > f2 ∈M with ϕ(f1 − f2) 6
ε

22
,

v2 ∈ Uo(A) with ‖1M − v2‖ 6 ‖1M − u1‖ 6
δ

2
‖1M − u‖

such that

‖(v∗1u− v2)f2‖ = ‖(u1 − v2)f2‖ 6
δ

4δ + 3 · 22
‖1M − u‖ <

1

2
,
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and then the existence of a unitary u2 ∈M such that

u2f2 = v∗2u1f2 = v∗2v
∗
1uf2 and ‖1M − u2‖ 6 3‖(u1 − v2)f1‖ 6

δ

22
‖1M − u‖.

Using induction, we get a sequence of projections in M

e = fo > f1 > f2 > · · ·

and a sequence {vk}k>1 in Uo(A) such that

ϕ(fk−1 − fk) 6
ε

2k
, k > 1,

‖1M − v1‖ 6 ‖1M − u‖ and ‖1M − vk‖ 6
δ

2k−1
‖1M − u‖, k > 2,

‖(v∗k−1 · · · v
∗
1u− vk)fk‖ 6

δ

2δ + 3 · 2k
‖1M − u‖, k > 1.

Denoting

f =
∧

k>1

fk 6 e,

we have

ϕ(e − f) =

∞∑

k=1

ϕ(fk−1 − fk) 6 ε.

On the other hand, taking into account Lemma 2,

∞∑

k=1

‖v1 · · · vk−1−v1 · · · vk‖ =

∞∑

k=1

‖1M−vk‖ 6

(
1+

∞∑

k=2

δ

2k−1

)
·‖1M−u‖ = (1+δ)‖1M−u‖

implies that the sequence {v1 · vk}k>1 is norm convergent to some v ∈ Uo(A) with

‖1M − v‖ 6 (1 + δ)‖1M − u‖. Since, for every k > 1,

‖(u−v1 · · · vk)f‖ 6 ‖(u−v1 · · · vk)fk‖ = ‖(v∗k−1 · · · v
∗
1u−vk)fk‖ 6

δ

2δ + 3 · 2k
‖1M−u‖,

v satisfies

‖(u− v)f‖ = 0 ⇒ vf = uf.

The non-commutative Lusin theorem yields immediately the following form

of the Kadison transitivity theorem:
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Corollary. Let beM ⊂ B(H) a von Neumann algebra, A ⊂M a wo-dense
C∗-subalgebra, e ∈M a projection with finite-dimensional range and δ > 0.

(i) For every x ∈M there exists

a ∈ A with ‖a‖ 6 (1 + δ)‖x‖

such that

ae = xe, ea = ex.

(ii) If x in (i) is selfadjoint, then a can be chosen selfadjoint.
(iii) For every unitary u ∈M there exists

v ∈ Uo(A) with ‖1M − v‖ 6 (1 + δ)‖1M − u‖

such that

ve = ue, ev = eu.

Proof. For every finite-dimensional linear subspace K ⊂ H we consider the
wo-continuous positive linear form

ωK =

dim(K)∑

k=1

ωξk : B(H) → C,

where ξ1, . . . , ξdim(K) stands for an orthonormal basis of K. By the way, ωK does
not depend on the choice of the orthonormal basis of K. Indeed, if ζ1, . . . , ζdim(K)

is another orthonormal basis then we have, for every 1 6 j 6 dim(K),

ζj =

dim(K)∑

k=1

(ζj |ξk)ξk ⇒ ωζj =

dim(K)∑

k1,k2=1

(ξk2 |ζj)(ζj |ξk1)ωξ1,ξ2 ,

so
dim(K)∑

j=1

ωζj =

dim(K)∑

k1,k2=1

( dim(K)∑

j=1

(ξk2 |ζj)(ζj |ξk1)
)

︸ ︷︷ ︸
=(ξk2 |ξk1 )

ωξ1,ξ2 =

dim(K)∑

k=1

ωξk .

Furthermore, if L is any linear subspace of K and pL denotes the orthogonal
projection of H onto L, then ωK(pL) = dim(L). Indeed, choosing an orthonormal
basis η1, . . . , ηdim(L) of L, we have

pL(ξ) =

dim(L)∑

j=1

(ξ|ηj)ηj for every ξ ∈ H,

so

ωK(pL) =

dim(K)∑

k=1

dim(L)∑

j=1

(ξk|ηj)(ηj |ξk) =

dim(L)∑

j=1

( dim(K)∑

k=1

(ηj |ξk)ξk

∣∣∣ηj
)

=

dim(L)∑

j=1

(ηj |ηj) = dim(L).
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In particular,

L ⊂ K linear subspace , ωK(pK − pL) < 1 ⇒ L = K.

Since (i) ⇒ (ii), we have again to prove only (i) and (iii). Taking into account
the above remarks, (i) follows immediately by applying statement (i) of the non-
commutative Lusin theorem with ϕ = ωe(H) and 0 < ε < 1.

For (iii) let eu denote the orthogonal projection ofH onto the finite-dimensional
linear subspace generated by e(H)∪u∗e(H). By the von Neumann density theorem
eu ∈ M , so we can apply statement (iii) of the non-commutative Lusin theorem
with e replaced by eu, ϕ = ωeu(H) and 0 < ε < 1, getting some

v ∈ Uo(A) with ‖1M − v‖ 6 (1 + δ)‖1M − u‖ and veu = ueu.

Since e 6 eu and u∗eu 6 eu, it follow

ve = ue and vu∗eu = uu∗eu = eu⇔ vu∗e = e⇔ euv∗ = e.

Consequently, (ev− eu)(ev− eu)∗ = e− e(vu∗e)− (euv∗)e+ e = e− e− e+ e = 0,
hence we have also ev = eu.

Usually the Kadison transitivity theorem is formulated in terms of topolog-
ically irreducible ∗-representations of C∗-algebras. This will be done in the next
section.

7.22. We say that two ∗-representations πj : A → B(Hj), j = 1, 2 of a
∗-algebra A are topologically disjoint if there exists no non-zero bounded linear
map T : H1 → H2 such that

Tπ1(a) = π2(a)T, a ∈ A.

If π1 and π2 are unitarily equivalent and non-zero then they are plainly not topolog-
ically disjoint. In the case of topologically irreducible π1 and π2 also the converse
implication holds:

Lemma 1. Let πj : A → B(Hj), j = 1, 2 be topologically irreducible ∗-
representations of a ∗-algebra A. If π1 and π2 are not unitarily equivalent then
they are topologically disjoint.

Proof. Let us assume that π1 and π2 are not topologically disjoint, that is
there exists a non-zero bounded linear map T : H1 → H2 such that

Tπ1(a) = π2(a)T, a ∈ A.

Then we have for every a ∈ A also

T ∗π2(a) = (π2(a
∗)T )∗ = (Tπ1(a

∗))∗ = π1(a)T
∗,

hence

T ∗Tπ1(a) = T ∗π2(a)T = π1(a)T
∗T and TT ∗π2(a) = Tπ1(a)T

∗ = π2(a)TT
∗.

In other words, T ∗T ∈ π1(A)
′ = C1H1

and TT ∗ ∈ π2(A)
′ = C1H2

, so T ∗T = λ11H1

and TT ∗ = λ21H2
for some λ1, λ2 > 0. Since ‖T ∗T ‖ = ‖TT ∗‖ > 0, we have

λ1 = λ2 > 0.
Put U = 1√

λ1
T : H1 → H2. Then U∗U = 1H1

and UU∗ = 1H2
, so U is

unitary. Since Uπ1(a) =
√
λ1Tπ1(a) =

√
λ1π2(a)T = π2(a)U for all a ∈ A, it

follows that π1 and π2 are unitarily equivalent.
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The wo-closure of the range of a direct sum of mutually topologically disjoint,
non-degenerate ∗-representations is the direct product von Neumann algebra of the
wo-closures of the ranges of these representations:

Lemma 2. Let {πι : A → B(Hι)}ι∈I be a family of mutually topologically

disjoint, non-degenerate ∗-representations of a ∗-algebra A such that the numerical

set {‖πι(a)‖; ι ∈ I} is bounded for every a ∈ A. Let us denote

H =
⊕

ι∈I

Hι, π =
⊕

ι∈I

πι.

Then π(A) is wo-dense in the direct product von Neumann algebra of the family

{πι(A)′′ ⊂ B(Hι)}ι∈I.

Proof. Let M denote the direct product von Neumann algebra of the family
{πι(A)′′ ⊂ B(Hι)}ι∈I . Since π is clearly non-degenerate, by the von Neumann
density theorem it is enough to prove that π(A)′ ⊂M ′.

If Tι : Hι → H denotes the canonical imbedding then T ∗
ι Tι = 1Hι

and TιT
∗
ι

is the orthogonal projection of H onto TιHι. We have seen at the end of 7.18 that

M ′ =

{
x′ ∈ B(H);

x′TιHι ⊂ TιHι, (x
′)∗TιHι ⊂ TιHι and

Tι
∗x′Tι ∈ πι(A)

′ for all ι ∈ I

}

=

{
x′ ∈ B(H);

Tκ
∗x′Tι = 0 for all ι 6= κ in I and

Tι
∗x′Tι ∈ πι(A)

′ for all ι ∈ I

}
.

In particular, TιTι
∗ ∈M ′ ⊂ π(A)′ for all ι ∈ I.

Let x′ ∈ π(A)′ be arbitrary. For every ι, κ ∈ I we have TκTκ
∗x′TιTι

∗ ∈ π(A)′

and it follows for all a ∈ A

TκTκ
∗x′TιTι

∗π(a) = π(a)TκTκ
∗x′TιTι

∗,

(Tκ
∗x′Tι)(Tι

∗π(a)Tι︸ ︷︷ ︸
=πι(a)

) = (Tκ
∗π(a)Tκ︸ ︷︷ ︸
=πκ(a)

)(Tκ
∗x′Tι).

Now for ι 6= κ the topological disjointness of πι and πκ yields Tκ
∗x′Tι = 0, while

for ι = κ we have Tι
∗x′Tι ∈ πι(A)

′. Consequently, x′ ∈M ′.

The following remarkable theorem enlightens the algebraic character of the
topological irreducibility of ∗-representations of C∗-algebras:

Theorem (Kadison transitivity theorem). Let be A a C∗-algebra, πj : A→
B(Hj), 1 6 j 6 n finitely many, mutually not unitarily equivalent, topologically

irreducible ∗-representations of A, Kj ⊂ Hj, 1 6 j 6 n finite-dimensional linear

subspaces and δ > 0.
(i) For every xj ∈ B(Hj), 1 6 j 6 n there exists

a ∈ A with ‖a‖ 6 (1 + δ) max
16j6n

‖xj‖
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such that

πj(a)|Kj = xj |Kj , πj(a
∗)|Kj = xj

∗|Kj for all 1 6 j 6 n.

(ii) If all operators xj in (i) are selfadjoint, then a can be chosen selfadjoint.

(iii) For every unitaries uj ∈ B(Hj), 1 6 j 6 n there exists

v ∈ Uo(A) with ‖1
Ã
− v‖ 6 (1 + δ) max

16j6n
‖1Hj

− uj‖

such that

π̃j(v)|Kj = uj|Kj , π̃j(v
∗)|Kj = uj

∗|Kj for all 1 6 j 6 n.

Proof. Using Theorem 4.11 it is easily seen that there exists a family {πι :
A → B(Hι)}ι∈I of topologically irreducible ∗-representations such that the ∗-
representations {πj ; 1 6 j 6 n}∪{πι; ι ∈ I} are mutually not unitarily equivalent
and the direct sum ∗-representation

π =
⊕

16j6n

πj ⊕
⊕

ι∈I

πι : A→ B(H)

is injective. By Lemma 1 the ∗-representations {πj ; 1 6 j 6 n} ∪ {πι; ι ∈ I}
are mutually topologically disjoint, so Lemma 2 entails that π(A) is wo-dense in
the direct product of the von Neumann algebras πj(A)

′′ = (C1Hj
)′ = B(Hj),

1 6 j 6 n and πι(A)
′′ = B(Hι), ι ∈ I. In particular,

the orthogonal projection e of H onto
⊕

16j6n

Kj ⊕
⊕
ι∈I

{0}

is a projection in the wo-closure of π(A) having finite-dimensional range,

x =
⊕

16j6n

xj ⊕
⊕

ι∈I

0Hι

is an operator in the wo-closure of π(A) with ‖x‖ = max
16j6n

‖xj‖, self-adjoint if

every xj is self-adjoint, and

u =
⊕

16j6n

uj ⊕
⊕

ι∈I

1Hι

is a unitary in the wo-closure of π(A) with ‖1H − u‖ = max
16j6n

‖1Hj
− uj‖.

Applying now Corollary 7.21 to the C∗-algebra π(A) and the above e, x, u,
we deduce immediately all statements of the theorem.

Using the above theorem, we can give several descriptions for the irreducibil-
ity of ∗-representations of C∗-algebras, proving for these representations the equiv-
alence of topological irreducibility with the algebraic irreducibility:
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Corollary 1. For a ∗-representation π : A→ B(H) of a C∗-algebra A the

following conditions are equivalent:

(i) π is topologically irreducible;

(ii) the only closed linear subspaces of H stable under π(A) are {0} and H;

(iii) the only (not necessarily bounded) linear operators H → H, commuting with

all π(a), a ∈ A, are the scalar multiples of 1H ;
(iv) the only (not necessarily closed) linear subspaces of H stable under π(A)

are {0} and H.

Proof. (i) ⇔ (ii) follows by noticing that π(A)′ ⊂ B(H) is a von Neumann
algebra and so, according to Proposition 3/7.16, equal to the norm-closed linear
span of all projections contained in it.

To prove (i) ⇒ (iii), let us assume that π is topologically irreducible and
T : H → H is a linear operator commuting with every π(a).

Then Tξ ∈ C ξ for every ξ ∈ H . Indeed, Tξ /∈ C ξ would imply the linear
independence of ξ and Tξ and statement (i) of the Kadison transitivity theorem
would entail the existence of some a ∈ A with

π(a)ξ = 0 and π(a)Tξ = ξ ⇒ ξ = π(a)Tξ = Tπ(a)ξ = 0,

in contradiction with Tξ /∈ C ξ.
Moreover, there exists some λ ∈ C such that Tξ = λξ for all ξ ∈ H . Indeed,

assuming that there are λ1 6= λ2 in C and 0 6= ξ, η ∈ H with Tξ = λ1ξ and
Tη = λ2η, ξ and η would be linearly independent and statement (i) of the Kadison
transitivity theorem would imply the existence of some a ∈ A with

π(a)ξ = η and π(a)η = ξ ⇒ λ1η = λ1π(a)ξ = π(a)Tξ = Tπ(a)ξ = Tη = λ2η,

contradicting η 6= 0.
To prove (i) ⇒ (iv), let us assume that π is topologically irreducible and

K ⊂ H is a non-zero linear subspace stable under π(A). Choose some 0 6= ξ ∈ K.
According to statement (i) of the Kadison transitivity theorem, for every ζ ∈ H
there exists a ∈ A with π(a)ξ = ζ and it follows that H ⊂ π(A)K ⊂ K, hence
K = H . Finally, the implications (iii) ⇒ (i) and (iv) ⇒ (ii) are obvious.

For irreducible ∗-representations of C∗-algebras topological disjointness turns
out to be equivalent with the algebraic disjointness:

Corollary 2. For two (topologically) irreducible ∗-representations π : A→
B(Hj), j = 1, 2 of a C∗-algebra A the following conditions are equivalent:

(i) π1 and π2 are not unitarily equivalent;

(ii) π1 and π2 are topologically disjoint;

(iii) there exists no non-zero (not necessarily bounded) linear map T : H1 → H2

such that

Tπ1(a) = π2(a)T, a ∈ A.

Proof. (i) ⇔ (ii) follows from Lemma 1 and the implication (iii) ⇒ (ii) is
trivial.
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For (ii) ⇒ (iii) let us assume that π1 and π2 are topologically disjoint, but
there exists a non-zero linear map T : H1 → H2 such that

Tπ1(a) = π2(a)T, a ∈ A.

Then there is ξ ∈ H1 with Tξ 6= 0 and statement (i) of the Kadison transitivity
theorem entails the existence of some a ∈ A with π1(a)ξ = ξ and π2(a)Tξ = 0,
implying the absurdity

0 6= Tξ = Tπ1(a)ξ = π2(a)Tξ = 0.

Let us point out some consequences of the Kadison transitivity theorem for
pure states on C∗-algebras:

Corollary 3. Let be A a C∗-algebra and ϕ a state on A. Let us denote

Lϕ = {a ∈ A; ϕ(a∗a) = 0} = {a ∈ A; πϕ(a)ξϕ = 0}.

Then the following conditions are equivalent:

(i) ϕ is a pure state;

(ii) the kernel of ϕ is equal to Lϕ + (Lϕ)∗;
(iii) every positive form on A which vanishes on Lϕ is scalar multiple of ϕ.

Moreover, if ϕ is a pure state then the quotient vector space A/Lϕ is complete

with respect to the norm defined by the scalar product

(a/Lϕ|b/Lϕ)ϕ = ϕ(b∗a).

Proof. (i) ⇒ (ii). By Theorem 4.5 Lϕ + (Lϕ)∗ is contained in the kernel of
ϕ. Conversely, let a be an arbitrary element of the kernel of ϕ. Then πϕ(a)ξϕ is
orthogonal to ξϕ, so x ∈ B(Hϕ) defined by

x(ξϕ) = 0, x(πϕ(a)ξϕ) = πϕ(a)ξϕ, x|Hϕ ⊖ {C · ξϕ + C · πϕ(a)ξϕ} ≡ 0

is self-adjoint. By statement (ii) of the Kadison transitivity theorem there exists
b∗ = b ∈ A such that

πϕ(b)ξϕ = 0, πϕ(ba)ξϕ = πϕ(b)πϕ(a)ξϕ = πϕ(a)ξϕ,

hence
πϕ(a− ba)ξϕ = 0 ⇔ a− ba ∈ Lϕ

and
πϕ((ba)

∗)ξϕ = πϕ(a
∗)πϕ(b)ξϕ = 0 ⇔ (ba)∗ ∈ Lϕ.

Consequently, a = (a− ba) + ba ∈ Lϕ + (Lϕ)∗.
(ii) ⇒ (iii). If ψ is a positive form on A which vanishes on Lϕ then, according

to Theorem 4.5 it vanishes also on (Lϕ)∗. Therefore ψ vanishes on the kernel of ϕ
and it follows that it is scalar multiple of ϕ.

(iii) ⇒ (i) is a consequence of Proposition 4.7.
Finally, if ϕ is pure then, according to Corollary 1, the dense, hence non-zero

linear subspace πϕ(A)ξϕ of Hϕ, which is stable under πϕ(A), coincides with Hϕ.
Therefore it is complete with respect to the scalar product of Hϕ.
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7.23. Notes. For the few general results on functional analysis contained in 7.3–7.6
we refer to [81], [147]. In 7.1, 7.2 we developed some arguments of J.R. Ringrose [259],
which allowed a simplification in the proof of the Krein-Shmulyan theorem (7.4), as well
as unified proofs for the results in 7.7; [70], [77] and 7.8; [271], [274].

The Kaplansky density theorem (7.9), discovered in [155], [156] is one of the most
useful results in the theory of operator algebras. The proof we have presented is the
original proof of I. Kaplansky [156] with an ingredient from [274], 1.9. In the same paper
I. Kaplansky pointed out some class of operator continuous functions. These functions
were further studied by R.V. Kadison [149] who proved Theorem 7.10 and also a converse
result. The Kaplansky density theorem is similar to the Goldstine theorem ([81], V.4.5)
but, as shown in [274], p. 23, we cannot replace in its statement the ∗-subalgebra by a
vector subspace.

The fundamental result of the theory of operator algebras is the von Neumann
density theorem (7.11) discovered in [205]. The term “von Neumann algebra” has been
introduced by J. Dixmier [77], while F.J. Murray and J. von Neumann [200] called these
objects “rings of operators”. Also, I.E. Segal and others used the term “W ∗-algebras”,
but we reserved this term for “abstract” von Neumann algebras (Chapter 8). The ele-
mentary operations an von Neumann algebras (7.17–7.19) have been considered by many
authors: [200], [208], [71], [77], [198], [285], [324], [325], [333]. Our exposition in 7.11,
7.17–7.19 is based on the monograph of J. Dixmier [77], with an improvement in 7.17 (cf.
[307]) due to the use of the Kaplansky density theorem.

The material included in 7.12–7.16 concerns mainly standard operator theory, rela-
tivized with respect to a von Neumann algebra ([77], [81], [307]). The result in Proposition
3/7.16 was pointed out by G.K. Pedersen and Proposition 5/7.16 is due to J. Glimm and
R.V. Kadison [113]. The main result in 7.20 is due to F.J. Murray and J. von Neumann
[200] and R.V. Kadison [145].

There is another important operation with von Neumann algebras, namely the
crossed product by the action of a locally compact group ([62], [77], [115], [173], [174],
[200], [202], [305], [309], [321], [334]).

The non-commutative Lusin theorem (7.21) is due to M.Tomita [326], I (see also
[125], [264], [319], [351], I). Our exposition is based on [351], I, §2. The transitivity
theorem (7.22), fundamental in the representation theory of C∗-algebras, was originally
proved by R.V.Kadison in [146] (see also [113]).



Chapter 8

W ∗-ALGEBRAS

As the Gelfand-Năımark algebras are concrete realizations of C∗-algebras,
the von Neumann algebras are concrete realizations of more special C∗-algebras,
called W ∗-algebras and the w-topology has an abstract characterization. This
section is devoted to a natural introduction of W ∗-algebras and to the study of
their basic properties related to the w-topology. Also, it is proved that the second
dual of a C∗-algebra is a W ∗-algebra. This fact will make possible a more detailed
study of C∗-algebras by reducing some problems from general C∗-algebras to W ∗-
algebras.

8.1. Every von Neumann algebra is a dual Banach space.

Proposition. Let M ⊂ B(H) be a w-closed vector subspace of B(H) and
let M∗ be the vector space of all w-continuous linear functionals on M. Then for
every ϕ ∈ M∗ and every ε > 0 there exists ψ ∈ B(H)∗ such that ϕ = ψ|M and
‖ψ‖ 6 ‖ϕ‖+ ε. In particular,

M∗ = {ψ|M ; ψ ∈ B(H)∗}.

Moreover, M∗ is a norm closed vector subspace in M∗ and the map

M ∋ x 7→ Φ(x) ∈ (M∗)
∗ defined by Φ(x)ϕ = ϕ(x), (x ∈M, ϕ ∈M∗)

is a linear isometry of M onto (M∗)
∗.

Proof. By the Hahn-Banach theorem there exists θ ∈ B(H)∗ such that ϕ =
θ|M . Let F = {ρ ∈ B(H)∗; ρ|M = 0} and d = inf{‖θ− ρ‖; ρ ∈ F}. Again by the
Hahn-Banach theorem, there is a linear functional f on B(H)∗ such that ‖f‖ 6 1,
f |F = 0 and f(θ) = d. Using Lemma 1/7.8 and Theorem 7.6 we find x ∈ B(H),
‖x‖ = ‖f‖ 6 1, such that ρ(x) = f(ρ) for all ρ ∈ B(H)∗. Since ρ(x) = 0 for all
ρ ∈ F and since M is w-closed, using one more time the Hahn-Banach theorem
we infer that x ∈M . It follows that

d = f(θ) = θ(x) = ϕ(x) 6 ‖ϕ‖ ‖x‖ 6 ‖ϕ‖,

hence there exists ρ ∈ F such that ‖θ − ρ‖ 6 d + ε 6 ‖ϕ‖ + ε. Thus the first
assertion in the statement follows with ψ = ϕ− ρ.

Clearly, M∗ is a norm closed vector subspace of M∗. By the above, the w-
topology on M coincides with the M∗-topology. Thus M1 is M∗-compact (Lemma
1/7.8) and the last assertion in the statement follows applying Theorem 7.6.
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Therefore, for a von Neumann algebra M ⊂ B(H), the set M∗ of all w-
continuous forms on M is a norm closed vector subspace of M∗, invariant under
translations and the ∗-operation and moreover, (M∗)

∗ is isometrically isomorphic
to M . We underline that the w-topology on M coincides with the M∗-topology.

8.2. The envelopping von Neumann algebra of a C∗-algebra. Let A
be a C∗-algebra, HA =

⊕
ϕ∈S(A)

Hϕ and

πA =
⊕

ϕ∈S(A)

πϕ : A→ B(HA).

Then πA is an isometric non degenerate ∗-representation of A (see 4.11) called the
universal ∗-representation of A. The w-closure NA of πA(A) is a von Neumann
subalgebra of B(HA), called the envelopping von Neumann algebra of A.

Let ϕ ∈ S(A). Denote ηϕ = ξϕ ∈ Hϕ and ηψ = 0 ∈ Hψ for ψ ∈ S(A), ψ 6= ϕ.
Then ζϕ =

⊕
ψ∈S(A)

ηψ ∈ HA and

ϕ(x) = ωζϕ(πA(x)); x ∈ A.

Let ϕ1, . . . , ϕn ∈ S(A), λ1, . . . , λn ∈ C. Then
n∑
j=1

λjωζϕj ∈ (NA)∗ and, using

the Kaplansky density theorem we get

∥∥∥
n∑

j=1

λjωζϕj

∥∥∥ = sup
{∣∣∣

n∑

j=1

λjωζϕj (πA(x))
∣∣∣; x ∈ A, ‖x‖ 6 1

}

= sup
{∣∣∣

n∑

j=1

λjϕj(x)
∣∣∣; x ∈ A, ‖x‖ 6 1

}
=

∥∥∥
n∑

j=1

λjϕj

∥∥∥.

Since every bounded linear form on A is a linear combination of states (Corollary
1/4.15), we infer that the mapping

n∑

j=1

λjϕj 7→
n∑

j=1

λjωζϕj

is a well defined linear isometry FA of A∗ into (NA)∗. Clearly

ψ(x) = FA(ψ)(πA(x)); x ∈ A, ψ ∈ A∗.

For an arbitrary θ ∈ (NA)∗, let ψ ∈ A∗ be defined by ψ(x) = θ(πA(x)), (x ∈ A).
Then FA(ψ) ∈ (NA)∗ and θ = FA(ψ).

Hence FA : A∗ → (NA)∗ is a surjective linear isometry.
Since every FA(ψ), (ψ ∈ A∗), is wo-continuous, it follows that the topologies

w and wo coincide on NA. Moreover, if θ ∈ (NA)∗ is positive, then ψ = θ ◦πA is a
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scalar multiple of some state of A, hence θ = FA(ψ) is a of the form ωζ for some
ζ ∈ HA.

Consider the map ΦA : NA → A∗∗ defined by

ΦA(y)(ψ) = FA(ψ)(y); ψ ∈ A∗; y ∈ NA.

By Proposition 8.1 we see that ΦA is the transposed map of FA via the identi-
fication of NA and ((NA)∗)

∗. Consequently, ΦA is a linear isometry of NA onto
A∗∗ and a homeomorphism with respect to the w (or wo)-topology on NA and the
A∗-topology on A∗∗.

Finally, for every x ∈ A we have ΦA(πA(x)) ∈ A∗∗ and

[ΦA(πA(x))](ψ) = FA(ψ)(πA(x)) = ψ(x); ψ ∈ A∗,

hence ΦA ◦ πA is the canonical embedding of A into A∗∗.
We summarize the above results:

Theorem. Let A be a C∗-algebra and πA : A → NA ⊂ B(HA) be its uni-
versal ∗-representation. Then

(i) for every ψ ∈ A∗ there exists a unique wo-continuous form FA(ψ) on NA
such that ψ = FA(ψ) ◦ πA and the map FA is a linear isometry of A∗ onto (NA)∗;

(ii) the map ΦA : NA → A∗∗ defined by ΦA(y)(ψ) = FA(ψ)(y), (ψ ∈ A∗,
y ∈ NA), is a surjective linear isometry and a (w, σ(A∗∗, A∗))-homeomorphism
and ΦA ◦ πA is the canonical embedding of A into A∗∗.

Let ψ ∈ A∗ and y ∈ NA. Then y · FA(ψ), FA(ψ) · y belong to (NA)∗, hence
there exist y ·ψ, ψ ·y ∈ A∗ such that FA(y ·ψ) = y ·FA(ψ), FA(ψ ·y) = FA(ψ) ·y. It
is easy to see that for every x ∈ A we have πA(x) · ψ = x · ψ = ψ(x ·), ψ · πA(x) =
ψ · x = ψ(·x).

On the other hand, for every ψ ∈ A∗ we have FA(ψ)
∗ = FA(ψ

∗). If ψ ∈ A∗

is positive, then FA(ψ) ∈ (NA)∗ is also positive. If ψ ∈ A∗ is positive, then for
every y ∈ NA the functional y∗ · ψ · y ∈ A∗ is positive.

Corollary. Let A,B be C∗-algebras and ψ : A → B be a bounded linear
mapping. There exists a unique w-continuous linear mapping ΨA,B : NA → NB
such that ‖ΨA,B‖ = ‖Ψ‖ and

ΨA,B(πA(x)) = πB(Ψ(x)); x ∈ A.

8.3. Projections of norm one. This section contains a first application of
von Neumann algebras to C∗-algebra theory.

Lemma. Let M ⊂ B(H) be a von Neumann algebra, N be a w-closed ∗-
subalgebra of M and Ψ be a linear projection of M onto N with ‖Ψ‖ 6 1. Then Ψ
is positive and

Ψ(yxz) = yΨ(x)z; x ∈M, y, z ∈ N.

Proof. By Lemma 7.11, N has a unit element eN which is a projection. As
for any element of N , we have Ψ(eN ) = eN ,Ψ being a projection onto N .
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Let Ψ(1 − eN ) = a + ib with a, b ∈ N selfadjoint. Then for λ ∈ C, |λ| 6 1,
we have

‖eN + λa+ iλb‖ = ‖Ψ(eN + λ(1− eN ))‖ 6 ‖Ψ‖ ‖eN + λ(1− eN)‖ 6 1.

If ϕ ∈ S(N), then ϕ(eN ) = 1. Thus, for λ ∈ R, |λ| 6 1, we get

|1 + λϕ(a) + iλϕ(b)| = |ϕ(eN + λa+ iλb)| 6 1,

|1 + λϕ(a)| 6 1.

It follows that ϕ(a) = 0 for all ϕ ∈ S(N) and therefore a = 0 (Proposition 4.13).
Thus |1 + iϕ(b)| 6 1, ϕ(b) = 0 for all ϕ ∈ S(N) and b = 0. We have proved

Ψ(1) = eN .

By Proposition 6.4 we infer that Ψ is positive.
For every ϕ ∈ S(N) we have

|ϕ(Ψ(x)−Ψ(eNx))| = |(ϕ◦Ψ)((1−eN )x)| 6 (ϕ◦Ψ)(1−eN )1/2(ϕ◦Ψ)(x∗x)1/2 = 0,

so that
Ψ(eNx) = Ψ(x); x ∈M.

Let e ∈ N be a projection and put f = eN − e. For every x, y ∈M we have

‖ex+ fy‖2 = ‖(ex+ fy)∗(ex+ fy)‖ = ‖x∗ex+ y∗fy‖ 6 ‖ex‖2 + ‖fy‖2,

hence, for any λ ∈ R we obtain

(λ+ 1)2‖fΨ(ex)‖2 = ‖fΨ(ex+ λfΨ(ex))‖2 6 ‖ex+ λfΨ(ex)‖2

6 ‖ex‖2 + ‖λfΨ(ex)‖2 = ‖ex‖2 + λ2‖fΨ(ex)‖2.

Consequently
(eN − e)Ψ(ex) = 0.

Thus, for every x ∈M and every projection e ∈ N we get

eΨ(x) = eΨ(eNx) = eΨ(ex) + eΨ((eN − e)x) = eΨ(ex)

= eΨ(ex) + (eN − e)Ψ(ex) = eNΨ(ex) = Ψ(ex).

Since N is the norm closed linear hull of the projections it contains (Propo-
sition 3/7.16), it follows that

Ψ(yx) = yΨ(x); x ∈M, y ∈ N.

Using this and the selfadjointness of Ψ we also obtain

Ψ(xz) = Ψ(x)z; x ∈M, z ∈ N.
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Theorem (J. Tomiyama). Let A be a C∗-algebra, B be a C∗-subalgebra of
A and Ψ be a linear projection of norm one of A onto B. Then

(i) Ψ(ba) = bΨ(a) and Ψ(ba) = Ψ(a)b for all a ∈ A, b ∈ B.
(ii) Ψ is completely positive.
(iii) Ψ is a Schwarz map.

Proof. Consider the universal ∗-representation πA : A→ NA of A and denote
by N the w-closure of πA(B) in NA. By Corollary 8.2 there exists a w-continuous
linear mapping ΨA : NA → NA, ‖ΨA‖ = ‖Ψ‖ 6 1, such that

ΨA(πA(a)) = πA(Ψ(a)); a ∈ A.

For every a ∈ A we have ΨA(πA(a)) = πA(Ψ(a)) ∈ πA(B), hence ΨA(NA) ⊂ N .
On the other hand, for every b ∈ B we have ΨA(πA(b)) = πA(Ψ(b)) = πA(b),
hence ΨA acts identically on N . Consequently, ΨA is a linear projection of NA
onto N with ‖ΨA‖ 6 1. By the above lemma it follows that ΨA is positive and,
for all a ∈ A, b ∈ B, we have

πA(Ψ(ba)) = ΨA(πA(b)πA(a)) = πA(b)ΨA(πA(a)) = πA(bΨ(a))

and similarly πA(Ψ(ab)) = πA(Ψ(a)b).
Hence Ψ is positive and satisfies assertion (i). Now the assertions (ii) and

(iii) follow by Proposition 5.11 and Corollary 5.10.

8.4. W ∗-algebras. By Theorem 7.6, for a Banach space M the following
statements are equivalent:

1) M1 is compact with respect to some locally convex Hausdorff linear topology
on M ;

2) M is isometrically isomorphic to the dual space of some Banach space.
On the other hand, by Lemma 8.1 or by Lemma 1/7.8, every von Neumann

algebraM satisfies the above conditions. In order to obtain an abstract (or space-
free) theory of von Neumann algebras, we shall define a particular class of C∗-
algebras.

A Banach space M is called a W ∗-algebra if it is a C∗-algebra and satisfies
the above equivalent conditions 1) and 2).

By condition 1) and the Krein-Milman theorem, M1 has extreme points,
hence (Theorem 6.1) every W ∗-algebra has a unit element.

Throughout this section, devoted to the identification of W ∗-algebras with
von Neumann algebras, M will be a W ∗-algebra and F will be a norm closed
vector subspace of M∗ such that the map

Φ :M → F ∗ defined by Φ(x)(ψ) = ψ(x); ψ ∈ F, x ∈M,

is a linear isometry of M onto F ∗. We shall identify M and F ∗ via Φ. Consider
also the universal ∗-representation

πM :M → NM ⊂ B(HM )

where NM is the envelloping von Neumann algebra of M . As in 8.1 we shall
identify ((NM )∗)

∗ and NM .
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Lemma 1. There exists a unique central projection pF of NM such that the
mapping

(1) M ∋ x 7→ πM (x)pF ∈ (NM )pF

is a surjective ∗-isomorphism and (σ(M,F ), w)-homeomorphism.
Moreover, for ψ ∈M∗ we have

ψ ∈ F ⇔ ψ = pF · ψ.

Proof. By Theorem 8.2 there is a linear isometry FM of M∗ onto (NM )∗
such that ψ = FM (ψ) ◦ πM for all ψ ∈M∗. Then FM |F is a linear isometry of F
into (NM )∗ and its transposed map

Ψ = (FM |F )∗ : NM ≡ ((NM )∗)
∗ → F ∗ ≡M

is a (w, σ(M,F ))-continuous linear contraction of NM into M , such that ψ ◦Ψ =
FM (ψ) for all ψ ∈ F .

Since ψ ◦ Ψ ◦ πM = FM (ψ) ◦ πM = ψ, (ψ ∈ F ), it follows that πM ◦ Ψ is a
linear projection of norm one of NM onto πM (M). By Theorem 8.3 we infer that
Ψ is positive and

(2) Ψ(πM (y)xπM (z)) = yΨ(x)z; x ∈ NM , y, z ∈M.

Since Ψ is selfadjoint and (w, σ(M,F ))-continuous, KerΨ is a w-closed self-
adjoint subspace of NM . Moreover, by (2),

x ∈ KerΨ, y, z ∈M ⇒ πM (y)xπM (z) ∈ KerΨ

and, since πM (M) is w-dense in NM , it follows that Kerπ is a w-closed selfadjoint
two-sided ideal of NM . By Lemma 7.11, the ∗-algebra Kerπ has a unit element
qF which is a projection. Since Kerπ is a two-sided ideal, it is easy to check that
qF is a central projection in NM and

KerΨ = (NM )qF .

For x, y ∈ NM we have x−(πM ◦Ψ)(x) ∈ KerΨ, hence xy−((πM ◦Ψ)(x))y ∈
KerΨ, and by (2) this yields Ψ(xy) = Ψ(x)Ψ(y). Thus Ψ is a ∗-homomorphism.

Let pF = 1 − qF . Then the restriction of Ψ to (NM )pF is a ∗-isomorphism
onto M and, for every y ∈ M , we have Ψ(πM (x)pF ) = Ψ(πM (x)) = x. It follows
that the map (1) is a surjective ∗-isomorphism. As ((NM )pF )1 is w-compact,
M1 is σ(M,F )-Hausdorff and Ψ is (w, σ(M,F ))-continuous, the map M1 ∋ x 7→
πM (x)pM ∈ ((NM )pF )1 is a (σ(M,F ), w)-homeomorphism. Using Proposition 7.2
we infer that the map (1) is also a (σ(M,F ), w)-homeomorphism.

Now let p be an arbitrary central projection in NM such that the map M ∋
x 7→ πM (x)p ∈ (NM )p is a (σ(M,F ), w)-homeomorphic ∗-isomorphism. Then
for every y ∈ NM there exists a unique Θ(y) ∈ M such that πM (Θ(y))p = yp
and Θ : NM → M is a (w, σ(M,F ))-continuous ∗-homomorphism with KerΘ =
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(NM )(1−p). Since for all y ∈ πM (M) we have πM (Ψ(y)) = y hence πM (Ψ(y))p =
yp, it follows that Θ coincides with Ψ on πM (M). By the w-density of πM (M) in
NM , it follows that Θ = Ψ, KerΘ = KerΨ and p = pF .

Finally, let ψ ∈M∗. If ψ ∈ F , then

(pF · ψ)(x) = FM (ψ)(pFπM (x)) = ψ(Ψ(pFπM (x))) = ψ(Ψ(πM (x))) = ψ(x)

for all x ∈M , hence ψ = pF · ψ. Conversely, if ψ = pF · ψ, then

ψ(x) = (pF · ψ)(x) = FM (ψ)(pFπM (x)); x ∈M.

Due to the continuity properties of the maps (1) and FM (ψ) we infer that ψ is
F -continuous, i.e. ψ ∈ F (Proposition 7.2).

By Lemma 1, we have F = pF ·M∗. A form ψ ∈M∗ will be called F -singular
if it belongs to (1− pF ) ·M

∗, that is if pF · ψ = 0.
Let ϕ, ψ ∈M∗ be positive. Since pF is a central projection in NM , it is easy

to see that
ϕ 6 ψ, ψ ∈ F ⇒ ϕ ∈ F,

ϕ 6 ψ, ψ is F -singular ⇒ ϕ is F -singular.

By Corollary 1/4.15 every ψ ∈M∗ can be written as

ψ = ψ1 − ψ2 + i(ψ3 − ψ4)

with ψk ∈ M∗ positive and ‖ψk‖ 6 ‖ψ‖, (1 6 k 6 4). Moreover, “translating”
this equality with pF or with (1 − pF ), it follows that

ψ ∈ F ⇒ we can choose ψk ∈ F, 1 6 k 6 4;

ψ is F -singular ⇒ we can choose ψk F -singular, 1 6 k 6 4.

Also, for every a, b ∈ NM we have

ψ ∈ F ⇒ a · ψ · b ∈ F and ψ∗ ∈ F ;

ψ is F -singular ⇒ a · ψ · b and ψ∗ are F -singular.

In particular, for every a, b ∈M , the mappings

M ∋ x 7→ axb ∈M, M ∋ x 7→ x∗ ∈M

are F -continuous.
Lemma 1 shows that everyW ∗-algebraM is (σ(M,F ), w)-homeomorphically

∗-isomorphic to a von Neumann algebra. In particular, since the vector states on
a von Neumann algebra are w-continuous, we infer that

x = x∗ ⇔ ϕ(x) ∈ R for all ϕ ∈ F, ϕ > 0;

x > 0 ⇔ ϕ(x) > 0 for all ϕ ∈ F, ϕ > 0;

x = 0 ⇔ ϕ(x) = 0 for all ϕ ∈ F, ϕ > 0.
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Lemma 2. If {aι}ι∈I is a norm bounded increasing net of selfadjoint ele-
ments of M , then there exists an element in M , denoted as sup

ι
aι, which is the

least upper bounded of {aι; ι ∈ I} with respect to the C∗-algebra order structure
on M . Moreover,

aι
F
−→ sup

ι
aι.

If the aι’s are projections, then sup
ι
aι is also a projection.

Proof. Let Sι be the F -closure of {aκ; κ > ι}, (ι ∈ I). Then {Sι}ι∈I is
a decreasing net of F -compact sets, hence

⋂
ι∈I

Sι 6= ∅. If a, a′ ∈
⋂
ι∈I

Sι, then

ϕ(a) = sup
ι∈I

ϕ(aι) = ϕ(a′) for all positive ϕ ∈ F , hence a = a′. Thus
⋂
ι∈I

Sι reduces

to a single selfadjoint element a ∈M .
Clearly, aι 6 a for all ι ∈ I. If aι 6 b for all ι ∈ I, then ϕ(a) = sup

ι
ϕ(aι) 6

ϕ(b) for all positive ϕ ∈ F , hence a 6 b. Therefore a = sup
ι

aι.

Since every ψ ∈ F is a linear combination of positive forms in F , it follows

that ψ(aι) → ψ(a) for all ψ ∈ F , i.e. aι
F
−→ a.

If the aι’s are all projections, then aι = aιaκ whenever ι 6 κ. Taking the
F -limit over κ, we obtain aι = aιa, (ι ∈ I), and now taking the F -limit over ι, we
get a = a2, hence a is a projection.

Let {eι}ι∈I be an arbitrary family of mutually orthogonal projections in M
and, for every finite set J ⊂ I, denote eJ =

∑
ι∈J

eι. Then {eJ}J is an increasing

net of projections. Using Lemma 2 we define

∑

ι∈I

eι = sup
J⊂I finite

eJ .

Note that eJ
F
−→

∑
ι∈I

eι.

Let ψ ∈ M∗ and write ψ = ψ1 − ψ2 + i(ψ3 − ψ4) with ψk ∈ M∗, ψk > 0,

‖ψk‖ 6 ‖ψ‖, (1 6 k 6 4). Since |ψ(eι)| 6
4∑

k=1

ψk(eι), (ι ∈ I), it follows that
∑
ι∈I

|ψ(eι)| 6 4‖ψ‖ < +∞, hence the sum
∑
ι∈I

ψ(eι) is legitime. Moreover, we have

ψ
(∑

ι∈I

eι

)
=

∑

ι∈I

ψ(eι); ψ ∈ F.

Lemma 3. Let ψ ∈M∗. Then

(i) ψ ∈ F if and only if ψ
( ∑
ι∈I

eι

)
=

∑
ι∈I

ψ(eι) for every family {eι}ι∈I of

mutually orthogonal projection in M .
(ii) ψ is F -singular if and only if for every non-zero projection e ∈ M there

exists a non-zero projection f ∈M , f 6 e, such that ψ(f) = 0.
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Proof. (ii) Let ψ be F -singular. Since ψ = ψ1 − ψ2 + i(ψ3 − ψ4) with ψk
positive and F -singular, (1 6 k 6 4), it follows that in proving the “only if” part
we may, and shall, assume ψ to be positive.

If ψ(e) = 0, then we take f = e.
Suppose that ψ(e) > 0. Choose a positive form θ ∈ F such that θ(e) > ψ(e)

and let P be the set of all projections p ∈ M , p 6 e, with θ(p) 6 ψ(p). By
Lemma 2 and by the Zorn lemma, P has a maximal element denoted by pmax.
Put f = e− pmax.

Since θ(f) = θ(e)− θ(pmax) > ψ(e)−ψ(pmax) = ψ(f) > 0, f is non-zero. By
the maximality of pmax it follows that

q ∈M projection, q 6 f ⇒ θ(q) > ψ(q).

As M is ∗-isomorphic to a von Neumann algebra, using Proposition 3/7.16 we
infer that

a ∈M, a > 0, a 6 f ⇒ θ(a) > ψ(a).

This means that f · ψ · f 6 f · θ · f . Since f · θ · f ∈ F , we have also f · ψ · f ∈ F .
But f · ψ · f is F -singular since ψ is F -singular. Therefore f · ψ · f = 0, which is
equivalent to ψ(f) = 0 because ψ is positive.

Conversely, suppose that for every non-zero projection e ∈ M there is a
non-zero projection f ∈M , f 6 e, with ψ(f) = 0.

Let e ∈ M be a non-zero projection. Since (1 − pF ) · ψ is F -singular, the
above part of the proof shows that there is a non-zero projection g ∈ M , g 6 e,
such that g · [(1−pF ) ·ψ] ·g = 0. By the assumption, there is a non-zero projection
f ∈M , f 6 g, with ψ(f) = 0. Then

(pF · ψ)(f) = ψ(f)− [(1 − pF ) · ψ](f) = ψ(f)− (g · [(1 − pF ) · ψ] · g)(f) = 0.

It follows that for an arbitrary projection e ∈ M and a maximal family
{eι}ι∈I of mutually orthogonal projection 0 6= eι ∈M , eι 6 e, with (pF ·ψ)(eι) = 0,
(ι ∈ I), we have

∑
ι∈I

eι = e. Since pF · ψ ∈ F , we infer that (pF · ψ)(e) = 0.

As M is the closed linear span of its projections (Proposition 3/7.16), we
obtain pF · ψ = 0, so ψ is F -singular.

(i) The “only if” part was proved just before the statement.

Suppose that ψ
(∑

ι
eι

)
=

∑
ι
ψ(eι) for every family {eι} of mutually orthog-

onal projections in M .
Let e ∈ M be an arbitrary projection and {eι} be a maximal family of

mutually orthogonal projection 0 6= eι 6 e with [(1 − pF ) · ψ](eι) = 0. Since
(1 − pF ) · ψ is F -singular, by (ii) it follows that

∑
ι
eι = e. By our assumption on

ψ and by the “only if” part of (i), we get

[(1− pF ) · ψ](e) = ψ(e)− (pF · ψ)(e) =
∑

ι

ψ(eι)−
∑

ι

(pF · ψ)(eι)

=
∑

ι

[(1− pF ) · ψ](eι) = 0.

As above, we conclude (1 − pF ) · ψ = 0, hence ψ ∈ F .
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Theorem. Let M be a W ∗-algebra and πM : M → NM ⊂ B(HM ) be its

universal ∗-representation.

(i) There exists a unique norm-closed vector subspace F of M∗ such that the

map Φ : M → F ∗ defined by Φ(x)ψ = ψ(x), (x ∈ M , ψ ∈ F ), be a surjective

linear isometry.

We denote M∗ = F and call M∗ the predual of M.

(ii) There exists a unique central projection pM in NM such that the map x 7→
πM (x)pM be a ∗-isomorphism of M onto the von Neumann algebra (NM )pM ⊂
B(pMHM ). Moreover, this map is a (σ(M,M∗), w)-homeomorphism and M∗ =

pM ·M∗.

(iii) A linear functional ψ ∈M∗ satsfies ψ = pM ·ψ, that is ψ ∈M∗, if and only

if ψ
( ∑
ι∈I

eι

)
=

∑
ι∈I

ψ(eι) for every family {eι}ι∈I of mutually orthogonal projections

in M.

In this case ψ is called a normal linear form on M.

(iv) A linear functional ψ ∈ M∗ satisfies pM · ψ = 0 if and only if for every

non-zero projection e ∈ M there exists a non-zero projection f ∈ M , f 6 e, with

ψ(f) = 0. Moreover, f can be choosen such that f · ψ · f = 0.

In this case ψ is called a singular linear form on M.

Proof. (i) follows from Lemma 3, (ii) follows from (i) together with Lemma 1

and (iii), (iv) are a reproduction of Lemma 3.

Due to assertion (ii) in the theorem, the M∗-topology on a W ∗-algebra M

will be also called the w-topology.

By the Krein-Shmulyan theorem (7.4), a convex set S ⊂ M is w-closed if

and only if the sets S ∩Mλ, (λ > 0), are all w-closed.

Also, M is w-sequentially complete, because M1 is w-compact and every

w-Cauchy sequence in M is norm-bounded by the uniform boundedness theorem.

Note that if ϕ is a normal (respectively singular) linear form on M , that is

ϕ ∈ pM ·M∗ (respectively ϕ ∈ (1 − pM ) ·M∗), then a · ϕ · b, (a, b ∈ NM ), and

ϕ∗ are normal (respectively singular). If 0 6 ψ 6 ϕ and ϕ is normal (respectively

singular), then ψ is normal (respectively singular). Every normal (respectively

singular) linear form onM is a linear combination of normal (respectively singular)

positive forms on M . This last assertion will be sharpened in 8.10 and 8.11.

For each ϕ ∈M∗, pM ·ϕ will be called the normal part of ϕ and (1− pM ) ·ϕ
will be called the singular part of ϕ. We shall denote

Mh
∗ = {ϕ ∈M∗; ϕ = ϕ∗}, M+

∗ = {ϕ ∈M∗; ϕ positive}.

The statement (i) of the theorem entails:

Corollary 1. Let Φ be a linear isometry of a W ∗-algebra M onto a W ∗-

algebra N. Then Φ is w-continuous.
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Let {xι}ι∈I be a family of elements of the W ∗-algebra M such that

∑

ι∈I

|ϕ(xι)| < +∞ for all ϕ ∈M∗, ϕ > 0.

Since every normal form is a linear combination of positive normal forms, it follows
that

∑
ι∈I

|ψ(xι)| < +∞ for all ψ ∈ M∗. Put xJ =
∑
ι∈J

xι for J ⊂ I, finite. By the

uniform boundedness principle (Theorem 7.3), it follows that sup
J

‖xJ‖ < +∞.

It is now easy to check that {xJ}J is a w-Cauchy net. On the other hand, the
set {x ∈ M ; ‖x‖ 6 sup

J
‖xJ‖} being w-compact, this net has a w-limit point and

hence it is w-convergent to some element of M which is denoted by

∑

ι∈I

xι.

Let M,N be W ∗-algebras, Φ : M → N be a bounded map and {eι}ι∈I be a
family of mutually orthogonal projections in M . Since for every ψ ∈ N∗ we have

∑

ι∈I

|ψ(Φ(eι))| =
∑

ι∈I

|(ψ · Φ)(eι)| 6 4‖ψ · Φ‖ < +∞,

the above discussion shows that there exists an element
∑
ι∈I

Φ(eι) ∈ N which is the

w-limit of the net of partial finite sums.

The statement (iii) of the theorem entails:

Corollary 2. A bounded linear mapping Φ : M → N between W ∗-algebras

is w-continuous if and only if Φ
( ∑
ι∈I

eι

)
=

∑
ι∈I

Φ(eι) for every family {eι}ι∈I of

mutually orthogonal projections in M .

A common consequence of Corollaries 1 and 2 is

Corollary 3. Every ∗-isomorphism betweenW ∗-algebras is w-continuous.

The w-continuous linear mappings between W ∗-algebras will be also called
normal linear mappings. Thus, if M,N are W ∗-algebras, a linear mapping Φ :
M → N is normal if and only if the transposed map tΦ : N∗ → M∗ has the
property tΦ(N∗) ⊂M∗. A usual uniform boundedness argument shows that every
normal mapping between W ∗-algebras is bounded.

On the other hand, Φ : M → N is called a singular linear mapping if Φ is
bounded and tΦ(N∗) ⊂ (1− pM ) ·M∗.

Note that, contrary to Corollary 3, a ∗-homomorphism between two W ∗-
algebras is not necessarily normal. Nevertheless, there are important cases when
its normality is automatic ([314], [358], [363], [364]).
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Corollary 4. Let Φ : M → B(H) be a completely positive linear map-

ping of the W ∗-algebra M, with Stinespring dilation {π, V,K}. Then Φ is normal

(respectively singular) if and only if π is normal (respectively singular).

Proof. Recall that (5.3) π :M → B(K) is a ∗-representation and V : H → K

is a bounded linear operator, uniquely determined such that Φ(x) = V ∗π(x)V ,

(x ∈ M), and K is the closed linear span of π(M)V H . For every a, b ∈ M and

every ξ, η ∈ H we have

(ωπ(a)V ξ,π(b)V η ◦ π)(x) = (π(x)π(a)V ξ|π(b)V η) = (Φ(b∗xa)ξ|η)

= (b∗ · (ωξ,η ◦ Φ) · a)(x); x ∈M.

If Φ is normal (respectively singular), then b∗ · (ωξ,η ◦Φ) ·a is normal (respec-

tively singular) and hence ωπ(a)V ξ,π(b)V η ◦π is normal (respectively singular) for all
a, b ∈ M , ξ, η ∈ H . Since the linear span of {ωπ(a)V ξ, π(b)V η; a, b ∈ M, ξ, η ∈ H}
is norm-dense in B(K)∗, it follows that π is normal (respectively singular).

Conversely, if π is normal (respectively singular), then the same argument

based on the equality

ωξ,η ◦ Φ = ωV ξ,V η ◦ π; ξ, η ∈ H

shows that Φ is normal (respectively singular).

In particular, a positive form ϕ on M is normal (respectively singular) if and

only if the associated GNS representation πϕ : M → B(Hϕ) is normal (respectively

singular).

Let M be a W ∗-algebra. A W ∗-subalgebra of M is a w-closed ∗-subalgebra
of M . If S ⊂ M , then we denote by W ∗(S) the smallest W ∗-subalgebra of M

containing S. Note that if S is a subset of the W ∗-algebra B(H), then R(S) =

W ∗(S ∪ {1H}).

Corollary 5. Let M,N be W ∗-algebras and π : M → N be a normal

∗-homomorphism. Then π(M) is a W ∗-subalgebra of N.

Proof. By Corollary 1/3.11, π(M) is a C∗-subalgebra of N . By Corollary

1/3.15, π(M)1 = π(M1). Since M1 is w-compact and π is w-continuous, we infer

that π(M)1 is w-compact and hence π(M) is w-closed (Theorem 7.4).

Using Theorem 8.2 and the facts established in this section it is easy to verify

the following statement:

Corollary 6. Let A be a C∗-algebra and A∗∗ its second dual. Then there

exists a unique C∗-algebra structure on the Banach space A∗∗ such that the canon-

ical image of A in A∗∗ is a C∗-subalgebra of A∗∗. Moreover, the C∗-algebra A∗∗

is a W ∗-algebra.
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On the second dual of a C∗-algebra we shall always consider the W ∗-algebra
structure guaranted by the above Corollary 6 and we shall identify A to a w-dense
C∗-subalgebra of A∗∗. Note that the predual of A∗∗ is the dual of A,

(A∗∗)∗ = A∗,

that is, every bounded linear form on A extends uniquely to a normal linear form
on A∗∗. Moreover, the second dual of a C∗-algebra has the following characteristic
universality property:

Corollary 7. Let A be a C∗-algebra, M be a W ∗-algebra and Φ : A → M
be a bounded linear mapping. Then Φ can be uniquely extended to a normal linear
mapping of A∗∗ into M.

Proof. The bitransposed map ttΦ : A∗∗ →M∗∗ of Φ is a normal extension of
Φ. On the other hand, by the statement (ii) of the theorem, there exists a central
projection pM in theW ∗-algebraM∗∗ and a ∗-isomorphism Θ :M∗∗pM →M such
that Θ(ypM ) = y for all y ∈M . Define the normal linear mapping Ψ : A∗∗ → M by

Ψ(x) = Θ(ttΦ(x)pM ); x ∈ A∗∗.

Then
Ψ(x) = Θ(Φ(x)pM ) = Φ(x); x ∈ A,

hence Ψ is an extension of Φ.
Since A is w-dense in A∗∗, the unicity assertion is obvious.

In particular, if B is a C∗-subalgebra of A, then the inclusion map B → A
extends to an injective normal ∗-homomorphism of B∗∗ onto the w-closure of B
in A∗∗. This allows us to consider B∗∗ as a W ∗-subalgebra of A∗∗.

Another particular case of Corollary 7 is

Corollary 8. Let A be a C∗-algebra and π : A→ B(H) be a ∗-representa-
tion. Then π can be uniquely extended to a normal ∗-representation A∗∗ → B(H)
also denoted by π and

π(A∗∗) = π(A)
w
.

For instance, the universal ∗ -representation πA : A → B(HA) extends to a
∗-isomorphism of A∗∗ onto the envelopping von Neumann algebra NA of A. We
shall often identify A∗∗ and NA via this ∗-isomorphism.

Corollary 9. Let M,N be W ∗-algebra and Φ : M → N be a bounded
linear mapping. There exist a normal linear mapping Φnor : M → N and a
singular linear mapping Φsing :M → N uniquely determined such that

Φ(x) = Φnor(x) + Φsing(x); x ∈M.

Moreover, if Φ is selfadjoint (respectively positive, respectively a homomorphism),
then Φnor and Φsing are selfadjoint (respectively positive, respectively homomor-
phisms).

Proof. By Corollary 7, there is a unique extension of Φ to a normal linear
mapping Θ :M∗∗ → N . Then Φnor and Φsing are defined by

Φnor(x) = Θ(xpM ), Φsing(x) = Θ(x(1− pM )); x ∈M.

Since the only linear mappingM → N which is simultaneously normal and singular
is the zero mapping, the unicity of Φnor and Φsing is obvious.
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The mapping Φnor (respectively Φsing) is called the normal part (respectively
the singular part) of Φ. Recall that, for ϕ ∈ M∗, we have ϕnor = pM · ϕ and
ϕsing = (1− pM ) · ϕ.

Note that if π : M → N is a ∗-homomorphism, then q = π(pM ) is a central

projection in π(M)
w
and

πnor(x) = π(x)q, πsing(x) = π(x)(1 − q); x ∈M.

Using Corollary 9, it is easy to see that a positive linear mapping Φ :M → N
is singular if and only if there exists no non-zero positive normal mapping Ψ :M →
N such that Ψ 6 Φ.

8.5. Topologies on W ∗-algebras. As we have seen (8.4, 8.1), every W ∗-
algebra M is ∗-isomorphic to a von Neumann algebra R ⊂ B(H) in such a way
that the M∗-topology on M corresponds to the R∗-topology on R and the later
is the restriction to R of the w-topology on B(H). Consequently, if M is a W ∗-
subalgebra of the W ∗-algebra N , then the w-topology on M is the restriction of
the w-topology on N , that is

(1) M∗ = {ψ|M ; ψ ∈ N∗}.

The following result is similar to Proposition 4.16.

Proposition. Let M be a W ∗-subalgebra of the W ∗-algebra N . Then
(i) every normal state of M can be extended to a normal state of N;
(ii) every singular state of M can be extended to a singular state of N.

Proof. (i) Let ϕ ∈ S(M) be normal. By (1) there exists θ ∈ N∗ with θ|M =
ϕ. Replacing θ by (θ + θ∗)/2, we may assume that θ is selfadjoint. Then, by
Corollary 1/4.15, there exist ρ, τ ∈ N∗ positive such that θ = ρ− τ . Replacing ρ
by pN · ρ and τ by pN · τ we may assume that ρ, τ ∈ N∗. Consequently, there is
ρ ∈ N∗, ρ positive, such that

ϕ 6 ρ|M.

By Corollary 1/4.8 there exists a vector η ∈ Hρ|M such that

(2) ϕ = ωη ◦ πρ|M .

On the other hand, since M is a C∗-subalgebra of N,Hρ|M can be identified to a
closed subspace of Hρ in such a way that

πρ|M (x) = πρ(x)|Hρ|M ; x ∈M.

With this identification we can define

ψ = ωη ◦ πρ ∈ N∗.
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Then ψ is positive and, by (2), ϕ = ψ|M . Since ρ ∈ N∗, by Corollary 4/8.4, πρ is
normal, hence ψ ∈ N∗. Finally, since πρ(1N ) coincides with πρ(1M ) on Hρ|M ∋ η,
it follows that ψ(1N ) = ϕ(1M ) = 1, that is ψ ∈ S(N).

(ii) Let ϕ ∈ S(M) be singular. By Proposition 4.16, there exists θ ∈ S(N)
with θ|M = ϕ. Then

ψ = (1− pN ) · θ ∈ N∗

is singular, positive and ‖ψ‖ 6 ‖θ‖ = 1. Since ψ|M + (pN · θ)|M = θ|M = ϕ, we
have (pN · θ)|M 6 ϕ and since ϕ is singular, it follows that (pN · θ)|M is singular.
But pN · θ ∈ N∗ so, by (1), (pN · θ)|M ∈M∗. Consequently (pN · θ)|M = 0, hence

ψ|M = θ|M = ϕ.

Finally, ψ ∈ S(N) since ψ(1M ) = ϕ(1M ) = 1.

Actually, the proof of (ii) gives something more. For instance, if 1N ∈ M ,
then every linear positive extension on N of a singular state ofM is automatically
singular on M .

Let M be a W ∗-algebra. Besides the w-topology on M , we consider the
s-topology on M , defined by the seminorms

M ∋ x 7→ ϕ(x∗x)1/2; ϕ ∈M∗, ϕ positive;

and the s∗-topology on M , defined by the seminorms

M ∋ x 7→ ϕ(x∗x)1/2 + ϕ(xx∗)1/2; ϕ ∈M∗, ϕ positive.

If M = B(H), then this terminology agrees with that introduced in 7.8.
Note that, by the very definition of these topologies and by Corollary 3/8.4,

every ∗-isomorphism between W ∗-algebras is s-continuous and s∗-continuous.
If M is a W ∗-subalgebra of another W ∗-algebra N , then the above proposi-

tion shows that the s-topology (respectively s∗-topology) of M is the restriction
of the s-topology (respectively s∗-topology) of N .

This holds in particular if M is realized as a von Neumann algebra M ⊂
B(H). Using Theorem 7.8 and the Hahn-Banach theorem we infer that

Corollary. Let M be aW ∗-algebra. A linear functional on M is w-continu-
ous if and only if it is s∗-continuous.

Therefore, if τw denotes the Mackey topology on M associated to the w-
topology, then

w ≺ s ≺ s∗ ≺ τw.

In particular, the closures of a convex subset of M are the same in all these
topologies.

By 7.9, the mappings M ∋ x 7→ xa, M ∋ x 7→ ax, (a ∈M), are w, s, and s∗-
continuous, the mappingsM1×M ∋ (x, y) 7→ xy andM1×M1 ∋ (x, y) 7→ xy are s-
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and respectively s∗-continuous and the map M ∋ x 7→ x∗ is w and s∗-continuous.
By 7.10, the topologies s and s∗ coincide on the set {x ∈M ; x normal}.

By 7.8, the closed unit ballM1 is complete relative to the uniform structures
defined by the s-topology and by the s∗-topology.

By the Kaplansky density teorem, if A is a w-dense ∗-subalgebra of M , then
for every x ∈M (respectively x ∈Mh, respectively x ∈M+) there is a net {xι}ι in

A (respectively Ah, respectively A
+) such that ‖xι‖ 6 ‖x‖ for all ι and xι

s∗
−→ x.

If additionally A is a C∗-subalgebra of M and 1M ∈ A, then by Proposition
5/7.16, for every unitary u ∈ M there is a net {uι}ι of unitaries in A such that

‖1M − uι‖ 6 ‖1M − u‖ for all ι and uι
s∗

−→ u.
Let {aι}ι be a norm-bounded increasing net of selfadjoint elements of M .

By Lemma 2/8.4, there is an element a = sup
ι
aι in M which is the least upper

bound of {aι}ι with respect to the C∗-algebra order structure of M and aι
w

−→ a.
Actually,

aι
s∗
−→ a.

Indeed, for every positive ϕ ∈M∗ we have

ϕ((a−aι)
∗(a−aι)+ (a−aι)(a−aι)

∗) = 2ϕ((a−aι)
2) 6 4 sup

ι
‖aι‖ϕ(a−aι) → 0.

The fact that every norm-bounded increasing net {aι}ι in Mh has a least

upper bound a in Mh and aι
s∗
−→ a is usually called the Vigier theorem. In this

situation we shall write
aι ↑ a.

If aι ↑ a and x ∈M , then x∗aιx
w

−→ x∗ax, hence x∗aιx ↑ x∗ax.
If 0 6 aι ↑ a, then by 2.6.(3), ‖aι‖ ↑ ‖a‖.
If aι ↑ a and all aι are projections, then a is also a projection.
Let M,N be W ∗-algebras and π : M → N be a ∗-homomorphism. By

Corollary 2/8.4, π is normal if and only if

Mh ∋ xι ↑ x⇒ π(xι) ↑ π(x).

Using this and the equality π(x)∗π(x) = π(x∗x), (x ∈M), it is easy to check that

(3)

π is normal ⇔ π is s-continuous

⇔ π is s∗-continuous

⇔ π is continuous with respect to the s∗-topology on

M and the w-topology on N.

8.6. Calculus in W ∗-algebras. Since every W ∗-algebra can be realized as
a von Neumann algebra, all the non-spatial results from 7.10 and 7.12–7.16 can
be restated for W ∗-algebras.
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Thus, let M be a W ∗-algebra and x ∈ M . There exists a projection l(x) =
lM (x) ∈ M (respectively r(x) = rM (x) ∈ M), called the left (respectively right)
support of x in M , which is the smallest projection e ∈ M such that ex = x
(respectively xe = x). If x is normal, then l(x) = r(x) is simply called the support
of x and is denoted by s(x) = sM (x). The relations 7.12.(1)–(3) are equally valid.
Note that ifM is aW ∗-subalgebra of anotherW ∗-algebra N , then lM (x) = lN (x),
rM (x) = rN (x) for all x ∈M .

For every x ∈M there exists a unique positive element |x| ∈M and a unique
partial isometry v ∈ M such that the polar decomposition (7.12.(5)) holds and
then the relations 7.12.(6)–(8) are also valid.

Moreover, the results from Section 7.13 still hold true with obvious reformu-
lations.

Denote by P (M) the set of all projections in M endowed with the natural
order structure.

Let {eι}ι∈I be an arbitrary family in P (M). If J is a finite subset of I then,
using 2.6.(8) it is easy to check that

eJ = s
(∑

ι∈J

eι

)
∈ P (M)

is the least upper bound of {eι; ι ∈ J} in P (M). Then {eJ}J⊂I, J finite is an
increasing net of projections and, by the Vigier theorem (8.5),

∨

ι∈I

eι = sup
J⊂I, J finite

eJ ∈ P (M)

is the least upper bound of {eι; ι ∈ I} in P (M). Also

∧

ι∈I

eι = 1−
∨

ι∈I

(1 − eι) ∈ P (M)

is the greatest lower bound of {eι; ι ∈ I} in P (M).
We thus obtain the following result:

Proposition 1. For every W ∗-algebra M , P (M) is an orthocomplemented
complete lattice with greatest element 1, smallest element 0 and orthocomplemen-
tation e 7→ 1− e.

If I = {1, . . . , n}, then we shall write e1 ∨ · · · ∨ en or
n∨
k=1

ek (respectively

e1 ∧ · · · ∧ en or
n∧
k=1

ek) instead of
∨
ι∈I

eι (respectively
∧
ι∈I

eι) Note that

(1) e1 ∨ · · · ∨ en = s(e1 + · · ·+ en).

If the projections eι, (ι ∈ I), are mutually orthogonal, then

(2)
∨

ι∈I

eι =
∑

ι∈I

eι.
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If M = B(H) and {eι}ι∈I ⊂ P (B(H)), then

∨

ι∈I

eι = the orthogonal projection onto lin
( ⋃
ι∈I

eιH
)
;

∧

ι∈I

eι = the orthogonal projection onto
⋂
ι∈I

eιH .

The following result extends Corollary 1.14 in the case of W ∗-algebras:

Proposition 2. Let M be a W ∗-algebra and let {xι}ι∈I be a norm-bounded
family of elements in M with mutually orthogonal left supports and mutually or-
thogonal right supports. There exists a unique element x ∈M such that

x = s∗- lim
J⊂I, J finite

∑

ι∈J

xι.

Moreover

‖x‖ = sup
ι∈I

‖xι‖;(3)

l(xι)x = xr(xι) = xι; ι ∈ I;(4)

l(x) =
∑

ι∈I

l(xι), r(x) =
∑

ι∈I

r(xι).(5)

Proof. Using Corollary 1.14 we obtain
∥∥∥
∑
ι∈J

x∗ιxι

∥∥∥ = sup
ι∈J

‖xι‖26
(
sup
ι∈I

‖xι‖
)2

for each J ⊂ I, J finite. By the Vigier theorem it follows that there is an element
a ∈M+, ‖a‖ = sup

ι∈I
‖xι‖, such that

∑
ι∈J

x∗ιxι ↑ a. Then, for every ϕ ∈M+
∗ , we get

∑

ι∈I

|ϕ(xι)| =
∑

ι∈I

|ϕ(l(xι)xι)| 6
∑

ι∈I

ϕ(l(xι))
1/2ϕ(x∗ι xι)

1/2

6

(∑

ι∈I

ϕ(l(xι))
)1/2(∑

ι∈I

ϕ(x∗ι xι)
)1/2

= ϕ
(∑

ι∈I

l(xι)
)1/2

ϕ(a)1/2 < +∞.

Owing to the remarks preceding Corollary 2/8.4, we infer the existence of a unique
element x ∈M such that

x = w - lim
J⊂I, J finite

∑

κ∈J

xκ.

Since
( ∑
ι∈I

l(xι)
)
xκ = xκ for all κ ∈ I,

( ∑
ι∈I

l(xι)
)
x = x and hence l(x) 6

∑
ι∈I

l(xι).

Since xκr(xι) = 0 for all κ 6= ι, we get xr(xι) = xι. Thus, if e ∈M is a projection
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with ex = 0, then exι = exr(xι) = 0 so el(xι) = 0 for all ι ∈ I, and therefore

e
( ∑
ι∈I

l(xι)
)
= 0. These and the symmetric arguments prove (4) and (5).

Now

x−
∑

ι∈J

xι = x(r(x) −
∑

ι∈J

r(xι))
s∗
−→

J⊂I, J finite
0

and

x∗x = s∗- lim
J⊂I, J finite

(∑

ι∈J

xι

)∗(∑

ι∈J

xι

)
= s∗- lim

J⊂I, J finite

(∑

ι∈J

x∗ι xι

)
= a,

hence ‖x‖ = ‖x∗x‖1/2 = ‖a‖1/2 = sup
ι∈I

‖xι‖.

The element x given by Proposition 2 will be denoted by

x =
∑

ι∈I

xι.

For every W ∗-algebra M , its center

Z = ZM = {z ∈M ; zx = xz for all x ∈M}

is a W ∗-subalgebra of M and for any x ∈ M there exists a projection z(x) ∈ Z,

called the central support of x, which is the smallest projection p ∈ Z such that
px = x (7.17).

If e ∈M is a projection, then

(6) z(e) =
∨

u∈U(M)

u∗eu.

Indeed, let p =
∨

u∈U(M)

u∗eu. Then e 6 p and v∗pv = p for all v ∈ U(M), hence p is

a central projection and z(e) 6 p. Conversely, e 6 z(e), so u∗eu 6 u∗z(e)u = z(e)
for all u ∈ U(M) and therefore p 6 z(e).

For an arbitrary x ∈ M we have z(x) = z(l(x)) = z(r(x)) (7.17). It follows

that

(7) z(x) =
∨

u∈U(M)

u∗l(x)u =
∨

u∈U(M)

u∗r(x)u.

On the other hand, Zh is lattice ordered, because Z is commutative (Corol-
lary 1/4.18), and by the Vigier theorem (8.5) we infer that Zh is a conditionally

complete vector lattice.
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Thus, for each x ∈ Mh we can defined its central cover c(x) ∈ Zh as the
greatest lower bounded of the set {z ∈ Zh; z > x}. From this definition we infer
that

x, y ∈Mh, x 6 y ⇒ c(x) 6 c(y);(8)

x ∈M+ ⇒ x 6 c(x) 6 ‖x‖ ⇒ ‖c(x)‖ = ‖x‖;(9)

x ∈Mh ⇒ s(c(x)) = z(x).(10)

If e ∈ M is a projection, then e 6 e2 6 c(e)2 6 c(e), because ‖c(e)‖ = ‖e‖ = 1,
hence c(e) = c(e)2 is also a projection. Thus

(11) e ∈M, e projection ⇒ c(e) = z(e).

Moreover

x ∈Mh, z ∈ Zh ⇒ c(x+ z) = c(x) + z;(12)

x ∈Mh, z ∈ Z+ ⇒ c(xz) = c(x)z;(13)

Mh ∋ xι ↑ x⇒ c(xι) ↑ c(x);(14)

e1, . . . , en ∈ P (M), e1 6 · · · 6 en ⇒ c
( n∑

k=1

ek

)
=

n∑

k=1

z(ek).(15)

Indeed, let x ∈Mh, z ∈ Zh. Since x+z 6 c(x)+z, we have c(x+z) 6 c(x)+z.
Replacing here x by x+ z and z by −z we obtain the converse inequality.

If x ∈ Mh and z ∈ Z+, then xz 6 c(x)z, so c(xz) 6 c(x)z. Replacing here
x by x(z + ε) and z by (z + ε)−1, (ε > 0), we obtain

(z + ε)c(x) 6 c(x(z + ε)) 6 c(xz + ε‖x‖) 6 c(xz) + ε‖x‖

and letting ε→ 0 we get c(x)z 6 c(xz).
If xι ↑ x, then c(xι) ↑ z for some z ∈ Zh by the Vigier theorem. Then

z > c(xι) > xι for all ι, so z > x and consequently z > c(x). Conversely,
c(xι) 6 c(x) for all ι, so z 6 c(x).

Finally, let e1 . . . en be projections in M , e0 = 0 and put a = c
( n∑
k=1

ek

)
. We

have z(e1) 6 · · · 6 z(en), z(e1+ · · ·+en) = z(en) and e1+ · · ·+en > (n−k+1)ek,
so a > (n− k + 1)z(ek) for all 1 6 k 6 n. It follows that

a = az(en) =

n∑

k=1

a(z(ek)− z(ek−1)) >

n∑

k=1

(n− k + 1)z(ek)(z(ek)− z(ek−1))

=

n∑

k=1

(n− k + 1)(z(ek)− z(ek−1)) =

n∑

k=1

z(ek).

Conversely,
n∑
k=1

ek 6
n∑
k=1

z(ek), so a 6
n∑
k=1

z(ek).
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Let Ω be a locally compact Hausdorff space. By the Riesz-Kakutani the-
orem, C0(Ω)

∗ identifies to the Banach space M(Ω) of all bounded regular Borel
measures on Ω. A complex function f on Ω is called universally measurable if f
is µ-measurable for all µ ∈ M(Ω). The set Univ(Ω) of all bounded universally
measurable functions on Ω, endowed with pointwise algebraic operations, com-
plex conjugation and sup-norm, is a C∗-algebra. Clearly, C0(Ω) and B(Ω) are
C∗-subalgebras of Univ(Ω).

A spectral measure on Ω with values in the W ∗-algebra M is an M -valued
mapping e(·) defined on the family of all Borel subsets of Ω which satisfies the
conditions 7.14.1), 7.14.2) and such that, for every ϕ ∈M∗, the map

S 7→ eϕ(S) = ϕ(e(S))

is a regular Borel measure on Ω. For every f ∈ Univ(Ω) there exists a unique
element e(f) ∈M such that

ϕ(e(f)) =

∫

Ω

f(ω) deϕ(ω); ϕ ∈M∗,

and the map
Univ(Ω) ∋ f 7→ e(f) ∈M

is a ∗-homomorphism.
If π : C0(Ω) →M is a ∗-homomorphism, then there exists a uniqueM -valued

spectral measure eπ(·) on Ω such that

ϕ(π(f)) =

∫

Ω

f(ω) deπϕ(ω); f ∈ C0(Ω), ϕ ∈M∗,

and π can be extended to a ∗-homomorphism

πUniv : Univ(Ω) →M

defined by πUniv(f) = eπ(f), (f ∈ Univ(Ω)).
In particular, consider the canonical embedding j of C0(Ω) in its second

dual W ∗-algebra C0(Ω)
∗∗. Then j is a ∗-homomorphism. Let ej(·) be the corre-

sponding C0(Ω)
∗∗-valued spectral measure on Ω and jUniv : Univ(Ω) → C0(Ω)

∗∗

the corresponding ∗-homomorphism. An easy computation shows that for every
f ∈ Univ(Ω) and every µ ∈M(Ω) = C0(Ω)

∗ = (C0(Ω)
∗∗)∗ we have

µ(jUniv(f)) =

∫

Ω

f(ω) dµ(ω).

Since M(Ω) contains the one point supported (or Dirac) measures, we infer that
jUniv is injective.

Thus, via jUniv, Univ(Ω) can be identified with a C∗-subalgebra of C0(Ω)
∗∗.
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In the general case, the ∗-homomorphism, π : C0(Ω) →M extends by Corol-
lary 6/8.4 to a unique normal ∗-homomorphism, say ρπ : C0(Ω)

∗∗ → M , with
ρπ ◦ j = π. Now

(ρπ ◦ ej)(·) : S 7→ ρπ(ej(S))

is a spectral measure on Ω such that
∫

Ω

f(ω) d(ρπ ◦ ej)ϕ(ω) = ϕ((ρπ ◦ j)(f)) = ϕ(π(f)) =

∫

Ω

f(ω) deπϕ(ω)

for all f ∈ C0(Ω) and all ϕ ∈ M∗. It follows that (ρπ ◦ ej)(·) = eπ(·) and
consequently

ρπ ◦ jUniv = πUniv.

In other words, regarding Univ(Ω) as a C∗-subalgebra of C0(Ω)
∗∗, πUniv is

the restriction to Univ(Ω) of the unique normal extension of π to C0(Ω)
∗∗.

Let x be a normal element of the W ∗-algebra M . By Theorem 7.15 and
7.15.(7), the continuous functional calculus (1.16) C(σ(x)) ∋ f 7→ f(x) ∈ M
extends to a unique map

B(σ(x)) ∋ f 7→ f(x) ∈M,

called the Borel functional calculus, such that if {fn}n is a norm-bounded sequence

in B(σ(x)) which converges pointwise to f ∈ B(σ(x)), then fn(x)
w

−→ f(w).
Moreover, with obvious reformulations, all the results from 7.10, 7.15 and 7.16 are
still valid in this setting.

8.7. Ideals in W ∗-algebras. The study of w-closed ideals in W ∗-algebras
leads to a remarkable algebraic property of W ∗-algebras, namely every such ideal
is a principal ideal, which is almost characteristic for W ∗-algebras (see (Bl) and
(Br) in Section 9.35).

First we remark that, being a convex set, every ideal N of a W ∗-algebra M

has the same closure with respect to the topologies w, s, s∗, i.e. N
w
= N

s
= N

s∗

,
which is again an ideal.

Proposition 1. Let M be a W ∗-algebra and N ⊂M be a left ideal. There
exists a unique projection eN ∈M such that

N
w
=MeN .

Every increasing right approximate unit for N is s∗-convergent to eN . In particu-
lar,

(N1)
w
= (N

w
)1.

Proof. Let {uι}ι∈I be an increasing right approximate unit for N (Theorem

3.2). By the Vigier theorem (8.5), uι ↑ e for some e ∈ M+, hence e ∈ N
w

and

Me ⊂ N
w
. For each x ∈ N we have ‖xuι − x‖ → 0 and xuι

s
−→ xe, so x = xe. It

follows that N
w
⊂Me. In particular e2 = e is a projection.

The uniqueness of eN is immediate.

If x ∈ (N
w
)1, then xuι ∈ N1 and xuι

s
−→ x. This proves the last assertion

in the statement.
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Corollary. Let M be a W ∗-algebra. Then
(i) A subset N of M is a w-closed left (respectively right) ideal if and only if

N =Me (respectively N = eM) for some projection e ∈M .
(ii) A subset J of M is a w-closed two-sided ideal if and only if J = Mp for

some central projection q ∈M .
(iii) A subset A of M is a w-closed facial subalgebra if and only if A = eMe for

some projection e ∈M .
(iv) A subset F of M+ is a w-closed face if and only if F = eM+e for some

projection e ∈M .

Proof. (i) is clear.
(ii). Let J ⊂ M be a w-closed two-sided ideal. Then J = Mp for some

projection p ∈M . For every unitary u ∈M we have

Mp = J = u∗Ju =M(u∗pu),

hence p = u∗pu, up = pu. It follows that p is central.
(iii) follows from (i) and 3.9.(iii).
(iv) follows from (iii) and 3.9.(ii).

If M ⊂ B(H) is a von Neumann algebra, then we can also consider the
topologies wo and so on M , with respect to which the convex sets have the same
closure (7.7). From the above corollary it follows that every w-closed left ideal of
M (respectively facial subalgebra of M , respectively face of M+) is also wo-closed,
the converse being trivial since wo ≺ w.

On the other hand, all the results contained in 3.9 can be restated for W ∗-
algebras replacing the norm topology by the w-topology. The proofs are quite sim-
ilar, the only difference is that we have to approximate an element x ∈ N

w
by a

norm-bounded net xι
s∗
−→ x and then x∗ιxι

w
−→ x∗x.

Also not necessarily closed ideals in W ∗-algebras have some special proper-
ties, due to the more refined factorizations which are valid in W ∗-algebras (7.13).

Proposition 2. Let M be a W ∗-algebra and N be a left ideal of M. Then
F = (N∗N) ∩M+ is a face of M+ and

N = NF = {x ∈M ; x∗x ∈ F}, N∗N =MF = linF.

In particular, N∗N is a facial subalgebra of M.

Proof. Clearly, N ⊂ {x ∈ M ; x∗x ∈ F} and, by the polarization relation
2.8.(1), N∗N = linF .

Let x ∈ M such that x∗x 6 b ∈ F . Since b is selfadjoint, using again the
polarization relation, we can find xk, yk ∈ N , (1 6 k 6 n), such that

x∗x 6 b =

n∑

k=1

x∗kxk −
n∑

k=1

y∗kyk 6

n∑

k=1

x∗kxk = a.
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By Proposition 7.13 there are z, zk ∈M , (1 6 k 6 n), such that

x = za1/2, xk = zka
1/2 and

n∑

k=1

z∗kzk = s(a).

It follows that

x = za1/2 = z
( n∑

k=1

z∗kzk

)
a1/2 =

n∑

k=1

zz∗kxk ∈ N.

This shows that F is a face and NF ⊂ N .

In particular, x ∈ N ⇔ |x| ∈ N . This also follows using the polar decompo-
sition of x.

Proposition 3. Let M be a W ∗-algebra. Then
(i) Every invariant face F of M+ is strongly invariant.
(ii) Every two-sided ideal J of M+ is strongly facial.

Proof. (i) Let x ∈ M such that x∗x ∈ F and let x = v|x|, v ∈ M , be the
polar decomposition of x. Then

xx∗ = v|x|2v∗ = v(x∗x)v∗ ∈ F.

(ii) Let F = J ∩M+. If x ∈ M , 0 6 x 6 a ∈ F , then x1/2 = za1/2 for
some z ∈M (7.13), hence x = zaz∗ ∈ F . Thus F is a face of M+ and is invariant
because J is a two-sided. By (i), F is strongly invariant.

If x ∈ J with polar decompresition x = v|x|, v ∈M , then |x| = v∗x ∈ J and
x∗ = |x|v∗ ∈ J . Therefore J is selfadjoint.

If x ∈ J , x∗ = x, then x = x+ − x− with x+, x− ∈M+ and s(x+)s(x−) = 0
(7.12.(8)), so x+ = xs(x+) ∈ J , x− = −xs(x−) ∈ J .

It follows that J = lin(J ∩M+) = linF.

Thus, Corollary 2.9.(iii) yields a one-to-one correspondence between two-
sided ideals of a W ∗-algebra M and strongly invariant faces of M+.

Proposition 4. Let J be a two-sided ideal of the W ∗-algebra M. Then:
(i) For every x ∈ J

w
∩M+ there is an increasing net {xι}ι in J ∩M+ such

that xι ↑ x.
(ii) For every projection e ∈ J

w
there is a family {eι}ι of mutually orthogonal

projections in J such that e =
∑
ι
eι.

Proof. (i) Let J
w

= Mp for some central projection p ∈ M and {uι}ι be
an increasing approximate unit for J . Then {x1/2uιx1/2}ι is an increasing net in
J ∩M+ and x1/2uιx

1/2 ↑ x1/2px1/2 = x.
(ii) Let e ∈ J

w
be a non-zero projection. By (i), there exists x ∈ J ∩M+,

0 6= x 6 e. By Proposition 1/7.16 there exists α > 0 and a projection f ∈
W ∗({x}) ⊂ M such that 0 6= f 6 α−1fxf ∈ J ⊂ M+. Then f 6 e and f ∈ J
because J ∩M+ is a face of M+, by Proposition 3.

Let {eι}ι be a maximal family of mutually orthogonal projections in J with
eι 6 e for all ι. By the above we get e =

∑
ι
eι.
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8.8. W ∗-tensor product. In this section we define a notion of tensor
product for W ∗-algebras corresponding to the tensor product of von Neumann
algebras.

Let M,N be W ∗-algebras. Then the set

J = {x ∈ (M ⊗C∗ N)∗∗; (ϕ⊗ ψ)(x) = 0 for all ϕ ∈M∗, ψ ∈ N∗}

is a w-closed two-sided ideal of (M ⊗C∗ N)∗∗.
Indeed, J is clearly a w-closed vector subspace of (M ⊗C∗ N)∗∗. If x ∈ J ,

a ∈M , b ∈ N , ϕ ∈M∗, ψ ∈ N∗, then ϕ(a ·) ∈M∗, ψ(b ·) ∈ N∗ and we have

(ϕ⊗ ψ)((a⊗ b)x) = (ϕ(a ·)⊗ ψ(b ·))(x) = 0.

So (M ⊗ N)J ⊂ J and similarly J(M ⊗ N) ⊂ J . Since M ⊗ N is w-dense in
(M ⊗C∗ N)∗∗, it follows that J is a two-sided ideal.

By Corollary 8.7 there exists a unique central projection pM,N in (M⊗C∗N)∗∗

such that
J = pM,N(M ⊗C∗ N)∗∗.

Let Φ : M → B(H), Ψ : N → B(K) be normal completely positive map-
pings. By Corollary 1/5.3, there exists a unique completely positive linear mapping
Φ⊗Ψ :M ⊗C∗ N → B(H ⊗K) such that

(Φ⊗Ψ)(a⊗ b) = Φ(a)⊗Ψ(b); a ∈M, b ∈ N.

Furthermore, by Corollary 7/8.4, there exists a unique extension of Φ ⊗ Ψ to a
normal linear mapping

Θ : (M ⊗C∗ N)∗∗ → B(H ⊗K).

Clearly, Θ is completely positive.

Lemma. With the above notations we have

(1) KerΘ ⊃ J.

If in addition Φ and Ψ are both injective, then

(2) KerΘ = J.

Proof. Let ξ1, ξ2 ∈ H and η1, η2 ∈ K. Then ωξ1,ξ2 ◦Φ ∈M∗, ωη1,η2 ◦Ψ ∈ N∗

and

(3) (Θ(x)(ξ1 ⊗ η1)|ξ2 ⊗ η2) = [(ωξ1,ξ2 ◦ Φ)⊗ (ωη1,η2 ◦Ψ)](x)

for all x ∈M ⊗N , hence for all x ∈ (M ⊗C∗ N)∗∗.
Thus, if x ∈ J , then (Θ(x)(ξ1⊗η1)|ξ2⊗η2) = 0 for all ξ1, ξ2 ∈ H , η1, η2 ∈ K,

that is Θ(x) = 0. This proves (1).
Now assume that Φ,Ψ are injective. Then tΦ(B(H)∗) is norm-dense in M∗,

hence

(4) lin{ωξ1,ξ2 ◦ Φ; ξ1, ξ2 ∈ H} is norm-dense in M∗.

Similarly,

(5) lin{ωη1,η2 ◦Ψ; η1, η2 ∈ K} is norm-dense in N∗.

If x ∈ KerΘ, then by (3) [(ωξ1,ξ2 ◦Φ)⊗ (ωη1,η2 ◦Ψ)](x) = 0 for all ξ1, ξ2 ∈ H ,
η1, η2 ∈ K, hence by (4), (5) and 4.20.(8), (ϕ⊗ψ)(x) = 0 for all ϕ ∈M∗, ψ ∈ N∗,
that is x ∈ J.
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By 8.4 there exist injective non-degenerate normal ∗-representations
ρ : M → B(H), σ : N → B(K). If π is the normal extensions of ρ ⊗ σ to
(M ⊗C∗ N)∗∗, then by the above lemma

Kerπ = J.

Thus π|(1 − pM,N)(M ⊗C∗ N)∗∗ is a ∗-isomorphism of the W ∗-subalgebra (1−
pM,N)(M ⊗C∗ N)∗∗ of (M ⊗C∗ N)∗∗ onto ρ(M)⊗σ(N).

The W ∗-algebra (1 − pM,N)(M ⊗C∗ N)∗∗ is called the W ∗-tensor product
of M and N and is denoted by M ⊗W∗ N . Clearly, the natural duality between
(M ⊗C∗ N)∗ and (M ⊗C∗ N)∗∗induces a duality between the norm-closure of
M∗ ⊗ N∗ ⊂ M∗ ⊗ N∗ ⊂ (M ⊗C∗ N)∗ and M ⊗W∗ N . Thus M ⊗W∗ N becomes
the dual space of the norm-closure of M∗ ⊗N∗ in (M ⊗C∗ N)∗. Hence the predual
(M ⊗W∗ N)∗ of M ⊗W∗ N is the norm-closure of M∗ ⊗N∗ in (M ⊗C∗ N)∗.

The C∗-tensor productM⊗C∗N can be canonically identified with a w-dense
C∗-subalgebra of the W ∗-tensor product M ⊗W∗ N .

Indeed, let ρ, σ, π be as above. Then the map

M ⊗C∗ N ∋ x 7→ (ρ⊗ σ)(x) = π((1 − pM,N)x) ∈ B(H ⊗K)

is injective (4.20), hence the map

M ⊗C∗ N ∋ x 7→ (1− pM,N )x ∈M ⊗W∗ N

is an injective ∗-homomorphism and, clearly, its range is w-dense.
Note also that, for fixed 0 6= a0 ∈M , 0 6= b0 ∈ N , the linear mappings

M ∋ a 7→ a⊗ b0 ∈M ⊗W∗ N

M ∋ b 7→ a0 ⊗ b ∈M ⊗W∗ N

are injective and normal. Moreover, if a0, b0 are selfadjoint (respectively posi-
tive, respectively 1M , 1N), then the above mappings are selfadjoint (respectively
completely positive, respectively ∗-homomorphisms).

As we have seen, if M ⊂ B(H), N ⊂ B(K) are von Neumann algebras then
M ⊗W∗ N can be naturally identified with M ⊗N . For this reason, for arbitrary
W ∗-algebras M,N we shall denote M ⊗W∗ N also by M ⊗N .

Using the above lemma and 8.4 it is easy to prove:

Proposition. Let Φ : M → R, Ψ : N → S be normal completely positive
linear mapping between W ∗-algebras. There exists a unique normal completely
positive linear mapping Φ⊗Ψ :M ⊗N → R⊗S such that

(Φ⊗Ψ)(a⊗ b) = Φ(a)⊗Ψ(b); a ∈M, b ∈ N.

Moreover, Φ⊗Ψ is injective if and only if Φ,Ψ are both injective and Φ⊗Ψ is a
∗-homomorphism if and only if Φ,Ψ are both ∗-homomorphism.
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In particular, if M,N are W ∗-subalgebras of R,S then the map

M ⊗N ∋
n∑

k=1

ak ⊗ bk 7→
n∑

k=1

ak ⊗ bk ∈ R⊗ S

can be uniquely extended to a normal injective ∗-homomorphism of M ⊗N into
R⊗S, that is we can identify M ⊗N with the W ∗-subalgebra of R⊗S generated
by {a⊗ b; a ∈M, b ∈ N}.

Note also that for every projections e ∈M , f ∈ N we have

(e ⊗ f)(M ⊗N)(e⊗ f) = eMe⊗ fNf.

If A,B are C∗-algebras, then

A⊗C∗ B ⊂ A∗∗ ⊗C∗ B∗∗ ⊂ A∗∗ ⊗B∗∗

and, by Corollary 8/8.4, this inclusion map extends to surjective normal
∗-homomorphism

(A⊗C∗ B)∗∗ → A∗∗ ⊗B∗∗.

Although A∗ ⊗ B∗ is (A ⊗C∗ B)-dense in (A ⊗C∗ B)∗, A∗ ⊗ B∗ is not neces-
sarily norm-dense in (A ⊗C∗ B)∗, that is the above map is not necessarily a ∗-
isomorphism.

On the other hand, let {Mι}ι∈I be a family of W ∗-algebras and let M be
the C∗-direct product of the family {Mι}ι∈I . Then M is a W ∗-algebra.

Indeed, every ϕι0 ∈ M∗
ι0 defines an element of M∗, still denoted by ϕι0 , by

the formula
ϕι0({xι}ι∈I) = ϕι0(xι0); {xι}ι∈I ∈M

and it is easy to check that M is the dual space of the Banach space

M∗ =
{∑

ι∈I

ϕι; ϕι ∈ (Mι)∗,
∑

ι∈I

‖ϕι‖ < +∞
}
⊂M∗.

For this reason M will be also called the W ∗-direct product of the family
{Mι}ι∈I .

Let πι : Mι → B(Hι) be injective normal ∗-representations, (ι ∈ I), and
H =

⊕
ι∈I

Hι. For every x = {xι}ι∈I ∈M and every ξ = {ξι}ι∈I ∈ H define

π(x)ξ = {πι(xι)ξι}ι∈I .

Then the map π :M → B(H) is an injective normal ∗-representation and π(M) is
the von Neumann algebra direct product of the von Neumann algebras πι(Mι) ⊂
B(Hι).

If allMι are equal to C, then the W ∗-direct product of the family {Mι}ι∈I is
the W ∗-algebra ℓ∞(I) of all bounded complex families {λι}ι∈I and its predual is
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the Banach space ℓ1(I) of all absolutely summable complex families {αι}ι∈I . As a
matter of notation, ℓ∞(I) = C(I) where I is endowed with the discrete topology.

Finally, note that the usual associativity and distributivity properties are
valid for tensor products and direct products of W ∗-algebras.

8.9. Polar decomposition or linear functionals. LetM be aW ∗-algebra
and ϕ ∈M∗. Put

Lϕ = {x ∈M ; ϕ(ax) = 0 for all a ∈M},

Rϕ = {x ∈M ; ϕ(xa) = 0 for all a ∈M}.

Then Lϕ (respectively Rϕ) is a w-closed left (respectively right) ideal in M so,
by Corollary 8.7, there exists a unique projection e ∈ M (respectively f ∈ M)
with Lϕ = Me (respectively Rϕ = fM). The projection r(ϕ) = rM (ϕ) = 1 − e
(respectively l(ϕ) = lM (ϕ) = 1 − f) is called the right support (respectively the
left support) of ϕ in M . Thus

(1) Lϕ =M(1− r(ϕ)), Rϕ = (1− l(ϕ))M.

Since 1− r(ϕ) ∈ Lϕ, 1− l(ϕ) ∈ Rϕ, we get

(2) ϕ = ϕ(· r(ϕ)) = ϕ(l(ϕ) ·).

Also, using the Hahn-Banach theorem, from (1) we infer that

(3)
{ϕ(a ·); a ∈M} is norm-dense in M∗ · r(ϕ),

{ϕ(· a); a ∈M} is norm-dense in l(ϕ) ·M∗.

Since Lϕ = (Lϕ∗)∗, it follows that

(4) r(ϕ) = l(ϕ∗).

In particular, if ϕ ∈ M∗ is selfadjoint, then r(ϕ) = l(ϕ) is called simply the
support of ϕ and is denoted by s(ϕ) = sM (ϕ).

If ϕ ∈M∗ is positive, then the Schwarz inequality shows that

{x ∈M ; ϕ(x∗x) = 0} = Lϕ =M(1− s(ϕ))

hence, for x ∈M ,

(5) ϕ(x∗x) = 0 ⇔ xs(ϕ) = 0.

Thus ϕ is faithful (4.3) if and only if s(ϕ) = 1.
Remark that, in a certain sense, the singularity of a linear functional means

the non existence of support projections.
For instance, if ϕ ∈ M∗

+ is faithful, then the normal part pM · ϕ of ϕ is also
faithful. Indeed, if s(pM · ϕ) 6= 1, then there exists a non-zero projection e ∈ M ,
e 6 1 − s(pM · ϕ) with ((1 − pM ) · ϕ)(e) = 0 and then ϕ(e) = (pM · ϕ)(e) = 0, in
contradiction with the faithfulness of ϕ.
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Theorem. Let M be a W ∗-algebra and ϕ ∈M∗. There exist ρ ∈M∗, ρ > 0
and a partial isometry v ∈M , uniquely determined such that

ϕ = ρ(· v), v∗v = s(ρ).

Proof. SinceM1 is w-compact and ϕ is w-continuous, {x ∈M1; ϕ(x) = ‖ϕ‖}
is a non-void w-compact and convex subset of M . Let u be an extreme point of
{x ∈ M1; ϕ(x) = ‖ϕ‖}. Then u is an extreme point of M1 and, by 6.1, u is a
partial isometry.

Define ρ = ϕ(·u) ∈ M∗. Since ρ(1) = ϕ(u) = ‖ϕ‖ > ‖ρ‖ > ρ(1), by
Proposition 4.6 we infer that ρ > 0.

Define v = u∗s(ρ). Since u is a partial isometry, we have ρ(1 − uu∗) =
ϕ(u − uu∗u) = 0 so, by (5), uu∗ > s(ρ). Consequently

v∗v = s(ρ),

ρ(x) = ρ(xs(ρ)) = ϕ(xs(ρ)u) = ϕ(xv∗); x ∈M.

Assume that there exists x ∈M1 such that

α = ϕ(x(1 − vv∗)) > 0.

Then, for each integer n > 1 we have

‖nv∗ + x(1 − vv∗)‖ = ‖(nv∗ + x(1 − vv∗))(nv − (1− vv∗)x∗)‖1/2

= ‖n2v∗v + x(1 − vv∗)x∗‖1/2 6 (n2 + 1)1/2,

thus

‖ϕ‖n+ α = ρ(n) + ϕ(x(1 − vv∗)) = ϕ(nv∗ + x(1 − vv∗)) 6 ‖ϕ‖(n2 + 1)1/2,

which is not possible for sufficiently large n. It follows that ϕ(x(1 − vv∗)) = 0 for
all x ∈M , that is

ϕ = ρ(· v).

Now let ρ, ρ′ be normal positive forms on M and v, v′ ∈ M be partial
isometries such that ϕ = ρ(· v) = ρ′(· v′) and v∗v = s(ρ), v′∗v′ = s(ρ′). Then
‖ϕ‖ = ‖ρ‖ = ‖ρ′‖. On the other hand

ρ(1) = ρ(v∗v) = ϕ(v∗) = ρ′(v∗v′) = ρ′(v′∗v′v∗v′)

= ϕ(v′∗v′v∗) = ρ(v′∗v′v∗v) = ρ(v′∗v′)

so, by (5), v′∗v′ > s(ρ) = v∗v. Similarly, v∗v > v′∗v′. Put

e = v∗v = v′∗v′.

Since v′∗v = v′∗v′v′∗vv∗v = ev′∗ve ∈ eMe, we can write

v′∗v = a+ ib
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with a, b ∈ eMe selfadjoint and ‖a‖, ‖b‖ 6 1. We have

ρ(a) + iρ(b) = ρ(v′∗v) = ϕ(v′∗) = ρ′(v′∗v′) = ‖ρ′‖ = ‖ρ‖

so ρ(a) = ‖ρ‖. It follows that ρ(e − a) = 0. Since e − a > 0, we infer that a = e.
Consequently, ‖e+ ib‖ 6 1, so b = 0. Hence

v′∗v = e = v∗v′

and succesively

v′v′∗v′v′ = v′ev′∗ = v′eev′∗ = v′v′∗vv∗v′v′∗,

v′v′∗(1− vv∗)v′v′∗ = 0,

(1− vv∗)v′v′∗ = 0,

v′v′∗ 6 vv∗.

Similarly, vv∗ 6 v′v′∗. Put
f = vv∗ = v′v′∗.

We conclude
v = vv∗v = fv = v′v′∗v = v′e = v′v′∗v′ = v′,

ρ(x) = ρ(xv∗v) = ϕ(xv∗) = ρ′(xv∗v′) = ρ′(xv′∗v′) = ρ′(x), x ∈M.

If ϕ ∈M∗ and ρ, v are as in the above theorem, then we denote |ϕ| = ρ and
call |ϕ| the modulus (or the absolute value) of ϕ. The relations

(6) ϕ = |ϕ|(· v), v∗v = s(|ϕ|)

are called the polar decomposition of ϕ. Since

ϕ∗ = (v∗ · |ϕ| · v)(· v∗), vv∗ = s(v∗ · |ϕ| · v),

by the unicity of the polar decomposition of ϕ∗ we infer that |ϕ∗| = v∗ · |ϕ| · v and

(7) ϕ = |ϕ∗|(v ·), vv∗ = s(|ϕ∗|).

Note that ‖|ϕ|‖ = ‖ϕ‖ and

(8) l(ϕ) = s(|ϕ|) = v∗v, r(ϕ) = s(|ϕ∗|) = vv∗.

The following result is a characterization of the modulus of a normal form.

Proposition. Let A be a w-dense ∗-subalgebra of the W ∗-algebra M and
ϕ ∈M∗. Then |ϕ| is the unique normal positive form ρ on M such that

(9) ‖ρ‖ 6 ‖ϕ‖, |ϕ(x)|2 6 ‖ϕ‖ ρ(xx∗) for all x ∈ A.
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Proof. Let ϕ = |ϕ|(· v) be the polar decomposition of ϕ. Clearly, ‖ |ϕ| ‖ =
‖ϕ‖ and, for every x ∈M ,

|ϕ(x)|2 = | |ϕ|(xv)|2 6 |ϕ|(xx∗)|ϕ|(v∗v) = ‖ϕ‖ |ϕ|(xx∗).

Conversely, suppose that ρ ∈M+
∗ satisfies (9). Then

‖ϕ‖2 = sup{|ϕ(x)|2; x ∈M1} 6 ‖ϕ‖ sup{ρ(xx∗); x ∈M1} 6 ‖ϕ‖ ‖ρ‖,

hence ‖ρ‖ = ‖ϕ‖. Using the Kaplansky density theorem we infer that

|ϕ(x)|2 6 ‖ϕ‖ ρ(xx∗) for all x ∈M,

hence

| |ϕ|(x)|2 = |ϕ(xv∗)|2 6 ‖ρ‖ ρ(xv∗vx∗) 6 ‖ρ‖ ρ(xx∗); x ∈M,

| |ϕ|(x)| = | |ϕ|(x∗)| 6 ‖ρ‖1/2ρ(x∗x)1/2; x ∈M.

The last inequality shows that the map

Hρ ⊃ πρ(M)ξρ ∋ πρ(x)ξρ 7→ |ϕ|(x)

is well defined and can be extended to a bounded linear functional on Hρ with

norm 6 ‖ρ‖1/2. Hence there exists η ∈ Hρ,

(10) ‖η‖ρ 6 ‖ρ‖1/2 = ‖ξρ‖ρ

such that
|ϕ|(x) = (πρ(x)ξρ|η)ρ; x ∈M.

Then

(11) (ξρ|η)ρ = |ϕ|(1) = ‖ϕ‖ = ‖ρ‖ = (ξρ|ξρ)ρ.

From (10) and (11) it follows that η = ξρ, hence ρ = |ϕ|.

Using the polar decomposition, several problems concerning normal forms
can be reduced to normal positive forms. For instance, a weak form of the polar
decomposition (Lemma 2/7.8) has been already used in 7.8. As another illustration
we prove the following strenghtened form of Proposition 8.5:

Corollary. Let M be a W ∗-subalgebra of the W ∗-algebra N. Then
(i) Every normal form ϕ on M can be extended to a normal form ψ on N such

that ‖ψ‖ = ‖ϕ‖.
(ii) Every singular form ϕ on M can be extended to a singular form ψ on N

such that ‖ψ‖ = ‖ϕ‖.
Moreover, in both statements, if ϕ is selfadjoint (respectively positive), then

ψ can be chosen also selfadjoint (respectively positive).

Proof. The case of positive forms has been already treated (8.5) and the case
of selfadjoint forms is an immediate consequence of the general case.

(i) Let ϕ ∈ M∗ and ϕ = |ϕ|(· v) be its polar decomposition. By Proposi-
tion 8.5, |ϕ| extends to a normal positive form ρ on N such that ‖ρ‖ = ‖ |ϕ| ‖ =
‖ϕ‖. Then ψ = ρ(· v) ∈ N∗ extends ϕ and ‖ψ‖ 6 ‖ρ‖ = ‖ϕ‖.

(ii) Let ϕ ∈ M∗ be singular. Then ϕ ∈ (M∗∗)∗ has a polar decomposition
ϕ = |ϕ|(· v), (v ∈ M∗∗), relative to the W ∗-algebra M∗∗. Since |ϕ| = ϕ(· v∗),
|ϕ| ∈M∗ is singular. By Proposition 8.5, |ϕ| extends to a singular positive form ρ
on N such that ‖ρ‖ = ‖ |ϕ| ‖ = ‖ϕ‖. Then ψ = ρ(· v) ∈ N∗ is singular, ψ|M = ϕ
and ‖ψ‖ 6 ‖ρ‖ = ‖ϕ‖.
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8.10. The Jordan decomposition of linear functionals. In this section
we examine the polar decomposition of selfadjoint normal forms.

Theorem. Let M be a W ∗-algebra and ϕ ∈ M∗, ϕ = ϕ∗. There exist
ϕ1, ϕ2 ∈M∗, positive, uniquely determined such that

ϕ = ϕ1 − ϕ2, s(ϕ1)s(ϕ2) = 0.

Proof. Let ϕ = |ϕ|(· v) be the polar decomposition of ϕ. Since ϕ = ϕ∗ and
the polar decomposition of ϕ∗ is ϕ∗ = (v∗ · |ϕ| · v)(· v∗), by the unicity part of
Theorem 8.9 we infer that

v = v∗, |ϕ| = v∗ · |ϕ| · v.

Since v∗v = s(|ϕ|), it follows that e1 = (s(|ϕ|) + v)/2, e2 = (s(|ϕ|) − v)/2 are
projections in M , e1e2 = 0, v = e1 − e2 and

|ϕ| = |ϕ|((e1 − e2) · (e1 − e2)).

Since e1 + e2 = s(|ϕ|), we also have

|ϕ| = |ϕ|((e1 + e2) · (e1 + e2)).

Consequently,
|ϕ| = |ϕ|(e1 · e1) + |ϕ|(e2 · e2)

and, since ϕ = |ϕ|(· v) = |ϕ|(· (e1 − e2)),

ϕ = |ϕ|(e1 · e1)− |ϕ|(e2 · e2).

Thus, the existence part of the statement is satisfied with

ϕ1 = |ϕ|(e1 · e1) = ϕ(· e1), ϕ2 = |ϕ|(e2 · e2) = −ϕ(· e2).

Now let ϕ′
1, ϕ

′
2 be two arbitrary elements of M+

∗ such that e′1 = s(ϕ′
1),

e′2 = s(ϕ′
2) are orthogonal and ϕ = ϕ′

1 − ϕ′
2. Then

ϕ = (ϕ′
1 + ϕ′

2)(· (e
′
1 − e′2)), (e′1 − e′2)

∗(e′1 − e′2) = s(ϕ′
1 + ϕ′

2)

hence, by the unicity of the polar decomposition of ϕ,

e′1 − e′2 = e1 − e2, ϕ′
1 + ϕ′

2 = |ϕ| = ϕ1 + ϕ2.

Moreover,
e′1 + e′2 = s(ϕ′

1 + ϕ′
2) = s(ϕ1 + ϕ2) = e1 + e2.

It follows that e′1 = e1, e
′
2 = e2 and

ϕ′
1 = ϕ(· e′1) = ϕ(· e1) = ϕ1, ϕ′

2 = −ϕ(· e′2) = −ϕ(· e2) = ϕ2.

If ϕ ∈M∗ is selfadjoint and ϕ1, ϕ2 are as in the above theorem, then ϕ+ = ϕ1

(respectively ϕ− = ϕ2) is called the positive (respectively the negative) part of ϕ
and the relations

(1) ϕ = ϕ+ − ϕ−, s(ϕ+)s(ϕ−) = 0

are usually called the Jordan decomposition of ϕ. Note that

(2) |ϕ| = ϕ+ + ϕ−, v = s(ϕ+)− s(ϕ−)

are the terms of the polar decomposition of ϕ. Also, it is easy to see that

(3)
‖ϕ+‖ = sup{ϕ(x); x ∈M+, ‖x‖ 6 1},

‖ϕ−‖ = sup{−ϕ(x); x ∈M+, ‖x‖ 6 1}.

We now characterize the property of two positive normal forms of having
orthogonal supports.
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Proposition. Let A be a w-dense ∗-subalgebra of the W ∗-algebra M and
ϕ1, ϕ2 ∈M∗ be positive. The following conditions are equivalent:

(i) s(ϕ1)s(ϕ2) = 0;

(ii) for every ε > 0 there exists aε ∈ A ∩M+, ‖aε‖ 6 1, such that

ϕ1(aε) 6 ε, ϕ2(aε) > ‖ϕ2‖ − ε;

(iii) ‖ϕ1 − ϕ2‖ = ‖ϕ1‖+ ‖ϕ2‖.

Proof. (i) ⇒ (ii). By the Kaplansky density theorem (8.5) there is a net

{aι}ι in A1 ∩M+ such that aι
w

−→ 1− s(ϕ1). By assumption, 1− s(ϕ1) > s(ϕ2).
It follows that ϕ1(aι) → 0 and ϕ2(aι) → ‖ϕ2‖.

(ii) ⇒ (iii). Clearly, ‖ϕ1 − ϕ2‖ 6 ‖ϕ1‖ + ‖ϕ2‖. Conversely, for each ε > 0
choose aε as in (ii). Since

‖ϕ1‖+‖ϕ2‖ 6 ϕ1(1−2aε)+ϕ2(2aε−1)+4ε = (ϕ1−ϕ2)(1−2aε)+4ε 6 ‖ϕ1−ϕ2‖+4ε,

it follows that ‖ϕ1‖+ ‖ϕ2‖ 6 ‖ϕ1 − ϕ2‖.
(iii) ⇒ (i). Since ϕ1 − ϕ2 is selfadjoint, w-continuous and since M1 is w-

compact, we have

‖ϕ1 − ϕ2‖ = (ϕ1 − ϕ2)(x)

for some selfadjoint x ∈M1. Using (iii) we infer successively that

ϕ1(x)− ϕ2(x) = ‖ϕ1 − ϕ2‖ = ‖ϕ1‖+ ‖ϕ2‖ = ϕ1(1) + ϕ2(1),

ϕ1(1− x) + ϕ2(1 + x) = 0,

ϕ1(1 − x) = ϕ2(1 + x) = 0,

(1− x)s(ϕ1) = (1 + x)s(ϕ2) = 0,

s(ϕ1) 6 s(x+), s(ϕ2) 6 s(x−),

s(ϕ1)s(ϕ2) = 0.

If ϕ1, ϕ2 satisfy the conditions of the above proposition, the we say that ϕ1

and ϕ2 are orthogonal and we write

ϕ1 ⊥ϕ2.

8.11. Let A be a C∗-algebra. Then A∗∗ is a W ∗-algebra with predual
(A∗∗)∗ = A∗, A is a w-dense C∗-subalgebra of A∗∗ and every ϕ ∈ A∗ extends
to a unique element of (A∗∗)∗ also denoted by ϕ (8.2, 8.4).

Using Proposition 8.9 we infer that for every ϕ ∈ A∗ there exists a unique
positive form |ϕ| on A, called the modulus (or the absolute value) of ϕ such that

(1) ‖ |ϕ| ‖ 6 ‖ϕ‖, |ϕ(x)|2 6 ‖ϕ‖ |ϕ|(xx∗) for all x ∈ A.
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Moreover, by Theorem 8.9, there exists a unique partial isometry v ∈ A∗∗ such
that

(2) ϕ = |ϕ| · v, v∗v = sA∗∗(|ϕ|)

and (2) is called the polar decomposition of ϕ in A∗∗.
Using Theorem 8.10 and Proposition 8.10 we infer that for every selfadjoint

ϕ ∈ A∗ there exist unique positive forms ϕ+, ϕ− on A such that

(3) ϕ = ϕ+ − ϕ−, ‖ϕ+ − ϕ−‖ = ‖ϕ+‖+ ‖ϕ−‖

and (3) is called the Jordan decomposition of ϕ. This result strengthens Corollary
1/4.15. The second condition of (3) means the orthogonality of ϕ+ and ϕ− (8.10).
We have

(4) |ϕ| = ϕ+ + ϕ−,

(5)
‖ϕ+‖ = sup{ϕ(x); x ∈ A+, ‖x‖ 6 1},

‖ϕ−‖ = sup{−ϕ(x); x ∈ A+, ‖x‖ 6 1}.

If A is a W ∗-algebra and ϕ ∈ A∗ is singular, then |ϕ| is also singular. If
ϕ ∈ A∗ is selfadjoint and singular, then ϕ+ and ϕ− are also singular.

Let A be a W ∗-algebra and ϕ ∈ A∗.
By Proposition 8.9, the present definition of |ϕ| agrees with that given in

8.9, in particular |ϕ| ∈ A∗. If additionally ϕ ∈ A∗ is selfadjoint, then the
present definition of ϕ+ and ϕ− agrees with that given in 8.10, in particular
ϕ+, ϕ− ∈ A∗ because, by Proposition 8.10, the conditions sA(ϕ

+)sA(ϕ
−) = 0 and

sA∗∗(ϕ+)sA∗∗(ϕ−) = 0 are equivalent.
Besides the polar decomposition (2) of ϕ ∈ A∗ in A∗∗, we have also a polar

decomposition (8.9.(6)) of ϕ in A. Then partial isometric terms of these two polar
decompositions can be different, that is sA(|ϕ|) 6= sA∗∗(|ϕ|), because A is not a
W ∗-subalgebra of A∗∗.

For example, consider the C∗-algebra A = ℓ∞ = C(N) of all bounded com-
plex sequences. Then A is a W ∗-algebra and A∗ = ℓ1 is the Banach space of all
absolutely summable complex sequences. The map

ϕ : A ∋ x 7→
∞∑

n=1

n−2x(n)

is a positive normal form on A and sA(ϕ) = 1.
On the other hand, let en ∈ A ⊂ A∗∗ be defined by

en(k) = 0 if k < n, en(k) = 1 if k > n; n ∈ N,

and let e ∈ A∗∗ be the greatest lower bound of the decreasing sequence of projec-
tions {e1, . . . , en, . . .} in A∗∗.

Since ϕ(en) =
∞∑
k=n

k−2 → 0, it is clear that ϕ(e) = 0.

The Gelfand spectrum Ω of A is the Stone-Čech compactification of N. If
ω ∈ Ω \ N, then ω(en) = 1 for all n ∈ N. Now ω ∈ A∗ = (A∗∗)∗, so ω(e) = 1 and
therefore e 6= 0.

It follows that sA∗∗(ϕ) 6= 1, hence the polar decomposition of ϕ in A∗∗ is
different from its polar decomposition in A.
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Proposition 1. Let A be a C∗-algebra and ϕ, ψ ∈ A∗. Then

| |ϕ+ ψ|(x)|2 6 (‖ϕ‖+ ‖ψ‖)(|ϕ|(xx∗) + |ψ|(xx∗)); x ∈ A.

Proof. Let u, v, w ∈ A∗∗ be the partial isometric terms of the polar decom-
positions of ϕ, ψ, ϕ+ ψ, respectively. Then, using Proposition 8.9 we get

| |ϕ+ ψ|(x)|2 = |(ϕ+ ψ)(xw∗)|2 = | |ϕ|(xw∗u) + |ψ|(xw∗v)|2

6 (| |ϕ|(xw∗u)|+ | |ψ|(xw∗v)|)2

6 (|ϕ|(u∗ww∗u)1/2|ϕ|(xx∗)1/2 + |ψ|(v∗ww∗v)1/2| ψ|(xx∗)1/2)2

6 (‖ϕ‖1/2|ϕ|(xx∗)1/2 + ‖ψ‖1/2|ψ|(xx∗)1/2)2

6 (‖ϕ‖+ ‖ψ‖)(|ϕ|(xx∗) + |ψ|(xx∗)).

Corollary. Let A be a C∗-algebra, ϕ ∈ A∗ and p a central projection in
A∗∗. Then

|p · ϕ| = p · |ϕ|.

Proof. Let ρ = |p · ϕ|+ |(1 − p) · ϕ|. Then clearly

‖ρ‖ 6 ‖p · ϕ‖+ ‖(1− p) · ϕ‖ = ‖ϕ‖.

Let ϕ = |ϕ|(· v), (v ∈ A∗∗), be the polar decomposition of ϕ. Using Proposition 1,
we obtain for all x ∈ A,

|ϕ(x)|2 = | |p · ϕ+ (1− p) · ϕ|(xv)|2

6 (‖p · ϕ‖+ ‖(1− p) · ϕ‖) ρ(xvv∗x∗) 6 ‖ϕ‖ ρ(xx∗).

By Proposition 8.9 it follows that ρ = |ϕ|, hence |p · ϕ| = p · ρ = p · |ϕ|.

In particular, if M is a W ∗-algebra and ϕ ∈M∗, then

|pM · ϕ| = pM · |ϕ|, |(1 − pM ) · ϕ| = (1 − pM ) · |ϕ|.

Proposition 2. Let A be a C∗-algebra and ϕ ∈ A∗ be positive. Then

|ϕ · a| 6 ‖a‖ϕ; a ∈ A∗∗.

Proof. Let ϕ · a = |ϕ · a| · v, (v ∈ A∗∗), be the polar decomposition of ϕ · a
in A∗∗. Then |ϕ · a| = (ϕ · a) · v∗ = ϕ · (v∗ · a). Thus, replacing a by v∗a, we may
suppose that ϕ · a is positive, hence selfadjoit.

Let a ∈ A∗∗ with ϕ · a > 0 and fix x ∈ A, x > 0. Then

(ϕ · a2)(x) = (ϕ · a)(xa) = (ϕ · a)(a∗x) = ϕ(a∗xa)

and, by the Schwarz inequality,

(ϕ · a)(x) = ϕ(x1/2(x1/2a)) 6 ϕ(a∗xa)1/2ϕ(x)1/2.

Thus, ϕ · a2 > 0 and

(ϕ · a)(x) 6 [(ϕ · a2)(x)]1/2ϕ(x)1/2.

The same argument applied recurrently to ϕ · a2, ϕ · a4, . . . , ϕ · a2
n−1

yields

(ϕ · a)(x) 6 [(ϕ · a2
n

)(x)]2
−n

ϕ(x)2
−1

+···+2
−n

6 ‖ϕ‖2
−n

‖a‖ ‖x‖2
−n

ϕ(x)2
−1

+···+2
−n

.

Letting n→ ∞, it follows that (ϕ · a)(x) 6 ‖a‖ϕ(x).
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Proposition 3. Let A be a C∗-algebra, {ϕι}ι be a net in A∗ and ϕ ∈ A∗.
Then

ϕι
σ(A∗,A)
−→ ϕ, ‖ϕι‖ → ‖ϕ‖ ⇒ |ϕι|

σ(A∗,A)
−→ |ϕ|.

Proof. As bounded sets in A∗ are relatively σ(A∗, A)-compact, it suffices to
show that |ϕ| is the only possible σ(A∗, A)-limit point of the net {|ϕι|}ι. Thus, we

may suppose that |ϕι|
σ(A∗,A)
−→ ρ for some ρ ∈ A∗ and then we have to show that

ρ = |ϕ|.
Clearly, ρ is positive and ‖ρ‖ 6 lim inf

ι
‖ |ϕι| ‖ = ‖ϕ‖. On the other hand, for

every x ∈ A,

|ϕ(x)|2 = lim
ι

|ϕι(x)|
2
6 lim

ι
‖ϕι‖ |ϕι|(xx

∗) = ‖ϕ‖ ρ(xx∗).

By Proposition 8.9 we infer that ρ = |ϕ|.

In particular, if A is a W ∗-algebra and A∗ ∋ ϕι
norm
−→ ϕ, then |ϕι|

σ(A∗,A)
−→ |ϕ|.

Proposition 4. Let A, B be C∗-algebras and ϕ ∈ A∗, ψ ∈ B∗. Then
ϕ⊗ ψ ∈ (A⊗C∗ B)∗ and

‖ϕ⊗ ψ‖ = ‖ϕ‖ ‖ψ‖;(6)

|ϕ⊗ ψ| = |ϕ| ⊗ |ψ|.(7)

Proof. For positive ϕ, ψ the equality (6) was proved in 4.20.(9).
We may consider A ⊗C∗ B as a w-dense C∗-subalgebra of A∗∗ ⊗B∗∗. We

have ϕ, |ϕ| ∈ A∗ = (A∗∗)∗ and ψ, |ψ| ∈ B∗ = (B∗∗)∗. Let ϕ = |ϕ|(· v), (v ∈ A∗∗),
and ψ = |ψ|(·w), (w ∈ B∗∗), be the corresponding polar decompositions. Then
|ϕ| = ϕ(· v∗) and |ψ| = ψ(·w∗). Clearly

(ϕ⊗ψ)(x) = (|ϕ| ⊗ |ψ|)(x(v ⊗ w))(8)

(|ϕ| ⊗ |ψ|)(x) = (ϕ⊗ψ)(x(v∗ ⊗ w∗))(9)

for every x ∈ A∗∗ ⊗B∗∗ and hence for all x ∈ A∗∗ ⊗B∗∗.

Since ‖v ⊗ w‖ 6 1, ‖v∗ ⊗ w∗‖ 6 1, we infer that

‖ϕ⊗ ψ‖ = ‖ϕ⊗ψ‖ = ‖ |ϕ| ⊗ |ψ| ‖ = ‖ |ϕ| ⊗ |ψ| ‖ = ‖ |ϕ| ‖ ‖ |ψ| ‖ = ‖ϕ‖ ‖ψ‖.

Using (8), the Schwarz inequality and ‖ |ϕ| ⊗ |ψ| ‖ = ‖ϕ⊗ ψ‖, we obtain

|(ϕ⊗ ψ)(x)|2 6 ‖ϕ⊗ ψ‖(|ϕ| ⊗ |ψ|)(xx∗), x ∈ A⊗C∗ B,

hence |ϕ⊗ ψ| = |ϕ| ⊗ |ψ|, by Proposition 8.9.

Finally, we analyse the polar decomposition of tensor product functionals on
W ∗-tensor products.
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Proposition 5. Let M,N be W ∗-algebras and ϕ ∈ M∗, ψ ∈ N∗ with polar
decompositions ϕ = |ϕ|(· v), ψ = |ψ|(·w) respectively. Then

(10) ϕ⊗ψ = (|ϕ| ⊗ |ψ|)( · (v ⊗ w))

is the polar decomposition of ϕ⊗ψ ∈ (M ⊗N)∗. In particular,

(11) l(ϕ⊗ψ) = l(ϕ)⊗ l(ψ), r(ϕ⊗ψ) = r(ϕ)⊗ r(ψ).

Proof. We first assume that ϕ, ψ are both positive and faithful. Then the
GNS-representations πϕ : M → πϕ(M) ⊂ B(Hϕ) and πψ : N → πψ(N) ⊂ B(Hψ)
are normal ∗-isomorphisms (4.5; Corollary 4/8.4) and also πϕ⊗πψ : M ⊗N →
πϕ(M)⊗ πψ(N) is a ∗-isomorphism (8.8). Note that ϕ = ωξϕ◦πϕ, ψ = ωξψ◦πψ and
ϕ⊗ψ = ωξϕ⊗ξψ◦(πϕ⊗πψ). Since ϕ (respectively ψ) is faithful, the vector ξϕ ∈ Hϕ

(respectively ξψ ∈ Hψ) is separating for the von Neumann algebra πϕ(M) ⊂
B(Hϕ) (respectively πψ(N) ⊂ B(Hψ)), that is

πϕ(M)′ξϕ = Hϕ (respectively πψ(N)′ξψ = Hψ).

Since (πϕ(M)⊗ πψ(N))′ ⊃ πϕ(M)′ ⊗ πψ(N)′, we infer that

(πϕ⊗πψ)(M ⊗N)′(ξϕ ⊗ ξψ) = (πϕ(M)⊗ πψ(N))′(ξϕ ⊗ ξψ) = Hϕ⊗Hψ

hence ξϕ⊗ξψ is separating for (πϕ ⊗πψ)(M ⊗N). It follows that ϕ⊗ψ is faithful.
If ϕ, ψ are arbitrary normal positive forms, then the restriction of ϕ (respec-

tively ψ) to s(ϕ)Ms(ϕ) (respectively s(ψ)Ns(ψ)) is faithful so, by the above, the
restriction of ϕ⊗ψ to

(s(ϕ)⊗ s(ψ))(M ⊗N)(s(ϕ)⊗ s(ψ)) = s(ϕ)Ms(ϕ)⊗ s(ψ)Ns(ψ)

is faithful. This shows that s(ϕ⊗ψ) > s(ϕ)⊗ s(ψ). Since

(ϕ⊗ψ)(s(ϕ) ⊗ s(ψ)) = ϕ(s(ϕ))ψ(s(ψ)) = (ϕ⊗ψ)(1M ⊗N ),

it follows that

(12) s(ϕ⊗ψ) = s(ϕ)⊗ s(ψ).

Now, in the general case we have the equality (10) and, using (12):

(v ⊗ w)∗(v ⊗ w) = v∗v ⊗ w∗w = s(|ϕ|)⊗ s(|ψ|) = s(|ϕ| ⊗ |ψ|).

Thus, by the unicity part of Theorem 8.9, (10) is indeed the polar decomposition
of ϕ⊗ψ.

Finally, (11) follows using 8.9.(8).

8.12. Countably decomposable W ∗-algebras. Let M be a W ∗-algebra.
A projection e ∈ M is called countably decomposable if every family {eι}ι of mu-
tually orthogonal non-zero projections of M majorized by e is at most countable.
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Proposition 1. Let M be a W ∗-algebra. A projection e ∈ M is countably
decomposable if and only if there exists a normal positive form ϕ on M such that
e = s(ϕ).

Proof. Let e = s(ϕ) for some ϕ ∈ M∗, ϕ > 0, and {eι}ι∈I be a family of
mutually orthogonal projections such that e =

∑
ι∈I

eι. Then
∑
ι∈I

ϕ(eι) = ϕ(e) < +∞

so, the set J = {ι ∈ I; ϕ(eι) 6= 0} is at most countable. If ι 6∈ J , then ϕ(eι) = 0
and, by (8.9.(5)), eι = eιs(ϕ) = 0.

Given any non-zero projection f ∈ M , there exists ψ ∈ M∗, ψ > 0, such
that ψ(f) 6= 0. Then ϕ = ψ(f · f) is a non-zero normal positive form on M and
0 6= s(ϕ) 6 f .

Now let e ∈ M be a countably decomposable projection and {ϕι}ι∈I be a
maximal family of non-zero normal states onM with mutually orthogonal supports
majorized by e. Then

∑
ι∈I

s(ϕι) = e and I is at most countable so we may suppose

I ⊂ N. Furthermore, ϕ =
∑
n∈I

2−nϕn ∈M∗, ϕ > 0 and s(ϕ) = e.

Proposition 2. Let M be a W ∗-algebra, ϕ ∈ M+
∗ , and {xι}ι be a norm

bounded net in M. Then

ϕ(x∗ι xι) → 0 ⇔ xιs(ϕ)
s

−→ 0;(1)

ϕ(x∗ι xι + xιx
∗
ι ) → 0 ⇒ s(ϕ)xιs(ϕ)

s∗
−→ 0.(2)

Proof. Let e = s(ϕ) and assume that ‖xι‖ 6 1 for all ι.

If xιe
s

−→ 0, then ϕ(x∗ι xι) = ϕ(ex∗ι xιe) = ϕ((xιe)
∗(xιe)) → 0.

Conversely, suppose that ϕ(x∗ι xι) → 0. Let ψ ∈ M+
∗ with ψ = ψ(· e) and

ε > 0. By 8.9.(3), there is a sequence {ak}k in M such that ‖ψ − ϕ(ak ·)‖ → 0.
Choose k so that ‖ψ − ϕ(ak ·)‖ 6 ε/2 and then choose Lε such that ϕ(x∗ι xι)

1/2 6

ε/2‖ϕ‖1/2‖ak‖, for all ι > ιε. Then, for ι > ιε we have

ψ(x∗ι xι) 6 |(ψ − ϕ(ak ·))(x
∗
ι xι)|+ |ϕ(akx

∗
ιxι)|

6 ‖ψ − ϕ(ak ·)‖ ‖xι‖
2 + ϕ(aka

∗
k)ϕ((x

∗
ι xι)

2)1/2

6 ‖ψ − ϕ(ak ·)‖ ‖xι‖
2 + ‖ϕ‖1/2‖ak‖ ‖xι‖ϕ(x

∗
ιxι)

1/2

6 ε/2 + ε/2 = ε.

Consequently, for every ψ ∈M+
∗ ,

ψ((xιe)
∗(xιe)) = ψ(ex∗ιxιe) → 0,

that is, xιe
s

−→ 0.

Finally, if ϕ(x∗ι xι + xιx
∗
ι ) → 0, then by the above xιe

s
−→ 0 and x∗ι e

s
−→ 0,

hence exιe
s

−→ 0 and ex∗ι e
s

−→ 0 that is exιe
s∗
−→ 0.

If the unit 1 ofM is countably decomposable, thenM itself is called countably
decomposable. It is not true that every W ∗-algebra is countably decomposable,
but there is always a family {eι} of mutually orthogonal countably decomposable
projections in M such that

∑
ι
eι = 1.
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Theorem. Let M be a W ∗-algebra. The following statements are equivalent:

(i) M is countably decomposable;

(ii) There exists a faithful normal state on M;

(iii) There exists a faithful state on M;

(iv) M1 is s-metrizable;

(v) M1 is s∗-metrizable.

Proof. (i) ⇔ (ii) by Proposition 1.

(ii) ⇔ (iii) since a positive form on M is faithful if and only if its normal

part is faithful (8.9).

(ii) ⇒ (iv). Let ϕ be a faithful normal state on M and define

dϕ(x, y) = ϕ((x − y)∗(x − y))1/2; x, y ∈M1.

Using the Schwarz inequality and the faithfulness of ϕ it is easy to see that dϕ is

a metric on M1. By Proposition 2, a net {xι} in M1 is s-convergent to x ∈M1 if

and only if dϕ(xι, x) → 0, because s(ϕ) = 1.

(ii) ⇒ (v). Similarly, the s∗-topology on M1 is defined by the metric

d∗ϕ(x, y) = ϕ((x − y)∗(x − y) + (x− y)(x− y)∗)1/2; x, y ∈M1.

(iv) ⇒ (i). Let {eι}ι∈I be a family of mutually orthogonal projections in M

with
∑
ι∈I

eι = 1. Put eJ =
∑
ι∈J

eι for each J ⊂ I, finite. Then net {eJ}J is then

s-convergent to 1. Since M1 is s-metrizable, there exists a sequence {Jn}n of finite

subsets of I such that eJn
s

−→ 1 and we may assume Jn ⊂ Jn+1, (n ∈ N). It

follows that eι = 0 for ι 6∈
⋃
n
Jn.

Similarly, (v) ⇒ (i).

Thus, if M is a countably decomposable W ∗-algebra, then for every faith-

ful positive normal form ϕ on M the metric dϕ (respectively d∗ϕ) defines the s
(respectively s∗) -topology on M1. Note that the metrics dϕ and d∗ϕ on M1 are

complete.

Also, if M is a countably decomposable W ∗-algebra and A is a w-dense ∗-

subalgebra of M , then the Kaplansky density theorem (see 8.5) can be restated

with s∗-convergent sequences instead of nets.

A positive linear mapping Φ : A→ B between C∗-algebras is called faithful if

x ∈ A, Φ(x∗x) = 0 ⇒ x = 0.

For instance, a ∗-homomorphism is faithful if and only if it is injective.
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Corollary. Let M,N be W ∗-algebra and Φ : M → N be a positive linear

mapping. Assume that N is countably decomposable. Then

(i) Φ is singular if and only if for every non-zero projection e ∈M there exists

a non-zero projection f 6 e with Φ(f) = 0.

(ii) Φ is faithful if and only if Φnor is faithful.

Proof. Let ψ be a faithful normal state on N .

(i) Assume that Φ is singular and let e ∈M be a non-zero projection. Since

ψ · Φ is a singular functional on M , there exists a non-zero projection f ∈ M ,

f 6 e with ψ(Φ(f)) = 0. Then Φ(f) = 0, because ψ is faithful.

Then converse is obviously true for every bounded linear mapping Φ :M →
N , even if N is not countably decomposable.

(ii) It is easy to see that ψ ◦Φnor = (ψ ◦Φ)nor and ψ ◦Φsing = (ψ ◦Φ)sing. If
Φ is faithful, then ψ ◦Φ is a faithful positive form on M , so ψ ◦Φnor = (ψ ◦Φ)nor
is also faithful on M (8.9) and hence Φnor is faithful.

The converse is obvious.

8.13. Countably decomposable von Neumann algebras. Let M ⊂
B(H) be a von Neumann algebra acting on the Hilbert space H with commutant

M ′ ⊂ B(H). For ξ ∈ H , the restriction to M of the normal positive form ωξ
on B(H) will be denoted by ωMξ or still by ωξ and its restriction to M ′ will be

denoted by ωM
′

ξ or simply by ω′
ξ. It is easy to check that

(1) s(ωMξ ) = pMξ , s(ωM
′

ξ ) = pM
′

ξ

where pMξ (= pξ), p
M ′

ξ (= p′ξ) are the cyclic projections defined in 7.11. Thus, ωξ is

faithful on M if and only if ξ is separating for M and ω′
ξ is faithful on M ′ if and

only if ξ is cyclic for M .

Lemma. Let M ⊂ B(H) be a von Neumann algebra. If {ξn} is an orthonor-

mal sequence in H such that the projections p′ξn are mutually orthogonal, then

∞∨

n=1

pξn = pξ where ξ =

∞∑

n=1

2−nξn ∈ H.

Proof. Since the projections p′ξn are mutually orthogonal and p′ξnξn = ξn, we

have p′ξnξ = 2−nξn. Then

pξH =M ′ξ ⊃M ′p′ξnξ =M ′ξn = pξnH

hence pξ >
∞∨
n=1

pξn . The reverse inequality is immediate.
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Proposition. Let M ⊂ B(H) be a countably decomposable von Neumann
algebra. Then

(i) There exists a sequence {ξn}n in H separating for M such that {pξn} are
mutually orthogonal.

(ii) There exist central projections p, q ∈ M with p + q = 1 and ξ, η ∈ H such
that p = pξ, q = q′η.

Proof. (i) If f ∈M is a non-zero projection, then fξ 6= 0 for some ξ ∈ H , so
0 6= pfξ 6 f . Thus, by the same maximality argument as that used in the proof of
Proposition 1/8.12, we get a sequence {ξn}n in H with {pξn} mutually orthogonal

and
∞∑
n=1

pξn = 1. Then the set {ξn; n ∈ N} is separating for M . Indeed, if x ∈M

and xξn = 0, then xpξn = 0 for all n ∈ N hence x = 0.
(ii) Let {ζn}n∈I ⊂ H , ‖ζn‖ = 1, be a maximal family such that the projec-

tions pξn , (n ∈ I), are mutually orthogonal and also the projections p′ζn , (n ∈ I),
are mutually orthogonal. Since M is countably decomposable, we may suppose
I ⊂ N. Put

e =
∑

n∈I

pζn , e′ =
∑

n∈I

p′ζn and ζ =
∑

n∈I

2−nζn.

Then e = pζ and e′ = p′ζ by the lemma.

On the other hand, the maximality of {ζn} entails (1− e)(1− e′) = 0 so, by
7.20.(1), we infer that z(1 − e)z(1 − e′) = 0. Then

p = 1− z(1− e) 6 e and q = z(1− e) 6 1− z(1 − e′) 6 e′

are central projections and p = pζ , q = q′η, where ξ = pζ, η = qξ.

Corollary 1. A von Neumann algebra M ⊂ B(H) is countably decompos-
able if and only if there exists a separating sequence {ξn}n ⊂ H for M.

Proof. If {ξn}n is a separating sequence for M , then

ϕ =
∑

n

2−n‖ξn‖
−2ωξn ∈M+

∗

is faithful, so M is countably decomposable by Theorem 8.12.
The converse follows from the above proposition.

Corollary 2. Let M ⊂ B(H) be a commutative von Neumann algebra.
Then M is countably decomposable if and only if there exists a separating vector
ξ ∈ H for M .

Proof. Assume thatM is countably decomposable. By the above proposition
there is a separating orthonormal sequence {ξn}n ⊂ H for M such that {pξn} are
mutually orthogonal. Put

ξ =

∞∑

n=1

2−nξn ∈ H.
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Since pξn ∈M ⊂M ′, we have ξn = 2npξnξ ∈M ′ξ, (n ∈ N). It follows that

pξ =

∞∑

n=1

pξn = 1,

hence ξ is separating.
The converse is clear.

Note that every cyclic vector for a commutative von Neumann algebra M ⊂
B(H) is also separating, because M ⊂M ′.

A commutative ∗-subalgebra C of a C∗-algebra A is called maximal com-
mutative in A if it is not contained in any larger commutative ∗-subalgebra of A.
In this case, C is a C∗-subalgebra of A and contains the center of A. If A is a
W ∗-algebra, then C is a W ∗-subalgebra of A.

In particular, a commutative von Neumann algebra M ⊂ B(H) is maximal
commutative in B(H) if and only if M =M ′ or, equivalently if and only if M ′ is
commutative.

Corollary 3. A commutative countably decomposable von Neumann alge-
bra M ⊂ B(H) is maximal commutative in B(H) if and only if there exists a
cyclic vector ξ ∈ H for M.

Proof. If M is maximal commutative in B(H), then by Corollary 2 there
exists a separating vector ξ ∈ H for M and ξ is also cyclic for M since M =M ′.

Conversely, let ξ0 ∈ H be a cyclic vector for M , i.e. Mξ0 = H . Let x′, y′ ∈
M ′. There is a sequence {xn}n in M such that xnξ0 → x′ξ0. For every x ∈M we
have

(x∗nξ0|xξ0) = (x∗ξ0|xnξ0) → (x∗ξ0|x
′ξ0) = (x′∗ξ0|xξ0),

hence x∗nξ0
weakly
−→ x′∗ξ0. For every x, y ∈M we then have

(x′y′yξ0|xξ0) = (y′yξ0|xx
′∗ξ0) = lim

n
(y′yξ0|xx

∗
nξ0)

= lim
n
(y′yxnξ0|xξ0) = (y′yx′ξ0|xξ0) = (y′x′yξ0|xξ0),

hence x′y′ = y′x′. Thus, M ′ is commutative and M is maximal commutative in
B(H).

8.14. W ∗-algebras with separable predual. The W ∗-algebra B(H) is
countably decomposable if and only if H is a separable Hilbert space and in this
case every von Neumann algebra acting on H is countably decomposable.

However, a countably decomposableW ∗-algebra has not necessarily a faithful
normal ∗-representation on a separable Hilbert space.

A W ∗-algebra M is called countably generated if there is a sequence S ⊂M
such that M = W ∗(S). In this case there is an s-dense sequence in M . Also, M
is generated by a sequence of projections.
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Theorem. Let M be a W ∗-algebra. Then the following statements are equiv-
alent:

(i) M has a faithful normal ∗-representation on a separable Hilbert space.
(ii) M∗ is norm-separable.
(iii) M∗ is σ(M∗,M)-separable.
(iv) M1 is w-metrizable (and w-separable).
(v) M1 is s-metrizable and s-separable.
(vi) M1 is s∗-metrizable and s∗-separable.
(vii) M is countably decomposable and countably generated.
(viii) the center of M is countably decomposable and M is countably generated.

Proof. (i) ⇒ (ii). By assumption we may suppose that M is a von Neumann
algebra on a separable Hilbert space H . If S is a dense sequence in H , then the
linear span of {ωξ,η; ξ, η ∈ S} is a norm-dense separable subspace of M∗, hence
M∗ is norm-separable.

(ii) ⇒ (iii). By assumption,M∗ is norm-separable or equivalently σ(M∗,M)-
separable, because M identifies to (M∗)

∗. Also, with this identification, M∗ is
σ(M∗,M)-dense in its second dual M∗. Hence M∗ is σ(M∗,M)-separable.

(iii) ⇒ (ii). Let {ψn}n be a σ(M∗,M)-dense sequence in M∗. By Corollary
1/4.15, ψn = ψ1

n − ψ2
n + i(ψ3

n − ψ4
n) with ψjn ∈ M+ positive and ‖ψjn‖ 6 ‖ψn‖,

(1 6 j 6 4; n ∈ N). Put θn =
4∑
j=1

ψjn, (n ∈ N), and

θ =

∞∑

n=1

(2n‖θn‖)
−1θn ∈M∗

+.

By Theorem 8.4, there exist a normal positive form ϕ onM and a singular positive
form f on M such that

θ = ϕ+ f.

Since {ψn}n is σ(M∗,M)-dense in M∗, θ is a faithful positive form on M , hence,
by Theorem 8.12, M is countably decomposable. Owing to Theorem 8.4.(iv) we
thus get an increasing sequence {pk}k of projections in M such that

∞∨

k=1

pk = 1 and f(pk) = 0 for all k.

For every n, k ∈ N and 1 6 j 6 4 we have

0 6 pk · ψ
j
n · pk 6 2n‖θn‖(pk · θ · pk) = 2n‖θn‖(pk · ϕ · pk).

Since ϕ is normal, pk ·ϕ ·pk and also pk ·ψjn ·pk are normal (8.4). Hence pk ·ψn ·pk
is normal, that is

pk · ψn · pk ∈M∗ for all n, k.

Let x ∈ M such that (pk · ψn · pk)(x) = 0, i.e. ψn(pkxpk) = 0, for all n, k. Since

{ψn}n is σ(M∗,M)-dense inM∗, we obtain pkxpk = 0 for all k and since pk
s

−→ 1,
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we get x = 0. It follows that the linear span of {pk ·ψn ·pk; n, k ∈ N} is norm-dense
in M∗. Hence M∗ is norm-separable.

(ii) ⇒ (iv). A Banach space X is separable if and only if the closed unit
ball X∗

1 of its dual space is σ(X∗, X)-metrizable (see [81], V.5.1). Thus, M∗ is
separable if and only if M1 is w-metrizable. In this case M1 is also w-separable
since a metrizable compact space is separable ([81], I.6.19).

(iv) ⇒ (v) and (vi). If M1 is w-metrizable, then, as in the proof of Theorem
8.12, (iv) ⇒ (i), we see that M is countably decomposable and, by Theorem 8.12,
M1 is s-metrizable and s∗-metrizable. SinceM1 is w-separable, there is a sequence
S ⊂ M1, w-dense in M1. Since the convex hull co S is w-dense in M1, co S is
also s-dense and s∗-dense in M1 (8.5) and consequently M1 is s-separable and
s∗-separable.

(v) ⇒ (vii) (respectively (vi) ⇒ (vii)). IfM1 is s (respectively s
∗)-metrizable,

then M is countably decomposable by Theorem 8.12. If S is an s (respectively
s∗) - dense sequence in M1, then M is the s (respectively s∗) -closure of the linear
span of S, hence M is countably generated.

(vii) ⇒ (viii) Obvious.
(viii) ⇒ (i). Let M ⊂ B(H) be realized as a von Neumann algebra. Denote

by Z the center of M . Since Z is countably decomposable, by Corollary 2/8.13
there exists a separating vector ξ ∈ H for Z. Let e′ = p′ξ ∈ M ′ and K = e′(H) =

Mξ. As M is countably generated, there exists an s-dense sequence in M and
therefore K is separateble. Since ξ is separating for Z, the central support z(e′)
is equal to 1M so, by Theorem 7.17, the induction map

M ∋ x→ xe′ ∈Me′ ⊂ B(K)

is a ∗-isomorphism.

In the commutative case, the implication (i) ⇒ (vii) can be considerably
sharpened.

Proposition. If M is a commutative von Neumann algebra acting on a
separable Hilbert space H, then exists a selfadjoint element a ∈M such that

M = {a}′′.

Proof. By the theorem, there exists a sequence {en}n of projections in M
which generate a w-dense C∗-subalgebra A of M . Put

a =
∞∑

n=1

3−n(2en − 1) ∈ Ah.

Let Ω be the Gelfand spectrum of A. Then the en separate the points of Ω. Thus,
if t, s ∈ Ω, t 6= s, then there is a smallest integer k > 1 such that |ek(t)−ek(s)| = 1
and we have

|a(t)− a(s)| = 2
∣∣∣

∞∑

n=k

3−n(en(t)− en(s))
∣∣∣ > 2 · 3−k − 2

∞∑

n=k+1

3−n = 3−k.

Thus {a} separates the points of Ω and the Stone-Weierstrass theorem shows that
A is the C∗-subalgebra generated by a.

Hence {a}′′ = A′′ = A
w
=M .
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Besides commutative W ∗-algebras with separable predual, also other impor-
tant classes ofW ∗-algebras with separable predual, are singly generated (see [266],
[332]), but it is an open problem whether everyW ∗-algebra with separable predual
has this property.

8.15. Let M be a W ∗-algebra. For every ϕ ∈M∗ we have

(1) sup{|ϕ(e)|; e ∈ P (M)} 6 ‖ϕ‖ 6 4 sup{|ϕ(e)|; e ∈ P (M)}.

Indeed, let λ = sup{|ϕ(e)|; e ∈ P (M)}. Clearly, λ 6 ‖ϕ‖. If x ∈ M , 0 6 x 6 1,

then there is a sequence {en}n of projections in M such that x =
∞∑
n=1

2−nen in the

norm topology (Proposition 3/7.16). Thus

|ϕ(x)| 6
∞∑

n=1

2−n|ϕ(en)| 6 λ.

If x ∈ M is selfadjoint and ‖x‖ 6 1, then 0 6 x+, x− 6 1 hence |ϕ(x)| 6 2λ.
Finally, for an arbitrary x ∈ M , ‖x‖ 6 1, we have ‖Rex‖, ‖Imx‖ 6 1, hence
|ϕ(x)| 6 4λ.

In this section we prove a strengthened form of the uniform boundedness
theorem for normal linear functionals on W ∗-algebras.

A non-zero projection e ∈ M is called minimal in M (or an atom of M) if
every non-zero projection f ∈M , f 6 e is equal to e.

Lemma. Let M be a countably decomposable W ∗-algebra and ϕ be a normal
positive form on M. Then, for every ε > 0, there exists a finite family {e1, . . . , en}

of mutually orthogonal projections in M with
n∑
k=1

ek = 1 such that each ek is either

an atom or ϕ(ek) < ε.

Proof. Let {eι}ι∈I be a maximal family of mutually orthogonal atoms of
M with ϕ(eι) > ε, (ι ∈ I). Since

∑
ι∈I

ϕ(eι) 6 ϕ(1), the set I is finite. By the

maximality of {eι}, any projection e 6 1 −
∑
ι∈I

eι with ϕ(e) > ε is not an atom

of M .
Thus, we may suppose that there are no atoms e ∈M with ϕ(e) > ε. In this

case

(2) for every 0 6= e ∈ P (M) there is 0 6= f ∈ P (M), f 6 e, with ϕ(f) < ε.

Indeed, suppose the contrary holds, i.e. there is 0 6= e ∈ P (M) such that ϕ(f) > ε
for all 0 6= f ∈ P (M), f 6 e. Then e is not an atom, so there exists 0 6= f1 ∈
P (M), f1 6 e, with ϕ(f1) 6 ϕ(e)/2. Also f1 is not an atom, so there exists
0 6= f2 ∈ P (M), f2 6 f1 with ϕ(f2) 6 ϕ(f1)/2 6 ϕ(e)/22. By induction we find
0 6= fn ∈ P (M), fn 6 e, with ϕ(fn) 6 ϕ(e)/2n < ε, a contradiction.

Now let {en}n be a maximal family of mutually orthogonal non-zero projec-
tions in M with ϕ(en) < ε for all n. Since M is countably decomposable, this
family is at most countable. By (2) we have

∑
n
en = 1. Since ϕ is normal, we

have ϕ
( ∑
n>nε

en

)
< ε for some nε ∈ N. Then {e1, . . . , enε} and

∑
n>nε

en satisfy the

requirement of the lemma.
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Theorem. Let M be a W ∗-algebra and {ϕι}ι∈I be a family of normal linear
forms on M such that, for every projection e ∈M ,

(3) λe = sup
ι∈I

|ϕι(e)| < +∞.

Then
sup
ι∈I

‖ϕι‖ < +∞.

Proof. By the uniform boundedness principle (7.3), it is sufficient to show
that sup

ι∈I
|ϕι(x)| < +∞ for all x ∈ M . Clearly, it is enough to prove this only for

selfadjoint x ∈ M . In this case, replacing M by W ∗({x}), we may suppose that
M is commutative.

Thus, assume M is commutative. By (1) we must prove that

(4) sup
e∈P (M)

sup
ι∈I

|ϕι(e)| < +∞.

In the contrary case, for each n ∈ N there exists fn ∈ P (M) and ϕn ∈
{ϕι; ι ∈ I} such that

(5) |ϕn(fn)| > n; n ∈ N.

Define

θ =
∞∑

n=1

2−n‖ϕn‖
−1|ϕn| ∈M+

∗ ,

X = {e ∈ P (M); e 6 s(θ)},

Xm = {e ∈ X ; |ϕn(e)| 6 m for all n ∈ N}; m ∈ N.

By 8.12, the s∗-topology on X is defined by the metric

dθ(e, f) = θ((e − f)2)1/2; e, f ∈ X,

and this metric is complete. The sets Xm are s∗-closed and, by the assumption
(3), X =

⋃
m
Xm. Using the Baire category theorem we infer that

(6)
there exist m0 > 0, ε > 0 and e0 ∈ X such that
e ∈ X, θ((e − e0)

2) < ε⇒ |ϕn(e)| 6 m0 for all n ∈ N.

On the other hand, by the above lemma, there are mutually orthogonal projections

{e1, . . . , eq, eq+1, . . . , ep} in M with
p∑
k=1

ek = s(θ) such that e1, . . . , eq are atoms

and

(7) θ(ej) < ε for all q + 1 6 j 6 p.
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Let f ∈ X and fix 1 6 i 6 q, q+1 6 j 6 p. Since ei is an atom and M is assumed
commutative,

(8) |ϕn(fei)| 6 |ϕn(ei)| 6 λei ; n ∈ N.

Put g = e0 + fej − e0fej, h = e0 − e0fej . Then g, h ∈ X , (g − e0)
2 6 ej ,

(h− e0)
2 6 ej so, by (7) and (6),

|ϕn(g)| 6 m0, |ϕn(h)| 6 m0; n ∈ N.

Since fej = g − h, it follows that

(9) |ϕn(fej)| 6 2m0; n ∈ N.

From (8) and (9) we infer that

(10) |ϕn(f)| 6

p∑

k=1

|ϕn(fek)| 6 λe1 + · · ·+ λeq + 2(p− q)m0.

Since fn ∈ X for all n ∈ N, the relations (5) and (10) are contradictory.

The arguments used in the above proof are essentially commutative and in
fact they have appeared in measure theory. The similarity with measure theory
will be more apparent from the following considerations, which are also necessary
for further use.

LetM be a commutativeW ∗-algebra. Let ρ ∈M∗, positive, and x ∈M with
polar decomposition x = v|x|. Then

|ρ(x)| = |ρ(v|x|1/2|x|1/2)| = |ρ(|x|1/2(v|x|1/2))|

6 ρ(|x|1/2|x|1/2)1/2ρ(|x|1/2v∗v|x|1/2)1/2 6 ρ(|x|).

Now let ϕ ∈ M∗ with polar decomposition ϕ = |ϕ|(· v), (v ∈ M∗∗), and x ∈ M .
Since M∗∗ is commutative, |xv|2 = x∗v∗vx 6 x∗x = |x|2 so |xv| 6 |x|, hence
|ϕ(x)| = | |ϕ|(xv)| 6 |ϕ|(|xv|) 6 |ϕ|(|x|). Thus

(11) |ϕ(x)| 6 |ϕ|(|x|); ϕ ∈M∗, x ∈M.

Moreover, for every ϕ ∈M∗ and every projection e ∈M we have

(12) |ϕ|(e) = sup
{ n∑

k=1

|ϕ(ek)|; e1, . . . , en ∈ P (M),

n∑

k=1

ek 6 e
}
.

Indeed, if e1, . . . , en are mutually orthogonal projections with
n∑
k=1

ek 6 e, then

by (11)
n∑

k=1

|ϕ(ek)| 6
n∑

k=1

|ϕ|(ek) = |ϕ|
( n∑

k=1

ek

)
6 |ϕ|(e).
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Conversely, let ϕ = |ϕ|(· v), (v ∈M∗∗), be the polar decomposition of ϕ and ε > 0.
Using the Kaplansky density theorem we find u ∈M , ‖u‖ 6 ‖v∗‖ 6 1, such that

|ϕ|(e) = ϕ(ev∗) 6 |ϕ(eu)|+ ε/2.

SinceM is commutative, eu ∈M is normal. Using Theorem 7.15 we find mutually

orthogonal projections e1, . . . , en with
n∑
k=1

ek 6 e and λ1, . . . , λn ∈ σ(eu) ⊂ {λ ∈ C;

|λ| 6 1} such that

‖eu−
n∑

k=1

λkek‖ 6 ε/2‖ϕ‖.

Then

|ϕ(eu)| 6
∣∣∣
n∑

k=1

λkϕ(ek)
∣∣∣+ ε/2 6

n∑

k=1

|ϕ(ek)|+ ε/2,

hence

|ϕ|(e) 6
n∑

k=1

|ϕ(ek)|+ ε.

In particular

(13) |ϕ|(e) = |ϕ(e)| for every minimal projection e ∈M.

Also, (12) shows that ‖ϕ‖ = ‖ |ϕ| ‖ = |ϕ|(1) is the “total variation” of ϕ.

8.16. One more application of the Baire category theorem yields an analogue
(in fact an extension) of the Vitali-Hahn-Saks theorem, which is a powerful tool
in the study of the topological properties of preduals of W ∗-algebras.

Theorem. Let M be a W ∗-algebra and {ϕn}n be a sequence of normal linear
forms on M such that {ϕn(e)}n is a Cauchy sequence for every projection e ∈M .
Then

(i) There exists a normal linear form ϕ on M such that ϕn(x) → ϕ(x) for all
x ∈M and ‖ϕ‖ 6 sup

n
‖ϕn‖ < +∞.

(ii) For every norm bounded sequence {xk}k in M such that xk
s∗

−→ 0 we have

ϕn(xk)
k

−→ 0 uniformly for n ∈ N.

Proof. By Theorem 8.15 we obtain λ = sup
n

‖ϕn‖ < +∞. Using this fact

and Proposition 3/7.16, it follows that {ϕn(x)}n is a Cauchy sequence for every
positive x ∈M and hence for all x ∈M . Put

ϕ(x) = lim
n
ϕn(x); x ∈M.

We thus obtain a linear functional ϕ on M and clearly ‖ϕ‖ 6 λ, so ϕ ∈M∗.
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We now prove (ii). Let e = s
( ∞∑
n=1

2−n(|ϕn|+ |ϕ∗
n|)

)
. Then ϕn(x) = ϕn(exe),

(n ∈ N), and consequently ϕ(x) = ϕ(exe) for all x ∈ M . Thus, replacing M by
eMe, we may assume that M is countably decomposable. In this case M1 is
s-metrizable by a complete metric (8.12).

Let ε > 0 be arbitrary but fixed. Then

Sn = {x ∈M1; |ϕi(x) − ϕj(x)| 6 ε for all i, j > n}, n ∈ N

are s-closed subset of M1 and M1 =
⋃
n
Sn. By the Baire category theorem, there

exists n0 ∈ N, x0 ∈M1 and an s-neighborhood V of x0 in M1 such that

x ∈ V ⇒ |ϕi(x) − ϕj(x)| 6 ε for all i, j > n0.

By Proposition 1/7.16, for each k ∈ N there exists a projection ek ∈M , such that

ek(x
∗
kxk + xkx

∗
k)ek 6 εek, (1− ek) 6 ε−1(x∗kxk + xkx

∗
k).

Since xk
s∗
−→ 0, we infer that ek

s∗
−→ 1 and

‖xkek‖ 6 ε, ‖ekxk‖ 6 ε; k ∈ N.

Then ekx0ek ∈M1, ekx0ek + (1− ek)xk(1− ek) ∈M1 and

ekx0ek
s

−→ x0, ekx0ek + (1− ek)xk(1 − ek)
s

−→ x0,

so there k0 ∈ N such that for all k > k0

ekx0ek ∈ V, ekx0ek + (1− ek)xk(1 − ek) ∈ V.

It follows that

|ϕi − ϕj)((1− ek)xk(1 − ek))| 6 2ε for all i, j > n0, k > k0.

consequently, for n > n0 and k > k0

|ϕn(xk)− ϕn0
(xk)| 6 ‖ϕn − ϕn0

‖(‖ekxkek‖+ ‖(1− ek)xkek‖+ ‖ekxk(1− ek)‖)

+ |(ϕn − ϕn0
)((1 − ek)xk(1 − ek))|

6 6λε+ 2ε.

Since ϕn(xk)
k

−→ 0 for each n = 1, 2, . . . , n0, it follows that

ϕn(xk)
k

−→ 0 uniformly for n ∈ N.

Finally, it follows that ϕ(xk) → 0, hence ϕ is normal and this achieves the
proof of (i).
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For singular linear forms we note the following result:

Proposition. Let M be a W ∗-algebra. The σ(M∗,M)-closure of any count-
able subset of (1 − pM ) ·M∗ is contained in (1− pM ) ·M∗.

Proof. Let {ϕn; n ∈ N} be an arbitrary countable subset in (1 − pM ) ·M∗

and ϕ be a σ(M∗,M)-limit point of {ϕn; n ∈ N}. Then

θ =
∞∑

n=1

2−1‖ϕn‖
−1|ϕn| ∈ (1− pM ) ·M∗.

Let e ∈ M be a non-zero projection. There exists a non-zero projection f ∈
M, f 6 e such that θ(f) = 0. Then ϕn(f) = 0 for all n, so ϕ(f) = 0. Hence
ϕ ∈ (1− pM ) ·M∗.

As every dual Banach space, the dual M∗ of a W ∗-algebra M is σ(M∗,M)-
sequentially complete. Furthermore, from the above results it follows that

Corollary 1. Let M be a W ∗-algebra. The M∗ = pM ·M∗ is σ(M∗,M)-
sequentially complete and (1− pM ) ·M∗ is σ((1− pM ) ·M∗, M)-sequentially com-
plete.

Since the second dual of a C∗-algebra is a W ∗-algebra, we infer that

Corollary 2. Let A be a C∗-algebra. Then A∗ is σ(A∗, A∗∗)-sequentially
complete.

8.17. Compactness in the predual. An important application of Theo-
rem 8.16 is the caracterization of weakly relatively compact subset of the preduals
of W ∗-algebras by analogy with the Dunford-Pettis theorem.

Theorem. Let M be a W ∗-algebra and K ⊂M∗. Then the following state-
ments are equivalent:

(i) K is relatively σ(M∗,M)-compact;

(ii) K is norm bounded and if {en}n is a sequence of mutually orthogonal pro-
jections in M, then

lim
n
ϕ(en) = 0 uniformly for ϕ ∈ K;

(iii) K is norm bounded and there exists ρ ∈ M+
∗ with the property for every

ε > 0 there exists δ > 0 such that

x ∈M1, ρ(x∗x+ xx∗) < δ ⇒ |ϕ(x)| < ε for all ϕ ∈ K.

Proof. (i) ⇒ (iii). Suppose that K is relatively σ(M∗,M)-compact. Then K
is σ(M∗,M)-bounded and hence also norm-bounded (7.3). Thus, we may assume
‖ϕ‖ 6 1 for all ϕ ∈ K.



Compactness in the predual 241

We first prove the following statement: for every ε > 0 there exists δ > 0
and a finite set Kε ⊂ K such that

(1)
x ∈M1, (|ψ|+ |ψ∗|)(x∗x+ xx∗) < δ for every ψ ∈ Kε

⇒ |ϕ(x)| < ε for every ϕ ∈ K.

Suppose that the statement is false for some ε > 0. Then, by induction, we
can construct a sequence {ϕk} in K and a sequence {xk} in M1 such that

|ϕk+1(xk)| > ε,(2)

(|ϕn|+ |ϕ∗
n|)(x

∗
kxk + xkx

∗
k) < 2−k for n = 1, 2, . . . , k.(3)

By the Eberlein-Shmulyan theorem ([81],V.6.1), a subsequence of {ϕk} is
σ(M∗,M)-covergent. Replacing {ϕk} by this subsequence, we may suppose that
{ϕk} is σ(M∗,M)-covergent. Let

θ =

∞∑

n=1

2−n(|ϕn|+ |ϕ∗
n|)

and e = s(θ). Then, using (3),

θ(x∗kxk + xkx
∗
k) =

∞∑

n=1

2−n(|ϕn|+ |ϕ∗
n|)(x

∗
kxk + xkx

∗
k)

6

k∑

n=1

2−n(|ϕn|+ |ϕ∗
n|)(x

∗
kxk + xkx

∗
k) +

∞∑

n=k+1

2n−1‖ϕn‖

6 2−k + 2−k+1 k
−→ 0,

so, by Proposition 2/8.12, exke
s∗
−→ 0.

By Theorem 8.16 we infer that

lim
k
ϕn(xk) = lim

k
ϕn(exke) = 0 uniformly for n ∈ N,

is contradiction with (2).
Now, for each εn = n−1 choose δn > 0 and a finite subsetKεn= {ϕn1 , . . . , ϕ

n
jn
}

of K which enjoy the property (1). Then

ρ

∞∑

n=1

2−n
jn∑

j=1

2−j(|ϕnj |+ |(ϕnj )
∗|) ∈M+

∗

satisfies the condition (iii).
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(iii) ⇒ (ii). Let ρ ∈ M+
∗ satisfies the condition (iii), let ε > 0 and choose

δ > 0 as in (iii). By the normality of ρ there exists n0 ∈ N such that

ρ(e∗nen + ene
∗
n) = 2ρ(en) < δ for all n > n0.

Then |ϕ(en)| < ε for all n > n0 and all ϕ ∈ K.
(ii) ⇒ (i). Since K is a bounded subset of M∗, by the Alaoglu theorem it

follows that the σ(M∗,M)-closure K of K in M∗ is σ(M∗,M)-compact. Thus, it
suffices to show that K ⊂M∗.

Let ϕ ∈ K. There is a net {ϕκ}κ in K, σ(M∗,M)-convergente to ϕ. Let
{eι}ι∈I be a family of mutually orthogonal projections in M and e =

∑
ι
eι. Then

ϕ(e) = lim
κ
ϕκ(e),(4)

ϕ(eι) = lim
κ
ϕκ(eι), for all ι.(5)

From (ii) it follows that ψ(e) =
∑
ι
ψ(eι) uniformly for ψ ∈ K. Indeed, in

the contrary case there would exist a sequence {ψn}n in K, a sequence {Jn}n of
mutually disjoint finite subset of I and ε > 0 such that

∣∣∣
∑

ι∈Jn

ψn(eι)
∣∣∣ > ε for all n ∈ N.

Put qn =
∑
ι∈Jn

eι, (n ∈ N). Then {qn}n is a sequence of mutually orthogonal

projections in M and |ψn(qn)| > ε, in contradiction with (ii). Thus

(6) ϕκ(e) =
∑

ι∈I

ϕκ(eι), uniformly for κ.

From (4), (5), (6) we infer that ϕ(e) =
∑
ι∈I

ϕ(eι). Hence ϕ ∈M∗.

By the above theorem, it follows that a set K ⊂M∗ is relatively σ(M∗,M)-
compact if and only if the absolutely convex hull of K is relatively σ(M∗,M)-
compact. Thus, the Mackey topology τw associated to the topology w = σ(M,M∗)
onM , originally defined as the topology of uniform convergence on absolutely con-
vex relatively σ(M∗,M)-compact subset of M∗, is in fact the topology of uniform
convergence on relatively σ(M∗,M)-compact subset of M∗.

The relatively σ(M∗,M)-compact subset of M∗ are also called weakly rela-
tively compact or, shortly, wrc sets.

Corollary. Let M be a W ∗-algebra. The restriction to M1 of the Mackey
topology τw associated to the w-topology coincides with the restriction to M1 of the
s∗-topology.

Proof. By 8.5, s∗ < τw. Let {xι} ⊂ M1 be a net such that xι
s∗
−→ 0. Let K

be a wrc subset of M∗ and let ρ ∈ M+
∗ be as in the statement (iii) of the above

theorem. Then ρ(x∗ι xι + xιx
∗
ι ) → 0, so ϕ(xι) → 0 uniformly for ϕ ∈ K. This

shows that xι
τw−→ 0.
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However, if M is infinite dimensional, then τw 6= s∗ on M.
Indeed, in this case there exists an infinite sequence {en}n of mutually or-

thogonal non-zero projections in M . Let

S = {n1/2en; n ∈ N} ⊂M.

Given ϕ ∈M+
∗ and ε > 0, there exists n ∈ N with

ϕ((n1/2en)
∗(n1/2en) + (n1/2en)(n

1/2en)
∗) = 2nϕ(en) < ε,

since otherwise it would follow

∑

n

ε/2n 6
∑

n

ϕ(en) = ϕ
(∑

n

en

)
< +∞.

Hence 0 is s∗-adherent to S. On the other hand, for each n there is an element
ϕn ∈M+

∗ with s(ϕn) 6 en and ‖ϕn‖ = 1. Then the set

K = {n−1/2ϕn; n ∈ N} ∪ {0} ⊂M∗

is wrc (in fact K is norm-compact), so V = {x ∈ M ; |n−1/2ϕn(x)| < 1 for all
n ∈ N} is a τw-neighborhood of 0. Since V ∩ S = ∅, it follows that 0 is not
τw-adherent to S.

We now list some other consequences of the above theorem.
Using condition (ii), it follows that

(7) if K ⊂M∗ is wrc, then also K∗ = {ϕ∗; ϕ ∈ K} is wrc.

In particular,

(8) the ∗-operation is τw-continuous on M,

and, by the corollary and by the properties of the s∗-topology,

(9) the mapping M1 ×M1 ∋ (x, y) 7→ xy ∈M1 is τw-continuous.

Using again condition (ii) together with the Schwarz inequality, it is easy to
see that

(10)
if K ⊂M+

∗ is wrc, then also

{a · ϕ; ϕ ∈ K, a ∈M1} and {ϕ · a; ϕ ∈ K, a ∈M1} are wrc.

In particular, by polar decomposition,

(11) if |K| = {|ϕ|; ϕ ∈ K} is wrc, then also K is wrc.

However, the converse of (11) is not true.
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For example, let H be an infinite dimensional Hilbert space, let {ξn}n be an
orthogonal sequence in H and M = B(H). For each n ∈ N define vn, en ∈M and
ϕn, ρn ∈M∗ by

vnξ = (ξ|ξn)ξ1, enξ = (ξ|ξn)ξn (ξ ∈ H),

ϕn(x) = (xξ1|ξn), ρn(x) = (xξn|ξn) (x ∈M).

Then ϕn = ρn(· vn) is the polar decomposition of ϕn and ϕ∗
n = ρ1(· v

∗
n) is the polar

decomposition of ϕ∗
n. Thus, |ϕn| = ρn and |ϕ∗

n| = ρ1 for all n ∈ N. The one point
set {|ϕ∗

n|; n ∈ N} is wrc, hence {ϕ∗
n; n ∈ N} is wrc by (11) and then {ϕn; n ∈ N}

is wrc by (7). On the other hand, {|ϕn|; n ∈ N} is not wrc, because |ϕn|(en) = 1
for all n ∈ N.

Note also that although the sets {ρ1} ⊂M+
∗ and {ϕ∗

n; n ∈ N} ⊂M∗ are wrc,
the set

{vn · ρ1 · v
∗
n; n ∈ N} = {vn · ϕ∗

n; n ∈ N} = {|ϕn|; n ∈ N}

is not wrc.
Using one more time condition (ii) and Proposition 2/8.11, the result (10)

can be improved as follows

(12)
if K ⊂M+

∗ is wrc, then also

{|a · ϕ|; ϕ ∈ K, a ∈M1} and {|ϕ · a|; ϕ ∈ K, a ∈M1} are wrc.

If in addition M is commutative, then

(13) K ⊂M∗ is wrc if and only if |K| = {|ϕ|; ϕ ∈ K} is wrc.

Indeed, suppose |K| is not wrc. Then by the theorem, there exists ε > 0, a
sequence {en}n of mutually orthogonal projections in M and a sequence {ϕn}n in
K such that

(14) |ϕn|(en) > ε for all n ∈ N.

Let ϕn = |ϕn|(· vn) be the polar decomposition of ϕn and put xnenv
∗
n = v∗nen,

(n ∈ N). Then {xn} ⊂ M1 and xn
s∗
−→ 0, because en

s∗
−→ 0. By the corollary,

xn
τw−→ 0. If K is wrc, then

|ϕn|(en) = ϕn(xn) → 0,

in contradiction with (14). Hence K is not wrc.
Also, if M is commutative, then

(15) K ⊂M∗ is wrc if and only {a · ϕ · b;ϕ ∈ K, a, b ∈M1} is wrc.

Indeed, a · ϕ · b = (abvϕ) · |ϕ|, where ϕ = |ϕ| · vϕ is the polar decomposition of ϕ,
so (15) follows using (13) and(10).
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The fact that simultaneously with K also |K| or {a · ϕ; ϕ ∈ K, a ∈ M1}
si wrc characterizes an important class of W ∗-algebras (the “finite” W ∗-algebras;
see [263]).

A normal linear mapping Φ from the W ∗-algebra M into the W ∗-algebra N
is automatically bounded and τw-continuous. Thus, by the corollary,

(16)
every normal linear mapping Φ : M → N
is s∗-continuous on bounded subset of M.

Moreover

(17)
every positive normal linear mapping Φ :M → N
is s∗-continuous on the whole M.

Indeed, let {xι}ι be a net in M , xι
s∗
−→ 0. we have to show that Φ(xι)

s∗
−→ 0.

Since the ∗-operation is s∗-continuous, we may assume that each xι is selfadjoint.
Let ψ ∈ N+

∗ . Then ϕ = ψ ◦ Φ ∈ M+
∗ and, using the Kadison inequality (5.8), we

get

ψ(Φ(xι)
∗Φ(xι))

1/2 + ψ(Φ(xι)Φ(xι)
∗)1/2 6 ‖Φ‖1/2(ϕ(x∗ι xι)

1/2 + ϕ(xιx
∗
ι )

1/2) → 0.

Hence Φ(xι)
s∗
−→ 0.

8.18. Atomic W ∗-algebras. Let M be a W ∗-algebra. If e is an atom of
M , then theW ∗-algebra eMe has only two projections, 0 and e, hence eMe = Ce.
Thus, if f is a finite sum of mutually orthogonal atoms of M , then fMf is finite
dimensional.

AW ∗-algebraM is called atomic if every non-zero projection ofM majorizes
an atom ofM . In this case, any maximal family {eι}ι of mutually orthogonal atoms
of M has the property

∑
ι
eι = 1. In particular, there exists an increasing net of

projections fι ↑ 1 such that the W ∗-algebras fιMfι are finite dimensional.

Proposition 1. Let M be an atomic W ∗-algebra. If a sequence {ϕn}n in
M∗ is σ(M∗,M)-convergent to ϕ ∈ M∗ and the sets {|ϕn|; n ∈ N}, {|ϕ∗

n|; n ∈ N}
are both relatively σ(M∗,M)-compact, then

‖ϕn − ϕ‖ −→ 0.

Proof. Let ε > 0. By assumption the set

K = {ϕn, ϕ
∗
n, |ϕn|, |ϕ

∗
n|, ϕ, ϕ

∗, |ϕ|, |ϕ∗|; n ∈ N} ⊂M∗

is relatively σ(M∗,M)-compact and M contains an increasing net of projections
fι ↑ 1 such that theW ∗-algebras fιMfι are all finite dimensional. We may suppose
that ‖ψ‖ 6 1 for all ψ ∈ K.
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Using condition (iii) from Theorem 8.17 we infer that there exists a projection
f ∈M such that fMf is finite dimensional and

‖(1− f) · ψ · (1− f)‖ 6 ε2 for all ψ ∈ K.

By Proposition 8.9, for every ψ ∈ K and every x ∈M1 we get

|ψ((1− f)x)| 6 ‖ψ‖1/2|ψ|((1 − f)xx∗(1− f))1/2 6 ε.

Since fMf is finite dimensional, there exists nε ∈ N such that

‖f · (ϕn − ϕ) · f‖ 6 ε for all n > nε.

Then, for every x ∈M1 and every n > nε we have

|(ϕn − ϕ)(x)| = |(ϕn − ϕ)(fxf + fx(1 − f) + (1− f)x)|

6 |(ϕn − ϕ)(fxf)|+|(ϕ∗
n − ϕ∗)((1 − f)x∗f)|+|(ϕn − ϕ)((1 − f)x)|

6 ε+ 2ε+ 2ε = 5ε.

Hence ‖ϕn − ϕ‖ 6 5ε for all n > nε.

Corollary 1. Let M be an atomic W ∗-algebra. A sequence {ϕn}n in M+
∗

is σ(M∗,M)-convergent if and only if it is norm-convergent.

Corollary 2. Let M be an atomic commutative W ∗-algebra. A sequence
{ϕn}n in M+

∗ is σ(M∗,M)-convergent if and only if it is norm-convergent.

Proof. By Proposition 1 and 8.17.(13), (10).

LetM be an atomic commutativeW ∗-algebra and let {eι}ι∈I be the set of all
the atoms of M . Then the projections eι are mutually orthogonal and

∑
ι∈I

eι = 1.

Moreover, for every x ∈M we have xeι = λι(x)eι, with λι(x) ∈ C, (ι ∈ I), and

x =
∑

ι∈I

λι(x)eι in the s∗-topology.

The map x 7→ {λι(x)}ι∈I is a ∗-isomorphism of M onto ℓ∞(I). Hence M∗ is
isometrically isomorphic to ℓ1(I).

For every singular form ψ on M we have ψ(eι) = 0, (ι ∈ I). Hence ϕ(eι) =
(pM · ϕ)(eι), (ι ∈ I), for all ϕ ∈M∗. Using this fact and 8.15.(13), we obtain

(pM · ϕ)(x) =
∑

ι∈I

λι(x)ϕ(eι); ϕ ∈M∗, x ∈M ;(1)

|pM · ϕ|(x) =
∑

ι∈I

λι(x)|ϕ(eι)|; ϕ ∈M∗, x ∈M.(2)

In particular

(3) ‖pM · ϕ‖ =
∑

ι∈I

|ϕ(eι)|; ϕ ∈M∗.

Sometimes it is convenient to denote

(4) ϕ(J) = ϕ
(∑

ι∈J

eι

)
; ϕ ∈M∗, J ⊂ I.

The following result, known as the “Phillips Lemma”, improves Corollary 2.
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Proposition 2. Let M be an atomic commutativeW ∗-algebra. If a sequence
{ϕn}n in M∗ is ξ is σ(M∗,M)-convergent to ϕ ∈ M∗, then {pM · ϕn}n is norm-
convergent to pM · ϕ.

Proof. By the uniform boundedness theorem,

λ = sup
n

‖ϕn‖ < +∞.

Without loss of generality we may assume that

(5) ϕn(x) → 0 for all x ∈M.

Let {eι}ι∈I be the family of all the atoms of M . By (3), we have to show that

∑

ι∈I

|ϕn(eι)|
n

−→ 0.

Assume the contrary holds. Then, replacing {ϕn}n by a subsequence, we
may suppose that there exists ε > 0 such that

(6)
∑

ι∈I

|ϕn(eι)| > 4ε for all n ∈ N.

By (5) and (6) we can construct a subsequence {ψn}n of {ϕn}n and a se-
quence {In}n of mutually disjoint finite subset of I such that

∑

ι∈In

|ψn(eι)| > 3ε,
∑

ι∈I1∪···∪In−1

|ψn(eι)| < ε.

Using 8.15.(12) and the notation (4), we can rewrite these relations as follows

|ψn|(In) > 3ε,(7)

|ψn|(I1 ∪ · · · ∪ In−1) < ε.(8)

Let F = {I1, I2, . . .}. There exists a decreasing sequence {Fn}n of infinite
subset of F such that, putting

kn = min{k ∈ N; Ik ∈ Fn},

we have

kn < kn+1,(9)

|ψkn |(∪{Ik; Ik ∈ Fn+1}) 6 ε.(10)

Indeed, let F1 = F and suppose that F2, . . . , Fn have been already chosen. Let
p ∈ N, p > λ/ε. There exists mutually disjoint infinite subsets F 1

n+1, . . . , F
p
n+1 of

F such that
F 1
n+1 ∪ · · · ∪ F pn+1 = Fn \ {Ikn}.
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Since ‖ |ψkn | ‖ 6 λ, there exists an index j, (1 6 j 6 p), such that (9) and (10) are

satisfied with Fn+1 = F jn+1.
In particular,

(11) |ψkn |
( ∞⋃

m=n+1

Ikm

)
6 ε.

Put θn = ψkn , Jn = Ikn , (n ∈ N). By (7), (8) and (11), we have

(12) |θn|(Jn) > 3ε,

(13) |θn|
( ⋃

m 6=n

Jm

)
6 2ε.

Now consider

x =
∞∑

m=1

∑

ι∈Jm, θm(eι) 6=0

(|θm(eι)|/θm(eι))eι ∈M.

Using (12), (13) and 8.15.(11), we obtain

|θn(x)| >

∣∣∣∣θn
( ∑

ι∈Jn,θn(eι) 6=0

(|θn(eι)|/θn(eι))eι
)∣∣∣∣

− |θn|

(∣∣∣
∑

m 6=n

∑

ι∈Jm,θm(eι) 6=0

(|θm(eι)|/θm(eι))eι

∣∣∣
)

> |θn|(Jn)− |θn|
( ⋃

m 6=n

Jm

)

> 3ε− 2ε = ε.

On the other hand, by (5), θn(x) → 0, a contradiction.

8.19. An appropriate extension of the Phillips Lemma to arbitrary W ∗-
algebras is the following

Theorem. Let M be aW ∗-algebra. If a sequence {ϕn}n inM∗ is σ(M∗,M)-
convergent to ϕ ∈M∗, then {pM ·ϕn}n (respectively {(1−pM )·ϕn}n) is σ(M∗,M)-
convergent to pM · ϕ (respectively (1 − pM ) · ϕ).

Proof. We may suppose that ϕn → 0 in the σ(M∗,M)-topology and then we
have to show that pM · ϕn → 0 in the σ(M∗,M)-topology.

Put
θ =

∑

n

2−n|(1− pM ) · ϕn| ∈ (1− pM ) ·M∗.
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Let e ∈ M be a non-zero projection. Since θ is singular, there is a family
{eι}ι∈I of mutually orthogonal non-zero projections inM with

∑
ι∈I

eι = e such that

θ(eι) = 0, (ι ∈ I). Then

ϕn(eι) = (pM · ϕn)(eι); n ∈ N, ι ∈ I.

Let N = W ∗({eι; ι ∈ I}) ⊂ M . Then N is an atomic commutative W ∗-algebra
and {eι}ι∈I is the family of all the atoms of N . Since ϕn|N → 0 in the σ(N∗, N)-
topology, we have ∑

ι∈I

|ϕn(eι)|
n

−→ 0

by the Phillips Lemma (Proposition 2/8.18). It follows that

(pM · ϕn)(e) =
∑

ι∈I

(pM · ϕn)(eι) =
∑

ι∈I

ϕn(eι)
n

−→ 0.

Using Proposition 3/7.16 we infer that (pM · ϕn)(x) → 0 for all x ∈M .

We cannot expect to extend Corollary 2/8.18 for more general W ∗-algebras.
Indeed, the most usual example of an infinite dimensional non-commutative

atomic W ∗-algebra is M = B(H) with H an infinite dimensional Hilbert space.
Let {ξn}n be an orthonormal sequence in H and define ϕn ∈M∗, un ∈M by

ϕn(x) = (xξ1|ξn), (x ∈M), unξ = (ξ|ξ1)ξn, (ξ ∈ H).

Then
∑
n
|ϕn(x)|2 =

∑
n
|(xξ1|ξn)|2 6 ‖xξ1‖2 < +∞, thus ϕn(x) → for all x ∈ M .

However, ‖ϕn‖ > |ϕn(un)| = 1 for all n, hence ‖ϕn‖ 6→ 0.
On the other hand, it is a standing conjecture that a W ∗-algebra satisfying

the property expressed by Corollary 1/8.18 is necessarily atomic.

8.20. Normal weights. Let M be a W ∗-algebra. By Theorem 8.4, a
positive form ϕ on M is w-continuous (or equivalently lower w-semicontinuous on
M+) if and only if

(1) ϕ
(
sup
ι
xι

)
= sup

ι
ϕ(xι) for every bounded increasing net {xι}ι ⊂M∗

and then ϕ is called a normal positive form.
A weight ϕ on M+ will be called a normal weight if it satisfies condition (1).

Obviously, every lower w-semicontinuous weight on M+ is normal. In this section
we show that every normal weight is lower w-semicontinuous on M+. Stronger
properties of normal weights will be proved later (8.22, 8.24).

Let ϕ be a normal weight on M+ and πϕ : M → B(Hϕ) be the associated
GNS-representation of M (4.3). We denote by πϕ(M)′∗ the predual of the von
Neumann algebra πϕ(M)′ ⊂ B(Hϕ).



250 W∗-Algebras

Lemma 1. There is a unique linear map Φ :Mϕ → πϕ(M)′∗ such that

(2) Φ(b∗a)(T ′) = (T ′aϕ|bϕ)ϕ; T ′ ∈ πϕ(M)′; a, b ∈ Nϕ.

Moreover, for every x ∈Mϕ ∩Mh,

(3) ‖Φ(x)‖ = inf{ϕ(y) + ϕ(z); y, z ∈Mϕ ∩M+, x = y − z}.

Proof. The uniqueness of Φ is clear since Mϕ = N∗
ϕNϕ.

If a, b, c ∈ Nϕ, c
∗ = c and c∗c = a∗a + b∗b, then by Proposition 7.13 there

are elements x, y ∈M such that

a = xc, b = yc and x∗x+ y∗y = s(cc∗) = s(c)

and for every T ′ ∈ πϕ(M)′ we have

(T ′cϕ|cϕ)ϕ = (T ′πϕ(x
∗x+ y∗y)cϕ|cϕ)ϕ

= (T ′πϕ(x)cϕ|πϕ(x)cϕ)ϕ + (T ′πϕ(y)cϕ|πϕ(y)cϕ)ϕ

= (T ′aϕ|aϕ)ϕ + (T ′bϕ|bϕ)ϕ.

It follows that the map

Φ0 :Mϕ ∩M+ ∋ a∗a 7→ ωaϕ |πϕ(M)′ ∈ πϕ(M)′∗

is well defined and additive. Clearly, Φ0 is positive homogeneous. Since Mϕ =
lin(Mϕ ∩M+), Φ0 has a linear extension Φ to Mϕ and formula (2) follows using
the polarization relation 2.8.(1).

The function ρ defined onMϕ∩Mh by the right hand side of (3) is a seminorm
on Mϕ ∩Mh.

If x ∈Mϕ ∩M+, then clearly

‖Φ(x)‖ = Φ(x)(1H) =
(
(x1/2)ϕ|(x

1/2)ϕ
)
ϕ
= ϕ(x) = ρ(x).

Consequently, for x = y − z with y, z ∈Mϕ ∩M+ we have

‖Φ(x)‖ 6 ‖Φ(y)‖+ ‖Φ(z)‖ = ϕ(y) + ϕ(z).

Hence ‖Φ(x)‖ 6 ρ(x) for all x ∈Mϕ ∩Mh.
Let x0 ∈ Mϕ ∩Mh. By the Hahn-Banach theorem, there is a real linear

functional f on Mϕ ∩Mh such that

f(x0) = ρ(x0) and |f(x)| 6 ρ(x) for all x ∈Mϕ ∩Mh.

Then f can be extended by linearity to a complex linear functional, also denoted
by f , on Mϕ. Since −ϕ(x) 6 f(x) 6 ϕ(x) for all x ∈Mϕ ∩M+, we may consider
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ϕ+ f and ϕ− f as weights on M+ so, using the Schwarz inequality (4.3.(6)), for
a, b ∈ Nϕ we get

|f(b∗a)| 6 2−1[|(ϕ+ f)(b∗a)|+ |(ϕ− f)(b∗a)|]

6 2−1[(ϕ+ f)(a∗a)1/2(ϕ+ f)(b∗b)1/2 + (ϕ− f)(a∗a)1/2(ϕ− f)(b∗b)1/2]

6 2−1[(ϕ+ f)(a∗a) + (ϕ− f)(a∗a)]1/2[(ϕ+ f)(b∗b) + (ϕ− f)(b∗b)]1/2

= ϕ(a∗a)1/2ϕ(b∗b)1/2

= ‖aϕ‖ϕ‖bϕ‖ϕ.

Hence there exists T ′ ∈ B(Hϕ), ‖T ′‖ 6 1, such that

f(b∗a) = (T ′aϕ|bϕ)ϕ; a, b ∈ Nϕ.

Moreover, T ′ ∈ πϕ(M)′ since, for any x ∈M and any a, b ∈ Nϕ,

(T ′πϕ(x)aϕ|bϕ)ϕ = f(b∗xa) = (πϕ(x)T
′aϕ|bϕ)ϕ.

It follows that

ρ(x0) = |f(x0)| = |Φ(x0)(T
′)| 6 ‖Φ(x0)‖ ‖T

′‖ 6 ‖Φ(x0)‖.

Lemma 2. Let {xn}n be a norm-bounded sequence in Mϕ ∩M+ and assume
that {Φ(xn)}n is norm-convert in πϕ(M)′∗. Then

(i) xn
s

−→ x ∈M ⇒ x ∈Mϕ ∩M+;

(ii) xn
s

−→ 0 ⇒ ‖Φ(xn)‖ → 0.

Proof. Let ε > 0 and put ψ = lim
n

Φ(xn) ∈ πϕ(M)′∗. Without loss of gener-

ality we may suppose that, for all n,

‖Φ(xn)− ψ‖ < ε/2n hence ‖Φ(xn+1 − xn)‖ < ε/2n−1.

By Lemma 1 there are sequences {yn}n, {zn}n in Mϕ ∩M+ such that

xn+1 − xn = yn − zn and ϕ(yn) + ϕ(zn) < ε/2n−1; n ∈ N.

Recall that the functions fα(t) = t(1+αt)−1, (α > 0), from 2.7 are operator
monotone, bounded, fα > fβ for α 6 β and lim

α→0
fα(t) = t uniformly compact

subset of R. Also, by Theorem 7.10, each fα is operator continuous.

(i) Since xn+1 6 x1 +
n∑
k=1

yk and xn+1
s

−→ x, it follows that

fα(x) = s- lim
n
fα(xn+1) 6 sup

n
fα

(
x1 +

n∑

k=1

yk

)
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and then, by the normality of ϕ,

ϕ(fα(x)) 6 sup
n
ϕ

(
fα

(
x1 +

n∑

k=1

yk

))
6 sup

n
ϕ
(
x1 +

n∑

k=1

yk

)

6 ϕ(x1) +

∞∑

k=1

ϕ(yk) 6 ϕ(x1) +

∞∑

k=1

ε/2k−1 = ϕ(x1) + 2ε.

Since fα(x) ↑ x, using again the normality of ϕ we get

ϕ(x) = sup
α>0

ϕ(fα(x)) 6 ϕ(x1) + 2ε < +∞.

This shows that x ∈Mϕ ∩M+.

(ii) Since − sup
n

‖xn‖ 6 x1 − xn+1 6
n∑
k=1

zk, we have

fα(x1 − xn+1) 6 sup
n
fα

( n∑

k=1

zk

)
; α >

(
sup
n

‖xn‖
)−1

.

Since x1 − xn+1
s

−→ x1, we infer that

fα(x1) = s- lim
n
fα(x1 − xn+1) 6 sup

n
fα

( n∑

k=1

zk

)
.

Using the normality of ϕ we obtain

ϕ(x1) = sup
α>0

ϕ(fα(x1)) 6 sup
α>0

sup
n
ϕ

(
fα

( n∑

k=1

zk

))

6 sup
n
ϕ
( n∑

k=1

zk

)
6

∞∑

k=1

ε/2k−1 = 2ε.

It follows that

‖ψ‖ 6 ‖ψ − Φ(x1)‖+ ‖Φ(x1)‖ 6 ε/2 + 2ε = 3ε/2.

Hence ψ = 0.

Let Gϕ = {(x, xϕ); x ∈ Nϕ} ⊂ M ×Hϕ. Recall that every Hilbert space is
reflexive as a Banach space, thusM×Hϕ is the dual of the Banach spaceM∗×Hϕ.
For λ, µ ∈ R, λ, µ > 0, we denote

Mλ = {x ∈M ; ‖x‖ 6 λ}, (Hϕ)µ = {ξ ∈ Hϕ; ‖ξ‖ 6 µ}.
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Lemma 3. If M is countably decomposable, then Gϕ∩(Mλ×(Hϕ)µ) is σ(M×
Hϕ, M∗ ×Hϕ)-compact for any λ, µ > 0.

Proof. Since Gϕ ∩ (Mλ × (Hϕ)µ) is convex and bounded, it is sufficient to
prove that it is closed in the product topology τ on M × Hϕ of the s∗-topology
on M and the norm-topology on Hϕ. Note that Mλ is s∗-metrizable since M is
countably decomposable.

If (x, ξ) ∈ M × Hϕ is τ -adherent to Gϕ ∩ (Mλ × (Hϕ)µ), then there is a
sequence {xn}n in Mλ such that

xn
s∗
−→ x, ‖(xn)ϕ‖ϕ 6 β and ‖(xn)ϕ − ξ‖ϕ → 0.

Then x∗nxn
s

−→ x∗x and Φ(x∗nxn) = ω(xn)ϕ → ωξ in norm, so x ∈ Nϕ by Lemma 2.

Furthermore, (xn − x)∗(xn − x)
s

−→ 0 and

Φ((xn − x)∗(xn − x)) = ω(xn)ϕ−xϕ → ωξ−xϕ

so ωξ−xϕ = 0, again by Lemma 2. Hence ξ = xϕ and (x, ξ) ∈ Cϕ.

If M is not countably decomposable, then let P0 be the family of countably
decomposable projections in M and put

M0 =
⋃

p∈P0

pMp.

It is easy to see that M0 is a selfadjoint two-sided ideal in M . A subset X of
M0 ∩M+ is called hereditary in M0 if

x ∈ X and y ∈M0, 0 6 y 6 x⇒ y ∈ X.

Lemma 4. Let E be a convex hereditary subset of M0 ∩ M+. Then E is
w-closed relative to M0 if and only if E ∩ pMp is w-closed for all p ∈ P0.

Proof. Suppose that E ∩ pMp is w-closed for all p ∈ P0. Let F = {x ∈
M ; x∗x ∈ E}. If x, y ∈ F and λ, µ > 0, λ+ µ = 1, then

(λx + µy)∗(λx + µy) = λ2x∗x+ µ2y∗y + λµ(x∗y + y∗x)

6 λ2x∗x+ µ2y∗y + λµ(x∗x+ y∗y) = λx∗x+ µy∗y,

hence λx+ µy ∈ F . If x ∈ F and a ∈M , ‖a‖ 6 1, then

(ax)∗(ax) = x∗a∗ax 6 x∗x,

hence ax ∈ F . It follows that F is convex and aF ⊂ F for all a ∈M1.
We shall show that pF , or equivalently F ∗p, is w-closed for any p ∈ P0.

By 8.5 and Theorem 7.4 it is sufficient to show that F ∗p ∩Mλ is s-closed for all
λ > 0. Let x ∈ M such that x∗ is s-adherent to F ∗p ∩Mλ. Since Mp ∩Mλ is
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s-metrizable, there is a sequence {xn}n in pF , ‖xn‖ 6 λ, with x∗n
s

−→ x∗. There
exists a projection q ∈ P0 such that xn ∈ qMq for all n. Thus

xn ∈ F ∩ qMq = {y ∈ qMq; y∗y ∈ E ∩ qMq}; n ∈ N.

By assumption, E∩qMq is w-closed, so F ∩qMq is s-closed, hence w-closed.
It follows that x ∈ F ∩qMq. Since px = x and ‖x‖ 6 λ, we obtain x∗ ∈ F ∗p∩Mλ.
Hence pF is w-closed for all p ∈ P0.

Now let x ∈M0 be w-adherent to E. Then there is a net {xι}ι∈I in E with

xι
s

−→ x. If p = l(x), then p ∈ P0 and px
1/2
ι

s
−→ px1/2 = x1/2. By the above, pF

is s-closed so x1/2 ∈ pF ⊂ F , that is x ∈ E. Hence E is w-closed relative to M0.
Then converse assertion is immediate.

Proposition. Let ϕ be a weight on a W ∗-algebra M. Then ϕ is normal if
and only if ϕ is lower w-semicontinuous on M+.

Proof. Suppose that ϕ is normal. We have to show that the set

E = {x ∈M+; ϕ(x) 6 1}

is w-closed. Clearly, E is convex and hereditary in M+. Let x ∈ E. By Proposi-
tion 2/7.16, there is an increasing sequence {en}n in W ∗({x}) with en 6 nxen
and en ↑ s(x). Then ϕ(en) 6 n, hence en is countably decomposable, (n ∈ N), so
s(x) ∈ P0. Thus, E ⊂M0.

First assume that M is countably decomposable. As in the last part of the
proof of Lemma 4, it is sufficient to prove that

F = {x ∈M ; ϕ(x∗x) 6 1}

is w-closed. Since F ∩Mλ is the image Gϕ ∩ (Mλ × (Hϕ)1), (λ > 0), under the
projection map M ×Hϕ ∋ (x, ξ) 7→ x ∈M , it follows from Lemma 3 that F ∩Mλ

is w-compact for every λ > 0. Since F is convex, we infer that F is w-closed.
Consider now the general case. By the above special case and by Lemma 4,

E is w-closed relative to M0.
Let x ∈ M+ be w-adherent to E. There is a net {xι}ι∈I in E, xι

s
−→ x.

Also, there is an increasing net {pκ}κ∈K of countably decomposable projections
in M with

∨
κ∈K

pκ = 1. For each κ ∈ K we have

e ∋ x1/2ι pκx
1/2
ι

w
−→
ι∈I

x1/2pκx
1/2 ∈M0,

so x1/2pκx
1/2 ∈ E, (κ ∈ K). Since x1/2pκx

1/2 ↑ x, by the normality of ϕ we infer
that

ϕ(x) = sup
κ∈K

ϕ(x1/2pκx
1/2) 6 1,

hence x ∈ E.
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Recall that a positive form ϕ on M is normal if and only if ϕ
( ∑
ι∈I

eι

)
=

∑
ι∈I

ϕ(eι) for every family {eι}ι∈I of mutually orthogonal projections in M . This

cannot be generalized for weights, as the following example shows.
Let ℓ∞ be the W ∗-algebra of all bounded complex sequences. The weight

defined on (ℓ∞)+ by

ϕ({an}n) =

{∑
n
an if the set {n ∈ N; an 6= 0} is finite

+∞ otherwise

satisfies the above condition, but is not normal.

8.21. We interrupt the discussion on normal weights in order to prove a
general result which is necessary at this point.

Let X be a locally convex Hausdorff real vector space which has a partial
ordering defined by a closed convex cone X+ such that

X+ ∩ (−X+) = {0} and X = (X+ −X+).

The dual cone X∗
+ = {f ∈ X∗; f(x) > 0 for all x ∈ X+} defines a partial ordering

on X .
A subset E of X+ is called hereditary if

x ∈ B and y ∈ X+, x− y ∈ X+ ⇒ y ∈ E.

We shall denote

E0 = {f ∈ X∗; f(x) > −1, (∀)x ∈ E}, for E ⊂ X ;

E∧ = {f ∈ X∗
+; f(x) 6 1, (∀)x ∈ E}, for E ⊂ X+;

F 0 = {x ∈ X ; f(x) > −1, (∀)f ∈ F}, for F ⊂ X∗;

F∧ = {x ∈ X+; f(x) 6 1, (∀)f ∈ F}, for F ⊂ X∗
+.

Proposition. Let X be as above. Then the following statements are equiv-
alent:

(i) E = E −X+ ∩X+ for every closed convex hereditary set E ⊂ X+;
(ii) E = E∧ for every closed convex hereditary set E ⊂ X+;
(iii) Every lower semicontinuous function ϕ : X+ → [0,+∞], which is increas-

ing, subadditive and positive homogeneous has the form

ϕ(x) = sup{f(x); f ∈ X∗
+, f(y) 6 ϕ(y) (∀)y ∈ X+}; x ∈ X+.

Proof. (i) ⇒ (ii). The sets F = E∧ and

F ′ = −(E −X+)0 = {f ∈ X∗; f(x) 6 1, ∀x ∈ E −X+}
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are equal. Indeed, F ⊂ F ′ is obvious. Let f ∈ F ′ and x ∈ X+. Since 0 ∈ E, we
have f(−λx) 6 1 for all λ > 0, so f(x) > 0. Thus F ′ ⊂ X∗

+ and the inclusion
F ′ ⊂ F is now clear.

By the bipolar theorem if follows that

(E −X+) = (E −X+)00 = (−F )0 = {x ∈ X ; f(x) 6 1, (∀)f ∈ F}.

Using (i) we thus get

E = (E −X+) ∩X+ = {x ∈ X+; f(x) 6 1, (∀)f ∈ F} = E∧∧.

(ii) ⇒ (iii). If ϕ satisfies the conditions of (iii), then the set E = {x ∈
X+; ϕ(x) 6 1} is closed, convex and hereditary. Then

F = E∧ = {f ∈ X∗
+; f(x) 6 ϕ(x), (∀)x ∈ X+}

and using (ii) we get

{x ∈ X+; ϕ(x) 6 1} = E = F∧∗ =
{
x ∈ X+; sup

f∈F
f(x) 6 1

}
.

It follows that ϕ(x) = sup{f(x); f ∈ F} for all x ∈ X+.

(iii) ⇒ (i). Let E ⊂ X+ be a closed convex hereditary set and put

ϕ(x) =

{
inf{λ > 0; x ∈ λE} if x ∈

⋃
λ>0

λE

+∞ otherwise.

Then ϕ satisfies all conditions of (iii) so, by (iii), ϕ(x) = sup{f(x); f ∈ F}, (x ∈
X+), where

F = {f ∈ X∗
+; f(x) 6 ϕ(x), (∀)x ∈ X+}.

It follows that

E −X+ ⊂ {x ∈ X ; f(x) 6 1, (∀)f ∈ F}.

Since the later set is closed, we get

(E −X+) ∩X+ ⊂ {x ∈ X+; f(x) 6 1, (∀)f ∈ F} ⊂ E.

Hence (E −X+) ∩X+ = E.

8.22. In this section we show that the selfadjoint part of a W ∗-algebra
equipped with the w-topology satisfies the equivalent condition of Proposition 8.21.
More specifically, we prove
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Lemma. Let M be a W ∗-algebra and E ⊂ M+ be a w-closed hereditary
convex set. Then

E = (E −M+)
w
∩M+.

Proof. We shall intensively use the properties of the functions fα(t) = t(1 +
αt)−1, (α > 0), from (2.7). For x ∈Mh we put

αx = sup{α > 0; −α−1
6 x}.

Consider the set

S = {x ∈Mh; fα(x) ∈ E −M+, (∀)α ∈ (0, αx)}.

1) S ∩Mλ is s-closed for all λ > 0.

Indeed, let x ∈ (S ∩Mλ)
s
. There exists a net {xι}ι∈I in such that ‖xι‖ 6 λ,

(ι ∈ I), and xι
s

−→ x. Then αxι > (2λ)−1 for all ι ∈ I, so fα(xι) ∈ E −M+ for
all α ∈ (0, (2λ)−1) and all ι ∈ I. Fix α ∈ (0, (2λ)−1). There is a net {yι}ι∈I in E
such that

fα(xι) 6 yι; ι ∈ I.

Since fα is operator monotone, we get

f2α(xι) = fα(fα(xι)) 6 fα(yι); ι ∈ I.

Since f2α is operator continuous on [−λ, λ], we have

f2α(xι)
s

−→ f2α(x).

Since 0 6 fα(yι) 6 α−1 andM1 is w-compact, we may suppose that there is y ∈M
such that

fα(yι)
w

−→ y.

Since 0 6 fα(yι) 6 yι ∈ E and E is hereditary, fα(yι) belongs to E. Since E is
w-closed, it follows that y ∈ E. Furthermore

y − f2α(x) = w-lim
ι

(fα(yι)− f2α(xι)) > 0,

hence f2α(x) ∈ E −M+. We have proved that

fα(x) ∈ E −M+ for all α ∈ (0, λ−1).

Let α ∈ [λ−1, αx) and choose β ∈ (0, λ−1). Then fα(x) 6 fβ(x), so

fα(x) ∈ (E −M+)−M+ = E −M+.

Hence x ∈ S ∩Mλ.
2) S is convex.
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Indeed, it is sufficient to show that each S∩Mλ is convex and this will follow
from

S ∩Mλ = ((E −M+) ∩Mµ)
s
∩Mλ, for µ > λ.

If x ∈ S∩Mλ, then fα(x) ∈ E−M+ for α ∈ (0, αx) and fα(x) ∈Mµ for sufficiently
small α > 0, so

x = s- lim
α→0

fα(x) ∈ ((E −M+) ∩Mµ)
s
∩Mλ.

Conversely, since E is hereditary and fα(x) 6 x for α ∈ (0, αx), we have E−M+ ⊂

S, so (E −M+) ∩Mµ ⊂ S ∩Mµ. Using 1) we get ((E −M+) ∩Mµ)
s
⊂ S ∩Mµ

and the desired inclusion follows.
3) By 1), 2) and the Krein-Shmulyan theorem (7.4), S is w-closed. As we

have seen, E −M+ ⊂ S. Since x = w-lim
α→0

fα(x), we infer that S ⊂ (E −M+)
w
.

Thus
S = (E −M+)

w
.

4) Now let x ∈ (E −M+)
w
∩ M+ = S ∩ M+. For all α > 0 we have

fα(x) ∈ (E −M+) ∩M+, so fα(x) ∈ E, because E is hereditary. Finally x =
w-lim
α→0

fα(x) ∈ E.

Combining Proposition 8.20 and Proposition 8.21 with the above lemma, we
obtain the following result:

Theorem (U. Haagerup). Let M be a W ∗-algebra and ϕ be a weight on
M+. Then the following statements are equivalent:

(i) ϕ is normal;
(ii) ϕ is lower w-semicontinuous on M+;
(iii) ϕ(x) = sup{f(x); f ∈M+

∗ , f 6 ϕ}; x ∈M+.

If ϕ is a normal weight on M+ and a, b ∈ Nϕ, then b
∗xa ∈ N∗

ϕNϕ =Mϕ for
all x ∈M and the map

ϕ(b∗ · a) : x→ ϕ(b∗xa)

is a normal linear form on M .
Indeed, if xι ↑ x in M+, then also a∗xιa ↑ a∗xa in M+, hence ϕ(a∗xιa) ↑

ϕ(a∗xa) by the normality of ϕ. Thus ϕ(a∗ · a) is a normal positive form and the
general case follows by polarization (2.8.(2)).

8.23. Let M be a W ∗-algebra and ϕ be a normal weight on M+.
Using Proposition 2/7.16 and the normality of ϕ it is easy to check that

(1) x ∈M+, ϕ(x) = 0 ⇒ ϕ(s(x)) = 0.

If, e, f ∈ M are projections and ϕ(e) = ϕ(f) = 0, then ϕ(e ∨ f) = 0, because
e ∨ f = s(e+ f). It follows that the family

E = {e ∈M ; e projection, ϕ(e) = 0}



The GNS construction for normal weights 259

is an increasing net. Let e0 = supE. Then ϕ(e0) = 0 by the normality of ϕ.
Clearly, e0 is the greatest projection in M annihilated by ϕ. The projection

s(ϕ) = 1− e0

is called the support of ϕ.
Using (1) it follows that

(2) x ∈M, ϕ(x∗x) = 0 ⇔ xs(ϕ) = 0.

In particular we see that ϕ is faithful (4.3) if and only if s(ϕ) = 1.

On the other hand, the w-closure Nϕ
w
of Nϕ = {x ∈ M ; ϕ(x∗x) < +∞} is

a w-closed left ideal of M , therefore N
w

= Me for some projection e ∈ M and
M

w
= eMe (8.7). The weight ϕ is called w-semifinite (or simply semifinite) if

e = 1, that is if Mϕ, or equivalently Nϕ, is w-dense in M . In this case there is an
increasing net {uι}ι∈I in Fϕ =Mϕ ∩M+ such that uι ↑ 1 (8.7, 3.2).

By n.s.f. weight we abreviate the words normal semifinite faithful weight.
Note that for every W ∗-algebra M there is a n.s.f. weight on M+. Indeed,

if {ϕι}ι∈I is a maximal family of normal positive forms on M with mutually
orthogonal supports, then the formula

ϕ(x) =
∑

ι∈I

ϕι(x); x ∈M+

defines a n.s.f. weight on M+.

Theorem. Let M be a W ∗-algebra and ϕ be a normal weight on M+.
Then the associated GNS representation πϕ : M → B(Hϕ) is normal and non-
degenerated. Moreover, if ϕ is semifinite, then

(3) ((Mϕ)
n)ϕ is dense in Hϕ; n > 1,

and if ϕ is a n.s.f. weight, then πϕ is a ∗-isomorphism of M onto the von Neumann
algebra πϕ(M) ⊂ B(Hϕ).

Proof. Clearly, πϕ(1) = 1Hϕ , hence πϕ is non-degenerated. In order to show
that πϕ is normal, i.e. w-continuous, we have to prove that ω ◦ πϕ ∈M∗ for every
normal form ω on B(Hϕ). By an obvious approximation, it is sufficient to do this
only for ω = ωaϕ,bϕ with a, b ∈ Nϕ. In this case

ωaϕ,bϕ ◦ πϕ = ϕ(b∗ · a) ∈M∗,

by the normality of ϕ (see 8.22).
Since πϕ is normal, πϕ(M) is a W ∗-subalgebra of B(Hϕ) by Corollary 5/8.4

and, since 1H ∈ πϕ(M), πϕ(M) ⊂ B(Hϕ) is a von Neumann algebra.
If ϕ is semifinite, then there is an icreasing net {uι}ι∈I in Fϕ = Mϕ ∩M+

such that uι ↑ 1. For a ∈ Nϕ we have

(4) ‖aϕ − (uιa)ϕ‖
2
ϕ = ϕ((a− uιa)

∗(a− uιa)) 6 2[ϕ(a∗a)− ϕ(a∗uιa)] → 0.

Since uι ∈ Nϕ ⊂ N∗
ϕ and a ∈ Nϕ, we have uιa ∈ N∗

ϕNϕ = Mϕ and from
(4) it follows that (Mϕ)ϕ is dense in Nϕ, hence also in Hϕ. Now (3) follows using
inductively (4).

Let ϕ be a n.s.f. weight. If x ∈M and πϕ(x) = 0, then

ϕ((xa)∗(xa)) = ‖πϕ(x)aϕ‖
2
ϕ = 0; a ∈ Nϕ.

Since ϕ is faithful, it follows that xNϕ = 0 and since ϕ is semifinite, we conclude
x = 0.
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Corollary. Let M be a W ∗-algebra, ϕ be a normal semifinite weight on
M+ and f be a positive form on M. If f 6 ϕ, then f is normal.

Proof. By Corollary 2/4.8, there exists a vector ξ ∈ Hϕ such that f(x) =
(ωξ ◦ πϕ)(x) for all x ∈ Mϕ. Since ϕ is semifinite, we infer that f = ωξ ◦ πϕ, so
the normality of f follows from that of πϕ.

8.24. By Theorem 8.22, every normal weight ϕ on a W ∗-algebra M is the
pointwise supremum of the family of normal positive forms

Fϕ = {f ∈M+
∗ ; f 6 ϕ},

hence ϕ is also the supremum of the family

{f ∈M+; (1 + ε)f 6 ϕ for some ε > 0}.

The next result shows in particular that every normal semifinite weight on a W ∗-
algebra is the supremum of a directed family of normal positive forms.

Theorem. (F. Combes) Let M be a W ∗-algebra, ϕ be a normal semifinite
weight on M+. Then the set

{f ∈M+
∗ ; (1 + ε)f 6 ϕ for some ε > 0}

is upward directed.

Proof. We have to show that for every f1, f2 ∈ Fϕ and every ε > 0, there
exists f ∈ Fϕ such that (1 − ε)f1 6 f and (1− ε)f2 6 f .

Let f1, f2 ∈ Fϕ and ε > 0. By Corollary 2/4.8, the set T ′
ϕ of all T ′ ∈ πϕ(M)′

such that there is λT ′ > 0 with

‖T ′aϕ‖ϕ 6 λT ′‖a‖; a ∈ Nϕ

is a left ideal of the von Neumann algebra πϕ(M)′ and there are T ′
1, T

′
2 ∈ T ′

ϕ such
that 0 6 T ′

j 6 1 and

(1) fj(b
∗a) = (T ′

jaϕ|T
′
jbϕ)ϕ; a, b ∈ Nϕ, j = 1, 2.

By Proposition 2/8.7, (T ′
ϕ)

∗T ′
ϕ is a facial subalgebra of πϕ(M)′. Using Proposi-

tion 2.10 we obtain an element

X ′ ∈ (T ′
ϕ)

∗T ′
ϕ, (1− ε)T ′∗

jT
′
j 6 X ′

6 1; j = 1, 2.

Let T ′ = (X ′)1/2. Using again Proposition 2/8.7 we get

(2) T ′ ∈ T ′
ϕ, 0 6 T ′

6 1, (1 − ε)T ′∗
jT

′
j 6 T ′∗T ′; j = 1, 2.

By Corollary 2/4.8, there is a positive form f on M such that f 6 ϕ and

(3) f(b∗a) = (T ′aϕ|T
′bϕ)ϕ; a, b ∈ Nϕ.

Since f 6 ϕ, we have f ∈ M+
∗ by Corollary 8.23, hence f ∈ Fϕ. On the other

hand, from (1), (2), (3) we infer that

(4) (1− ε)fj(x) 6 f(x); x ∈Mϕ, j = 1, 2.

Since Mϕ is w-dense in M and f , f1, f2 are w-continuous, it follows that (4) holds
for all x ∈M , i.e. (1− ε)fj 6 f , (j = 1, 2).
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8.25. Tensor product of weights. Let M be a W ∗-algebra. If F ⊂ M+
∗

is an upward directed family, then the formula

ϕ(x) = sup{f(x); f ∈ F}; x ∈M+

defines a normal weight ϕ on M+. Then family of projections {s(f); f ∈ F} is
also upward directed and, as easily verified

(1) s(ϕ) =
∨

f∈F

s(f).

Now let ϕ (respectively ψ) be a normal semifinite weight on the W ∗-algebra
M (respectively N). By the Combes theorem (8.24), the family

F = {f ∈M+
∗ ; (1 + ε)f 6 ϕ for some ε > 0} ⊂M+

∗

G = {g ∈ N+
∗ ; (1 + ε)g 6 ψ for some ε > 0} ⊂ N+

∗

are upward directed and ϕ = sup
f∈F

f , ψ = sup
g∈G

g. Then the family {f ⊗ g; f ∈ F ,

g ∈ G} ⊂ (M ⊗N)+∗ is upward directed, so we can define a normal weight ϕ⊗ψ
on (M ⊗N)+ by

(ϕ⊗ψ)(x) = sup{(f ⊗ g)(x); f ∈ F, g ∈ G}; x ∈ (M ⊗N)+.

It is clear that

Mϕ ⊗Mψ ⊂Mϕ⊗ψ, Nϕ ⊗Nψ ⊂ Nϕ⊗ψ ,(2)

(ϕ⊗ψ)(a⊗ b) = ϕ(a)ϕ(b); a ∈Mϕ, b ∈Mψ.(3)

In particular, ϕ⊗ψ is semifinite.
The weight ϕ⊗ψ is called the tensor product of the normal semifinite weights

ϕ and ψ.
By (1) and by 8.11.(11), we have

s(ϕ⊗ψ) =
∨

f∈F, g∈G

s(f ⊗ g) =
∨

f∈F, g∈G

s(f)⊗ s(g)

and, since s(f) ↑ s(ϕ), s(g) ↑ s(ψ), it follows that

(4) s(ϕ⊗ψ) = s(ϕ)⊗ s(ψ).

In particular, the tensor product of two n.s.f. weights is again a n.s.f. weight.

8.26. Notes. The fact that any von Neumann algebra is the dual space of a unique
Banach space (8.1 and Lemma 3.(i)/8.4 for ψ > 0) has been discovered by J. Dixmier
[70], [75], and the characterization of von Neumann algebras as C∗-algebras which are
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dual spaces (8.4) is due to S. Sakai [267]. In proving Theorem 8.4 we have not followed the
original arguments of S. Sakai ([267]; see also [271], [274]), but the alternative approach
(cf. [319]) offered by the result of J. Tomiyama [328] on projections of norm one (8.3) and
the remarks of M. Takesaki [314], [316] on singular forms (Lemma 3.(ii)/8.4). Moreover,
the proof of Lemma 8.3 we have presented seems to be the simplest possible one (it
appears also in a Course of E.C. Lance). Another proof of Lemma 3.(i)/8.4 appeared in
[138] (see also [259], [307]).

The second dual of a C∗-algebra and its properties (8.2, 8.4) appearead in the
works of S. Sherman [286], Z. Takeda [312] and A. Grothendieck [119]. Our exposition
in 8.2, based on the Kaplansky density theorem, follows that in [77]. Another approach
to the secound dual of a C∗-algebra is due to M. Tomita ([327]; see also [302], §I.2).

For the results in 8.5 and 8.6, which are mainly reformulations of the corresponding
results in the frame of von Neumann algebras (§7), we refer to [77], [267], [268], [269],
[270], [271], [274], [319], [328], [340]. T. Okayasu [216] solved a problem of S. Sakai
[271] showing that any algebraic isomorphism between W ∗-algebras is s-continuous and
subsequently [219], following a suggestion of I. Kaplansky [164], obtained a polar decom-
position for isomorphisms of C∗-algebras. The central cover (8.6) has been consider by
G.K. Pedersen [237], [241]. For the structure and the properties of ideals in W ∗-algebras
(8.7) we have used [57], [58], [59], [60], [67], [77], [274]. Our exposition of W ∗-tensor
products is modeled after [271].

The polar decomposition of linear functionals (8.9, 8.11) is due to S. Sakai [270],
[271] and M. Tomita [326], II. The example in 8.11 showing that sA(ϕ) 6= sA∗∗(ϕ)
appears in [78], 12.5.7. The Jordan decomposition of linear functionals (8.10) is due
to A. Grothendieck [119] (see also [312], [313]). The other results in 8.10 and 8.11 are
from [84], [233] IV, [273], [319].

For the material included in 8.12–8.14 we have used [6], [77], [145], [332]. The
useful result contained in Proposition 8.13.(ii) is known as “the Griffin lemma” ([117],
I). The result of Proposition 8.14 (see also Corollary 3/9.33) is due to J. von Neumann
[206] and its proof is due to C.E. Rickart [258]. Surveys on the theory of generators of
W ∗-algebras can be found in [266], [332].

The results from (8.15–8.19), well known in the commutative case [81], [249], ap-
peared with an increasing non-commutative generality in [354], [269], [272], [4] (see also
[1], [2], [263], [310], [314], [319], [323]). Our exposition follows the monograph [81], IV.9.7,
IV.9.8, the article of C.A. Akemann [4] and the lectures of M. Takasaki [319]. Another
approach to a part of Theorem 8.17 appears in [259] (see also [307]). The conjecture
mentioned at the end of 8.19 has been solved affirmatively by A. Connes and E. Størmer
[64] in the case of factors.

The characterization of normal weights given in Theorem 8.22 in due to U. Haagerup
[122], as well as the proof presented in 8.20–8.22. Actually, G.K. Pedersen and M. Take-
saki [245] proved that any normal weight can be written as an infinite sum of normal
positive functionals (see also [307] and, for a simpler proof, [91]). A variant of Theo-
rem 8.24 for weights on C∗-algebras has been proved for the first time by F. Combes [56],
1.9. For our exposition of Theorem 8.24 we have used [56], [67], [319]. The results of U.
Haagerup and F. Combes are important for the theory of standard forms of W ∗-algebras
([319], [320], [307], [304]). For more details concerning the tensor product of weights we
refer to [63], [303].



Chapter 9

ALGEBRAIC FEATURES OF W ∗-ALGEBRAS

As we have seen in the preceding chapter, there is a deep relationship between
the w-topology of a W ∗-algebra M , the order structure of Mh and the order
structure of P (M). Since the existence of the w-topology is characteristic for W ∗-
algebras, it is only natural to expect that the W ∗-algebras M can be characterized
among all C∗-algebras in terms of the order structure of Mh or P (M).

This chapter is devoted to a study of several classes of C∗-algebras with
particular order structure properties. We examine the cases in which a C∗-algebra
belonging to these classes is in fact a W ∗-algebra, thus obtaining characterizations
of W ∗-algebras in terms of the richness and of the order structure of P (M). Also,
we describe the w-closure of a C∗-subalgebra A of a W ∗-algebra in terms of the
“monotone closure” of Ah. A special attention is given to the commutative case.

Many of the above mentioned results involve only the hermitean part of
C∗-algebras and hold in fact for Jordan algebras.

9.1. We first introduce an axiom which guarantees the richness of the pro-
jection set of a C∗-algebra or of a Jordan algebra.

We shall say that a C∗-algebra A satisfies the spectral axiom if for each a ∈ A,
a > 0, and λ, µ ∈ (0,∞), λ < µ, there exists a projection e ∈ A, commuting with
a, such that

ae > λe, a(1− e) 6 µ(1− e).

Now let J be a Jordan algebra in the C∗-algebra A. By 6.6.(6), the images
of commuting elements of a Jordan algebra by a Jordan homomorphism are again
commuting, whence for x, y ∈ J the statement “x commutes with y” does not
depend on the underlying algebra A.

We shall say that J satisfies the spectral axiom if for each a ∈ J , a > 0 and
λ, µ ∈ (0,∞), there exists a projection e ∈ J , commuting with a, such that

ae > λe, a(1− e) 6 µ(1− e).

Clearly, a C∗-algebra A satisfies the spectral axiom if and only if the Jordan
algebra Ah does.

9.2. Let J be a Jordan algebra in the C∗-algebra A, and let Ã be the associate
unital C∗-algebra. Denote

J̃ =

{
J, if J is unital,
J + R · 1

Ã
, if J is not unital.
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Then J̃ is a unital Jordan algebra in Ã, generated by J and by its unit element.
It is uniquely determined up to Jordan isomorphisms by the following universality
property: every injective Jordan homomorphism of J into a unital Jordan algebra

K can be extended to an injective Jordan homomorphism of J̃ into K. Note that

J is norm-closed if and only if J̃ is norm-closed.

If A is a C∗-algebra and J = Ah, then J̃ = (Ã)h.
The following simple fact is useful for a deeper understanding of the spectral

axiom:

Proposition. Let J be a norm-closed Jordan algebra in the C∗-algebra A.
If 0 6 a ∈ J , λ ∈ (0,∞) and e ∈ J is a projection commuting with a and such
that ae > λe, then e ∈ aJa.

Proof. Since a ∈ J ⊂ J̃ commutes with e ∈ J̃ , by 6.2 we get C∗({a, e})h ⊂ J̃ .
Now, since ae > λe, using the Gelfand representation of C∗({a, e}) we obtain an

element b ∈ C∗({a, e})h ⊂ J̃ such that ab = ba = e. Consequently, e = ab2a ∈
aJ̃a = aJa.

Corollary. Let J be a norm-closed Jordan algebra in the C∗-algebra A.
Then J satisfies the spectral axiom if and only if for each x ∈ J and λ, µ ∈ R,
λ < µ, there exists a projection e ∈ J̃ commuting with x, such that

xe > λe, x(1− e) 6 µ(1− e).
Proof. Assume that J satisfies the spectral axiom and let x ∈ J and λ, µ ∈ R,

λ < µ.
Consider first the case µ > 0 and let λ′ ∈ (max{λ, 0}, µ). Since x+ ∈ J

(6.2.(11)), there exists a projection e ∈ J , commuting with x+, such that

x+e > λ′e, x+(1− e) 6 µ(1− e).

By the above proposition, we have e ∈ x+Jx+, so that ex− = x−e = 0. Conse-
quently, e commutes with x = x+ + x− and

xe = x+e− x−e = x+e > λ′e > λe,

x(1− e) = x+(1− e)− x−(1− e) 6 x+(1− e) 6 µ(1− e).

Consider now the case µ 6 0. By the above part of the proof, applied to −x
and −µ < −λ, we get a projection f ∈ J , commuting with x, such that

(−x)f > (−µ)f, (−x)(1− f) 6 (−λ)(1− f).

Then e = 1
J̃
− f ∈ J̃ is a projection commuting with x and

xe > λe, a(1− e) 6 µ(1− e).

Conversely, if the condition of the statement is satisfied, then for each 0 6
a ∈ J and 0 < λ < µ there exists a projection e ∈ J̃ , commuting with a, such that

ae > λe, a(1− e) 6 µ(1− e).

By the above proposition, we have e ∈ aJa ⊂ J . Hence J satisfies the spectral
axiom.
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9.3. We now describe some permanence properties of the spectral axiom.
Let J be a norm-closed Jordan algebra in the C∗-algebra A. Then:

(1) J satisfies the spectral axiom if and only if J̃ does.

(2) If J satisfies the spectral axiom and p ∈ J̃ is a projection, then pJp satisfies
the spectral axiom.

(3) If J satisfies the spectral axiom and K is a real linear subspace of J such

that xJ̃x ⊂ K for all x ∈ K then K is a Jordan algebra in A and satisfies the
spectral axiom.

Indeed, (1) can be proved using Corollary 9.2, and (2), (3) are immediate
consequences of Proposition 9.2.

Now let B be a C∗-algebra and Φ : J 7→ Bh a Jordan homomorphism. By
Proposition 6.6, Φ(J) is a norm-closed Jordan algebra in B. Plainly:

(4) If J satisfies the spectral axiom, then Φ(J) does.

The above statements can be easily formulated for C∗-algebras.

9.4. We now prove some consequences of the spectral axiom. We consider
only the Jordan algebra case, the case of C∗-algebras being a consequence of it.

Let J be a norm-closed Jordan algebra in the C∗-algebra A and denote by
P (J) the partially ordered set of all projections in J . We assume that J satisfies
the spectral axiom.

Proposition 1. If a ∈ J , 0 6 a 6 1, then there exists a sequence {ek}k>1 ⊂
P (J) such that:

0 6 a− 2−1
k∑
j=1

(2/3)jej 6 (2/3)k; k > 0.

In particular,

a = 2−1
∞∑
j=1

(2/3)jej .

Proof. Using the spectral axiom we can construct a sequence {ek}k>1 ⊂ P (J)
such that, for each k > 1,

ek commutes with a− 2−1
k−1∑
j=1

(2/3)jej ,

(
a− 2−1

k−1∑
j=1

(2/3)jej

)
ek > 2−1(2/3)kek,

(
a− 2−1

k−1∑
j=1

(2/3)jej

)
(1− ek) 6 (2/3)k(1− ek).
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Let us assume that the inequalities from the statement hold for k − 1. Using the
equality

a− 2−1
k∑
j=1

(2/3)jej

=
(
a− 2−1

k−1∑
j=1

(2/3)jej

)
ek +

(
a− 2−1

k−1∑
j=1

(2/3)jej

)
(1− ek)− 2−1(2/3)kek

we get

a− 2−1
k∑
j=1

(2/3)jej > 2−1(2/3)kek − 2−1(2/3)kek = 0,

a− 2−1
k−1∑
j=1

(2/3)jej 6 (2/3)k−1ek + (2/3)k(1− ek)− 2−1(2/3)kek = (2/3)k.

Hence the inequalities from the above statement hold also for K. Thus, the state-
ment follows by induction.

In particular, J is the norm-closed real-linear hull of its projections.

Proposition 2. If a ∈ J , a > 0, then there exists a sequence {ek}k>1 ⊂
P (J) of mutually orthogonal projections, commuting with a, such that, for each
k > 1,

aek > 3−kek, a
(

1−
k∑
j=1

ej

)
6 2−k

(
1−

k∑
j=1

ej

)
.

Proof. Using 9.3.(2) we can construct a sequence {ek}k>1 ⊂ P (J) such that,
for every k > 1,

ek 6 1−
k−1∑
j=1

ej , ek commutes with a
(

1−
k−1∑
j=1

ej

)
, a

(
1−

k−1∑
j=1

ej

)
> 3−kek,

a
(

1−
k−1∑
j=1

ej

)(
1−

k−1∑
j=1

ej − ek
)
6 2−k

(
1−

k−1∑
j=1

ej − ek
)
.

It is easy to check that this sequence satisfies the conditions required in the
statement.

Note that if a ∈ J+, a 6= 0, then there exists a projection p ∈ J , p 6= 0,
commuting with a, and λ > 0, such that ap > λp.

Indeed, assuming the contrary, by the above proposition we should have
‖a‖ 6 2−k for all k > 1, that is, a = 0.
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Proposition 3. For {eι}ι∈I ⊂ P (J) and e ∈ P (J), the following statements
are equivalent:

(i) e is a minimal upper bound of {eι}ι∈I in P (J);

(ii) e is the least upper bound of {eι}ι∈I in P (J̃).

Proof. Clearly, (ii)⇒ (i). Conversely, let us assume that (i) holds, but there

is some f ∈ P (J̃), f > eι for all ι ∈ I, such that f 6> e. Then e(1 − f)e ∈ eJe,
e(1 − f)e > 0, e(1 − f)e 6= 0, so that, by 9.3.(2) and by the above remark, there
exists a projection p ∈ J , 0 6= p 6 e, commuting with e(1 − f)e, and λ > 0, such
that

e(1− f)ep > λp.

Then, for each ι ∈ I we have

λeιpeι 6 eιe(1− f)epeι = 0,

hence peι = 0 and eι 6 e− p. Since e is a minimal upper bound of {eι} in P (J),
it follows that p = 0, a contradiction. Thus, (i) ⇒ (ii).

9.5. In this section we prove some particular “lifting” properties for Jordan
algebras and C∗-algebras satisfying the spectral axiom.

Let J be a Jordan algebra in the C∗-algebra A, B a C∗-algebra and Φ : J 7→
Bh a Jordan homomorphism. It is easy to see that Φ can be extended uniquely to

a Jordan homomorphism Φ̃ of J̃ onto Φ̃(J). Clearly Φ̃(1
J̃

) = 1
Φ̃(J)

.

Proposition 1. Let J be a norm-closed Jordan algebra in the C∗-algebra
A, B a C∗-algebra and Φ : J 7→ Bh a Jordan homomorphism. Assume that J

satisfies the spectral axiom. If f ∈ J̃ and p ∈ Φ(J) are projections such that

p 6 Φ̃(f),

then there exists a projection e ∈ J with

e 6 f, Φ(e) = p.

Proof. Let x ∈ J be such that Φ(x) = p. By 9.3.(2) there exists a projection
e ∈ J , e 6 f , commuting with fx2f , such that

fx2fe > 3−1e, fx2f(f − e) 6 2−1(f − e).

Then Φ(e) is a projection, by 6.6.(6) it commutes with Φ(fx2f) = Φ̃(f)p2Φ̃(f) = p
and we have

Φ(fx2fe) > 3−1Φ(e), Φ(fx2f(f − e)) 6 2−1Φ̃(f − e)),

that is,

pΦ(e) > 3−1Φ(e), p(1− Φ(e)) 6 2−1Φ̃(f − e)).
By the first equality, 3−1Φ(e)(1 − p) 6 0, so Φ(e) 6 p, while, by the second
inequality, ‖p − Φ(e)‖ 6 2−1. Since p − Φ(e) is a projection, we conclude that
Φ(e) = p.
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Corollary. Consider the same situation and assumption as in Proposi-

tion 1. If f ∈ J̃ is a projection and {pk}k>1 is a sequence of mutually orthogonal
projections in Φ(J) such that

pk 6 Φ̃(f), k > 1,

then there exists a sequence {ek}k>1 of mutually orthogonal projections in J with

ek 6 f, Φ(ek) = pk; k > 1.

Proof. Using Proposition 1 we construct a sequence {ek}k>1 ⊂ P (J) such
that, for each k > 1,

ek 6 f −
k−1∑
j=1

ej , Φ(ek) = pk.

Proposition 2. Let A,B be C∗-algebras and π : A 7→ B a ∗-homomor-

phism. Assume that A satisfies the spectral axiom. If e, f ∈ Ã are projections and
v ∈ π(A) is a partial isometry such that

v∗v 6 π̃(e), vv∗ 6 π̃(f),

then there exists a partial isometry u ∈ A with

u∗u 6 e, uu∗ 6 f and π(u) = v.

Proof. Let x ∈ A be such that π(x) = v and put y = fxe ∈ A. By 9.3.(2)
there exists a projection p ∈ A, p 6 e, commuting with y∗y, such that

y∗yp > 3−1p, y∗y(e− p) 6 2−1(e− p).
Then y∗yp is invertible in pAp, so there exists a ∈ pAp, a > 0, with y∗ya = ay∗y =
p. Consider

u = ya1/2 = fxea1/2 ∈ A.
Since u∗u = a1/2y∗ya1/2 = y∗ya = p, u is a partial isometry and u∗u 6 e. On the
other hand, since uu∗ = fxeaex∗f , we have also uu∗ = fuu∗ 6 f . Now,

π(y∗y) = π̃(e)π(x)∗π̃(f)π(x)π̃(e) = π̃(e)v∗π̃(f)vπ̃(e)

= π̃(e)v∗vv∗π̃(f)vv∗vπ̃(e) = v∗vv∗vv∗v = v∗v.

Since p commutes with y∗y, and

π(y∗yp) > 3−1π(p), π(y∗y(e− p)) 6 2−1π̃(e− p),
it follows that π(p) commutes with v∗v and

v∗vπ(p) > 3−1π(p), v∗v(1− π(p)) 6 2−1π̃(e− p).
By the first inequality, π(p) 6 v∗v, hence, by the second inequality, the norm of the
projection v∗v − π(p) is majorized by 2−1. Consequently, π(p) = v∗v. Therefore

π(a) = π(ap) = π(a)v∗v = π(ay∗y) = π(p) = v∗v,

and we conclude

π(u) = π̃(f)π(x)π̃(e)π(a)1/2 = π̃(f)vπ̃(e)v∗v = v.

9.6. Concerning the “lifting” of positive elements, a careful examination of
the proof of Proposition 3.15 shows that the following statement holds:
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Let J be a norm-closed Jordan algebra in the C∗-algebra A, B a C∗-algebra

and Φ : J 7→ Bh a Jordan homomorphism. If a0 ∈ J̃ , a0 > 0, and b ∈ Φ(J), b > 0
are such that

b 6 Φ̃(a0),

then there exists a ∈ J , a > 0, with

a 6 a0, Φ(a) = b.

Imitating the proof of Corollary 2/3.15, it follows that

Let J,B,Φ as above. If {bk}k>1 is a norm bounded increasing sequence of
positive elements in Φ(J), then there exists an increasing sequence {ak}k>1 of
positive elements in J such that

sup
k
‖ak‖ = sup

k
‖bk‖ and Φ(ak) = bk, k > 1.

9.7. Finally, we describe the commutative C∗-algebras satisfying the spectral
axiom.

Recall that a locally compact Hausdorff topological space Ω is called totally
disconnected if every connected component of Ω consists of a single point, and is
called 0-dimensional if the family of all simultaneously closed and open subsets of
Ω is a basis for the topology of Ω.

Proposition. Let A be a commutative C∗-algebra and Ω be its Gelfand
spectrum. Then the following statements are equivalent:

(i) A satisfies the spectral axiom;
(ii) A is the norm-closed linear hull of its projections;

(iii) Ω is totally disconnected;
(iv) Ω is 0-dimensional.

Proof. (i) ⇒ (ii) is a consequence of Proposition 1/9.4.
Assume now that (ii) holds, and consider ω1, ω2 ∈ Ω, ω1 6= ω2. By the

Urysohn lemma there exists a ∈ A, a > 0, with ω1(a) = 1 and ω2(a) = 0. By

(ii) there exists b =
n∑
j=1

λjej , with λ1, . . . , λn > 0, and e1, . . . , en ∈ A mutually

orthogonal projections, such that ‖a− b‖ 6 1/3. Then ω1(b) > 2/3, ω2(b) 6 1/3.
Since, for j 6= k and ω ∈ Ω, we have ω(ej)ω(ek) = ω(ejek) = 0, there exist
1 6 j1, j2 6 n such that

ω1(ej1) = 1 and ω1(ej) = 0 for j 6= j1,

ω2(ej2) = 1 and ω2(ej) = 0 for j 6= j2.

Then λj1 = ω1(b) > 2/3, so j2 6= j1. Hence

V =
{
ω ∈ Ω; ω(ej1) = 1

}
=
{
ω ∈ Ω; ω(ej1) 6= 0

}
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is a closed and open neighborhood of ω1 and ω2 6∈ V . Therefore ω1 and ω2 belong
to distinct connected components of Ω. Consequently, Ω is totally disconnected.
Thus, (ii)⇒ (iii).

(iii)⇒ (iv). Every totally disconnected locally compact Hausdorff topological
space is 0-dimensional ([130]; 3.5).

(iv) ⇒ (i). Assume that Ω is 0-dimensional. Let a ∈ A, a > 0, and
λ, µ ∈ (0,+∞), λ < µ. Then K = {ω ∈ Ω; ω(a) > µ} is compact, D = {ω ∈
Ω; ω(a) > λ} is open and K ⊂ D. By an easy compactness argument using
the 0-dimensionality of Ω, we can get a compact and open set U in Ω such that
K ⊂ U ⊂ D. Denote by e ∈ A the element corresponding by the Gelfand repre-
sentation to the characteristic function of U . Then e is a projection and

ae > λe, a(1− e) 6 µ(1− e).

Hence A satisfies the spectral axiom.

9.8. Let A be a C∗-algebra and B a C∗-subalgebra of A. We shall say that
A is a Rickart algebra if A satisfies the spectral axiom and every sequence {ek}k>1

of mutually orthogonal projections in A has a minimal upper bound e in P (A).
By Proposition 3/9.4 if A is a Rickart algebra and {ek}, e are as above, then e is
the least upper bound of {ek} in P (A). In this case we write

e =

∞∑
k=1

ek.

Assume that A is a Rickart algebra. We shall say that B is a Rickart sub-
algebra of A if B satisfies the spectral axiom and for every sequence {ek}k>1 of

mutually orthogonal projections in B we have
∞∑
k=1

ek ∈ B.

On the other hand, we shall say that A is sequentially monotone complete if
every norm-bounded increasing sequence {xk}k>1 in Ah has a least upper bound
x in Ah. In this case we write

x = sup
k
xk or xk ↑ x.

Assume that A is sequentially monotone complete. We shall say that B is se-
quentially monotone closed in A if for every norm-bounded increasing sequence
{xk}k>1 in Bh we have sup

k
xk ∈ B.

Clearly, every Rickart subalgebra of a Rickart algebra is a Rickart algebra,
and every sequentially monotone closed C∗-subalgebra of a sequentially monotone
complete C∗-algebra is sequentially monotone complete.

The notions of Rickart-Jordan algebra, Rickart-Jordan subalgebra, sequen-
tially monotone complete Jordan algebra and sequentially monotone closed Jordan
subalgebra are now self-explanatory.

9.9. We now prove a characterization of Rickart-Jordan algebras and subal-
gebras, hence also of Rickart algebras and subalgebras.
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Lemma. Let J be a norm-closed Jordan algebra in a C∗-algebra A, a ∈ J ,
a > 0, and e ∈ J a projection such that ae = a and

b ∈ J, b > 0, ab = 0⇒ eb = 0.

Then e is the greatest lower bound of {f ∈ P (J̃); af = a}.

Proof. Obviously, e ∈ P = {f ∈ P (J̃); af = a}. Now let f ∈ P . Then
a(1− f) = 0, ae(1− f)e = a(1− e)f = 0. Since e(1− f)e ∈ J and e(1− f)e > 0,
we get ee(1− f)e = 0, so e = ef 6 f . Consequently, e is the greatest lower bound
of P in P (J).

In particular, if J is a norm-closed Jordan algebra in a C∗-algebra A, then
for each a ∈ J , a > 0, there exists at most one projection e ∈ J such that ae = a
and

b ∈ J, b > 0, ab = 0⇒ eb = 0.

If such a projection e does exist, then we shall say that a has a support projection
in J , we call e the support projection of a in J , and we denote e by sJ(a) or simply
s(a).

Proposition 1. Let J be a norm-closed Jordan algebra in the C∗-algebra
A. Then the following statements are equivalent:

(i) J is a Rickart-Jordan algebra;
(ii) every a ∈ J , a > 0, has a support projection in J .

Moreover, if the above statements are true, then:
(a) for every a ∈ J , a > 0, and λ ∈ (0,∞), the projection e = sJ((a −

λsJ(a))+) commutes with a and

ae > λe, a(1− e) 6 λ(1− e);

(b) for every sequence {ek}k>1 of projections in J , the projection sJ

( ∞∑
k=1

2−kek

)
is the least upper bound of {ek}k>1 in P (J).

Proof. (i) ⇒ (ii). Let a ∈ J , a > 0. By Proposition 2/9.4 there exist a
sequence {ek}k>1 of mutually orthogonal projections in J , commuting with a,
such that, for all k,

aek > 3−kek, a
(

1−
k∑
j=1

ej

)
6 2−k

(
1−

k∑
j=1

ej

)
.

Define

e =

∞∑
j=1

ej .

For each k we have

‖a1/2(1− e)a1/2‖ 6
∥∥∥a1/2

(
1−

k∑
j=1

ej

)
a1/2

∥∥∥ =
∥∥∥a(1−

k∑
j=1

ej

)∥∥∥ 6 2−k,
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so a = ae = ea.
Let b ∈ J , b > 0, ab = 0. Again by Proposition 2/9.4, there exists a sequence

{fk}k>1 of mutually orthogonal projections in J , commuting with b, such that,
for all k,

bfk > 3−kfk, b
(

1−
k∑
j=1

fj

)
6 2−k

(
1−

k∑
j=1

fj

)
.

With f =
∞∑
j=1

fj , we get b = bf = fb as above. For each j > 1 we have 0 6

3−jbejb 6 bejab = 0, so ejb = 0. Consequently, for each j, k > 1 we get 0 6
3−kejfkej 6 ejbfkej = 0, so ejfk = 0, i.e. ej 6 1 − fk. Hence e 6 1 − fk, i.e.
fk 6 1− e for all k > 1, so that f 6 1− e, i.e. ef=0. Therefore eb = efb = 0.

(ii) ⇒ (a) & (b) ⇒ (i). Let a ∈ J , a > 0, and λ ∈ (0,∞). Denote e = s((a−
λs(a))+). Since s(a) commutes with a, we have (a − λs(a))+s(a) = (a − λs(a))+

so, by the above lemma, e 6 s(a).
On the other hand, since (a − λs(a))+(a − λs(a))− = 0, we have e(a −

λs(a))− = 0, so e(a − λ) = e(a − λs(a)) = e(a − λs(a))+ = (a − λs(a))+ > 0.
In particular, e commutes with a and ae > λe. Since (1 − e)(a − λs(a))+ = 0,
we have also (1− e)(a− λs(a)) = −(1− e)(a− λs(a))− = −(a− λs(a))− 6 0, so
a(1− e) 6 λs(a)(1− e) 6 λ(1− e).

Thus, the statement (a) is proved.
Now let {ek}k>1 be a sequence of projections in J and put

a =

∞∑
k=1

2−kek ∈ J, a > 0,

e = s(a).

Since 0 6 a 6 1 and ea = a, by 2.6.(8) we get a 6 e. Hence, for all k, we have
2−kek 6 a 6 e, so e is an upper bound of {ek} in P (J). If f is another bound of
{ek} in P (J), then

ae(1− f)e =

∞∑
k=1

2−kek(1− f)e = 0.

Since e(1−f)e ∈ J and e(1−f)e > 0 it follows that ee(1−f)e = 0, so e = ef 6 f .
Consequently, e is the least upper bound of {ek} in P (J).

Thus, also the statement (b) is proved.

Proposition 2. Let K ⊂ J be norm-closed Jordan algebras in the C∗-
algebra A. Assume that J is a Rickart-Jordan algebra. Then the following state-
ments are equivalent:

(i) K is a Rickart-Jordan subalgebra of J ;
(ii) for every a ∈ K, a > 0, we have sJ(a) ∈ K.
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Proof. (i) ⇒ (ii). Let a ∈ K. Since K satisfies the spectral axiom, by
Proposition 2/9.4 we obtain a sequence {ek}k>1 of mutually orthogonal projections
in K, commuting with a, such that for all k we have

aek > 3−kek, a
(

1−
k∑
j=1

ej

)
6 2−k

(
1−

k∑
j=1

ej

)
.

As we have seen in the proof of Proposition 1, sJ(a) =
∞∑
j=1

ej . Since K is a

Rickart-Jordan subalgebra of J and the projections ej belong to K, it follows that
sJ(a) ∈ K.

(ii) ⇒ (i). This is a consequence of the statements (a) and (b) from Propo-
sition 1.

Let K ⊂ J be norm-closed Jordan algebras in the C∗-algebra A. Assume
that J is a Rickart-Jordan algebra and K is a Rickart-Jordan subalgebra of J . By
Proposition 1, P (J) is a sequentially complete lattice: if {ek}k>1 is an arbitrary
sequence in P (J), then

∞∨
k=1

ek = sJ

( ∞∑
k=1

2−kek

)
is the least upper bound of {ek} in P (J) and

∞∧
k=1

ek =
( ∞∨
j=1

ej

)
−
∞∨
k=1

(( ∞∨
j=1

ej

)
− ek

)
is the greatest lower bound of {ek} in P (J). If the projections ek belong to K,

then, by Proposition 2,
∞∨
k=1

ek ∈ K,
∞∧
k=1

ek ∈ K.

9.10. In this section we consider some basic properties of sequentially mono-
tone complete Jordan algebras.

We begin with three general lemmas.

Lemma 1. Let J be a norm-closed Jordan algebra in the C∗-algebra A. If
{xι}ι∈I and {yι}ι∈I are upward directed families in J which have least upper bounds
in J , then also {xι + yι}ι∈I has a least upper bound in J , and

sup
ι∈I

(xι + yι) = sup
ι∈I

xι + sup
ι∈I

yι.

Proof. Let x = sup
ι
xι, y = sup

ι
yι. Clearly, xι + yι 6 x + y for all ι ∈ I.

If z ∈ J is such that xι + yι 6 z for all ι ∈ I, then xκ + yι 6 xκ + yκ 6 z, i.e.
xκ 6 z − yι, for all ι, κ ∈ I with ι 6 κ, hence x 6 z − yι, i.e. yι 6 z − x, for all
ι ∈ I, and consequently y 6 z − x, i.e. x + y 6 z. Thus, x + y is the least upper
bound of {xι + yι} in J .
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Lemma 2. Let J be a norm-closed Jordan algebra in the C∗-algebra A. If
{xι}ι∈I is an upward directed family in J which has a least upper bound in J and
y ∈ J , then also {yxιy}ι∈I has a least upper bound in J and

sup
ι∈I

yxιy = y
(

sup
ι∈I

xι

)
y.

Proof. Without restricting the generality, we may assume that xι > 0 for all
ι ∈ I. Let x = sup

ι∈I
xι. Clearly, yxιy 6 yxy for all ι ∈ I, so it remains to prove

that if yxιy 6 z ∈ J for all ι ∈ I, then yxy 6 z.
We first assume that y > 0. Let ε > 0 be arbitrary. We recall that (ε+y)−1 ∈

J̃ by 6.2.(12). For each ι ∈ I we have

(ε+ y)xι(ε+ y) = ε2xι + ε(xιy + yxι) + yxιy

6 ε2x+ ε(xι + y)2 + z

6 ε2x+ ε‖xι + y‖(xι + y) + z

6 ε2x+ ε‖x+ y‖(x+ y) + z,

so

xι 6 (ε+ y)−1
(
ε2x+ ε‖x+ y‖(x+ y) + z

)
(ε+ y)−1 ∈ J.

Thus

x 6 (ε+ y)−1
(
ε2x+ ε‖x+ y‖(x+ y) + z

)
(ε+ y)−1

and we successively get

(ε+ y)x(ε+ y) 6 ε2x+ ε‖x+ y‖(x+ y) + z,

ε
(
xy + yx− ‖x+ y‖(x+ y)

)
6 z − yxy.

Letting here ε→ 0, we get 0 6 z − yxy, i.e. yxy 6 z.
Now let y ∈ J be arbitrary. By the above part of the proof we have

sup
ι
y+(xι − x)y+ = 0, sup

ι
y−(xι − x)y− = 0

so, by Lemma 1,

sup
ι

(
y+(xι − x)y+ + y−(xι − x)y−

)
= 0.

Since for all ι ∈ I we have

2
(
y+(xι − x)y+ + y−(xι − x)y−

)
6 (y+ − y−)(xι − x)(y+ − y−)

= yxιy − yxy 6 z − yxy,

it follows that 0 6 z − yxy, that is yxy 6 z.
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Lemma 3. Let J be a norm-closed Jordan algebra in the C∗-algebra A. If
{xι}ι∈I is an upward directed family in J which has a least upper bound in J and
which is norm-convergent, then

sup
ι∈I

xι = norm-lim
ι∈I

xι.

Proof. Let x = sup
ι∈I

xι and y = norm-lim
ι∈I

xι. Then the family {x − xι} is

downward directed, consists of positive elements and it is norm-convergent to
x− y. Hence x− y > 0, i.e. x > y, and x− y 6 x− xι, i.e. xι 6 y for all ι ∈ I, so
x 6 y.

The main result of this section is the following

Proposition. Let K ⊂ J be norm-closed Jordan algebras in the C∗-algebra
A. Assume that J is sequentially monotone complete and K is sequentially mono-
tone closed in J . Then J is a Rickart-Jordan algebra and K is a Rickart-Jordan
subalgebra of J .

Moreover, for any a ∈ J , a > 0, and any increasing sequence {fk}k>1 of
positive functions from C(σ(a)) which is pointwise convergent to the characteristic
function χσ(a)\{0}, we have

sup
k
fk(a) = sJ(a).

Proof. Let a ∈ J , a > 0, and {fk} as in the statement. Denote

ak = fk(a) for all k > 1,

e = sup
k
ak,

and consider also the function g ∈ C(σ(a)) defined by g(λ) = λ.
Since 0 6 ak 6 1, we have 0 6 a2

k 6 ak 6 e, so by Proposition 2.7, 0 6 ak 6
e1/2 for all k > 1. Thus 0 6 e 6 e1/2, that is 0 6 e 6 1.

By Lemma 2, aea = sup
k
aaka = sup

k
(gfkg)(a). By the Dini theorem, the

sequence {gfkg} converges uniformly to g2, so a2 = g2(a) = norm-lim(gfkg) =
sup
k

(gfkg)(a) = aea, by Lemma 3. It follows that a(1−e)a = 0 and, since 1−e > 0,

we infer that (1 − e)a = 0, hence a = ea = ae. Consequently, by 1.18.(3),
ak = eak = ake for all k > 1 and using again Lemma 2 we get

e3 = e
(

sup
k
ak

)
e = sup

k
eake = sup

k
ak = e.

Hence e is a projection and ae = a.
Let b ∈ J , b > 0, ab = 0. Then, by 1.18.(3), akb = 0 for all k, so that, by

Lemma 2, beb = b
(

sup
k
ak
)
b = sup

k
bakb = 0, that is eb = 0.

We conclude that a has a support in J and sJ(a) = e.
Note that the sequences {fk} as in the statement do exist, for instance,

fk(λ) = (k−1 + λ)−1λ. Therefore, by the above part of the proof, by Proposition
1/9.9 and Proposition 2/9.9, J is a Rickart-Jordan algebra and K is a Rickart-
Jordan subalgebra of J .
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Thus, in sequentially monotone complete norm-closed Jordan algebras the

spectral axiom holds and every positive element has a support. Moreover, if J is

such an algebra, then

(k−1 + a)−1a ↑ sJ(a); a ∈ J, a > 0;

a1/k ↑ sJ(a); a ∈ J, 0 6 a 6 1.

Also, if {ak}k>1 is a norm-bounded increasing sequence of positive elements in J ,

then

sup
k

sJ(ak) = sJ

(
sup
k
ak

)
.

Indeed, let e = sup
k

s(ak), a = sup
k
ak. Using Proposition 2.7 we get 0 6 s(ak) =

s(ak)1/2 6 e1/2 for all k > 1, so 0 6 e 6 e1/2, i.e. 0 6 e 6 1, and using 2.6.(8) we

further obtain s(ak) = es(ak) = s(ak)e for all k > 1. Now, by Lemma 2 we have

e3 = e
(

sup
k

s(ak)
)
e = sup

k
es(ak)e = sup

k
s(ak) = e

so e is a projection. Since ak = aks(ak) = aks(ak)e = ake = eak for all k > 1,

using again Lemma 2 we obtain eae = a. Hence ae = a, so that s(a) 6 e by

Lemma 9.9. Conversely, it is clear that e 6 s(a), since s(ak) 6 s(a) for all k > 1.

9.11. In this section we prove some permanence properties. Let J be a norm-

closed Jordan algebra in the C∗-algebra A and assume that J is a Rickart-Jordan

algebra. Then:

(1) J̃ is a Rickart-Jordan algebra and J is a Rickart-Jordan subalgebra of J̃ ;

(2) for any projection p ∈ J̃ , pJp is a Rickart-Jordan subalgebra of J̃ ;

(3) if {Kι}ι∈I is any family of norm-closed Rickart-Jordan subalgebras of J ,

then
⋂
ι∈I

Kι is a Rickart-Jordan subalgebra of J .

To prove (1), first note that, by 9.3.(1), J̃ satisfies the spectral axiom. Then

let {ẽk}k>1 be a sequence of mutually orthogonal projections in J̃ . We have either

ẽk ∈ J or 1− ẽk ∈ J for al k > 1. If all ẽk belong to J , then, by Proposition 3/9.4,

the least upper bound of {ẽk} in P (J) is also the least upper bound in P (J̃). On

the other hand, if some 1 − ẽj ∈ J , then ẽk = ẽk(1 − ẽj)ẽk ∈ J for all k 6= j.

With e = the least upper bound of {ẽk}k 6=j in P (J), we have e 6 1 − ẽj and it

is easy to see that e + ẽj is the least upper bound of {ẽk}k 6=1 in P (J̃). Thus,

J̃ is a Rickart-Jordan algebra and, by Proposition 3/9.4, J is a Rickart-Jordan

subalgebra of J̃ .

Now (2) is a consequence of 9.3.(2) and Proposition 3/9.4, while (3) follows

easily using Proposition 2/9.9.
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Let K be another norm-closed Jordan algebra in the C∗-algebra B, and
assume that K is a Rickart-Jordan algebra.

We shall say that a Jordan homomorphism Φ : J → K is countably additive
if for every sequence {ek}k>1 of mutually orthogonal projections in J we have

∞∑
k=1

Φ(ek) = Φ
( ∞∑
k=1

ek

)
.

Then:

(4) if ϕ : J → K is a countably additive Jordan homomorphism then Ker Φ is
a Rickart-Jordan subalgebra of J and ϕ(J) is a Rickart-Jordan subalgebra of K.

Indeed, the assertion concerning Ker Φ follows easily using 9.3.(3) and the count-
able additivity of Φ. Now, by 9.3.(4), Φ(J) satisfies the spectral axiom. Let
{fk}k>1 be a sequence of mutually orthogonal projections in Φ(J). By Corollary
of Proposition 1/9.5 there exists a sequence {ek}k>1 of mutually orthogonal pro-
jections in J such that Φ(ek) = fk for all k. Then, by the countable additivity
of Φ,

∞∑
k=1

fk =

∞∑
k=1

Φ(ek) = Φ
( ∞∑
k=1

ek

)
∈ Φ(J).

Thus, Φ(J) is a Rickart-Jordan subalgebra of K.
We now assume that J is sequentially monotone complete. Then:

(1′) J̃ is sequentially monotone complete and J is sequentially monotone closed

in J̃ ;

(2′) for any projection p ∈ J̃ , pJp is sequentially monotone closed in J̃ ;
(3′) if {Ki}i∈I is any family of sequentially monotone closed Jordan subalgebras

of J , then
⋂
i∈I

Ki is a sequentially monotone closed Jordan subalgebra of J.

It is enough to prove (1′) only in the case J 6= J̃ . Let {x̃k}k>1 be a norm-

bounded increasing sequence in J̃ . Then for all k,

x̃k = λk + xk with λk ∈ R, xk ∈ J .

The sequence {λk} is bounded and increasing, so λk ↑ λ ∈ R. Let e =
∞∨
k=1

sJ(x2
k) ∈

J . Then, for each k > 1, xk = xke = exk, so xk commutes with e. Hence {x̃ke} is a
norm bounded increasing sequence in J . Consider x = sup

k
x̃ke = sup

k
(λke+ xk) ∈

J . If ỹ ∈ J̃ is such that λke + xk 6 ỹ for all k and ỹ = µ + y with µ ∈ R and
y ∈ J , then µ > 0. Also, putting f = e∨ sJ(y2) we have λke+ xk 6 µf + y for all
k > 1, so x 6 µf + y 6 µ+ y = ỹ. Hence x is the least upper bound of {λke+xk}
also in J̃ . By Lemma 1/9.10 we conclude that x̃ = λ(1− e) + x is the least upper

bound of {λk(1 − e) + λke + xk} = {x̃k} in J̃ . Note that if all x̃k belong to J ,
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then λ = 0, so x̃ = x ∈ J . Hence J̃ is sequentially monotone complete and J is

sequentially monotone closed in J̃ .
Now, (2′) is a consequence of (1′) and (3′) is obvious.

Let K be another sequentially monotone complete Jordan algebra in the
C∗-algebra B.

We shall say that Jordan homomorphism Φ : J → K is sequentially normal
if for every norm-bounded increasing sequence {xk}k>1 in J we have

sup
k

Φ(xk) = Φ
(

sup
k
xk

)
.

Then:

(4′) if Φ : J → K is a sequentially normal Jordan homomorphism, then Ker Φ is
sequentially monotone closed in J and Φ(J) is sequentially monotone closed in K.

Indeed, the statement concerning Ker Φ is immediate and the statement con-
cerning Φ(J) follows easily using 9.6.

Finally, we prove a “mixture” of (4) and (4′):

(4′′) if J ⊂ A is a sequentially monotone complete norm-closed Jordan algebra,
K ⊂ B is a norm-closed Rickart-Jordan algebra and Φ : J → K is a countably
additive Jordan homomorphism, then Φ(J) is a sequentially monotone complete
Jordan algebra and Φ : J → Φ(J) is a sequentially normal.

Taking into account 9.6, it is enough to prove that if {xk}k>1 is norm-
bounded increasing sequence in J , x = sup

k
xk and if y ∈ Φ(J), y > Φ(xk) for

all k, then y > Φ(x). Clearly, for each k > 1 there exists zk ∈ J , zk > xk,
such that Φ(zk) = y. By (4), Ker Φ is a Rickart-Jordan subalgebra of J so, since

zk − z1 ∈ Ker Φ for all k > 1, we have e =
∞∨
k=1

sJ((zk − z1)2) ∈ Ker Φ. Now,

(zk − z1)(1− e) = 0 for all k > 1, so

(1− e)z1(1− e) = (1− e)zk(1− e) > (1− e)xk(1− e).

Using (1′) and Lemma 2/9.10, we infer that (1− e)z1(1− e) > (1− e)x(1− e), and
since e ∈ Ker Φ, we conclude

y = Φ(z1) = Φ((1− e)z1(1− e)) > Φ((1− e)x(1− e)) = Φ(x).

9.12. Let A be a Rickart algebra. For each a ∈ A, a > 0, we denote by sA(a),
or simply by s(a), the support projection of a in the Rickart-Jordan algebra Ah.
If x ∈ A is arbitrary, then we define its left support l(x) = lA(x) in A by

lA(x) = sA(xx∗)
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and its right support r(x) = rA(x) in A by

rA(x) = sA(x∗x) = lA(x∗).

If x is normal, then we call lA(x) = rA(x) simply the support of x in A and we
denote it by sA(x) or s(x).

Clearly, if B is a Rickart subalgebra of A, then

x ∈ B ⇒ lA(x), rA(x) ∈ B.

For S ⊂ Ã we define

S′ ∩A = {x ∈ A; xy = yx for all y ∈ S}.

If S = S∗ = {y∗; y ∈ S}, then S′ ∩ A is a C∗-subalgebra of A. Since S′ ∩ A =
C∗(S ∪ {1

Ã
})′ ∩A and C∗(S ∪ {1

Ã
}) is the linear span of its unitaries, for x ∈ A

we have

x ∈ S′ ∩A⇔ u∗xu = x for all unitaries u ∈ C∗(S ∪ {1
Ã
}).

Using this remark, it follows that

a ∈ S′ ∩A, a > 0⇒ sA(a) ∈ S′ ∩A.

From Proposition 2/9.9 we infer that

(1) if S ⊂ A, S = S∗, then S′ ∩A is a Rickart subalgebra of A.

Since the center of A is A′ ∩A, it follows that

(2) the center of A is a Rickart subalgebra of A

If B is a maximal commutative ∗-subalgebra of A, then B = B′ ∩A hence

(3) every maximal commutative ∗-subalgebra of A is a Rickart subalgebra of A.

If x ∈ A is normal, then, by the Fuglede-Putnam theorem (Theorem 1.1) we
have {x}′ ∩A = {x, x∗}′ ∩A, hence

(4) if x ∈ A is normal, then {x}′ ∩A is a Rickart subalgebra of A.

Now let A be a sequentially monotone complete C∗-algebra. With similar
arguments we obtain the following conclusions:

(1′) if S ⊂ A, S = S∗, then S′ ∩ A is a sequentially monotone closed C∗-
subalgebra of A;

(2′) the center of A is sequentially monotone closed C∗-subalgebra;
(3′) every maximal commutative ∗-subalgebra of A is a sequentially monotone

closed C∗-subalgebra of A;
(4′) if x ∈ A is normal, then {x}′ ∩ A is a sequentially monotone closed C∗-

subalgebra of A.

9.13. Rickart algebras can be characterised in terms of their maximal com-
mutative ∗-subalgebras:
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Proposition 1. Let A be a C∗-algebra. The following statements are equiv-
alent:

(i) A is a Rickart algebra;
(ii) every maximal commutative ∗-subalgebra of A is a Rickart algebra.

Proof. (i)⇒ (ii) is a consequence of 9.12.(3).
Conversely, assume that (ii) holds. Then A satisfies the spectral axiom.

Let {ek}k>1 be a sequence of mutually orthogonal projections in A. By the Zorn
lemma, there exists a maximal totally ordered family F of upper bounds of {ek} in
P (A). Again by the Zorn lemma there exists a maximal commutative ∗-subalgebra
B of A containing {ek} and F . By (ii), B is a Rickart algebra, so there exists a
least upper bound e of {ek} in P (B). Then e 6 f for all f ∈ F . If e′ 6 e, e′ 6= e,
would be an upper bound of {ek} in P (A), then F ∪{e′} would be a totally ordered
family of upper bounds of {ek} in P (A), in contradiction with the maximality of
F . Hence e is a minimal upper bound of {ek} in P (A).

Also Rickart subalgebras can be characterised in terms of their maximal
commutative ∗-subalgebras:

Proposition 2. Let A be a Rickart algebra and B a C∗-subalgebra of A.
The following statements are equivalent:

(i) B is a Rickart subalgebra of A;
(ii) every maximal commutative ∗-subalgebra of B is a Rickart subalgebra of A.

Proof. (i) ⇒ (ii) is again a consequence of 9.12.(3) and (ii) ⇒ (i) follows by
a routine verification.

9.14. In this section we study some connections between the order relation
and multiplication in sequentially monotone complete C∗-algebras.

Lemma. Let A be a sequentially monotone complete C∗-algebra, a ∈ A,
a > 0, and x ∈ A such that sA(a) > lA(x). Then:

x∗ax 6 x∗x⇔ a 6 lA(x)

x∗ax = x∗x⇔ a = lA(x).

Proof. We assume that x∗ax 6 x∗x. By Proposition 2/9.4 there exists an
increasing sequence {ek}k>1 of projections in A, commuting with xx∗, such that,
for all k > 1,

xx∗ek > 3−kek, ‖xx∗(1− ek)‖ 6 2−k.

Then

ek ↑ s(xx∗) = l(x).

Indeed, by 9.10, e = sup
k
ek is a projection. Since, for all k > 1,

‖(xx∗)1/2(1− e)(xx∗)1/2‖ 6 ‖xx∗(1− ek)‖ 6 2−k,
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we have xx∗ = exx∗ = xx∗e. If b ∈ A, b > 0, xx∗b = 0, then, for all k > 1,
0 6 3−1bekb 6 bekxx

∗b = 0, so bekb = 0 and hence, by Lemma 2/9, beb = 0,
eb = 0.

For each k > 1, xx∗ek is invertible in ekAek so there exists ak ∈ A, ak =
ekakek > 0, such that xx∗ak = akxx

∗ = ek and we successively obtain:

0 6 ekaek = akx(x∗ax)x∗ak 6 akx(x∗x)x∗ak = ek,

‖a1/2eka
1/2 ‖= ‖(eka1/2)∗(eka

1/2)‖ = ‖(eka1/2)(eka
1/2)∗‖ = ‖ekaek‖ 6 1

a1/2eka
1/2 6 1,

a1/2eka
1/2 = s(a)(a1/2eka

1/2)s(a) 6 s(a).

Using Lemma 2/9.10 we infer that a1/2l(x)a1/2 6 s(a), and since s(a) 6 l(x) we
conclude that a 6 l(x).

Now we assume that x∗ax = x∗x. By the above part of the proof l(x)−a > 0,
so we have succesively: x∗(l(x) − a)x = 0, (l(x) − a)xx∗ = 0, (l(x) − a)l(x) = 0
and l(x) = al(x) = a.

Proposition 1. Let A be a sequentially monotone complete C∗-algebra and
x, y ∈ A such that lA(y) 6 lA(x), rA(y) 6 lA(x). Then:

x∗yx > 0⇔ y > 0,

x∗yx = 0⇔ y = 0.

Proof. We assume that x∗yx > 0. If a, b ∈ Ah are defined by y = a + ib,
then s(a) 6 l(x), x∗ax > 0 and s(b) 6 l(x), x∗bx = 0, since l(x) − ‖a‖−1a > 0,
s(l(x) − ‖a‖−1a) 6 l(x), x∗(l(x) − ‖a‖−1a)xx∗x, by the above lemma we have
l(x)− ‖a‖−1a 6 l(x), so a > 0. Similarly we obtain b = 0, hence y > 0.

If x∗yx = 0, then by the above part of the proof we have y > 0 and −y > 0,
so y = 0.

Proposition 2. Let A be a sequentially monotone complete C∗-algebra and
x, y ∈ A. If y∗y > x∗x, then there exists a unique v ∈ A such that

y = vx, v∗v > lA(x)

and we have vv∗ > lA(y).
If y∗y = x∗x, then the above defined v satisfies the equalities v∗v = lA(x),

vv∗ = lA(y).

Proof. Assume that y∗y > x∗x and denote uk = y(k−1 + x∗x)−1x for each
k > 1. By the polarization formula 2.8.(2) we have

uk = 4−1
3∑

n=0

inun,k; un,k = (x∗ + iny∗)∗(k−1 + x∗x)−1(x∗ + iny∗).
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Since

‖un,k‖ = ‖(k−1 + x∗x)−1/2(x∗ + iny∗)(x∗ + iny∗)∗(k−1 + x∗x)−1/2‖
6 ‖(k−1 + x∗x)−1/2[2(x∗x+ y∗y)](k−1 + x∗x)−1/2‖
6 ‖(k−1 + x∗x)−1/2[4x∗x](k−1 + x∗x)−1/2‖ 6 4,

the least upper bounds un,∞ = sup
k
un,k do exists and 0 6 un,∞ 6 4. Consider

u∞ = 4−1
3∑

n=0

inun,∞.

By Proposition 3.4, y belongs to the smallest closed left ideal of A containing x∗x
s, by Proposition 3.3, lim

k→∞
‖y − ukx‖ = 0. Therefore for any ε > 0 there exists

kε > 1, an integer, such that, for k > kε,

(y − u∞x)∗(y − u∞x) 6 ε+ (ukx− u∞x)∗(ukx− u∞x)

= ε+x∗
[
4−1

3∑
n=0

in(un,k−un,∞)
]∗[

4−1
3∑

n=0

in(un,k−un,∞)
]
x

6 ε+ x∗
[
4−1

3∑
n=0

(un,k − un,∞)2
]
x

6 ε+

3∑
n=0

x∗(un,∞ − un,k)x.

By Lemma 2/9.10 and Lemma 1/9.10, 0 is the greatest lower bound decreasing

sequence
{ 3∑
n=0

x∗(un,∞ − un.k)x
}
k>1

, so

0 6 (y − u∞x)∗(y − u∞x) 6 ε.

Since ε > 0 was arbitrary, it follows that y = u∞x. Now, with

v = u∞l(x),

we have y = vx and s(v∗v) 6 l(x). Since x∗v∗vx = y∗y 6 x∗x, by the above
Lemma we get v∗v 6 l(x).

We have thus proved the existence of the required element v. The uniqueness
of v is a consequence of Proposition 1. Since y = vx, we have (1 − l(y))vx = 0,
x∗v∗(1− l(y))vx = 0 so, by Proposition 1, v∗(1− l(y))v = 0, (1− l(y))v = 0 and
finally vv∗ = l(y)vv∗ = l(y)vv∗l(y) 6 l(y).

Now assume that y∗y = x∗x and let v be the above defined element. By the
Lemma, v∗v = l(x). In particular, v is a partial isometry, so vv∗ is a projection
and vv∗y = vv∗vx = vx = y. Using Lemma 9.9 it follows that l(y) 6 vv∗, hence
vv∗ = l(y).
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In particular, in sequentially monotone complete C∗-algebras the polar de-
composition theorem holds:

Corollary. Let A be a sequentially monotone complete C∗-algebra. For
every x ∈ A there exists a unique v ∈ A such that

x = v|x|, v∗v 6 sA(|x|).

Moreover
v∗v = sA(|x|) = rA(x), vv∗ = lA(x).

The above propositions allow us to prove the following completion of Lem-
ma 2/9.10:

Proposition 3. Let A be a sequentially monotone complete C∗-algebra,
{aι}ι∈I a norm bounded upward directed family in Ah and x ∈ A such that

sA(aι) 6 lA(x), ι ∈ I.

Then {aι}ι∈I has a least upper bound in Ah if and only if {x∗aιx}ι∈I has a least
upper bound in Ah and in this case

sup
ι
x∗aιx = x∗

(
sup
ι
aι

)
x.

Proof. Without loss of generality, we may assume that

0 6 aι 6 l(x); ι ∈ I.

Suppose that a = sup
ι
aι does exist in Ah. Clearly x∗aιx 6 x∗ax for all

ι ∈ I. Let z ∈ Ah be such that x∗aιx 6 z for all ι ∈ I. Defining x1, x2 ∈ Ah by
x = x1 + ix2 and using Lemma 2/9.10 and Lemma 1/9.10, we infer that 0 is the
least upper bound of {x1(aι − a)x1 + x2(aι − a)x2}ι∈I in Ah. Since for all ι ∈ I,

2[x1(aι − a)x1 + x2(aι − a)x2] 6 (x1 − ix2)(aι − a)(x1 + ix2)

= x∗aιx− x∗ax 6 z − x∗ax,

we get 0 6 z − x∗ax, that is x∗ax 6 z. Hence x∗ax = sup
ι
x∗aιx.

Conversely, assume that b = sup
ι
x∗aιx does exists in Ah. Since 0 6 x∗aιx 6

x∗x for all ι ∈ I, we have 0 6 b 6 x∗x. By Proposition 2 there exists v ∈ A such
that b1/2 = vx and v∗v 6 l(x). We shall show that a = v∗v is the least upper
bound of {aι} in Ah. Since x∗aιx 6 b = x∗ax for all ι ∈ I, by Proposition 1 it
follows that aι 6 a for all ι ∈ I. Let y ∈ Ah be such that aι 6 y for all ι ∈ I.
Denote

e = l(x) ∨ s(y) and x0 = xx∗ + e− l(x) > 0.

Since x∗ax = b is the least upper bound of {x∗aιx} in Ah, by the first
part of the proof it follows that x0ax0 = x(x∗ax)x∗ is the least upper bound of
{x(x∗aιx)x∗} = {x0aιx0} in Ah. But x0aιx0 6 x0yx0 for all ι ∈ I, so x0ax0 6
x0yx0. Since s(x0) = e, using Proposition 1 we get a 6 y.
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Note that if {aι}ι∈I is an upward directed family of selfadjoint elements in
an arbitrary C∗-algebra A, wich has a least upper bound a in Ah, then x∗ax is the
least upper bound of {x∗aιx}ι∈I in Ah, for every x ∈ A.

Indeed, in the first part of the proof of Proposition 3 we used only Lem-
ma 2/9.10 and Lemma 1/9.10, which are valid in arbitrary C∗-algebras.

9.15. Let A be a C∗-algebra and {aι}ι∈I ⊂ A, aι > 1 for all ι ∈ I, and a ∈ A,

a > 0. By
∑
ι∈I

aι we shall denote the least upper bound of
{ ∑
ι∈F

aι

}
F⊂I, finite

in

Ah, if it does exist. Even if
∑
ι∈F

aι doesn’t exist, we shall write

∑
ι∈I

aι 6 a

in order to shorten the statement “
∑
ι∈F

aι 6 a for all finite subsets F of I”.

The following result extends Proposition 7.13:

Proposition. Let A be a sequentially monotone complete C∗-algebra, x ∈ A
and {yι}ι∈I ⊂ A. If

∑
ι∈I

y∗ι yι 6 x∗x, then there exist vι ∈ A for all ι ∈ I, uniquely

determined such that

yι = vιx and v∗ι vι 6 lA(x) for all ι ∈ I,

and we have
∑
ι∈I

v∗ι vι 6 lA(x) and vιv
∗
ι 6 lA(yι) for all ι ∈ I.

If
∑
ι∈I

y∗ι yι = x∗x, then the above defined elements vι, ι ∈ I, satisfy also the

equality
∑
ι∈I

v∗ι vι = lA(x).

Proof. The existence and the uniqueness of {vι}ι∈I is a consequence of Propo-
sition 2/9.14. Again by Proposition 2/9.14 we have vιv

∗
ι 6 l(yι), ι ∈ I. For every

finite F ⊂ I we have

s
(∑
ι∈F

v∗ι vι

)
6 l(x), x∗

(∑
ι∈F

v∗ι vι

)
x =

∑
ι∈F

y∗ι yι 6 x∗x,

so, by Lemma 9.14,
∑
ι∈F

v∗ι vι 6 l(x). Hence
∑
ι∈I

v∗ι vι 6 l(x).

If
∑
ι∈I

x∗v∗ι vιx =
∑
ι∈I

y∗ι yι = x∗x, then by Proposition 3/9.14, a =
∑
ι∈I

v∗ι vι

does exist and x∗ax = x∗x. Since 0 6 a 6 l(x), using Lemma 9.14 we infer that
a = l(x).

As an application, we prove an extension of Proposition 3.13 for sequentially
monotone complete C∗-algebras:
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Corollary. Let A be a sequentially monotone complete C∗-algebra

{xι}ι∈I ⊂ A and {yκ}κ∈K ⊂ A. if
∑
κ∈K

y∗κyκ does exist and∑
ι∈I

x∗ιxι >
∑
κ∈K

y∗κyκ

then there exist zικ ∈ lA(xι)AlA(yκ), (ι ∈ I, κ ∈ K), such that

xιx
∗
ι =

∑
κ∈K

zικz
∗
ικ, (ι ∈ I); yκy

∗
κ >

∑
ι∈I

z∗ικzικ, (κ ∈ K).

If both
∑
κ∈K

y∗κyκ and
∑
ι∈I

x∗ιxι do exist and are equal, then the above elements

zικ, (ι ∈ I, κ ∈ K), can be choosed such that they satisfy also the equalities

yκy
∗
κ =

∑
ι∈I

z∗ικzικ, κ ∈ K.

Proof. Assume that a =
∑
κ∈K

y∗κyκ does exist and
∑
ι∈I

x∗ιxι 6 a. Then by the

above proposition, there exist uι ∈ l(xι)A, (ι ∈ I), such that xι = uιa
1/2, (ι ∈ I),

and there exists vκ ∈ l(yκ)A, (κ ∈ K), such that yκ = vκa
1/2, (κ ∈ K). We define

zικ = uιa
1/2v∗κ = xιv

∗
κ = uιy

∗
κ ∈ l(xι)A l(yκ), ι ∈ I, κ ∈ K.

By the last remark in 9.14, for every ι ∈ I we have

x∗ιxι = uιau
∗
ι =

∑
κ∈K

uιy
∗
κyκu

∗
ι =

∑
κ∈K

zικz
∗
ικ.

On the other hand for every κ ∈ K we have

yκy
∗
κ = vκav

∗
κ >

∑
ι∈I

vκx
∗
ιxιv

∗
κ

so yκy
∗
κ >

∑
ι∈I

z∗ικzικ.

If we assume additionally that also
∑
ι∈I

x∗ιxι does exist and is equal to a, then

using again the last remark in 9.14, we obtain, for every κ ∈ K,

yκy
∗
κ = vκav

∗
κ =

∑
ι∈I

vκx
∗
ιxιv

∗
κ =

∑
ι∈I

z∗ικzικ.

9.16. We now describe the commutative Rickart algebras and the commuta-

tive sequentially monotone complete C∗-algebras.
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Proposition 1. Let A be a commutative C∗-algebra and Ω its Gelfand spec-
trum. Then the following statements are equivalent:

(i) A is a Rickart algebra;

(ii) A is sequentially monotone complete;

(iii) Ω is 0-dimensional and, for any sequence {Uk}k>1of simultaneously compact
and open subsets of Ω, the closure of

⋃
k>1

Uk is compact and open.

Proof. (i) ⇒ (iii). Since A satisfies the spectral axiom, Ω is 0-dimensional
by Proposition 9.7. Let {Uk}k>1 be a sequence of compact and open subsets of Ω,
and denote by ek the projection in A whose Gelfand transform is the characteristic

function of Uk, k > 1. Then the Gelfand transform of e =
∞∑
k=1

ek is the characteris-

tic function of some compact and open set U containing
∞⋃
k=1

Uk. If U\
∞⋃
k=1

Uk would

be nonempty, then, by the 0-dimensionality of Ω, we could find a nonempty com-

pact and open set V ⊂ U\
∞⋃
k=1

Uk and, with f ∈ A the projection whose Gelfand

transform is the characteristic function of V , we should have ek 6 e − f for all

k > 1, hence e 6 e− f in contradiction with f 6= 0. Consequently, U =
∞⋃
k=1

Uk.

(iii) ⇒ (ii). Let {ek}k>1 be a norm-bounded sequence of positive elements
in A. We define

Uλ =

∞⋃
k=1

{ω ∈ Ω; ω(ak) > λ}; λ > 0.

Each Uλ is the union of a sequence of compact and open sets. Indeed, by the
0-dimensionality of Ω and by a standard compactness argument, for every integers
k > 1 and n > 1 there exists a compact open set Vλ,k,n such that

{ω ∈ Ω; ω(ak) > λ+ n−1} ⊂ Vλ,k,n ⊂ Uλ

and we have Uλ =
⋃
k,n

Vλ,k,n. Hence Uλ is compact and open, so its characteristic

function is the Gelfand transform of some projection eλ ∈ A. Clearly,

λ > µ⇒ eλ 6 eµ; λ > α = sup
k
‖ak‖ ⇒ eλ = 0.

Hence the net
n∑
j=1

tj(eλj −eλj−1
)0=λ06t16λ16···6λn>α converges in the norm topol-

ogy of A when max
16j6n

‖λj − λj−1‖ → 0 that is, the Riemann-Stieltjes integral

∫ ∞
0

λ deλ ∈ A
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does exist. Then

a = −
∫ ∞

0

λ deλ > 0.

For each ω ∈ Ω we have

ω(a) = −
∫ ∞

0

λ dω(eλ)

so, for λ ∈ (0,∞),

(1) {ω ∈ Ω; ω(a) > λ} = {ω ∈ Ω; ω(eµ) = 1 for µ < λ} =
⋂
µ<λ

Uµ.

It follows that ω(ak) 6 ω(a) for all k > 1, ω ∈ Ω, hence

ak 6 a for all k > 1.

Now let b ∈ Ah be such that ak 6 b for all k > 1 and assume that a 66 b. Then
there exist ω0 ∈ Ω and ε0 > 0 such that ω0(a) > ω0(b) + 2ε0. By the continuity
of the functions ω 7→ ω(a) and ω 7→ ω(b), there exists an open neighborhood V of
ω0 with

ω(a) > ω0(b) + 2ε0, ωb 6 ω0(b) + ε0; ω ∈ V.

Using (1) we infer that

V ⊂
⋂

µ<ω0(b)+2ε0

Uµ ⊂ Uω0(b)+ε0 .

Since V is open, there exists ω1 ∈ V ∩ Uω0(b)+ε0 ⊂ Uω1(b). So, for some k > 1, we
have ω1(ak) > ω1(b), in contradiction with ak 6 b. Consequently, a > b.

(ii)⇒ (i). This is a consequence of Proposition 9.10.

Concerning commutative Rickart subalgebras, we have:

Proposition 2. Let A be a sequentially monotone closed C∗-algebra. Then
every commutative Rickart subalgebra of A is sequentially monotone closed in A.

Proof. Let B be a commutative Rickart subalgebra of A. If B0 is a maximal
commutative ∗-subalgebra of A containing B, then, by 9.12.(3′), B0 is sequentially
monotone closed in A and B is Rickart subalgebra of B0. Hence we may assume,
without loos of generality, that A is commutative.

Let {ak}k>1 be a norm-bounded increasing sequence of positive elements in
B and a its least upper bound in A. By the last remark in 9.10, the least upper
bound of {sA(ak)} ⊂ P (B) in P (A) is sA(a), so sA(a) ∈ B.

Using the Gelfand representation of A it is easy to see that for every λ ∈
(0,+∞) the sequence {(ak − λsA(a))}+ ⊂ B+ is increasing and its least upper
bound in Ah is (a− λsA(a))+. Again by 9.10, the least upper bound of {sA(ak −
λsA(a))+} ⊂ P (B) in P (A) is sA((a− λsA(a))+), so

eλ = sA((a− λsA(a))+) ∈ B; λ ∈ (0,+∞).



288 Algebraic Features of W∗-Algebras

Now, by Proposition 1/9.9, we have aeλ > λeλ and a(1 − eλ) 6 1 − eλ for all
λ ∈ (0,+∞). Consequently, for every integer n > 1 we have

0 6 a− ‖a‖n−1
n−1∑
j=1

ej‖a‖/n 6 ‖a‖n−1.

Hence a belongs to the norm-closed linear span of {eλ}λ>0, and we conclude that
a ∈ B.

9.17. By the Vigier theorem (8.5), every w-closed Jordan algebra J in the
W ∗-algebra M is sequentially monotone complete and the least upper bound of
any norm-bounded increasing sequence {xκ} ⊂ J in J coincides with the limit
of {xκ} in the s-topology of M . In this section we examine the Rickart-Jordan
subalgebras of w-closed Jordan algebras, in particular the Rickart subalgebras of
W ∗-algebras.

If J is a Jordan algebra in the W ∗-algebra M , then its w-closure J
w ⊂ M

is again a Jordan algebra. Indeed, if {xι} ⊂ J , xι
w−→ x and {yκ} ⊂ J , yκ

w−→ y,
then for each,

J 3 2−1(xιyκ + yκxι)
w−→ 2−1(xιy + yxι),

so
J
w 3 2−1(xιy + yxι)

w−→ 2−1(xy + yx).

Now, let a J be w-closed Jordan algebra in the W ∗-algebra M . Then J1 = {x ∈
J ; ‖x‖ 6 1} is a w-compact convex set so, by the Krein-Milman theorem, it has
extreme points. Using Theorem 6.2, it follows that J is unital. Also, note that if
S is a family of mutually commuting elements of J , then by 6.2,

W ∗(S)h ⊂ J.

The Kaplansky density theorem (Theorem 7.9) can be also formulated for Jordan
algebras:

Lemma 1. Let J be a Jordan algebra in the W ∗-algebra M . If x ∈ M is
w-adherent to J , then there exists ε net {xι}ι∈I in J such that ‖xι‖ 6 ‖x‖, (ι ∈ I)

and xι
s−→ x. Moreover, if x is positive then the xι’s can be choosen positive too.

Proof. Clearly, we may assume, without reducing the generality, that J is
norm-closed.

It is sufficient to show that the closed unit ball J1 of J is s-dense in the
closed unit ball (J

w
)1 of the w-closure J

w
of J . Since (J

w
)1 is w-compact, by the

Krein-Milman theorem and by Corollary 8.5, it is the s-closed convex hull of its
extreme points. Hence it is sufficient to prove that every extreme point v of (J

w
)1

is s-adherent to J1.
By Corollary 8.5, v is s-adherent to J , that is there exists a net {yι}ι∈I in J

such that yι
s−→ v. Using Theorem 7.10 we deduce

J1 3 2yι(1 + y2
ι )−1 s−→ 2v(1 + v2)−1.

Since, by Theorem 6.2, v2 is the unit of J
w

, we conclude that v = 2v(1 + v2)−1 is
s-adherent to J1.
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Let J be a w-closed Jordan algebra in the W ∗-algebra M .
For every w-continuos positive linear functional ϕ on J we can define its

support sJ(ϕ) ∈ P (j) as in 8.23: 1 − sJ(ϕ) is the least upper bound of {e ∈
P (J); ϕ(e) = 0} in P (J). Then, for each a ∈ J , a > 0, we have

ϕ(a) = 0⇔ asJ(ϕ) = 0.

If ψ is w-continuous positive linear functional on M , we denote sJ(ψ|J) simply by
sJ(ψ).

A projection e ∈ J is called countably decomposable in J if any family of
mutually orthogonal non-zero projections of J majorized by e is at most count-
able. By the arguments in the proof of Proposition 1/8.12, a projection e ∈ J is
countably decomposable in J if and only if there exists a w-continuous positive
linear functional ψ on M with e = sJ(ψ).

We shall say that J is countably decomposable if its unit is countably decom-
posable in J .

The following lemma, essentially due to G.K. Pedersen, is the main technical
result in this section:

Lemma 2. Let M be a W ∗-algebra, J a norm-closed Rickart-Jordan subal-
gebra of Mh and Jw the w-closure of J . Then, for any two orthogonal projections
e, f ∈ Jw wich are countably decomposable in Jw, there exists a projection p ∈ J
such that

e 6 p 6 1Jw − f.

Proof. Let ϕ,ψ be w-continuous positive linear functionals on M with e =
sJw(ϕ) and f = sJw(ψ). We denote θ = ϕ+ ψ, and we consider a fixed ε > 0.

By Lemma 1 there exists a net {xι}ι∈I in J such that 0 6 xι 6 1 for all ι ∈ I
and xι

s−→ e.
Putting

q0 = 1Jw ; y0 = 0,

we shall construct by recurrence a sequence {yk}k>1 contained in {xι; ι ∈ I} and
sequence {qk}k>1 of projections in J such that, for every k > 1,

qk 6 qk−1, θ(qk−1 − qk) 6 2−k+1ε,(1)

qk(yk − yk−1)2qk 6 2−k+1,(2)

θ((e− yk)2) 6 k−1,(3)

θ(qk(e− yk)2qk) < 2−14−kε.(4)

For k = 1 we put q1 = q0 and we choose y1 such that (3) and (4) be satisfied.
Assume that the elements qk and yk were already defined for 1 6 k 6 n,

where n > 1 is an integer.
There exists a continuous function g : [0,+∞) → [0, 1] such that g(λ) = 1

for λ in some non-empty open interval Ω contained in [2−n−1, 2−n] and

(5) θ(g(qn(e− yn)2qn)) < 8−12−14−n−1ε.
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Indeed, otherwise θ(1) would be greater than any integral multiple of
8−12−14−n−1ε.

Let λ0 ∈ Ω and χ0 denote the characteristic function of [0, λ0). There exists
a function h : [0,+∞)→ [0, 1], whose support is contained in Ω, such that χ0 + h
is continuous.

For each ι ∈ I we denote

uι = qn(xι − yn)2qn, vι = qn(xι − e)2qn.

Since 0 6 vι 6 4, (ι ∈ I), and h2 6 g, for any ι ∈ I we have

χ0(uι)vιχ0(uι) 6 2(χ0 + h)(uι)vι(χ0 + h)(uι) + 2h(uι)vιh(uι)

6 2(χ0 + h)(uι)vι(χ0 + h)(uι) + 8g(uι).

Now, uι
s−→ qn(e−yn)2qn, vι

s−→ 0 and the fonctions χ0 +h and g are continuous
so, by (5) and Theorem 7.10, we get

lim
ι
θ(χ0(uι)vιχ0(uι)) 6 8θ(g(qn(e− yn)qn)) < 2−14−n−1ε.

Hence there exists ι1 ∈ I such that

(6) θ(χ0(uι)vιχ0(uι)) < 2−14−n−1ε; ι > ι1.

On the other hand, since xι
s−→ e, using (4) for k = n, we can find ι2 ∈ I

such that

(7) θ(qn(xι − yn)2qn) < 2−14−n−1ε; ι > ι2,

and

(8) θ((e− xι)2) > (n+ 1)−1; ι > ι2.

We choose ι3 ∈ I such that ι3 > ι1, ι3 > ι2, and we define

qn+1 = χ0(uι3)qn, yn+1 = xι3 .

Using (1) and (4) from 7.15 it is easy to check that

qn+1 = sM ((λ0sM (uι3)− uι3)+).

Since uι3 ∈ J , using Proposition 2/9.9 we infer that qn+1 is a projection in J .
Clearly, qn+1 6 qn. Since χ0(λ) = 1 for λ ∈ [0, 2−n−1], we have

(1− χ0)(uι3) 6 2n+1uι3 = 2n+1qn(yn+1 − yn)2qn,

qn − qn+1 6 2n+1qn(yn+1 − yn)2qn,
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so, using (7) we get θ(qn − qn+1) 6 2−n, that is (1) is satisfied for k = n+ 1.
Since χ0(λ) = 0 for λ ∈ [2−n,+∞), we have

qn+1(yn+1 − yn)2qn+1 = χ0(uι3)uι3χ0(uι3) 6 2−n,

so (2) is satisfied for k = n+ 1
Finally, by (8) and (6), (3) and (4) are also satisfied for k = n+ 1.
Let q be the greatest lower bound of the descreasing sequence {qk}k>1 ⊂

P (J) in P (M). Then qk
s−→ q and, since J is a Rickart-Jordan subalgebra of Mh,

we have q ∈ P (J). By (2),

‖(yk+1 − yk)q‖2 6 ‖(yk+1 − yk)qk+1‖2 6 2−k; k > 1,

so the sequence {ykq}k>1 converges in the norm-topology. Consequently, the se-
quence {ykqyk}k>1 ⊂ J is norm-convergent. Denote

aε = norm- lim
k
ykqyk ∈ J, pε = sM (aε) = sJ(aε) ∈ P (J).

Since e 6 1Jw − f = 1Jw − sJw(ϕ), from (3) we infer that

0 6 ψ(aε) = lim
k
ψ(ykqyk) 6 lim

k
ψ(y2

k) = lim
k
ψ((e− yk)2) = 0.

Hence aεsJw(ψ) = 0 and

(9) pε 6 1Jw − sJw(ψ) = 1Jw − f.

On the other hand, since qk
s−→ q, from (1) we infer that

ϕ(1Jw − q) 6 θ(1Jw − q) =

∞∑
k=1

θ(qk − qk+1) 6
∞∑
k=1

2−kε = ε,

hence ϕ(q) > ϕ(1Jw)− ε. Furthermore, since sJw(ϕ) = e, from (3) we infer that,
for all k > 1,

|ϕ(q)− ϕ(ykqyk)| 6 |ϕ((1Jw − yk)q)|+ |ϕ(ykq(1Jw − yk))|
6 2‖ϕ‖1/2ϕ((1Jw − yk)2)1/2 = 2‖ϕ‖1/2ϕ((e− yk)2)1/2

6 ‖ϕ‖1/2k−1/2.

hence

(10) ϕ(pε) > ϕ(aε) = lim
k
ϕ(ykqyk) = ϕ(q) > ϕ(1Jw)− ε.

Till now, ε > 0 was fixed. Now, denote by p the least upper bound of the
sequence {p 1

n
}n>1 ⊂ P (J) in P (M). Since J is a norm-closed Rickart-Jordan

subalgebra of Mh, we have p ∈ P (J). By (9), we have p 6 1Jw − f and, by
(10), ϕ(p) > ϕ(p 1

n
) > ϕ(1Jw) − n−1 for all n > 1, hence ϕ(p) > ϕ(1Jw), so

ϕ(1Jw − p) = 0 and finally e = sJw(ϕ) 6 p.
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We are now able to prove that norm-closed Rickart-Jordan subalgebras of
countably decomposable w-closed Jordan algebras are w-closed.

Theorem 1. Let M be a W ∗-algebra and J a norm-closed Rickart-Jordan
subalgebra of Mh such that w-closure of J is countably decomposable. Then J is
w-closed.

Proof. Indeed, if e is an arbitrary projection in the w-closure J
w

of J , then
both e and 1Jw−e are countably decomposable projections so, by Lemma 2, e ∈ J .

Since, by Proposition 1/9.4, J
w

is the norm-closed linear span of its projections,

we conclude that J
w

= J .

The next lemma is similar to 9.12.(1):

Lemma 3. Let M be a W ∗-algebra, J a norm-closed Rickart-Jordan subal-
gebra of Mh and S ⊂Mh. Then

S′ ∩ J = {x ∈ J ; xy = yx for all y ∈ S}

is a norm-closed Rickart-Jordan subalgebra of Mh. Moreover, if p ∈ (S′∩J)′∩Mh

is any projection, then the mapping

S′ ∩ J 3 x 7→ xp ∈Mh

is a countably additive Jordan homomorphism.

Proof. Clearly, S′ ∩ J is norm-closed Jordan algebra in M . Let a ∈ S′ ∩ J ,
a > 0. By 9.10, the least upper bound of {(k−1 + a)−1a}k>1 in Mh is sM (a) so,
by the Vigier theorem (8.5)

(k−1 + a)−1a
s−→ sM (a).

Since a ∈ J and J is a norm-closed Rickart-Jordan subalgebra of Mh, we have
sM (a) ∈ J . On the other hand, for each k > 1, the element (k−1 + a)−1a ∈ S′ ∩ J
commutes with all y ∈ S, hence also sM (a) commutes with all y ∈ S. Thus,
sM (a) ∈ S′ ∩ J .

Consequently, by Proposition 2/9.9, S′ ∩ J is a Rickart-Jordan subalgebra
of Mh.

Now let p ∈ (S′ ∩ J)′ ∩Mh be a projection. Clearly, the mapping

Φ : S′ ∩ J 3 x 7→ xp ∈Mh

is a Jordan homomorphism. If {ek}k>1 is an increasing sequence of projections
in S′ ∩ J and e is its least upper bound in P (S′ ∩ J), then, since S′ ∩ J is a

Rickart-Jordan subalgebra of Mh, we have ek
s−→ e, so ekp

s−→ ep. Therefore
ep is the least upper bound of {ekp} in Mh and we conclude that Φ is countably
additive.



Countable additivity and sequential normality 293

Theorem 2. Let M be a W ∗-algebra and J a norm-closed Rickart-Jordan
subalgebra of Mh which is sequentially monotone complete. Then J is sequantially
monotone closed in Mh.

Proof. We have to prove that if {ak}k>1 is a norm-bounded increasing se-

quence of positive elements of J and a is its least upper bound in J , then ak
w−→ a,

that is, for every w-continuous positive linear functional ϕ on M we have ϕ(ak)→
ϕ(a).

By Proposition 1/9.4 there exists a sequence {en}n>1 ⊂ P (J) such that the
norm-closed linear span of {en} contains the sequence {ak} and a. Denote by p
the least upper bound of the countable family

{(1− 2enj ) · · · (1− 2en1
)sM (ϕ)(1− 2en1

) · · · (1− 2enj ); n1, . . . , nj > 1, j > 0}

of countably decomposable projections of M , in P (M). Then p is countably de-
composable and for any n > 1 we have

(1− 2en)p(1− 2en) = p so enp = pen,

hence {p}′ ∩ J contains {ak} and a.

Now, by Lemma 3, {p}′ ∩ J is a norm-closed Rickart-Jordan subalgebra of
Mh and the mapping Φ : {p}′ ∩ J 3 x 7→ xp ∈Mh is a countable additive Jordan
homomorphism. Since p is countably decomposable in Mh, it follows by 9.11.(4)
and by Theorem 1 that Φ({p}′ ∩ J) is a w-closed Jordan algebra in M .

Finally, since a ∈ {p}′ ∩ J is the least upper bound of {ak} ⊂ {p}′ ∩ J in J ,
hence also in {p}′ ∩ J , using the arguments of the proof of 9.11.(4′′) we infer that

Φ(a) is the least upper bound of {Φ(ak)} in Φ({p}′ ∩ J). Thus, akp = Φ(ak)
s−→

Φ(a) = ap. Since sM (ϕ) 6 p, we conclude that

ϕ(ak) = ϕ(akp)→ ϕ(ap) = ϕ(a).

Using 9.11.(4′′) and Theorem 2, we obtain:

Corollary. Let J be a sequentially monotone complete norm-closed Jordan
algebra in the C∗-algebra A, M a W ∗-algebra and

Φ : J →Mh

a countably additive Jordan homomorphism. Then Φ is sequentially normal.

9.18. It is clear that countable additivity and sequential normality can be
defined for arbitrary positive linear maps of a Rickart algebra, respectively of a
sequentially monotone complete C∗-algebra into a W ∗-algebra. In this section we
prove that these two notions are essentially the same.
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Lemma 1. Let A be a Rickart algebra and Φ : A → B(H) a completely
positive linear mapping, with Stinespring dilation {π, V,K}. Then Φ is countably
additive if and only if π is countably additive.

Proof. Clearly, if π is countably additive then Φ is too. Assume that Φ is
countably additive. Let {ek} be a sequence of mutually orthogonal projections in
A and e =

∑
k

ek. Then p = π(e) −
∑
k

π(ek) is a projection. For every ξ ∈ H and

every unitary u ∈ Ã we have

(π(e)π̃(u)V ξ|π̃(u)V ξ) = (Φ(u∗au)ξ|ξ) =
∑
k

(Φ(u∗eku)ξ|ξ)

=
([∑

k

π(ek)
]
π̃(u)V ξ|π̃(u)V ξ

)
,

so ‖pπ̃(u)V ξ‖2 = 0. Since K is the closed linear span of π(A)V H we conclude
that p = 0.

By a similar argument we obtain:

Lemma 2. Let A be a sequentially monotone complete C∗-algebra and Φ :
A → B(H) a completely positive linear mapping. Then Φ is sequentially normal
if and only if π is sequentially normal.

The following result should be compared with Corollary 2/8.4.

Proposition. Let A be a sequentially monotone complete C∗-algebra, M
a W ∗-algebra and Φ : A → M a positive linear mapping. Then Φ is countably
additive if and only if A is sequentially normal.

Proof. Clearly, if Φ is sequentially normal, then it is countably additive.
Assume that Φ is countably additive and let ϕ be an arbitrary w-continuous

positive linear functional on H. Then the positive linear functional ψ = ϕ ◦ Φ
on A is countably additive. By Lemma 1, the GNS representation πψ associated
to ψ is countably additive and hence (by Corollary 9.17) sequentially normal so
that, by Lemma 2, ψ is sequentially normal. Consequently, if {xk} is a norm-
bounded increasing sequence in Ah, then Φ(xk) is w-convergent to Φ

(
sup
k
xk
)
, so

sup
k

Φ(xk) = Φ
(

sup
k
xk
)
.

9.19. Let A be a C∗-algebra and B a C∗-subalgebra of A. We shall say that
A is an AW ∗-algebra if A satisfies the spectral axiom and every family {eι}ι∈I of
mutually orthogonal projections in A has a minimal upper bound e in P (A).

By Proposition 3/9.4, if A is an AW ∗-algebra and {eι}, e are as above, then
e is the least upper bound of {eι} in P (A). We shall denote e =

∑
ι∈I

eι.

Assume that A is an AW ∗-algebra. We shall say that B is an AW ∗-subalgebra
of A if B satisfies the spectral axiom and, for every family {eι}ι∈I of mutually
orthogonal projections in B, we have

∑
ι∈I

eι ∈ B.
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We shall say that A is monotone complete if every norm-bounded upward
directed net {xι}ι∈I in Ah has a least upper bound x in Ah. We shall denote
x = sup

ι∈I
xι or xι ↑ x.

Assume that A is monotone complete. We shall say that, B is monotone
closed in A if for every norm-bonded upward directed {xι}ι∈I in Bh we have
sup
ι∈I

xι ∈ B.

Clearly, every AW ∗-subalgebra of an AW ∗-algebra is an AW ∗-algebra and
every monotone closed C∗-subalgebra of a monotone complete C∗-algebra is mono-
tone complete.

The notions of AW -Jordan algebra, AW -Jordan subalgebra, monotone com-
plete Jordan algebra and monotone closed Jordan subalgebra are self-explanatories.

It is obvious that every AW ∗-algebra is a Rickart algebra, every AW -Jordan
algebra is a Rickart algebra, and every monotone complete C∗-algebra or Jordan
algebra is sequentially monotone complete. It is also obvious that a “countably
decomposable” C∗-algebra is an AW ∗-algebra if and only if it is a Rickart algebra,
and a similary assertion holds for Jordan algebras.

Thus, many (but not all) results and proofs in what follows will be very
similar to those already given for Rickart(-Jordan) algebras.

9.20. In this section we prove characterizations of AW -Jordan algebras and
AW -Jordan subalgebras, similar to the results in 9.9.

Lemma. Let J be a norm-closed Jordan algebra in the C∗-algebra A, S ⊂ J+

and e ∈ J a projection such that ae = a and

b ∈ J , b > 0, ab = 0 for all a ∈ S ⇒ eb = 0.

Then e is the greatest lower bound of {f ∈ P (J̃); af = a for all a ∈ S} in P (J̃).

Proof. The proof is an obvious extension of the proof of Lemma 9.9.

In particular, if J is a norm-closed Jordan algebra in the C∗-algebra A, then
for each S ⊂ J+ there exists at most one projection e ∈ J such that ae = a for all
a ∈ S and

b ∈ J , b > 0, ab = 0 for all a ∈ S ⇒ eb = 0.

If such a projection e does exist, then we shall any that S has a support projection
in J , we call e the support projection of S in J , and we denote e by sJ(S), or
simply s(S).

Proposition 1. Let J be a norm-closed Jordan algebra in the C∗-algebra
A. Then the following statements are equivalent:

(i) J is an AW -Jordan algebra;
(ii) every S ⊂ J+ has a support projection in J .

Moreover, if the above statements are true, then:
(a) J is unital;
(b) for every family {eι}ι∈I of projections in J the projection sJ({eι; ι ∈ I})

is the least upper bound of {eι}ι∈I in P (J).
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Proof. (i) ⇒ (ii)&(a). Let S ⊂ J+ be arbitrary. By the Zorn lemma there
exists a maximal family {fι}ι∈I of mutually orthogonal projections of J such that
afι = 0 for all a ∈ S, ι ∈ I. Put

f =
∑
ι

fι.

Assume that faf 6= 0 for some a ∈ S. Then, by 9.3.(2) and by the remark
preceding Proposition 3/9.4, there exists a projection p ∈ J , 0 6= p 6 f , commuting
with faf , and λ > 0, such that fafp > λp. By Proposition 9.2 we have p ∈
fafJfaf , so for all ι ∈ I

pfι ∈ fafJfaffι = fafJf(afι) = {0}, i.e. fι 6 f − p,

hence f 6 f − p and p = 0, in contradiction with the choice of the projection p.
Thus

(1) af = 0 for all a ∈ S.

Now let b ∈ J+ be such that ab = 0 for all a ∈ S. Suppose that (1−f)b2(1−f) 6= 0.
As above, we can find a projection q ∈ J , 0 6= q 6 1 − f , commuting with
(1− f)b2(1− f), and µ > 0, such that (1− f)b2(1− f)q > µq. By Proposition 9.2,

q ∈ (1− f)b2(1− f)J(1− f)b2(1− f),

so, for all a ∈ S,

aq ∈ a(1−f)b2(1−f)J(1−f)b2(1−f) = (ab−afb)b(1−f)J(1−f)b2(1−f) = {0}

in contradiction with the maximality of {fι}. Consequently,

(2) b ∈ J , b > 0, ab = 0 for all a ∈ S ⇒ b = bf = fb.

We conclude that for every S ⊂ J+ there exists fS ∈ P (J) satisfying (1) and (2).
Taking S = {0} from (1) we infer that f{0} is a unit element of J . Hence J

is unital.
If S ⊂ J+ is arbitrary, then from (1) and (2) it follows that 1J − fS is the

support of S in J .
(ii) ⇒ (i)&(b). Let {eι}ι∈I be an arbitrary family in P (J) and e = sJ({eι;

ι ∈ I}). By the definition of the support e, eι = eιe 6 e, (ι ∈ I), and for each
f ∈ P (J) with eι 6 f , (ι ∈ I), we have eι(e− f) = 0, (ι ∈ I), so e(e− f) = 0 and
e = ef 6 f . Hence e is the least upper bound of {eι} in P (J).

On the other hand, by Proposition 1/9.9, J is a Rickart-Jordan algebra and
hence it satisfies the spectral axiom.

Thus J is an AW -Jordan algebra.
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Proposition 2. Let K ⊂ J be norm-closed Jordan algebras in the C∗-
algebra A. Assume that J is an AW -Jordan algebra. Then the following state-
ments are equivalent:

(i) K is an AW -Jordan subalgebra of J ;
(ii) for any S ⊂ K+ we have sJ(S) ∈ K.

Proof. (i) ⇒ (ii). Let S ⊂ K+. By the Zorn lemma there exists a maximal
family {eι}ι∈I of mutually orthogonal projections in K such that eι 6 sJ(S),
(ι ∈ I). Let e be the least upper bound of {eι} in P (J). Then e 6 sJ(S) and, by
(i), e ∈ P (K).

Assume that a 6= ae for some a ∈ S, that is a(1K−e) 6= 0. By 9.3.(2) and by
the remark preceding Proposition 3/9.4, there exists p ∈ P (K), 0 6= p 6 1K − e,
commuting with (1K−e)a2(1K−e), and λ > 0, such that (1K−e)a2(1K−e)p > λp.
By Proposition 9.2,

p ∈ (1K − e)a2(1K − e)K(1K − e)a2(1K − e).

Since e 6 sJ(S), we have a(1K − e) = asJ(S)(1K − e) = a(1K − e)sJ(S), so
p = psJ(S) 6 sJ(S), in contradiction with the maximality of {eι}. Thus, a = ae
for all a ∈ S and, by the above Lemma, sJ(S) 6 e. Hence sJ(S) = e ∈ K.

(ii) ⇒ (i). This is a consequence of Proposition 2/9.9 and of the statement
(b) from Proposition 1.

Let K ⊂ J be norm-closed Jordan algebras in the C∗-algebra A. Assume
that J is an AW -Jordan algebra and K is an AW -Jordan subalgebra of J .

By Proposition 1, P (J) is an orthocomplemented complete lattice with great-
est element 1J and smallest element 0 and with orthocomplementation e 7→ 1J−e :
if {eι}ι∈I is an arbitrary family in P (J), then∨

ι∈I
eι = sJ({eι; ι ∈ I})

is the least upper bound of {eι}ι∈I in P (J) and∧
ι∈I

eι = 1J −
∨
ι∈I

(1J − eι) =
( ∨
κ∈I

eκ

)
−
∨
ι∈I

(( ∨
κ∈I

eκ

)
− eι

)
is the greatest lower bound of {eι}ι∈I in P (J). If the projections eι belong to K,
then, by Proposition 2,

∨
ι∈I

eι ∈ K and
∧
ι∈I

eι ∈ K.

Note also that if S ⊂ J+, then

sJ(S) =
∨
a∈S

sJ(a).

9.21. We now prove a statement without correspondent for Rickart-Jordan
algebras.
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Proposition. Let J be a norm-closed AW -Jordan algebra in the C∗-algebra
A and K a real linear subspace of J such that

xJx ⊂ K for all x ∈ K
and for every family {eι}ι∈I of mutually orthogonal projections in K∑

ι∈I
eι ∈ K,

then there exists a projection e in J such that K = eJe.

Proof. Let {eι} be a maximal family of mutually orthogonal projections in
K. Then e =

∑
ι
eι ∈ K, so eJe ⊂ K.

Assume that x 6= xe for some x ∈ K, that is (1J−e)x2(1J−e) 6= 0. By 9.3.(2)
and by the remark preceding Proposition 3/9.4, there exists a projection f ∈ J ,
0 6= f 6 1J − e, commuting with (1J − e)x2(1J − e) and λ > 0, such that (1J −
e)x2(1J−e) > λf . SinceK is a Jordan algebra inA, we have (1J−e)x2(1J−e) ∈ K.
Hence, using Proposition 9.2, we get f ∈ (1J−e)x2(1J−e)J(1J−e)x2(1J−e) ⊂ K,
in contradiction with the maximality of {eι}. Thus, x = xe = ex = exe for all
x ∈ K, that is K ⊂ eJe.

Let J be a Jordan algebra in the C∗-algebra A. We shall say that z ∈ J
is a central element of J if z commutes with every x ∈ J . The set of all central
elements of J is denoted by ZJ and is called the center of J . Clearly, ZJ is a
Jordan algebra in A and ZJ is norm-closed whenever J is norm-closed.

Corollary. Let J be a norm-closed AW -Jordan algebra in the C∗-algebra
A and K a real linear subspace of J such that

yKy ⊂ K for all y ∈ J
and, for every family {eι}ι∈I of mutually orthogonal projections in K,∑

ι∈I
eι ∈ K.

Then there exists a central projection p in J such that K = Jp.

Proof. From the assumptions on K we succesively obtain:

xy + yx = (y + 1J)x(y + 1J)− yxy − x ∈ K; x ∈ K, y ∈ J,
2x2 = xx+ xx ∈ K; x ∈ K,

2xyx = x(xy + yx) + (xy + yx)x− (x2y + yx2) ∈ K; x ∈ K, y ∈ J.
Hence xJx ⊂ K for all x ∈ K so that, by the above proposition, there exists a
projection p in J with K = pJp.

Let e ∈ P (J) be arbitrary. Since p ∈ K, we have

(1J − 2e)p(1J − 2e) ∈ K = pJp, (1J − 2e)p(1J − 2e) = (1J − 2e)p(1J − 2e)p

p(1J − 2e) = p(1J − 2e)p, pe = pep.

Hence p commutes with e.
By Proposition 1/9.4 J is the norm-closed linear span of P (J), so p commutes

with every y ∈ J .
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In particular, if A is an AW ∗-algebra and I is a two-sided ideal in A such that
for every family {eι} of mutually orthogonal projections in I we have

∑
ι
eι ∈ I,

than I = Ap for some central projections p of A.

9.22. The following proposition is similar to Proposition 9.10.

Proposition. Let K ⊂ J be norm-closed Jordan algebras in the C∗-algebra
A. Assume that J is monotone complete and K is monotone closed in J . Then J
is an AW -Jordan algebra and K is an AW -Jordan subalgebra of J .

Moreover, for every S ⊂ J+ and every increasing sequence {fk}k>1 of oper-
ator monotone continuous positive functions on [0,+∞) which is pointwise con-
vergent to the characteristic function χ(0,+∞) we have

sup
F⊂S finite, k>1

fk

(∑
a∈F

a
)

= sJ(S).

Proof. Let S ⊂ J+ and {fk}k>1 be as in the statement. Denote

aF,k = fk

( ∑
a∈F

a
)

for F ⊂ S finite and k > 1

e = sup
F,k

aF,k.

By Proposition 9.10, J is a Rickart-Jordan algebra and, for each F ⊂ S finite, we
have

sup
k
aF,k = sJ

(∑
a∈F

a
)
.

Hence, for eF = sJ

( ∑
a∈F

a
)
∈ P (J) we have 0 6 aF,k 6 eF 6 e 6 1J , so that

e = sup
F
eF ,

and, by 2.6.(8), eF = eeF = eF e. Using Lemma 2/9.10 we obtain

e3 = e
(

sup
F
eF

)
e = sup

F
eeF e = sup

F
eF = e;

hence e is a projection.
Now, for each a ∈ S we have 0 6 a(1J − e)a 6 a(1J − e{a})a = 0, that is

a = ae. On the other hand, if b ∈ J+ and ab = 0 for all a ∈ S, then for each finite

F ⊂ S we have
( ∑
a∈F

a
)
b = 0, eF b = 0, so 0 6 beb = b

(
sup
F
eF

)
b = sup

F
beF b = 0

and eb = 0. We conclude that S has support in J and sJ(S) = e.
Note that sequences {fk} as in the statement do exist, for instance fk(λ) =

(k−1 + λ)−1λ. Thus, by the above part of the proof, by Proposition 1/9.20 and
by Proposition 2/9.20, J is an AW -Jordan algebra and K is an AW -Jordan sub-
algebra of J .
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We mention explicitely that if J is a monotone complete norm-closed Jordan
algebra in the C∗-algebra A, then for any S ⊂ J+

sJ(S) = sup
F⊂S finite, k>1

(
k−1 +

∑
a∈F

a
)−1 ∑

a∈F
a.

Also, if {aι}ι∈I is a norm-bounded upward directed net of positive elements in J ,
then

sup
ι

sJ(aι) = sJ

(
sup
ι
aι

)
.

The proof is similar to that of the similar assertion in 9.10.

9.23. We now consider some permanence properties, as in 9.11. Let J be a
norm-closed AW -Jordan algebra in the C∗-algebra A. Then:

(1) the center ZJ of J is an AW -Jordan subalgebra of J ;
(2) for any p ∈ P (J), pJp is an AW -Jordan subalgebra of J ;
(3) if {Kι}ι∈I is any family of norm-closed AW -Jordan subalgebras of J , then⋂

ι∈I
Kι is an AW -Jordan subalgebra of J ;

To prove (1), consider S ⊂ Z+
J . For every e ∈ P (J), the mapping Φe :

x 7→ (1J − 2e)x(1J − 2e) is a Jordan isomorphism of J onto J and Φe(S) = S.
Therefore, Φe(sJ(S)) = sJ(Φe(S)) = sJ(S), so that sJ(S)e = esJ(S). Using
Proposition 1/9.4, we infer that sJ(S) ∈ ZJ . Thus, by Proposition 2/9.20, ZJ is
an AW -Jordan subalgebra of J .

Now (2) is a consequence of 9.3.(2), while (3) can be easily proved using
Proposition 2/9.20.

Let K be another norm-closed AW -Jordan algebra in the C∗-algebra B. We
shall say that Jordan homomorphism Φ : J → K is completely additive if for every
family {eι}ι∈I of mutually orthogonal projections in J we have∑

ι∈I
Φ(eι) = Φ

(∑
ι∈I

eι

)
.

Then, using Corollary 9.21 and 9.3.(4), it is easy to show that:

(4) If Φ : J → K is a completely additive Jordan homomorphism, then there is
a central projection p of J with Ker Φ = Jp, Φ(J) is an AW -Jordan subalgebra of
K and Φ|J(1J − p), is a Jordan isomorphism of J(1J − p) onto Φ(J).

We now assume that J is monotone complete. Then:

(1′) the center ZJ of J is monotone complete;
(2′) for any p ∈ P (J), pJp is monotone closed in J ;
(3′) if {Kι}ι∈I is any family of monotone closed Jordan subalgebras of J , then⋂

ι∈I
Kι is a monotone closed Jordan subalgebra of J .

The proof (1′) is similar to that of (1), while (2′) and (3′) are obvious.
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Let K be another monotone complete Jordan algebra in the C∗-algebra B.
We shall say that a Jordan homomorphism Φ : J → K is normal if for every
norm-bounded upward directed net {xι}ι∈I in J we have

sup
ι

Φ(xι) = Φ
(

sup
ι
xι

)
.

Then, using Proposition 9.22 and Corollary 9.21, it is easy to show that:

(4′) if Φ : J → K is a normal Jordan homorphism, then there is a central
projection p in J with Ker Φ = Jp, Φ(J) is monotone closed in K and Φ|J(1J −p)
is a Jordan isomorphism of J(1J − p) onto Φ(J).

Remark that statements similar to (1) and (1′) hold also for Rickart-Jordan
algebras, respectively for sequentially monotone complete Jordan algebras, but
these statements are not so important, because most of the consistent results con-
cerning the center, for instance Corollary 9.21, are no more valid in the “sequential
setting”.

9.24. Let A be an AW ∗-algebra. For S ⊂ A+ we denote by sA(S), or simply
by s(S), the support projection of S in Ah. If S ⊂ A is arbitrary, then we define
its left support l(S) = lA(S) in A by

lA(S) = sA({xx∗; x ∈ S})

and its right support r(S) = rA(S) in A by

rA(S) = sA({x∗x; x ∈ S}) = lA(S).

If S consists of normal elements, then lA(S) = rA(S) is called simply the
support of S in A and is denoted by sA(S) or s(S).

Clearly, if B is an AW ∗-subalgebra of A, then

S ⊂ B ⇒ lA(S), rA(S) ∈ B.

With the same arguments as in 9.12 and using Proposition 2/9.20, we obtain:

(1) if Q ⊂ A, Q = Q∗, then Q′ ∩A is an AW ∗-subalgebra of A;
(2) the center of A is an AW ∗-subalgebra of A (see 9.23.(1));
(3) every maximal commutative ∗-subalgebra of A is an AW ∗-subalgebra of A;
(4) if x ∈ A is normal, then {x}′ ∩A is an AW ∗-subalgebra of A.

Now let A be a monotone complete C∗-algebra. Then we similarly obtain:

(1′) if Q ⊂ A, Q = Q∗, then Q′ ∩A is a monotone closed C∗-subalgebra of A;
(2′) the center of A is a monotone closed C∗-subalgebra of A;
(3′) every maximal commutative ∗-subalgebra of A is a monotone closed C∗-

subalgebra of A;
(4′) if x ∈ A is normal, then {x}′∩A is a monotone closed C∗-subalgebra of A.

9.25. Using 9.24.(3) instead of 9.12.(3), the proofs of Proposition 1/9.13 and
Proposition 2/9.13 can be repeated almost verbatium in order to get the following
statements:
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Proposition 1. Let A be a C∗-algebra. Then the following statements are
equivalent:

(i) A is so AW ∗-algebra;
(ii) every maximal commutative ∗-subalgebra of A is an AW ∗-algebra.

Proposition 2. Let A be an AW ∗-algebra and B a C∗-subalgebra of A.
Then the following statements are equivalent:

(i) B is an AW ∗-subalgebra of A;
(ii) every maximal commutative ∗-subalgebra of B is an AW -subalgebra of A.

9.26. We now describe the commutative AW ∗-algebras and the commutative
monotone complete C∗-algebras.

We recall that a Stone space is a compact Hausdorff topological space Ω such
that the closure of any closure of any open subset of Ω is again open.

Proposition 1. Let A be a commutative C∗-algebra and Ω a Gelfand spec-
trum. The following statements are equivalent:

(i) A is an AW ∗-algebra;
(ii) A is monotone complete;
(iii) Ω is a Stone space.

Proof. (i)⇒ (iii). By Proposition 1/9.20 A is unital, so Ω a compact. Since
A satisfies the spectral axiom, by Proposition 9.7, Ω is 0-dimensional.

Now let U ⊂ Ω be open. Consider a maximal family {Vι}ι∈I of mutually
disjoint compact and open subsets of U . Let eι be the projection in A whose
Gelfand transform is the characteristic function of Vι, (ι ∈ I). Then the Gelfand
transform of e =

∑
ι∈I

eι is the characteristic function of some compact and open set

V containing
⋃
ι∈I

Vι.

If V \
⋃
ι∈I

Vι would be non-empty, then, by the 0-dimensionality of Ω, we should

find a non-empty compact and open set W contained in V \
⋃
ι∈I

Vι and, with f 6= 0

the projection in A whose Gelfand transform is the characteristic function of W ,
we should have eι 6 e − f for all ι ∈ I, hence e 6 e − f , in contradiction with
f 6= 0. Hence V \

⋃
ι∈I

Vι ⊂ U .

On the other hand, if U\V would be non-empty, then, again by the 0-
dimensionality of Ω, we should find a non-empty compact and open set contained
in U\V , in contradiction with the maximality of {Vι}. Therefore U ⊂ V , so
U ⊂ V .

We conclude that U = V is open.
(iii)⇒ (ii). Let {aι}ι∈I be a norm-bounded family of positive elements in A,

and define Uλ =
⋃
ι∈I
{ω ∈ Ω; ω(aι) > λ}, for each λ > 0. Then each Uλ is open, so

Uλ is compact and open. Therefore, there is a projection eλ ∈ A whose Gelfand
transform is the characteristic function of Uλ. Clearly,

λ > µ⇒ eλ 6 eµ; λ > sup
ι
‖aι‖ ⇒ eλ = 0,
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so the Riemann-Stieltjes integral ∫ ∞
0

λ deλ

does exist in the norm-topology of A and a = −
∫∞

0
λdeλ ∈ A+.

Now, with arguments similar to those used in proving the implication (iii)⇒
(ii) of Proposition 1/9.16, it is easy to show that a is the least upper bound of
{aι} in Ah.

(ii)⇒ (i). This is a consequence of Proposition 9.22.

The proof of the following statement is completely similar to that of Propo-
sition 2/9.16:

Proposition 2. Let A be a monotone complete C∗-algebra. Then every
commutative AW ∗-subalgebra of A is monotone closed in A.

9.27. In this section we prove a remarkable property of commutative AW ∗-
algebras, which characterizes them among all commutative C∗-algebras.

We begin with some preliminaries. Let Z be a unital commutative C∗-algebra
and X be a Z-module. A subset K of X is called Z-convex if

x1, x2 ∈ K, z ∈ Z, 0 6 z 6 1⇒ zx1 + (1− z)x2 ∈ K.

Clearly, Z-convex subsets of X are convex. A Z-extreme point of a Z-convex
subset K of X is an element x ∈ K such that

x1, x2 ∈ K, z ∈ Z, 0 6 z 6 1, z and 1− z invertible, x = zx1 + (1− z)x2

⇒ x1 = x2 = x.

The following result is useful in several situations:

Proposition. Let Z be a unital commutative C∗-algebra, X a Z-module, K
a Z-convex subset of X and x ∈ X. Then the following statements are equivalent:

(i) x is a Z-extreme point of K;
(ii) x is an extreme point of K;

Proof. Clearly, (i) ⇒ (ii). Assume now that (ii) holds and let x1, x2 ∈ K,
and z ∈ Z, 0 6 z 6 1, with z and 1−z invertible, be such that x = zx1 +(1−z)x2.
There are scalars α and β such that 0 < α 6 z 6 β < 1, so, putting z1 = (2z−1)+

and z2 = (2z − 1)−, we have 0 6 z1 + z2 6 max{|2α− 1|, |2β − 1|} < 1. It follows
that 0 6 z1 6 1, 0 6 z2 6 1 and that 1−z1−z2 is invertible. Since K is Z-convex,
y1 = z1x1 + (1− z1)x2 ∈ K and y2 = z2x2 + (1− z2)x2 ∈ K and since

x = 2−1y1 + 2−1y2

by (ii) it follows that y1 = y2, i.e. (1− z1− z2)x1 = (1− z1− z2)x2, hence x1 = x2

because 1− z1 − z2 is invertible.
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Corollary 1. Let A, Z be unital commutative C∗-algebras and Φ : A→ Z
a positive linear map with Φ(1A) = 1Z . Then Φ is an extreme point of

{Ψ ∈ B(A,Z); Ψ > 0,Ψ(1A) = 1Z}

if and only if it is a ∗-homomorphism.

Proof. Let Φ be an extreme point of

S = {Ψ ∈ B(A,Z); Ψ > 0,Ψ(1A) = 1Z}.

If a ∈ A and (1/3)1A 6 a 6 (2/3)1A, then (1/3)1Z 6 Φ(a) 6 (2/3)1Z so
Φ(a) and 1Z − Φ(a) are invertible. Then Φ1 = Φ(a)−1Φ(a · ) and Φ2 = (1Z −
Φ(a))−1Φ((1A − a) · ) belong to S and

Φ = Φ(a)Φ1 + (1Z − Φ(a))Φ2.

Since S is a Z-convex subset of the Z-moduleB(A,Z), it follows that Φ1 = Φ2 = Φ,
that is

Φ(ax) = Φ(a)Φ1(x) = Φ(a)Φ(x); x ∈ A.

Since A is the linear span of {a ∈ A; (1/3)1A 6 a 6 (2/3)1A}, we conclude that Φ
is multiplicative.

Conversely, if Φ is a ∗-homomorphism, then, by the last remarks in 4.9, for
each pure state ϕ of Z the state ϕ ◦ Φ of A is again a pure state, hence Φ is an
extreme point of S.

We now prove the main result of this section :

Theorem. Let Z be a commutative C∗-algebra. The following statements
are equivalent:

(i) Z is an AW ∗-algebra;
(ii) if A is any commutative C∗-algebra and σ : Z → A is an injective ∗-

homomorphism, then there exists a ∗-homomorphism π : A→ Z such that π(σ(z)) =
z for all z ∈ Z;

(iii) if A is any commutative C∗-algebra, B a C∗-subalgebra of A and ρ : B → Z
a ∗-homomorphism, then there exists a ∗-homomorphism π : A → Z such that
π|B = ρ.

Proof. (i) ⇒ (iii). Let A,B, ρ be as in (iii). Replacing A by the C∗-algebra
with adjoined unit A⊕ C defined in 1.5, B by B ⊕ C and ρ by B ⊕ C 3 x⊕ λ 7→
ρ(x) + λ · 1Z , we may assume, without restricting the generality, that A is unital,
B contains 1A and ρ(1A) = 1Z .

Let F be a family of all pairs (X,Φ), where X is any real linear subspace of
Ah containing Bh, and Φ is an extreme point of

SX = {Ψ : X → Zh real linear; Ψ(x) > 0 for x ∈ X ∩A+ and Ψ|Bh = ρ|Bh}.
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We consider on F the partial ordering defined by

(X1,Φ1 6 (X2,Φ2))⇔ X1 ⊂ X2 and Φ1 = Φ2|X1.

Let {(Xι,Φι)}ι∈I be totally ordered subset of F . Then X =
⋃
ι∈I

Xι is a real linear

subspace of Ah containing Bh and the real linear map Φ : X → Zh defined by
Φ(x) = Φι(x) whenever x ∈ Xι, (ι ∈ I), is an extreme point of SX , i.e. (X,Φ) ∈ F .
Moreover, (X,Φ) is the least upper bound of {(Xι,Φι)} in F .

By the Zorn lemma it follows that there exists a maximal element (X0,Φ0)
in F .

Assume that there exists some x0 ∈ Ah\X0 and denote by Y0 the real linear
span of X0∪{x0}. By Corollary 1/4.18 and Proposition 1/9.26, Zh is a condition-
ally complete vector lattice, so the family {Φ0(x); x ∈ X,x 6 x0} ⊂ Zh, which is
bounded above by ‖x0‖1Z , has a least upper bound z0 in Zh. We define a real
linear map Ψ0 : Y0 → Zh by

Ψ0(x+ λx0) = Φ0(x) + λz0; x ∈ X0, λ ∈ R.

Then Ψ0 ∈ SY0 . Indeed if x + x0 > 0, then −x 6 x0, Φ0(−x) 6 z0,
Φ0(x) + z0 > 0 and, if x − x0 > 0, then x′ 6 x for all x′ ∈ X0, x′ 6 x0, hence
Φ0(x′) 6 Φ0(x) for all x′ ∈ X0, x′ 6 x0, so that z0 6 Φ0(x), Φ0(x)− z0 > 0.

Moreover, Ψ0 is an extreme point of SY0 . Indeed, if Ψ1,Ψ2 ∈ SY0 are such
that Ψ0 = 2−1Ψ1 + 2−1Ψ2, then Φ0 = 2−1(Ψ1|X0) + 2−1(Ψ2|X0), so

(1) Ψ1|X0 = Ψ2|X0 = Φ0.

Therefore Ψ1(x0) > Ψ1(x) = Φ0(x) for all x ∈ X0, x 6 x0, so that Ψ1(x0) >
z0 = Ψ0(x0) and, similary, Ψ2(x0) > Ψ0(x0). Since Ψ1(x0) + Ψ2(x0) = 2Ψ0(x0),
it follows that

(2) Ψ1(x0) = Ψ2(x0) = 2Ψ0(x0).

By (1) and (2) we conclude that Ψ1 = Ψ2 = Ψ0.
Thus, (Y0,Ψ0) ∈ F , in contradiction with the maximality of (X0,Φ0). Con-

senquently X0 = Ah.
Let π be the complex linear extension of Φ0 to the whole A. Then π is an

extreme point of {σ ∈ B(A,Z); σ > 0, σ|B = ρ}. By the above corollary, π is also
an extreme point of {σ ∈ B(A,Z); σ > 0, σ(1A) = 1Z}, so again by the above
corollary, π is a ∗-homomorphism.

(iii) ⇒ (ii). Let A, σ be as in (ii). By applying (iii) to A, B = σ(Z) and
ρ = σ−1 we get a ∗-homomorphism π : A→ Z such that π(σ(z)) = σ−1(σ(z)) = z
for all z ∈ Z.

(ii) ⇒ (i). By Corollary 6/3.4, the second dual Z∗∗ of Z is a commutative
W ∗-algebra and the canonical imbedding σ of Z in Z∗∗ is a ∗-homomorphism. By
(ii), there exists a ∗-homomorphism π : Z∗∗ → Z such that π(σ(z)) = z for all
z ∈ Z.

Let {zι} be a norm-bounded upward directed family in Zh. By the Vigier
theorem (8.5), {σ(zι)} has a least upper bound x0 in (Z∗∗)h and it is easy to see
that π(x0) is the least upper bound of {zι} in Zh.

Hence Z is monotone complete and, by Proposition 9.22, it is an AW ∗-
algebra.
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By the above theorem, the commutative AW ∗-algebras are exactly the injec-
tive objects in the category of all commutative C∗-algebras and ∗-homomorphisms.

Corollary 2. Let Ω be a compact Hausdorff topological space. The follow-
ing statements are equivalent:

(i) Ω is a Stone space;
(ii) if X is a compact Hausdorff topological space and f : X → Ω is a surjective

continuous map, then there is a continuous map s : Ω→ X such that f(s(ω)) = ω
for all ω ∈ Ω;

(iii) if X is a compact Hausdorff topological space and F is a map of Ω into the
family of all non-empty closed subsets of X such that

K ⊂ X closed ⇒ {ω ∈ Ω;K ∩ F (ω) 6= ∅} ⊂ Ω closed;

then there exists a continuous map s : Ω→ X such that s(ω) ∈ F (ω) for all ω ∈ Ω.

Proof. (i) ⇒ (ii). By Proposition 1/9.26, this is an immediate consequence
of the corresponding implication from the above Theorem.

(ii)⇒ (iii). Let X,F be as in (iii). Then

Γ = {(ω, x) ∈ Ω×X; x ∈ F (ω)}

is a closed subset of Ω×X, hence it is compact. Since the map Γ 3 (ω, x) 7→ ω ∈ Ω
is surjective and continuous, by (ii) it follows that there exists a continuous map
Ω 3 ω 7→ (ω, s(ω)) ∈ Γ. Then s : Ω → X is continuous and s(ω) ∈ F (ω) for all
ω ∈ Ω.

(iii)⇒ (i). Let A be a commutative C∗-algebra and consider σ : C(Ω)→ A
an injective ∗-homomorphism. Identifying ω ∈ Ω with the corresponding character
on C(Ω), we denote

F (ω) = {γ ∈ Ω
Ã

; γ ◦ σ = ω} ⊂ Ω
Ã
.

By the last remark in 4.9 and by Proposition 4.16, all F (ω) are non-empty. Clearly,
F (ω) are closed sets and

K ⊂ Ω
Ã

closed ⇒ {ω ∈ Ω;K ∩ F (ω) 6= ∅} ⊂ Ω closed.

Hence by (iii), there exists a continuous map s : Ω→ Ω
Ã

such that s(ω) ◦ σ = ω,

for all ω ∈ Ω. Let π : A→ C(Ω) be the ∗-homomorphism defined by

π(x)(ω) = s(ω)(x); x ∈ A, ω ∈ Ω.

Then
π(σ(z))(ω) = s(ω)(σ(z)) = z(ω); z ∈ C(Ω), ω ∈ Ω.

Thus, the C∗-algebra C(Ω) satisfies the statement (ii) from the above theorem, so
that C(Ω) is an AW ∗-algebra and, by Proposition 1/9.26, Ω is a Stone space.
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By the above corollary, the Stone spaces are exactly the projective objects
in the category of compact Hausdorff spaces and continuous maps.

9.28. In this section we define and use central supports.

Proposition. Let J be norm-closed AW -Jordan algebra in the C∗-algebra
A and ZJ its center. For any x ∈ J the set

{q ∈ P (ZJ); xq = x}

contains its greatest lower bound p in P (J) and

(1) p =
∨

e1,...,en∈P (J),n>0

(1J − 2en) · · · (1J − 2e1)sJ(x2)(1J − 2e1) · · · (1J − 2en).

Proof. Let p be the projection of J defined by (1). Then for every e ∈ P (J),
we have (1J − 2e)p(1J − 2e) = p, hence pe = ep, so that p ∈ P (ZJ). Since
sJ(x2) 6 p, we have xq = x.

Now let q ∈ P (ZJ) be such that xq = x. By Lemma 9.20 we have sJ(x2) 6 q,
whence, for any e1, . . . , en ∈ P (J) and n > 0,

(1J − 2en) · · · (1J − 2e1)sJ(x2)(1J − 2e1) · · · (1J − 2en) 6 q

so that p 6 q.

If J is norm-closed AW -Jordan algebra and x ∈ J , then the central projection
p of J , defined in the above proposition, is called the central support of x in J and
is denoted by zJ(x).

If e ∈ J is a projection, then zJ(e) is the greatest lower bound of {q ∈
P (ZJ); e 6 q} in P (J).

Corollary 1. Let J be a norm-closed AW -Jordan algebra in the C∗-algebra
A and e ∈ J a projection. Then

f ∈ P (ZeJe)⇒ f = zJ(f)e,

so the mapping
ZJ 3 z 7→ ze ∈ ZeJe

is a surjective Jordan homomorphism, whose kernel is ZJ(1J − zJ(e)).

Proof. Let f ∈ P (ZeJe). Since f 6 e, we have f 6 zJ(f)e. For every x ∈ J ,

(zJ(f)e− f)xf = zJ(f)(exe)f − fxf = zJ(f)f(exe)f − fxf = fxf − fxf = 0

so for all e1, . . . , en ∈ P (J), n > 0,

(zJ(f)e− f)(1J − 2en) · · · (1J − 2e1)f(1J − 2e1) · · · (1J − 2en) = 0,

(1J − 2en) · · · (1J − 2e1)f(1J − 2e1) · · · (1J − 2en) 6 1J − (zJ(f)e− f).
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Using (1) we get zJ(f) 6 1J − (zJ(f)e− f), zJ(f)(zJ(f)e− f) = 0 whence
f = zJ(f)e.

By 9.23.(2) and 9.23.(1), ZeJe is an AW -Jordan subalgebra of J and hence,
by Proposition 1/9.4, it is the norm-closed linear span of its projectios. Using the
above part of the proof it follows that

Φ : ZJ 3 z 7→ ze ∈ ZeJe

is a surjective Jordan homomorphism. By 9.23.(1), ZJ is an AW -Jordan subalge-
bra of J , so, for each z ∈ ZJ we have sJ

(
z2
)
∈ ZJ and

z ∈ Ker Φ⇔ ze = 0⇔ sJ
(
z2
)
e = 0⇔ sJ

(
z2
)
6 1J − zJ(e).

Thus, Ker Φ = ZJ(1J − zJ(e)).

Let J be a norm-closed AW -Jordan algebra. A projection e ∈ J is called
abelian if eJe is comutative, that is if eJe = ZeJe.

By the above corollary, e ∈ P (J) is abelian if and only if

f ∈ P (J), f 6 e ⇒ f = zJ(f)e.

Clearly, if e ∈ P (J) is abelian and f ∈ P (J), f 6 e, then also f is abelian.

Corollary 2. Let J be a norm-closed AW -Jordan algebra in the C∗-algebra
A and e1, e2 be orthogonal projections in J . Then

zJ(e1 + e2) 6 zJ(e1) + zJ(e2)

and, if e1 + e2 is abelian,

zJ(e1 + e2) = zJ(e1) + zJ(e2).

Proof. Let e = e1 + e2 ∈ P (J). Since

e1 6 zJ(e1) 6 zJ(e1) + zJ(e2)− zJ(e1)zJ(e2) ∈ P (ZJ),

e2 6 zJ(e2) 6 zJ(e1) + zJ(e2)− zJ(e1)zJ(e2) ∈ P (ZJ),

we have

e 6 zJ(e1) + zJ(e2)− zJ(e1)zJ(e2) ∈ P (ZJ),

zJ(e) 6 zJ(e1) + zJ(e2)− zJ(e1)zJ(e2) 6 zJ(e1) + zJ(e2).

Now assume that e is abelian. By Corollary 1, the mapping ZJzJ(e) 3
z 7→ ze ∈ eJe is a Jordan isomorphism, hence there are orthogonal projections
p1, p2 ∈ ZJzJ(e) such that e1 = p1e and e2 = p2e. Then zJ(e1) 6 p1, zJ(e2) 6 p2

and p1 + p2 ∈ ZJzJ(e), so that zJ(e1) + zJ(e2) 6 p1 + p2 6 zJ(e).
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9.29. We now prove some weak versions of Proposition 2/8.6 for AW ∗-
algebras.

Let A be an AW ∗-algebra. Then the center of the Jordan algebra Ah is the
hermitian part of the center ZA of A. For every x ∈ A we define its central support
in A by

zA(x) = zAh(xx∗) = zAh(x∗x) =
∧

p∈P (ZA), xp=x

p.

Using 9.28.(1), it is easy to check that for any x ∈ A

(1) zA(x) =
∨
{u∗lA(x)u; u ∈ A, unitary} =

∨
{u∗rA(x)u; u ∈ A, unitary}.

Proposition. Let A be an AW ∗-algebra, {pι}ι∈I a family of mutually or-
thogonal central projections of A and {xι}ι∈I ⊂ A such that

zA(xι) 6 pι for all ι ∈ I and sup
ι∈I
‖xι‖ < +∞.

Then there exists a unique x ∈ A such that

zA(x) 6
∑
ι∈I

pι and xpι = xι for all ι ∈ I.

Proof. We first prove the existence of x. Without restricting the generality,
we may assume that xι > 0 for all ι ∈ I.

By 9.24.(1), the set

B = ({xι; ι ∈ I}′ ∩A)′ ∩A ⊃ {xι; ι ∈ I} ∪ ZA

is an AW ∗-subalgebra of A. Since {xι}′ ∩A ⊃ {xι}, we have that B ⊂ {xι}′ ∩A,
so B′ ∩A ⊃ B, hence B is commutative. Consequently, by Proposition 1/9.26, B
is monotone complete. Let x be the least upper bound in Bh of the norm-bounded
upward directed family {∑

ι∈F
xι

}
F⊂I finite

⊂ B+.

By the last remark in 9.22, sA(x) = sB(x) is the least upper bound in P (B), hence
also in P (A), of the family{

sB

(∑
ι∈F

xι

)
= sA

(∑
ι∈F

xι

)}
F⊂I finite

.

Since sA

( ∑
ι∈F

xι

)
6
∑
ι∈F

pι 6
∑
ι∈I

pι, it follows that sA(x) 6
∑
ι∈I

pι, hence

zA(x) 6
∑
ι∈F

pι.
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On the other hand, by Lemma 2/9.10, for each ι ∈ I, the element pιxpι is

the least upper bound in Bh of
{ ∑
κ∈F

pιxκpι

}
F⊂I finite

= {0, xι} so that

xpι = pιxpι = xι; ι ∈ I.

We now prove the uniqueness of x. If both x, x′ ∈ A satisfy the required
conditions, then a = (x − x′)∗(x − x′) ∈ A, a > 0, and zA(a) 6

∑
ι∈I

pι, apι = 0,

(ι ∈ I). We shall prove that a = 0.
By 9.24.(1), the set C = ({a}′ ∩ A)′ ∩ A ⊃ {a} ∪ ZA is an AW ∗-subalgebra

of A. As in the first part of the proof we see that C is comutative and hence
monotone complete. Also, using the last remark in 9.22 and Lemma 2/9.10, we
succesfuly deduce:∑

ι
pι is the least upper bound of {pι} in P (C),∑

ι
pι is the least least upper bound of

{ ∑
ι∈F

pι

}
F⊂I finite

in Ch,

a
(∑

ι
pι

)
a is the least upper bound of

{ ∑
ι∈F

apιa
}
F

= {0} in Ch,

a
(∑

ι
pι

)
a = 0,

hence a
(∑

ι
pι

)
= 0. Since zA(a) 6

∑
ι
pι, we conclude that a = 0.

Note that if J is a non-closed AW -Jordan algebra and {eι}ι∈I ⊂ P (J), then

{eι; ι ∈ I}′ ∩ J = {x ∈ J ; (1J − 2eι)x(1J − 2eι) = x, ι ∈ I}

is an AW -Jordan subalgebra of J . In particular, if K is a norm-closed AW -Jordan
subalgebra of J , then K ′ ∩ J is an AW -Jordan subalgebrea of J . Using these
remarks, it is easy to extend the above proposition for norm-closed AW -Jordan
algebras.

Corollary. Let A be an AW ∗-algebra and {xι}ι∈I ⊂ A be such that the
projection {lA(xι), rA(xk)}ι,k∈I are mutually orthogonal and sup

ι∈I
‖xι‖ < +∞.

Then there exists a unique x ∈ A such that

lA(x) 6
∑
ι∈I

lA(xι), rA(x) 6
∑
ι∈I

rA(xι), lA(xι)x = xrA(xι) = x.

Proof. Denote pι = lA(xι) + rA(xι) ∈ P (A), ι ∈ I. Then

xιpι = xιrA(xι)pι = xιrA(xι) = xι, pιxι = pιlA(xι)xι = lA(xι)xι = xι,

so

(2) xιpι = pιxι = xι; ι ∈ I.
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By 9.24.(1),
B = {pι; ι ∈ I}′ ∩A ⊃ {xι; ι ∈ I}

is an AW ∗-subalgebra of A and, clearly, {pι; ι ∈ I} is contained in the center of
B. By (2), zB(xι) 6 pι, (ι ∈ I), hence, using the above proposition, there exists a
unique x ∈ B such that

(3) x
∑
ι∈I

pι = x and xpι = xι for all ι ∈ I.

Thus, to complete the proof, we have only to show that x ∈ A satisfies the
conditions required in the statement if and only if x ∈ B and it satisfies (3).

Assume that x ∈ B and (3) holds. Then also the element(∑
ι∈I

lA(xι)
)
x
(∑
ι∈I

rA(xι)
)
∈ B

satisfies (3), so

x =
(∑
ι∈I

lA(xι)
)
x
(∑
ι∈I

rA(xι)
)
.

Therefore, lA(x) 6
∑
ι∈I

lA(xι), rA(x) 6
∑
ι∈I

rA(xι). On the other hand, from (3) it

follows that for all ι ∈ I

lA(xι)x = lA(xι)pιx = lA(xι)xι = xι, xrA(xι) = xpιrA(xι) = xιrA(xι) = xι.

Assume now that x ∈ A satisfies the conditions required in the statement.
Then for each ι ∈ I,

xpι = x
(∑
κ∈I

rA(xκ)
)
pι = xrA(xι) = xι,

pιx = pι

(∑
κ∈I

lA(xκ)
)
x = lA(xι)x = xι,

so x ∈ B and xpι = xι, (ι ∈ I). Since rA(x) 6
∑
ι∈I

pι, also the first condition in (3)

holds.

9.30. Let A be a ∗-algebra. We shall say that e, f ∈ P (A) are equivalent,
and we shall write e ∼ f , if there exists a partial isometry v ∈ A such that v∗v = e
and vv∗ = f . We shall say that e ∈ P (A) is dominated by f ∈ P (A), and we shall
write e ≺ f , if e is equivalent with some f0 ∈ P (A), f0 6 f , that is, if there exists
a partial isometry v ∈ A such that v∗v = e and vv∗ 6 f .

If A is an AW ∗-algebra, then for e, f ∈ P (A) we have

e ∼ f ⇒ zA(e) = zA(f),(1)

e ≺ f ⇒ zA(e) 6 zA(f).(2)

Indeed, (1) is a consequence of (2) and, if v ∈ A is a partial isometry such that
v∗v = e, vv∗ 6 f , then we have succesively (1A − zA(f))vv∗(1A − zA(f)) = 0,
(1A − zA(f))v = 0, e = v∗v = v∗vzA(f) 6 zA(f), zA(e) 6 zA(f).
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Proposition. Let A be an AW ∗-algebra and {eι}ι∈I , {fι}ι∈I be two families
of mutually orthogonal projections in A such that

eι ∼ fι for all ι ∈ I.

If either
{zA(eι) = zA(fι)}ι∈I are mutually orthogonal

or ∑
ι∈I

eι and
∑
ι∈I

fι are orthogonal.

then ∑
ι∈I

eι ∼
∑
ι∈I

fι.

Proof. For each ι ∈ I, let vι ∈ A be a partial isometry such that v∗ι vι = ι
and vιv

∗
ι = ι.

Assume first that pι = zA(eι) = zA(fι) = zA(vι), (ι ∈ I), are mutually
orthogonal. Then, by Proposition 9.29, there exists v ∈ A such that zA(v) 6

∑
ι∈I

pι

and vpι = vι for all ι ∈ I. Again by Proposition 9.29, there is a unique x ∈ A such
that zA(x) 6

∑
ι∈I

pι and xpι = eι for all ι ∈ I. Since both x = v∗v and x =
∑
ι∈I

eι

satisfy these conditions, we get v∗v =
∑
ι∈I

eι. Similary we obtain v∗v =
∑
ι∈I

fι.

Assume now that
∑
ι∈I

eι and
∑
ι∈I

fι are orthogonal. Then, by Corollary 9.29,

there exists w ∈ A such that lA(w) 6
∑
ι∈I

fι, rA(w) 6
∑
ι∈I

eι and fιw = weι = vι

for all ι ∈ I. Let
B = {eι; ι ∈ I}′ ∩A.

By 9.24.(1), B is an AW ∗-subalgebra of A and, clearly, {eι; ι ∈ I} is contained
in the center of B. Using Proposition 9.29, we infer that there is a unique y ∈ B
such that

(3) zB(y) 6
∑
ι∈I

eι and yeι = eι for all ι ∈ I.

Since

w∗weι = w∗vιeι = w∗fιweι = (fιw)∗weι = v∗ι vι = eι; ι ∈ I,
sB(w∗w) = sA(w∗w) = rA(w) 6

∑
ι∈I

eι,

w∗w belongs to B and y = w∗w satisfies (3). Clearly,
∑
ι∈I

eι belongs to B and

y =
∑
ι∈I

eι satisfies (3). Consequently,

w∗w =
∑
ι∈I

eι.
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In particular, w is a partial isometry, so ww∗ is a projection. Since fι = vιv
∗
ι =

weιv
∗
ι = wv∗ι = ww∗fι 6 ww∗, (ι ∈ I), we get∑

ι∈I
fι 6 ww∗ = lA(w) 6

∑
ι∈I

fι.

As a consequence, for abelian projections we prove the converse implications
in (1) and (2):

Corollary 1. Let A be an AW ∗-algebra, e an abelian projection in A and
f an arbitrary projection in A. Then

zA(e) 6 zA(f)⇒ e ≺ f

and, if f is also abelian,
zA(e) = zA(f)⇒ e ∼ f.

Proof. Assume that zA(e) 6 zA(f). Let {(eι, fι)}ι∈I be a maximal family of
pairs of projections in A such that

(4)

{eι} are mutually orthogonal;

{fι} are mutually orthogonal;

e > eι ∼ fι 6 f, for all ι ∈ I.

By Corollary 2/9.29, {zA(eι)} are mutually orthogonal so, by the above proposi-
tion, e >

∑
ι
eι ∼

∑
ι
fι 6 f . In order to prove that e ≺ f we have only to show

that e0 = e−
∑
ι
eι = 0.

Suppose that e0 6= 0. Then, with f0 = f −
∑
ι
fι, we have

(5) e0Af0 6= {0}.

Indeed, using 9.29.(1), from e0Af0 = {0} we should infer that u∗e0uf0 = 0, i.e.
u∗e0u 6 1A−f0 for all unitaries u ∈ A, hence zA(e0) 6 1A−f0, f0 6 1A−zA(e0),
zA(f0) 6 1A− zA(e0) and zA(e0) 6 1A− zA(f0). But, by Corollary 2/9.29 and by
(1),

zA(e0) = zA(e)− zA

(∑
ι

eι

)
6 zA(f)− zA

(∑
ι

fι

)
6 zA(f0),

so we should have zA(e0) = 0, in contradiction with e0 6= 0.
Now, by (5), there is 0 6= x ∈ e0Af0. Since 0 6= x∗x ∈ f0Af0, using 9.3.(2)

and the remark preceding Proposition 3/9.4, we get a projection 0 6= f1 6 f0,
commuting with x∗x, and λ > 0, such that x∗xf1 > λf1. Then x∗xf1 > 0 is
invertible in f1Af1, so there exists a ∈ f1Af1, a > 0, such that x∗xa = ax∗x = f1.
Consider v = xa1/2. Then v∗v = a1/2x∗xa1/2 = x∗xa = f1 6 f0, in particular v is
a partial isometry. Since vv∗ = xax∗ ∈ e0Ae0, it follows that e1 = vv∗ 6 e0.
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Therefore, we have found a pair (e1, f1) of non-zero equivalent projections
such that e1 6 e0 = e −

∑
ι
eι and f1 6 f0 = f −

∑
ι
fι. Hence (4) holds for

{(eι, fι)}ι ∪ {(e1, f1)} instead of {(eι, fι)}ι, in contradiction with the maximality
of {(eι, fι)}ι.

We conclude that e0 = 0.
Assume now that f is also abelian and zA(e) = zA(f). Then, by the first part

of the proof, there is a projection p 6 f such that e ∼ p. Using Corollary 2/9.28
and (1) we obtain

zA(f − p) = zA(f)− zA(p) = zA(e)− zA(e) = 0,

so p = f and e ∼ f .

Finally, we prove a decomposition result for AW ∗-algebras:

Corollary 2. Let A be an AW ∗-algebra. There exists a sequence {pn}n>1

of mutually orthogonal central projections of A such that
∞∑
n=1

pn = 1, Ap1 = ZAp1

and, for each n > 2, the projection pn is the sum of n mutually orthogonal equiv-
alent projections.

Proof. Let {qι}ι∈I be a maximal family of mutually orthogonal central pro-
jections in A such that, for each ι ∈ I, either Aqι = ZAqι, or qι is the sum of
a finite number nι > 2 of mutually orthogonal equivalent projections. We prove
that

∑
ι∈I

qι = 1A.

Assume first that q0 = 1A −
∑
ι∈I

qι 6= 0 and that q0 majorizes some abelian

projection e0 6= 0. Let {eκ}κ∈K be a maximal family of mutually orthogonal
equivalent projections in A, containing e0. Then each eκ is abelian, because e0

is abelian, and, if vκ ∈ A is a partial isometry with v∗κvκ = eκ, vκv
∗
κ = e0, then

the mapping e0Ae0 3 x 7→ v∗κxvκ ∈ eκAeκ is a ∗-isomorphism. By (1) we have
eκ 6 zA(eκ) = zA(e0) 6 q0, (κ ∈ K), so

∑
κ∈K

eκ 6 zA(e0). By the maximality of

{eκ} and by Corollary 1, we cannot have zA

(
zA(e0)−

∑
κ
eκ

)
= zA(e0), hence

q1 = zA(e0)− zA

(
zA(e0)−

∑
κ

eκ

)
6 q0

is a non-zero central projection. We have q1

(
zA(e0) −

∑
κ
eκ

)
= 0, q1 =

∑
κ
q1eκ

and the projections {q1eκ} are mutually orthogonal, equivalent and abelian. If K
is finite, this is in contradiction with the maximality of {qι}. If K is infinite and
K = K1 ∪K2, K1 ∩K2 = ∅, card(K1) =card(K2), then

q1 =
∑
κ∈K1

q1eκ +
∑
κ∈K2

q1eκ
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and, by the above proposition,
∑
κ∈K1

q1eκ ∼
∑
κ∈K2

q1eκ, which is again in contradic-

tion with the maximality of {qι}.
Assume now that q0 6= 0 and that q0 does not majorize any non-zero abelian

projection. Let {(fλ, gλ)}λ∈L be a maximal family of pairs of projections in A
such that {fλ, gµ}λ,µ∈L are mutually orthogonal and fλ 6 q0, gλ 6 q0, fλ ∼ gλ
for all λ ∈ L. Suppose that

h0 = q0 −
∑
λ

fλ −
∑
λ

gλ 6= 0.

Since h0 is not abelian, by Theorem 4.18 there exists 0 6= x ∈ h0Ah0 such that
x2 = 0. By 9.3.(2) and by the remark preceding Proposition 3/9.4, there is a
projection 0 6= f0 6 h0, commuting with x∗x, such that x∗xf0 > 0 is invertible in
f0Af0. If a > 0 is the inverse of x∗xf0 in f0Af0 and v = xa1/2, then

v∗v = a1/2x∗xa1/2 = a1/2(x∗xf0)a1/2 = f0 6 h0

hence

g0 = vv∗ = xax∗ ∈ h0Ah0 is a projection, vv∗ = g0 6 h0.

Moreover,

f0g0 = (a1/2x∗xa1/2)(xax∗) = (ax∗x)(xax∗) = ax∗x2ax∗ = 0.

Thus, we have found a pair (f0, g0) of non-zero orthogonal equivalent projections,
majorized by h0, in contradiction with the maximality of {(fλ, gλ)}λ∈L. Therefore
h0 = 0, that is

q0 =
∑
λ∈L

fλ +
∑
λ∈L

gλ,

and, by the above proposition,
∑
λ∈L

fλ ∼
∑
λ∈L

gλ, in contradiction with the maxi-

mality of {qι}.
We conclude that q0 = 0, that is

∑
ι∈I

qι = 1A. Putting

p1 =
∑

Aqι=ZAqι

qι and pn =
∑
nι=n

qι for n > 2,

and using Proposition 9.29 and the above proposition, it is easy to see that the
sequence {pn}n>1 satisfies the conditions required in the statement.

9.31. In this section we prove a structure theorem for Jordan ∗-isomorphisms
between AW ∗-algebras.
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Lemma. Let A be a unital C∗-algebra such that for some integer n > 2 the
unit element 1A is the sum of n mutually orthogonal equivalent projections. Then,
for every C∗-algebra B and every Jordan ∗-homomorphism Φ : A→ B, there exists
a central projection q in C∗(Φ(A)) such that the mapping

A 3 s 7→ Φ(x)q ∈ B

is a ∗-homomorphism and the mapping

A 3 s 7→ Φ(x)− Φ(x)q ∈ B

is a ∗-antihomomorphism.

Proof. Let e1, . . . , en ∈ A be mutually orthogonal equivalent projections in

A with
n∑
j=1

ej = 1A and let v1, . . . , vn ∈ A be partial isometries such that

v∗j vj = en, vjv
∗
j = ej ; 1 6 j 6 n.

Clearly,
ejk = vjv

∗
k; 1 6 j, k 6 n

are matrix units in the sense of 2.12:

ejkelm = δklejm, e
∗
jk = ekj and

n∑
j=1

ejj =

n∑
j=1

ej = 1A.

The set
D = {ejk; 1 6 j, k 6 n}′ ∩A

is a C∗-subalgebra of A and every x ∈ A can be uniquely written under the form

(1) x =

n∑
j,k=1

djkejk; djk ∈ D,

namely

djk =

n∑
l=1

eljxekl.

By 6.6.(7), we have

(2) Φ
( n∑
j,k=1

djkejk

)
=

n∑
j,k=1

Φ(djk)Φ(ejk); djk ∈ D.

Define, for j 6= k,

gjk = Φ(ejj)Φ(ejk)Φ(ekk), hjk = Φ(ejj)Φ(ekj)Φ(ekk).
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Since ejk = ejjejkekk + ekkejkejj , (j 6= k), by 6.6.(3) we get

(3) Φ(ejk) = gjk + hkj ; j 6= k.

Using 6.6.(7), for j 6= k we obtain

Φ(ejj)gjk = Φ(ejj)Φ(ejj)Φ(ejk)Φ(ekk) = Φ(ejj)Φ(ejk)Φ(ekk) = gjk,

Φ(ejj)hkj = Φ(ejj)Φ(ekk)Φ(ejk)Φ(ejj) = 0,

and similarly
gjkΦ(ekk) = gjk, hkjΦ(ekk) = 0.

Using (3) it follows that

(4) gjk = Φ(ejj)Φ(ejk) = Φ(ejk)Φ(ekk); j 6= k.

By similar computations we get

(5) hjk = Φ(ejj)Φ(ekj) = Φ(ekj)Φ(ekk); j 6= k.

Now, for j 6= k 6= m 6= j, using (4) and 6.6.(7), we obtain

gjkgkm = Φ(ejj)Φ(ejk)Φ(ekk)Φ(ekm) = Φ(ejj)Φ(ejk)Φ(ekm)

= Φ(ejj)Φ(ejk)Φ(ekm) + Φ(ejj)Φ(ekm)Φ(ejk)

= Φ(ejj)Φ(ejkekm + ekmejk) = Φ(ejj)Φ(ejm) = gjm.

On the other hand, for j 6= k 6= l 6= m, using 6.6.(7) we obtain gjkglm = 0. Hence

(6) gjkglm =

{
gjm if j 6= k = l 6= m 6= j,
0 if j 6= k 6= l 6= m.

Similarly

(7) hjkhlm =

{
hjm if j 6= k = l 6= m 6= j,
0 if j 6= k 6= l 6= m.

For j 6= k 6= l 6= j, by (6) we have gjkgkj = gjkgklglj = gjlglj , so the element

gjj = gjkgkj

does not depend on k 6= j. Similarly, by (7), the element

hjj = hjkhkj

does not depend on k 6= j.
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For j 6= k, by (4) and by 6.6.(2), we have

gjkgkjgjk = Φ(ejj)Φ(ejk)Φ(ekj)Φ(ejj)Φ(ejj)(ejk)

= Φ(ejj)Φ(ejk)Φ(ekj)Φ(ejk)Φ(ekk)

= Φ(ejj)Φ(ejkekjejk)Φ(ekk) = gjk,

and, by (5) and by 6.6.(2),
hjkhkjhjk = hjk.

Using (6), (7) and the above two equalities, it is easy to check that {gjk} and
{hjk} are matrix unit systems, i.e.:

(8) gjkglm=δklgjm, g
∗
jk = gkj ; hjkhlm=δklhjm, h

∗
jk = hkj ; 1 6 j, k, l,m 6 n.

We prove that

(9) gjkhlm = 0; 1 6 j, k, l,m 6 n.

Indeed, if k 6= l, then (9) is a consequence of (4), (5) and 6.6.(7). If j 6= k = l,
then, by (8), (4), (5) and 6.6.(2), we have

gjkhkm = gjkhkjhjm = Φ(ejk)Φ(ekk)Φ(ekk)Φ(ejk)hjm = Φ(ejkekkejk)hjm = 0.

Finally, if j = k = l, then, for some i 6= j, using the above computation, we get
gjjgjm = gjigijgjm = 0.

We remark that (3) holds also for j = k:

(10) Φ(ejk) = gjk + hkj ; 1 6 j, k 6 n.

Indeed, for each 1 6 j 6 n and some i 6= j, using 6.6.(2) and (4), (5), we obtain

Φ(ejj) = Φ(ejj)Φ(ejj + eii)Φ(ejj) = Φ(ejj)Φ(ejieij + eijeji)Φ(ejj)

= Φ(ejj)Φ(eji)Φ(eij)Φ(ejj) + Φ(ejj)Φ(eij)Φ(eji)Φ(ejj)

= gjigij + hjihij = gjj + hjj .

Let a, b ∈ D and i 6 j 6 n. Choose some k 6= j. Since

abejj + baekk = (aejk + bekj)
2,

using 6.6.(7) we infer that

Φ(ab)Φ(ejj) + Φ(ba)Φ(ekk) = (Φ(a)Φ(ejk) + Φ(b)Φ(ekj))
2

= Φ(a)Φ(b)Φ(ejk)Φ(ekj) + Φ(b)Φ(a)Φ(ekj)Φ(ejk).

Multiplying on the left and on the right by Φ(ejj) and using (4) and (5), we get

Φ(ab)Φ(ejj) = Φ(a)Φ(b)gjkgkj + Φ(b)Φ(a)hjkhkj + Φ(a)Φ(b)gjj + Φ(b)Φ(a)hjj .
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Multiplying the above equality on the right by gjk and using (8) and (9), we deduce

(11) Φ(ab)gjk = Φ(a)Φ(b)gjk; Φ(ab)hjk = Φ(b)Φ(a)hjk; a, b ∈ D, 1 6 j, k 6 n.

Consider

q =

n∑
j=1

gjj .

Then, by (10),

Φ(1A)− q =

n∑
j=1

(Φ(ejj)− gjj) =

n∑
j=1

hjj .

Using (8) and (9), it is easy to see that q and Φ(1A)−q are orthogonal projections
in C∗(Φ(A)).

By 6.6.(6), q commutes with every element of Φ(D). On the other hand, by
(10) and (9),

qΦ(ejk) = q(gjk + hkj) = gjk = (gjk + hkj)q = Φ(ejk)q

for all 1 6 j, k 6 n, so q commutes also with the elements Φ(ejk), 1 6 j, k 6 n.
Since each x ∈ A is of the form (1) and since (2) holds it follows that q is a central
projection of C∗(Φ(A)). By 6.6.(7), Φ(1A) is the unit element of C∗(Φ(A)), so
also Φ(1A)− q is a central projection of C∗(Φ(A)).

Finally, since each x ∈ A can be written in the form (1), using 6.6.(7) and
(10), (8), (9) and (11), it is easy to check that

A 3 x 7→ Φ(x)q ∈ B

is a ∗-homomorphism and

A 3 x 7→ Φ(x)(Φ(1A)− q) = Φ(x)− Φ(x)q ∈ B

is a ∗-antihomomorphism.

Theorem. Let A be an AW ∗-algebra, B a C∗-algebra and Φ : A → B a
linear bijection. The following statements are equivalent:

(i) Φ is a Jordan ∗-isomorphism;
(ii) B is an AW ∗-algebra and there exist central projections p in A and q in

B such that Φ|Ap is a ∗-isomorphism of Ap onto Bq and Φ|A(1A − p) is a ∗-
antiisomorphism of A(1A − p) onto B(1B − q).

Proof. Clearly, (ii) ⇒ (i). Assume that (i) holds. Since Φ|Ah is a Jordan
isomorphism of Ah onto Bh, Bh is an AW ∗-Jordan algebra in B, so B is an AW ∗-
algebra. Let {pn}n>1 be a sequence of mutually orthogonal central projections in
A satisfying the conditions form Corollary 2/9.30. Consider

qn = Φ(pn); n > 1.
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Clearly,
Ap1 3 x 7→ Φ(x) ∈ Bq1

is simultaneously a ∗-isomorphism and a ∗-antiisomorphism.
Let n 6 2. By the above lemma, there exists a central projection q1n 6 qn

of B such that
Aqn 3 x 7→ Φ(x)q1n ∈ Bqn

is a ∗-homomorphism and

Apn 3 x 7→ Φ(x)(qn − q1n) ∈ Bqn

is a ∗-antihomomorphism. Then p1n = Φ−1(q1n) is a central projection of A,

Ap1n 3 x 7→ Φ(x) ∈ Bq1n

is a ∗-isomorphism and

A(pn − p1n) 3 x 7→ Φ(x) ∈ B(qn − q1n)

is a ∗-antiisomorphism.
Putting

p = p1 +

∞∑
n=2

p1n,

and using Proposition 9.29, it is easy to check that (ii) holds.

By Proposition 1/7.16 and Proposition 1/8.6, every W ∗-algebra is an AW ∗-
algebra, so the above theorem holds for A and B W ∗-algebras.

Corollary. Let A,B be C∗-algebras and Φ : A → B a linear bijection.
Then the following statements are equivalent:

(i) Φ is a Jordan ∗-isomorphism;
(ii) there are norm-closed two-sided ideals M of A and N of B such that

Φ(M) = N and Φ(x∗) = Φ(x)∗, x ∈ A,
Φ(xy) = Φ(x) Φ(y) for x, y ∈ A, x or y or M,

A/M 3 x/M 7→ Φ(x)/N ∈ B/N is a ∗-antiisomorphism.

Proof. (ii) ⇒ (i). Let x ∈ A. Since A 3 z 7→ Φ(z)/N ∈ B/N is a ∗-
antihomomorphism, we have Φ(x2)− Φ(x)2 ∈ N . Hence there exists y ∈ M such
that Φ(x2)− Φ(x)2 = Φ(y) and we conclude

Φ(y)∗Φ(y) = Φ(y∗)Φ(y) = Φ(y∗)Φ(x2)− Φ(y∗)Φ(x)Φ(x)

= Φ(y∗x2)− Φ(y∗x)Φ(x) = Φ(y∗x2)− Φ(y∗x2) = 0,

so Φ(y) = 0, that is Φ(x2) = Φ(x)2.
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(i)⇒ (ii). Recall that, by Corollary 6/8.4, A can be identified with a w-dense
C∗-subalgebra of the W ∗-algebra A∗∗ and B can be identified with a w-dense C∗-
subalgebra of the W ∗-algebra B∗∗. By Proposition 6.6, Φ is bounded so, with
the above identifications, the bitransposed map Ψ =tt Φ : A∗∗ → B∗∗ is a normal
linear extension of Φ. Since Φ is bijective, also Ψ is bijective and, since A is w-dense
in A∗∗, Φ is a Jordan ∗-homomorphism. Hence Ψ is a Jordan ∗-isomorphism.

By the above theorem, there are central projections p of A∗∗ and q of B∗∗

such that Ψ|A∗∗p is a ∗-isomorphism of A∗∗p onto B∗∗q and Ψ|A∗∗(1 − p) is a
∗-antiisomorphism of A∗∗(1− p) onto B∗∗(1− q).

Then

(12) M = A ∩A∗∗p and N = B ∩B∗∗q

are norm-closed two-sided ideals of A and B, respectively, and Φ(M) = Ψ(M) =
N . If x ∈ A and y ∈M , then, using 6.6.(7), we obtain

Φ(xy) = Ψ(xpy) = Ψ(xp)Ψ(y) = Ψ(x)Ψ(p)Ψ(y) = Ψ(x)Ψ(y) = Φ(x)Φ(y).

Similarly, if x ∈M and y ∈ A, then Φ(xy) = Φ(x)Φ(y).
Thus, in order to complete the proof we have only to show that the map

Φ̃ : A/M → B/N , induced by Φ, is a ∗-antiisomorphism. By (12), we may
consider two well defined ∗-isomorphisms.

π1 : A/M 3 x/M 7→ x(1− p) ∈ A(1− p),
π2 : B/N 3 y/N 7→ y(1− q) ∈ B(1− q).

Using 6.6.(7), for all x ∈ A we obtain

Φ̃(x/M) = Φ(x)/N = π−1
2 (Φ(x)(1− q)) = π−1

2 (Ψ(x(1− p)))
= π−1

2 ◦ [Ψ|A(1− p)] ◦ π1(x/M).

Hence Φ̃ = π−1
2 ◦ [Ψ|A(1− p)] ◦ π1 is a ∗-antiisomorphism.

In particular, if A is simple, that is the only closed two-sided ideals of A are
{0} and A, then every Jordan ∗-homomorphism of A onto another C∗-algebra is
either a ∗-isomorphism or a ∗-antiisomorphism.

9.32. We now interrupt the treatment of AW -Jordan and AW ∗-algebras in
order to complete the results given in 6.7 and 6.8.

We first consider the case of Jordan algebras. Here some preliminaries on
the second dual of a Jordan algebra are necessary.

Let J be a Jordan algebra in the C∗-algebra A. By Corollary 6/8.4, J is a
Jordan algebra in the W ∗-algebra A∗∗ so, by the remarks made at the beginning
of 9.17, the w-closure J

w
of J in A is a unital Jordan algebra in A∗∗.

Let J∗ be the dual space of the real normed space J and ϕ ∈ J∗. By the
Hahn-Banach theorem, there exists ψ ∈ A∗ with ψ|J = ϕ. Denote by G(ϕ) the
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restriction of ψ to J
w ⊂ A∗∗. Since J is w-dense in J

w
, G(ϕ) is the unique

w-continuous real linear functional on J
w

satisfying G(ϕ)|J = ϕ. Using Lem-
ma 1/9.17, it is easy to see that ‖G(ϕ)‖ = ‖ϕ‖.

For each x ∈ Jw we define an element F (x) of the second dual J∗∗ of the

normed space J by F (x)(ϕ) = G(ϕ)(x), (ϕ ∈ J∗). Clearly, F : J
w → J∗∗ is

a real linear map, which is (w, σ(J∗∗, J∗))-continuous and is an extension of the
canonical imbedding of J into J∗∗. We have

‖F (x) = sup{|G(ϕ)(x)|; ‖ϕ‖ 6 1} 6 sup{‖G(ϕ)‖ ‖x‖; ‖ϕ‖ 6 1} 6 ‖x‖

for all x ∈ Jw. On the other hand, if x ∈ Jw and ε > 0, then there exists ψ ∈ A∗∗,
ψ = ψ∗, ‖ψ‖ 6 1, such that ‖x‖ 6 ψ(x) + ε so that, denoting by ϕ ∈ J∗ the
restriction of ψ to J , we get

‖x‖ 6 ψ(x) + ε = G(ϕ)(x) + ε = F (x)(ϕ) + ε 6 ‖F (x)‖+ ε.

Therefore F is isometric. Using the w-compactness of the closed unital ball of
J
w

, the (w, σ(J∗∗, J∗))-continuity of F and Theorem 7.4, we infer that F (J
w

) is

σ(J∗∗, J∗))-closed. Finally, if ϕ ∈ J∗ vanishes on F (J
w

), then G(ϕ) vanishes of

J
w

so ϕ vanishes on J , that is ϕ = 0. By the Hahn-Banach theorem it follows
that F (J

w
) is σ(J∗∗, J∗))-dense in J∗∗, so F (J

w
) = J∗∗.

We conclude that the canonical imbedding of J into J∗∗ can be extended to
a (w, σ(J∗∗, J∗))-continuous linear isometry F = FJ of J

w
onto J∗∗.

It follows that if J ⊂ A, K ⊂ B are norm-closed Jordan algebras, J
w ⊂ A∗∗,

K
w ⊂ B∗∗ are their w-closures and T : J → K is a bounded real linear mapping,

then
S = F−1

K ◦tt T ◦ FJ : J
w → K

w

is a w-continuous real linear extension of T . Moreover, if T is bijective, then S is
bijective and, if T is isometric, then S is isometric.

Theorem 1. Let J be a norm-closed Jordan algebra in the C∗-algebra A,
K be a norm-closed Jordan algebra in the C∗-algebra B and T : J → K be a real
linear bijection. Then the following statements are equivalent:

(i) T is an isometry;

(ii) there exist a unitary central element v ∈ Kw ⊂ B, vK = K, and a Jordan
isomorphism Φ : J → K such that

T (x) = vΦ(x); x ∈ J.

Proof. (ii) ⇒ (i). By Proposition 6.6, ‖Φ‖ 6 1 and ‖Φ−1‖ 6 1, so Φ is an
isometry. Thus also T is an isometry.

(i) ⇒ (ii). By the remarks preceding the statement, T can be extended to a

w-continuous linear isometry S of J
w

onto K
w

. Since J
w

is unital, by Theorem 6.7
there exist a unitary central element v of K

w
and a Jordan isomorphism Ψ of J

w

onto K
w

such that

(1) S(x) = vΨ(x); x ∈ Jw.
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Let b ∈ K+ be arbitrary. Since b1/2 ∈ K, there exists x ∈ J such that
T (x) = b1/2 and, using (1) we obtain

vb = vT (x)2 = vS(x)2 = vΨ(x)2 = vΨ(x2) = S(x2) = T (x2) ∈ K.

Therefore, we succesively get

vK = v(K+ −K−) ⊂ K, vK ⊂ K = v(vK) ⊂ vK, vK = K

and, consequently,

Ψ(x) = vS(x) = vT (x) ∈ K; x ∈ J,
Ψ−1(y) = S−1(vy) = T−1(vy) ∈ J ; y ∈ K,

so that Φ = Ψ|J is a Jordan isomorphism of J onto K and, by (1), T (x) = vΦ(x)
for all x ∈ J .

Combining the above theorem with Proposition 6.5 we get the following
extension of Corollary 6.7:

Corollary 1. Let J be a norm-closed Jordan algebra in the C∗-algebra
A and K be a norm-closed Jordan algebra in the C∗-algebra B. The following
statements are equivalent:

(i) there exists a Jordan isomorphism of J onto K;
(ii) there exists an affine homeomorphism of Q(J) (with the J-topology) onto

Q(K) (with the K-topology);
(iii) there exists a real linear isometry of J onto K.

We now consider the case of C∗-algebras.

Theorem 2. Let A,B be C∗-algebras and T : A → B be a linear bijection.
The following statements are equivalent:

(i) T is an isometry;
(ii) there exist a unitary v ∈ B∗∗ with vB = Bv = B (v is “multiplier” of B)

and a Jordan ∗-isomorphism Φ : A→ B such that

T (x) = vΦ(x); x ∈ A.

Proof. (ii) ⇒ (i). By Proposition 6.6, Φ is bounded, so it can be extended
to a w-continuous linear bijection Ψ : A∗∗ → B∗∗. Since A is w-dense in A∗∗, Ψ
is a Jordan ∗-isomorphism. By Theorem 6.8, Ψ is an isometry, so Ψ is also an
isometry. Consequently, T is an isometry.

(i) ⇒ (ii). Since T can be extended to a w-continuous linear isometry S of
A∗∗ onto B∗∗ and A∗∗ is unital, by Theorem 6.8 there exits a unitary v ∈ B∗∗ and
a Jordan ∗-isomorphism Ψ : A∗∗ → B∗∗ such that

(2) S(x) = vΨ(x); x ∈ A.
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Using (2), for every a ∈ A+ we obtain

Ψ(a) = Ψ(a1/2)Ψ(a1/2) = Ψ(a1/2)v∗S(a1/2)

= S(a1/2)∗S(a1/2) = T (a1/2)∗T (a1/2) ∈ B.

Since A is the linear span of A+, it follows that Ψ(A) ⊂ B.
Now let b ∈ B+. There is x ∈ A with b1/2 = T (x) = S(x) = vΨ(x) =

Ψ(x∗)v∗, so b = Ψ(x∗)v∗vΨ(x) = Ψ(x∗)Ψ(x) = v∗S(x∗)Ψ(x). Since Ψ(A) ⊂ B,
we have S(x∗)Ψ(x) = T (x∗)Ψ(x) ∈ B, so there is y ∈ A with T (y) = S(x∗)Ψ(x).
Hence

b = v∗T (y) = v∗S(y) = Ψ(y) ∈ Ψ(A).

Since B is the linear span of B+, it follows that B ⊂ Ψ(A), hence Ψ(A) = B.
We conclude that Φ = Ψ|A is a Jordan ∗-isomorphism of A onto B and, by

(2), T (x) = vΦ(x) for all x ∈ A. Note that vB = vΦ(A) = T (A) = B. Since v is
unitary, it follows further that also v∗B = v∗(vB) = B, so Bv = B.

Corollary 2. Let A,B be C∗-algebras and Φ : A→ B be a linear bijection.
The following statements are equivalent:

(i) Φ is a Jordan ∗-isomorphism;
(ii) Φ is a positive isometry;
(iii) Φ is an order isomorphism and Φ maps some increasing approximate unit

for A onto an increasing approximate unit for B.

Proof. (i)⇒ (iii). Cleary, Φ is an order isomorphism. By the above theorem,
Φ is an isometry so

Φ({a ∈ A+; ‖a‖ < 1}) = {b ∈ B+; ‖b‖ < 1}.

By Theorem 3.2, {a ∈ A+; ‖a‖ < 1} is an increasing approximate unit for A and
{b ∈ B+; ‖b‖ < 1} is an increasing approximate unit for B.

(iii) ⇒ (ii). By Proposition 5.2, Φ is bounded, so it can be extended to a
w-continuous linear bijection Ψ : A∗∗ → B∗∗. Since A is w-dense in A∗∗ and B in
B∗∗, Ψ is an order isomorphism.

Let {uι} be an increasing approximate unit for A such that {Φ(uι)} is an
increasing approximate unit for B. By the arguments used in the proof of Propo-
sition 1/8.7, we have w-lim

ι
uι = 1 and w-lim

ι
Ψ(uι) = w-lim

ι
Φ(uι) = 1, so, by the

w-continuity of Ψ, Ψ(1) = 1. Using Proposition 6.4 we deduce that ‖Ψ‖ = 1 and
‖Ψ−1‖ = 1, so that Ψ is an isometry. Therefore Φ is an isometry.

(ii) ⇒ (i). By the above theorem, there exists a unitary v ∈ B∗∗, vB = B,
and a Jordan ∗-isomorphism Ψ : A→ B such that

(3) Φ(x) = vΨ(x); x ∈ A.

If b ∈ B+, then Ψ−1(b) ∈ A+, so vb = Φ(Ψ−1(b)) ∈ B+. Hence vB+ ⊂ B+, so
v(B∗∗)+ ⊂ (B∗∗)+. In particular, v = v · 1 > 0, so v = 1. Using (3) it follows that
Φ = Ψ is a Jordan ∗-isomorphism.
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Remark that another condition equivalent with the above three conditions is
given in Corollary 9.31.

By the above Theorems 1 and 2, each real linear isometry of Ah onto Bh can
be extended (by complexification) to a complex linear isometry of A onto B.

9.33. By the Vigier theorem (8.5), every w-closed Jordan algebra J in the
W ∗-algebra M is monotone complete and the least upper bound of a norm-
bounded upward directed net {xι}ι ⊂ J in J coincides with the limit of {xι}
in the s-topology on M . As we have seen in 9.17, a projection f ∈ J is count-
ably decomposable in J if and only if there exists a w-continuous positive linear
functional ψ on M with f = sJ(ψ). Using this remark it is easy to see that for
every projection e ∈ J there exists a family {eι} of mutually orthogonal countably
decomposable projections in J such that e =

∑
ι
eι.

Now, we prove the following remarkable result:

Theorem (G.K. Pedersen). Let M be a W ∗-algebra and J a norm-closed
AW -Jordan subalgebra of Mh. Then J is w-closed.

Proof. Let e be an arbitrary projection in the w-closure J
w

of J . By the
remarks preceding the statement, there are two families {eι} and {fκ} of mutually

orthogonal countably decomposable projections in J
w

such that e =
∑
ι
eι and

1Jw − e =
∑
κ
fκ. For each ι and κ we have eιfκ = 0 so, by Lemma 2/9.17, there

exists a projection pικ ∈ J such that eι 6 pικ 6 1Jw − fκ. Then

e =
∧
κ

∨
ι

pικ ∈ J.

By Proposition 1/9.4, J
w

is the norm-closed linear span of its projections and,

consequently, J
w

= J .

In particular, every AW ∗-subalgebra of a W ∗-algebra M is a W ∗-subalgebra
of M.

Using 9.23.(4) and the above theorem we obtain:

Corollary 1. Let J be a norm-closed AW -Jordan algebra in the C∗-algebra
A,M a W ∗-algebra and Φ : J →Mh a completely additive Jordan homomorphism.
Then Φ(J) is a w-closed Jordan algebra in M.

The following result corresponds to Corollary 9.17:

Corollary 2. Let J be a monotone complete norm-closed Jordan algebra in
the C∗-algebra A,M a W ∗-algebra and Φ : J →Mh a completely additive Jordan
homomorphism. Then Φ is normal.

Proof. Indeed, by 9.23.(4) and by Corollary 1, there exists a central pro-
jection p of J with Ker Φ = Jp and Φ|J(1J − p) is a Jordan isomorphism of
J(1J − p) onto the w-closed Jordan subalgebra Φ(J) of Mh. Since the mappings
J 3 x 7→ x(1J − p) ∈ J(1J − p) and J(1J − p) 3 y 7→ Φ(y) ∈ Φ(J) ⊂ Mh are
normal, it follows that Φ is normal.
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Let H be a Hilbert space. Recall that (7.11) a von Neumann algebra M ⊂
B(H) is a non-degenerate wo-closed ∗-subalgebra M of B(H) or, equivalently,
M is a unital W ∗-subalgebra of the W ∗-algebra B(H). The above theorem, as
well as Theorem 1/9.17, give in particular several useful characterizations of von
Neumann algebras.

Thus, using the above theorem, Proposition 2/9.25, Proposition 9.22 and
Proposition 2/9.20, we see that for a non-degenerate Gelfand-Năımark algebra
M ⊂ B(H) the following statements are equivalent:

(i) M is a von Neumann algebra;
(ii) every maximal commutative ∗-subalgebra of M is wo-closed;
(iii) M contains the wo-limit of any norm-bounded upward directe family of mu-

tually commuting elements from Mh;
(iv) M contains the support projection of any element of M+ and the least upper

bound in P (B(H)) of any family of mutually orthogonal projections from M .

Moreover, using Theorem 1/9.17, Proposition 2/9.13, Proposition 9.10 and
Proposition 2/9.9, we see that if the Hilbert space H is separable, then the following
statements are also equivalent with the above statements (i)–(iv):

(iii′) M contains the wo-limit of any norm-bounded increasing sequence of mu-
tually commuting elements from Mh;
(iv′) M contains the support projection of any element of M+.

Consider now a locally compact Hausdorff topological space Ω. Then the
C∗-algebra B(Ω) of all bounded complex Borel functions defined on Ω is clearly
sequentially monotone complete and the C∗-subalgebra Baire(Ω) (7.14) is sequen-
tially monotone closed in B(Ω). Recall that (7.14) if Ω has a countable basis of
open sets, then Baire(Ω)= B(Ω).

By Corollary 7.14, for every non-degenerate ∗-representation

π : C0(Ω)→ B(H),

the canonical extension

πBaire : Baire(Ω)→ B(H)

is sequentially normal. Using 9.11.(4′) and the above equivalence (i) ⇔ (iii′), it
follows that if H is separable, then

πBaire(Baire(Ω)) = π(C0(Ω))′′ ⊂ B(H).

In particular, if H is separable Hilbert space, then for every normal operator
x ∈ B(H) we have

{x}′′ = {f(x); f ∈ B(σ(x))}.

Taking into account Proposition 8.14 we obtain:
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Corollary 3. If M is a comutative W ∗-algebra with separable predual M∗,
then there exists a selfadjoint element a ∈M such that

M = {f(a); f ∈ B(σ(a))}.

9.34. It is clear that complete additivity and normality can be defined for
arbitrary positive linear maps of an AW ∗-algebra, respectively of a monotone
complete C∗-algebra, into a W ∗-algebra.

Using Corollary 2/9.33 instead of Corollary 9.17, the arguments used in the
proofs of Lemma 1, Lemma 2/9.18 and Proposition 9.18 can be repeated almost
verbatium in order to prove the next statements:

Lemma 1. Let A be an AW ∗-algebra and Φ : A → B(H) a completely
positive linear mapping, with Stinespring dilation {π, V,K}. Then Φ is completely
additive if and only if π is completely additive.

Lemma 2. Let A be a monotone complete C∗-algebra and Φ : A→ B(H) a
completely positive linear mapping, with Stinespring dilation {π, V,K}. Then Φ is
normal if and only if π is normal.

Proposition. Let A be a monotone complete C∗-algebra and Φ : A→M a
positive linear mapping. Then Φ is completely additive if and only if it is normal.

9.35. It is easy to see that, for a C∗-algebra A, the condition (ii) from
Proposition 1/9.20 with J = Ah is equivalent with each one of the following
conditions:

(Bl) for every S ⊂ A there is a projection e ∈ A with

{x ∈ A; xy = 0 for all y ∈ S} = Ae,

(Br) for every S ⊂ A there is a projection f ∈ A with

{x ∈ A; yx = 0 for all y ∈ S} = fA.

The condition (Bl) and (Br) are purely algebric. Indeed, they can be formu-
lated for any ∗-algebra A, and a ∗-algebra which satisfies these conditions is called
a Baer ∗-algebra. Thus, by Proposition 1/9.20, a C∗-algebra is an AW ∗-algebra if
and only if it is a Baer ∗-algebra.

Note that the algebraic nature of (Bl) and (Br) justifies the name “AW ∗-
algebra” = “algebraic W ∗-algebra”.

Also, the order structure on the projection set P (A) of a C∗-algebra A is
of a purely algebraic character: for e, f ∈ P (A) we have e 6 f if and only if
e = ef = fe. Hence, for any ∗-algebra A we can introduce a natural order relation
on P (A), we can formulate completness conditions for the ordered space P (A) and,
assuming that P (A) is a complete lattice, we can define the notion of a completely
additive positive linear functional on A.

Therefore, the following theorem is an algebric characterization of W ∗-alge-
bras among all C∗-algebras:
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Theorem. (G.K. Pedersen) Let M be a C∗-algebra. Then the following
statements are equivalent:

(i) M is a W ∗-algebra;
(ii) M is an AW ∗-algebra and there exists a sufficient family of completely

additive, positive linear functionals on M .

Proof. (i) ⇒ (ii). By the Vigier theorem (8.5), M is monotone complete,
hence it is an AW ∗-algebra. On the other hand, by 8.4, every w-continuous linear
functional on M is a linear combination of completely additive positive linear
functionals, hence the family of all completely additive positive linear functionals
on M is sufficient.

(ii) ⇒ (i). Let F be a sufficient family of completely additive positive linear
functionals on M . As we have seen in 4.3, the sufficiency of F means that the
direct sum ∗-representation

π =
⊕
ϕ∈F

πϕ : M → B(H)

is injective. By Lemma 1/9.34, each πϕ is completely additive, so π is complete
additive. Now, by Corollary 1/9.33, π(M) is a W ∗-subalgebra of B(H). Since π
is a ∗-isomorphism of M onto π(M), we conclude that M is a W ∗-algebra.

In particular, a C∗-algebra M is a W ∗-algebra if and only if M is monotone
complete and there exists a sufficient family of normal positive linear functional
on M .

9.36. Now, we characterize the commutative W ∗-algebras in terms of their
Gelfand spectrum.

Let Ω be a Stone space. Then, by Proposition 1/9.26, C(Ω) is an AW ∗-
algebra.

A normal positive measure on Ω is a regular positive (finite) Borel measure
µ on Ω such that the following implication holds:

(1) F ⊂ Ω closed and with empty interior ⇒ µ(F ) = 0.

A regular positive Borel measure µ on Ω is normal if and only if the following
implication holds:

(2) E ⊂ Ω Borel set ⇒ µ(E) = µ(E).

Indeed, if (1) holds and E ⊂ Ω is a Borel set, then by the regularity of µ, we have

µ(E) = inf{µ(U); U ⊃ E, open } = inf{µ(U); U ⊃ E, open} > µ(E) > µ(E).

Conversely, if (2) holds and F ⊂ Ω is a closed set with empty interior, then

µ(Ω\F ) = µ(Ω\F ) = µ(Ω).



Commutative ∗-algebras 329

By the Riesz-Kakutani theorem, there exist a correspondence between the
positive linear functionals ϕ on C(Ω) and the regular positive Borel measures µ
on Ω, defined by the formula

ϕ(x) =

∫
Ω

x(ω) dµ(ω); x ∈ C(Ω).

Note that

(3)
a positive linear functional ϕ on C(Ω) is completely additive⇔
⇔ the corresponding regular positive Borel measure µ on Ω is normal.

Indeed, if µ is normal, {eι} is a family of mutually orthogonal projections in C(Ω)
and e =

∑
ι
eι, then each eι is the characteristic function of some compact and

open set Uι ⊂ Ω, the sets {Uι} are mutually disjoint and e is the characteristic

function of
⋃
ι
Uι so, by (2) and by the regularity of µ, we have

ϕ(e) = µ
(⋃

ι

Uι

)
= µ

(⋃
ι

Uι

)
=
∑
ι

µ(Uι) =
∑
ι

ϕ(eι).

Conversely, if ϕ is completely additive and F ⊂ Ω is a closed set with empty
interior, then, choosing a maximal family {Uι} of mutually disjoint compact and
open subsets of Ω\F and denoting by eι the characteristic function of Uι, it is easy
to see that {eι} are mutually orthogonal projections in C(Ω) and

∑
ι
eι = 1C(Ω),

so

µ(Ω) = ϕ
(∑

ι

eι

)
=
∑
ι

ϕ(eι) =
∑
ι

µ(Uι) 6 µ(Ω\F )

and hence µ(F ) = 0.
Using (2) it is easy to see that

(4) the support of a normal measure µ on Ω is compact and open.

Therefore, if ϕ is the completely additive positive linear functional on C(Ω)
corresponding to a normal positive measure µ on Ω, then ϕ “has a support pro-
jection in C(Ω)”, namely, if e ∈ C(Ω) is the characteristic function of the support
of µ, then for any x ∈ C(Ω), x > 0 we have

ϕ(x) = 0⇔ xe = 0.

A hyperstonean space is a Stone space Ω such that the union of the supports
of all normal positive measure on Ω is dense in Ω.

Clearly, a Stone space Ω is hyperstonean if and only if the family of all
completely additive linear functionals on the AW ∗-algebra C(Ω) is sufficient.

Therefore, using Proposition 1/9.26 and Theorem 9.35, we get:
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Proposition. Let M be a commutative C∗-algebra and Ω be its Gelfand
spectrum. The following statements are equivalent:

(i) M is a W ∗-algebra;
(ii) Ω is a hyperstonean space.

Let Ω be a hyperstonean space. Using (1) and (2) it is easy to see that for a
Borel set E ⊂ Ω we have

(5)
µ(E) = 0 for every normal positive measure µ on Ω⇔
⇔ the closure E of E has an empty interior.

Note also the following particular property of hyperstonean space:

(6)

if {Ωk}k>1 is a sequence of open dense subsets of Ω,

then
⋂
k>1

Ωk contains an open dense subset of Ω.

Indeed, for every normal positive measure µ on Ω, we have

µ(Ω\Ωk) = 0; k > 1,

by (1), hence, using (2),

0 6 µ
(⋃

k

(Ω\Ωk)
)

= µ
(⋃

k

(Ω\Ωk)
)
6
∑
k

µ(Ω\Ωk) = 0.

By (5) it follows that the interior of
⋃
k

(Ω\Ωk) is empty, that is, the interior of⋂
k

Ωk is dense in Ω.

9.37. In this section we describe some canonical forms for commutative W ∗-
algebras.

We begin with a short review of some well known definitions from measure
theory.

Let (X,Σ, µ) be a positive mesure space, i.e. Σ is a σ-algebra of subsets of
X and µ : Σ→ [0,+∞] is a countably additive set function. Recall that a subset
S of X is called µ-negligible if S ⊂ E for some E ∈ Σ with µ(E) = 0 and is
called locally µ-negligible if S ∩ E is µ-negligible for all E ∈ Σ with µ(E) < +∞.
Also, two complex functions f, g on X are called µ-equivalent (respectively, locally
µ-equivalent) if the set {t ∈ X; f(t) 6= g(t)} is µ-negligible (respectively, locally
µ-negligible), and a complex function f on X is called µ-essentially bounded if

‖f‖L∞ = inf{λ > 0; {t ∈ X; |f(t)| > λ} locally µ-negligible} < +∞.

Then the set L∞(µ) = L∞(X,Σ, µ) of all locally µ-equivalence classes of µ-
essentially bounded Σ-measurable complex functions on X, endowed with point-
wise algebraic operations and ∗-operation and with the norm ‖ · ‖L∞ , is a commu-
tative C∗-algebra.
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Proposition 1. Every commutative W ∗-algebra is ∗-isomorphic with an
L∞(µ) for some regular positive Borel measure µ on some locally compact Haus-
dorff space.

Every commutative countably decomposable W ∗-algebra is ∗-isomorphic with
an L∞(µ) for some regular positive (finite) Borel measure µ on some compact
Hausdorff space.

Every commutative W ∗-algebra with separable predual is ∗-isomorphic with
an L∞(µ) for some regular positive (finite) Borel measure µ on some metrizable
compact space.

Proof. Let M be a commutative W ∗-algebra. By Proposition 9.36, M is
∗-isomorphic with C(Ω) for some hyperstonean space Ω. We shall identify M with
C(Ω).

If M is countably decomposable, then there exists a faithful normal state ϕ
on M , which yields a normal positive measure µ on Ω with the support equal to
the whole Ω. Using 9.36.(5), we see that the canonical imbedding of C(Ω) into
L∞(µ) is an isometric ∗-homomorphism. Since C(Ω) is norm-dense in L∞(µ), we
thus get a ∗-isomorphism of M onto L∞(µ).

In the general case, let {eι}ι∈I be a maximal family of mutually orthogonal
countable decomposable non-zero projections in M . Then

∑
ι
eι = 1M . For each

ι ∈ I, put Ωι = {ω ∈ Ω; eι(ω) = 1} and let µι be a normal positive measure on
Ωι with the support equal to Ωι. Then union Ω0 =

⋃
ι

Ωι is an open dense subset

of Ω and hence a locally compact Hausdorff space with the relative topology. By
the Riesz-Kakutani theorem, the mapping

x 7→
∑
ι

µι(x),

defined for continuous functions x on Ω0 with compact support, gives rise to a
regular positive Borel measure µ on Ω0 such that the restriction of µ to Ωι is µι,
for all ι ∈ I. Using again 9.36.(5), it is easy to check that the mapping

M = C(Ω) 3 x 7→ x|Ω0 ∈ L∞(µ)

is a ∗-isomorphism of M onto L∞(µ).
Assume now that the predual of M is separable and let ϕ be a faithful normal

state on M . By Corollary 3/9.33, there exists a selfadjoint element a ∈ M such
that the Borel functional calculus

π : B(σ(a)) 3 f 7→ f(a) ∈M

is a surjective ∗-homomorphism. Then A = C∗({a}) is a w-dense C∗-subalgebra
of M and the functional calculus f 7→ f(a) is a ∗-isomorphism of C(σ(a)) onto A.
By the Riesz-Kakutani theorem, the restriction of ϕ to A gives rise to a unique
regular positive Borel measure µ on σ(a) such that

(1) µ(f) = ϕ(f(a)) for all f ∈ C(σ(a)).



332 Algebraic Features of W∗-Algebras

Since ϕ is faithful, the support of µ is equal to the whole σ(a). Using the Lebesgue
dominated convergence theorem, the normality of µ, the property 7.15.(3) of the
Borel functional calculus and the last remark in 7.14, we infer that the equality
(1) holds for all f ∈ B(σ(a)), that is

(2) µ(f) = ϕ(π(f)) for all f ∈ B(σ(a)).

It follows that a function f ∈ B(σ(a)) belongs to Kerπ if and only if f is µ-
negligible. Consequently, π factorizes to a ∗-isomorphism of L∞(µ) onto M .

We now examine the converses of the statements in Proposition 1.

Let (X,Σ, µ) be a positive measure space. Then the vector space L1(µ) =
L1(X,Σ, µ) of all µ-equivalence classes of µ-integrable complex functions on X
with the norm ‖ϕ‖L1 =

∫
|ϕ|dµ, (ϕ ∈ L1(µ)) is a Banach space.

For f ∈ L∞(µ) and ϕ ∈ L1(µ) we have obviously:

(3)
∣∣∣ ∫ fϕdµ

∣∣∣ 6 ‖f‖L∞‖ϕ‖L1 .

We shall say that L∞(µ) is the dual space of L1(µ) and we shall write L∞(µ) =
L1(µ)∗ if L∞(µ) is isometrically isomorphic with the dual space L1(µ)∗ of L1(µ)
via the canonical pairing

L1(µ)× L∞(µ) 3 (ϕ, f) 7→
∫
fϕdµ ∈ C.

Thus, the C∗-algebra L∞(µ) is a W ∗-algebra whenever L∞(µ) = L1(µ)∗.

The positive measure µ is called decomposable if there exists a family {Xι}ι∈I
of mutually disjoint µ-integrable subsets of X with X =

⋃
ι∈I

Xι such that

a) µ(E) =
∑
ι∈I

µ(E ∩Xι) for each µ-integrable set E ⊂ X, and

b) if S is a subset of X such that S ∩Xι is µ-measurable for all ι ∈ I, then S
is µ-measurable ([131], 19.25).

Every regular positive Borel measure on a locally compact Hausdorff space
is decomposable ([131], 19.31) and for every decomposable measure µ, L∞(µ) =
L1(µ)∗ ([131], 20.20), so L∞(µ) is a W ∗-algebra.

If µ is σ-finite, then µ is clearly decomposable and, moreover, there exist a
finite positive measure ν such that L∞(µ) = L∞(ν) and the mapping f 7→

∫
f dν

is then a faithful positive linear functional on L∞(µ) so that L∞(µ) is a countably
decomposable W ∗-algebra.

If µ is a regular positive Borel measure on some metrizable compact space,
then L1(µ) is separable and hence L∞(µ) is a W -algebra with a separable predual.

Thus, the converses of all statements in Proposition 1 are true.

In the general case we have:
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Proposition 2. For an arbitrary positive measure space (X,Σ, µ) the fol-
lowing statements are equivalent:

(i) L∞(µ) is a W ∗-algebra;
(ii) L∞(µ) is an AW ∗-algebra;
(iii) the projection lattice of L∞(µ) is complete;
(iv) L∞(µ) is the dual space of L1(µ);
(v) there exists a collection {(Xι,Σι, µι)} of finite positive measure spaces such

that the C∗-algebra L∞(µ) is ∗-isomorphic to the direct product of the C∗-algebras
L∞(µι), ι ∈ I.

Proof. It is clear that (i) ⇒ (ii) ⇒ (iii), (iv) ⇒ (i) and (v) ⇒ (i). Also, (i)
⇒ (v) follows easily from Proposition 1. So, it remains to prove (iii) ⇒ (iv).

Assume that the projection lattice of L∞(µ) is complete. Since L∞(µ) sat-
isfies obviously the spectral axiom, L∞(µ) is then an AW ∗-algebra.

Let ϕ ∈ L1(µ). By (3), the formula

(4) Fϕ(f) =

∫
fϕdµ; f ∈ L∞(µ)

defines a bounded linear functional Fϕ on L∞(µ). If ϕ is a positive function, then
also linear functional Fϕ is positive so ‖Fϕ‖ = Fϕ(1) = ‖ϕ‖L1 . If ϕ is arbitrary,
then, using (4), it is easy to see that ‖Fϕ‖ = ‖F|ϕ|‖ and hence

(5) ‖Fϕ‖ = ‖ϕ‖L1 ; ϕ ∈ L1(µ).

Let ϕ ∈ L1(µ) be positive and denote by p ∈ L∞(µ) the element defined
by characteristic function of {t ∈ X; ϕ(t) 6= 0}. Then Fϕ ∈ L∞(µ)∗ is positive
and, since the set {t ∈ X; ϕ(t) 6= 0} is a countable union of µ-integrable sets, for
f ∈ L∞(µ), f > 0 we have

(6) Fϕ(f) = 0⇔ fp = 0 in L∞(µ).

Using the Lebesgue dominated convergence theorem, it is casy to check that Fϕ
is countably additive. We show that Fϕ is in fact completely additive. Indeed, let
{eι}ι∈I be an upward directed net of projections in L∞(µ) with least upper bound
e =

∨
ι
eι ∈ L∞(µ) and put λ = sup

ι
fϕ(eι). Then Fϕ(e) > λ and there exists an

increasing sequence {en}n>1 contained in {eι; ι ∈ I} such that sup
n
Fϕ(en) = λ.

Let e0 =
∨
n
en ∈ L∞(µ). Then e0 6 e and, since Fϕ is countably additive, we have

Fϕ(e0) = sup
n
Fϕ(en) = λ.

For each ι ∈ I and every n > 1 there exists some κ ∈ I such that eι ∨ en 6 eκ, so

Fϕ(eι ∨ en) 6 Fϕ(eκ) 6 λ = Fϕ(e0).
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Since eι∨e0 is the least upper bound of {eι∨en}n>1 and Fϕ is countably additive,
it follows that Fϕ(eι ∨ e0) 6 Fϕ(e0), hence, by (6), (eι ∨ e0 − e0)p = 0, that is
eιp 6 e0p. Since ep is the least upper bound of {eιp}ι∈I , we infer that ep 6 e0p
and hence ep = e0p. Consequently, using again (6), we conclude

Fϕ(e) = Fϕ(ep) = Fϕ(e0p) = Fϕ(e0) = λ = sup
ι
fϕ(eι).

Now let {ϕκ}κ∈K ⊂ L1(µ) be the family of all characteristic functions of µ-
integrable subsets of X. Each ϕκ defines a projection pκ ∈ L∞(µ) and obviously

(7)
∨
κ∈K

pκ = 1 in L∞(µ).

If f ∈ L∞(µ), f > 0, and Fϕι(f) = 0 for all κ ∈ K, then, by (6), fpκ = 0 for all
κ ∈ K. Since L∞(µ) is an AW ∗-algebra, using (7) we infer that f = 0.

Thus, L∞(µ) is an AW ∗-algebra and {Fϕ; ϕ ∈ L1(µ), ϕ > 0} is a suf-
ficient family of completely additive positive linear functionals on L∞(µ). By
Theorem 9.35 we infer that L∞(µ) is a W ∗-algebra. Moreover, by Theorem 8.4,
{Fϕ; ϕ ∈ L1(µ), ϕ > 0} ⊂ L∞(µ)∗.

Since every µ-integrable function is a linear combiation of positive µ-integra-
ble functions, it follows that {Fϕ; ϕ ∈ L1(µ)} is a separating norm-closed vector
subspace of L∞(µ)∗ and hence L∞(µ)∗ = {Fϕ; ϕ ∈ L1(µ)}. Therefore, the dual
space of L1(µ) is identical with the dual space of L∞(µ)∗, i.e. L1(µ)∗ = L∞(µ).

Thus, whenever L∞(µ) is a W ∗-algebra, its predual is L1(µ).

A positive measure µ is called localizable if it satisfies the equivalent condi-
tions from Proposition 2. Note that there exist non-localizable measures ([131];
20.17, 20.21).

If µ is a localizable positive measure, then L∞(µ) is a W ∗-algebra and µ
defines a normal semifinite faithful weight on L∞(µ)+, still denoted by µ, namely:

µ(f) =

∫
f dµ; f ∈ L∞(µ)+.

It is easy to see that

Mµ = L∞(µ) ∩ L1(µ), Nµ = N∗µ = L∞(µ) ∩ L2(µ), Hµ = L2(µ)

and the GNS-representation πµ : L∞(µ)→ B(L2(µ)) is defined by

πµ(f)ξ = fξ; ξ ∈ L2(µ), f ∈ L∞(µ).

Thus, πµ(L∞(µ)) consists of all multiplication operators by functions from L∞(µ).
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Proposition 3. For every localizable positive measure µ, πµ is a ∗-isomor-
phism of L∞(µ) onto πµ(L∞(µ)) and πµ(L∞(µ)) is a maximal commutative ∗-
subalgebra of B(L2(µ)).

Proof. By Theorem 8.23, πµ is a ∗-isomorphism and πµ(L∞(µ)) ⊂ B(L2(µ))
is a von Neumann algebra.

Denote by A the set of all functions f ∈ L2(µ) such that the linear mapping

T 0
f : L2(µ) ∩ L∞(µ) 3 ξ 7→ fξ ∈ L2(µ)

is bounded with respect to the L2-norm. For every f ∈ A, T 0
f can be extended to a

unique bounded operator Tf on L2(µ). Since the complex conjugation is isometric
on L2(µ), it is clear that

f ∈ A→ f ∈ A and Tf = T ∗f .

If f, g ∈ A, then TfTg = TgTf since for any ξ, η ∈ L2(µ) ∩ L∞(µ) we have

(TfTgξ|η)µ = (Tgξ|Tfη)µ =

∫
fgξη dµ = (Tfξ|Tgη)µ = (TgTfξ|η)µ.

Let x′, y′ ∈ (πµ(L∞(µ))′ and η ∈ L2(µ) ∩ L∞(µ). Put f = x′η ∈ L2(µ),
g = y′η ∈ L2(µ). For every ξ ∈ L2(µ) ∩ L∞(µ) we have

fξ = πµ(ξ)x′η = x′πµ(ξ)η = x′πµ(η)ξ,

hence f ∈ A and Tf = x′πµ(η). Similarly, g ∈ A and Tg = y′πµ(η). It follows that

(8) πµ(η)x′y′πµ(η) = TfTg = TgTf = πµ(η)y′x′πµ(η).

Since Nµ = L∞(µ) ∩ L2(µ) is a w-dense ideal of the W ∗-algebra L∞(µ),
there exists an upward directed net {ηι}ι∈I ⊂ Nµ, s-convergent to 1. Then {ηι} ⊂
L2(µ) ∩ L∞(µ) and πµ(ηι)

s−→ 1 so that, by (8),

x′y′ = y′x′.

This shows that (πµ(L∞(µ)))′ is commutative, hence πµ(L∞(µ)) is maximal com-
mutative in B(L2(µ)).

From Propositions 1 and 3 it follows that every commutative W ∗-algebra
is ∗-isomorphic to some maximal commutative von Neumann algebra. Actually,
the proof of Proposition 3 works replacing L∞(µ) by an arbitrary commutative
W ∗-algebra M and µ by an arbitrary n.s.f. weight on M+.

Note that if µ is a finite positive measure, then the GNS-representation πµ is
cyclic, namely the cyclic vector ξµ = 1µ ∈ L2(µ) is the function identically equal
to one. In this case the maximal commutativity of πµ(L∞(µ)) follows also from
Corollary 3/8.13.
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Both Proposition 3 and Corollary 3/8.13, as well as their proofs, are very
particular cases of a general fundamental theorem for arbitrary W ∗-algebras ([307],
Corollary 10.15). The main particularity here is the L2-isometric character of the
complex conjugation rather than the commutativity itself.

9.38. Finally, we describe the w-closure of a C∗-subalgebra A of a W ∗-
algebra in terms of the “monotone closure” of Ah. Since the results hold in the
more general frame-work of norm-closed Jordan algebras in W ∗-algebras, we shall
consider this setting.

We begin the “sequential case”.
Let M be a W ∗-algebra. For every S ⊂Mh we denote:

Sσ=
{
a∈Mh; there exists an increasing sequence {ak}⊂S such that a=sup

k
ak
}
,

Sδ=
{
a∈Mh; there exists a decreasing sequence {ak}⊂S such that a=inf

k
ak
}
.

If J is a norm-closed Jordan algebra in M , then we denote by J1 the closed
unit ball of J and by J+

1 the intersection J1 ∩ J+.
The following lemma is similar to Lemma 2/9.17:

Lemma. Let J be a norm-closed Jordan algebra in the W ∗-algebra M and
J
w

its w-closure. Then, for any two orthogonal projections e, f ∈ Jw which are
countably decomposable in J

w
, there exists a ∈ ((J+

1 )σ)δ such that ae = e and
af = 0.

Proof. Let ϕ,ψ be w-continuous positive linear functionals on M with e =
sJw(ϕ) and f = sJw(ψ). By Lemma 1/9.17, for every integer k > 1 there is some

bk ∈ J+
1 such that

ϕ(1Jw − bk) 6 k−1 and ψ(bk) 6 k−12−k.

For 1 6 m < n we denote

am,n =
(
m+

n∑
k=m+1

kbk

)−1 n∑
k=m+1

kbk ∈ J+
1 .

By 2.6.(7), we have

am,n1
6 am,n2

for 1 6 m < n1 6 n2,

am1,n > am2,n for 1 6 m1 6 m2 < n.

Hence, putting
am = sup

n>m
am,n ∈ (J+

1 )σ; m > 1,

the sequence {am} is decreasing. Thus,

a = inf
m>1

am ∈ ((J+
1 )σ)δ.
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Using 2.6.(7), for all 1 6 m < n we obtain

0 6 ϕ(1Jw − am,n) = mϕ

((
m1Jw +

n∑
k=m+1

kbk

)−1
)

6 mϕ
(
(m1Jw + nbn)−1

)
=

m

m+ n
ϕ

((
1Jw −

n

m+ n
(1Jw − bn)

)−1
)

=
m

m+ n

∞∑
j=0

( n

m+ n

)j
ϕ((1Jw − bn)j)

6
m

m+ n
+

n

m+ n
ϕ(1Jw − bn) 6

m+ 1

m+ n

and

0 6 ψ(am,n) 6
1

m

n∑
k=m+1

k ψ(bk) 6
1

m
.

Consequently, ϕ(1Jw − a) = 0, ψ(a) = 0, that is ae = e, af = 0.

Theorem. Let J be a norm-closed Jordan algebra in the W ∗-algebra M such
that the w-closure J

w
of J is countably decomposable. Then

((J+
1 )σ)δ = (J

w
)+
1 .

Proof. Clearly, ((J+
1 )σ)δ ⊂ (J

w
)+
1 and, by the above lemma, ((J+

1 )σ)δ con-

tains all the projections of J
w

.

Let a ∈ (J
w

)+
1 be arbitrary. In 9.17 we have seen that W ∗({a})h ⊂ J

w
so,

by Proposition 3/7.16, there exists a sequence {ek}k>1 of projections in J
w

such
that

a =

∞∑
k=1

2−kek.

For each k > 1, ek ∈ ((J+
1 )σ)δ, so there exists a decreasing sequence {ak,n}n>1 in

(J+
1 )σ with ek = inf

n
ak,n. Since 1Jw is the largest element of (J

w
)+
1 and 1Jw ∈

((J+
1 )σ)δ, we have 1Jw ∈ (J+

1 )σ. Hence

an =

n∑
k=1

2−kak,n + 2−n1Jw ∈ (J+
1 )σ; n > 1.

Since the sequence {an} is decreasing and a = inf
n
an, we conclude that a ∈

((J+
1 )σ)δ.

Sometimes, the above theorem is called suggestively: the “up-down” theo-
rem.

9.39. We now turn to the general case.
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Let M be a W ∗-algebra. For any S ⊂Mh we denote:

Sm={a∈Mh; there exists an upward directed net {aι}⊂S such that a=sup
ι
aι},

Sm={a∈Mh; there exists a downward directed net {aι}⊂S such that a=inf
ι
aι}.

Lemma 1. Let J be a norm-closed Jordan algebra in a W ∗-algebra M such
that W ∗(J) = M . Then

a ∈ (J̃+
1 )m, ε > 0⇒ (1 + ε)−1(a+ ε1M ) ∈ (J+

1 )m.

Proof. If J is unital, then the statement is obvious, so we assume that J is
not unital. We denote 1M = 1Jw simply by 1.

Let a ∈ (J̃+
1 )m and ε > 0 be arbitrary.

There exists an upward directed net {ãι}ι∈I in J̃+
1 such that

a = sup
ι
ãι.

For each ι ∈ I we have

ãι = bι + λι with bι ∈ J, λι ∈ [0, 1].

Then {λι}ι∈I is an upward directed net in [0, 1].
Now, by the proof of Proposition 2.10, the family

S = {x ∈ J+; ‖x‖ < 1}

is upward directed. Indeed, if x, y ∈ S, then, by 6.2.(11), we have u = x(1 −
x)−1 ∈ J+, v = y(1 − y)−1 ∈ J+, z = (u + v)(1 + u + v)−1 ∈ J+, and, by
2.7, x = u(1 + u)−1 6 (u + v)(1 + u + v)−1 = z, similarly y 6 z and z 6
(‖u‖+‖v‖)(1 +‖u‖+‖v‖)−1 < 1. Clearly, sup

x∈S
x 6 1. On the other hand, by 9.22,

sup
F⊂S, finite; k>1

(
k−1 +

∑
x∈F

x
)−1 ∑

x∈F
x = sM (S) = 1,

so 1 6 sup
x∈S

x. Therefore

sup
x∈S

x = 1.

For each ι ∈ I we have −bι 6 λι, so b−ι 6 λι. Hence

(1) (λι + λ)−1b−ι ∈ S; ι ∈ I, λ > 0.

Putting
Sι,λ = {x ∈ S;x > −(λι + λ)−1bι}; ι ∈ I, λ > 0,
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we have
Sι,λ ⊃ {x ∈ S; x > (λι + λ)−1b−ι }; ι ∈ I, λ > 0,

so, by (1) each Sι,λ is an upward directed cofinal subfamily of the upward directed
family S. Consequently,

(2) sup
x∈Sι,λ

x = 1; ι ∈ I, λ > 0.

Denote K = {(ι, λ, x); ι ∈ I, λ ∈ (0, ε), x ∈ Sι,λ} and

aκ = bι + (λι + λ)x; κ = (ι, λ, x) ∈ K.

Then {aκ}κ∈K is an upward directed family in J+.
Indeed, by the definition of K, we have aκ ∈ J+ for all κ ∈ K. Let κ′ =

(ι′, λ′, x′) ∈ K and κ′′ = (ι′′, λ′′, x′′) ∈ K be arbitrary and choose ι ∈ I, λ ∈ (0, ε),
x ∈ S such that ãι > ãι′ , ãι > ãι′′ , λ > λ′, λ > λ′′, x > x′, x > x′′ and

x > |bι − bι′ |(λ− λ′ + |bι − bι′ |)−1,

x > |bι − bι′′ |(λ− λ′′ + |bι − bι′′ |)−1,

x > (λι + λ)−1b−ι .

Then κ = (ι, λ, x) ∈ K. We have

aκ − aκ′ = bι + (λι + λ)x− bι′ − (λι′ + λ′)x′

> bι − bι′ + (λι − λι′ + λ− λ′)x
> bι − bι′ + (λι − λι′ + λ− λ′)|bι − bι′ |(λ− λ′ + |bι − bι′ |)−1

= (λ− λ′ + |bι − bι′ |)−1[(λ− λ′)(bι − bι′)
+ (bι − bι′ + λι − λι′ + λ− λ′)|bι − bι′ |]

= (λ− λ′ + |bι − bι′ |)−1[(λ− λ′)(bι − bι′)
+ |bι − bι′ |+ (ãι − ãι′)|bι − bι′ |] > 0

and, similarly, aκ − aκ′′ > 0.
Since

aκ 6 bι + λι + λ = ãι + λ 6 a+ ε; κ ∈ K,

the upward directed family {aκ} in J+ is also norm-bounded and

sup
κ
aκ 6 a+ ε.

On the other hand, using (2), for all ι ∈ I and λ ∈ (0, ε) we get

ãι + λ = bι + (λι + λ) = sup
x∈Sι,λ

(bι + (λι + λ)x) 6 sup
κ
aκ,
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so
a+ ε 6 sup

κ
aκ.

We conclude that
a+ ε = sup

κ
aκ

and, consequently,

(1 + ε)−1(a+ ε) = sup
κ

(1 + ε)−1aκ ∈ (J+
1 )m.

Lemma 2. Let J be a norm-closed Jordan algebra in the W ∗-algebra M such
that W ∗(J) = M . Then

((J̃+
1 )m)m = ((J+

1 )m)m.

Proof. Clearly, ((J̃+
1 )m)m ⊃ ((J+

1 )m)m. Let a ∈ ((J̃+
1 )m)m and let {aι}ι∈I

be a downward directed net in (J̃+
1 )m with a = inf

ι
aι. By Lemma 1 we have

aι,n = (1 + n−1)−1(aι + n−1 · 1M ) ∈ (J+
1 )m; ι ∈ I, n > 1.

Since the net {aι,n}ι∈I, n>1 is downward directed and its greatest lower bound is

a, it follows that a ∈ ((J+
1 )m)m.

We shall now prove an “invariance” result for ((J+
1 )m)m:

Lemma 3. Let J be a norm-closed Jordan algebra in the W ∗-algebra M and
J
w

its w-closure. Then, for any family {aι}ι∈I ⊂ ((J+
1 )m)m, we have

1Jw −
∨
ι∈I

sM (1Jw − aι) ∈ ((J+
1 )m)m.

Proof. Without restricting the generality, we may assume that W ∗(J) = M .
We shall denote 1M = 1Jw simply by 1.

For each ι ∈ I, there exists a downward directed net

{aι,κι}κι∈Kι ⊂ (J+
1 )m

such that
aι = inf

κι∈Kι
aι,κι .

For convenience, we denote

K =
∏
ι∈I

Kι,

aι,κ = aι,κι ; ι ∈ I, κ ∈ K, κι = the ι-coordinate of κ.

Then, for each ι ∈ I, {aι,κ}κ∈K is a downward directed family in (J+
1 )m and

aι = inf
κ∈K

aι,κ.
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Consider the elements

aF,κ,n =
(

1 + n
∑
ι∈F

(1− aι,κ)
)−1

; F ⊂ I finite, κ ∈ K, n > 1.

Since each aι,κ belongs to (J+
1 )m ⊂ (J̃+

1 )m, using 2.6.(7) and 6.2.(12), we obtain

aF,κ,n ∈ (J̃+
1 )m; F ⊂ I finite, κ ∈ K, n > 1.

Again by 2.6.(7), the family {aF,κ,n} is downward directed so, using Lemma 2, we
get

(3) a = inf
F,κ,n

aF,κ,n ∈ ((J̃+
1 )m)m = ((J+

1 )m)m.

Since

1− aF,κ,n =
(
n−1 +

∑
ι∈F

(1− aι,κ)
)−1∑

ι∈F
(1− aι,κ),

1− a = sup
F,κ,n

(1− aF,κ,n),

by 9.22, we have

1− a > sup
F,n

(1− aF,κ,n) = sM ({1− aι,κ; ι ∈ I}); κ ∈ K.

Furthermore, since {sM ({1 − aι,κ; ι ∈ I})}κ∈K is an upward directed family of
projections in M and, for each ι ∈ I,

1− aι,κ ↑ 1− aι,

using again 9.22 we deduce

1− a > sup
κ∈K

sM ({1− aι,κ; ι ∈ I}) =
∨
κ∈K

sM ({1− aι,κ; ι ∈ I})

=
∨
ι∈I

∨
κ∈K

sM (1− aι,κ) =
∨
ι∈I

sM (1− aι).

Conversely, for each F ⊂ I finite, κ ∈ K and n > 1, we have

1− aF,κ,n 6 sM

(∑
ι∈F

(1− aι,κ)
)
6 sM

(∑
ι∈F

(1− aι)
)
6
∨
ι∈I

sM (1− aι),

so
1− a 6

∨
ι∈I

sM (1− aι).
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Consequently,

(4) 1− a =
∨
ι∈I

sM (1− aι), a = 1−
∨
ι∈I

sM (1− aι).

By (3) and (4), we conclude

1−
∨
ι∈I

sM (1− aι) ∈ ((J+
1 )m)m.

Lemma 4. Let J be a norm-closed Jordan algebra in the W ∗-algebra M and
J
w

its closure. Then ((J+
1 )m)m contains every countably decomposable projection

in J
w

.

Proof. Let e ∈ J
w

be a countably decomposable projection, and choose a
family {eι}ι∈I of mutually orthogonal countably decomposable projections in J

w

such that
1Jw − e =

∑
ι∈I

eι.

By Lemma 9.38, for each ι ∈ I there exists aι ∈ ((J+
1 )σ)δ ⊂ ((J+

1 )m), such that
aιe = e and aιeι = 0. Then

(1Jw − aι)e = 0, (1Jw − aι)eι = eι; ι ∈ I,

so we succesively get

eι 6 sM (1Jw − aι) 6 1Jw − e; ι ∈ I,

1Jw − e =
∑
ι

eι 6
∨
ι

sM (1Jw − aι) 6 1Jw − e,

1Jw − e =
∨
ι

sM (1Jw − aι),

e = 1Jw −
∨
ι

sM (1Jw − aι).

Using Lemma 3, we conclude that e ∈ ((J+
1 )m)m.

Theorem. Let J be a norm-closed Jordan algebra in the W ∗-algebra M and
J
w

its w-closure. Then
(((J+

1 )m)m)m = (J
w

)+
1 .

Proof. Clearly, (((J+
1 )m)m)m ⊂ (J

w
)+
1 . Let a ∈ (J

w
)+
1 be arbitrary. As we

have seen in 9.17, we have W ∗({a})h ⊂ J
w

so, by Proposition 3/7.16, there exists

a sequence {ek}k>1 of projections in J
w

such that

a =

∞∑
k=1

2−kek.
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We denote

I =

{
(f1, . . . , fn);

f1, . . . , fn countably decomposable projections in J
w
,

f1 6 e1, . . . , fn 6 en, n > 1 integer

}

aι =

n∑
k=1

2−kfk; ι = (f1, . . . , fn) ∈ I.

By Lemma 4, we have aι ∈ ((J+
1 )m)m for all ι ∈ I. Since the family {aι}ι∈I is up-

ward directed and its least upper bound is a, we conclude that a ∈ (((J+
1 )m)m)m.

Sometimes, the above theorem is called suggestively: the “up-down-up” the-
orem.

Note that an alternative proof of the last remark in 9.35 can be obtained
using Lemma 2/9.34, 9.23.(4′) and the above theorem, without making use of
Theorem 9.35.

9.40. In this section we prove that the “up-down” theorem does not hold in
the general case, so that the “up-down-up” theorem is the best possible general
result.

Let M be an AW ∗-algebra.
If e is a minimal projection in M , that is e 6= 0 and eMe = Ce, and if

f ∈ P (M), f ∼ e, then also f is minimal. Indeed, if v ∈ M is a partial isometry
such that v∗v = e, vv∗ = f , then Ce = eMe 3 x 7→ vxv∗ ∈ fMf is a ∗-
isomorphism, so f 6= 0 and fMf = Cf . Clearly, if e ∈ P (M) is minimal, then e
is abelian.

We denote
qM =

∨
{e ∈ P (M); e minimal}.

If e ∈ P (M) is minimal and {eι} is a maximal family of mutually orthogonal
equivalent projections in M , containing e, then, by 9.30.(1),

∑
ι
eι 6 zM (e) and,

by Corollary 1/9.30 and by the maximality of {eι}, zM
(
zM (e)−

∑
ι
eι

)
6= zM (e).

Thus

zM

(
zM (e)−

∑
ι

eι

)
e 6= e,

and by minimality of e we succesively get

zM

(
zM (e)−

∑
ι

eι

)
e = 0,

zM

(
zM (e)−

∑
ι

eι

)
zM (e) = 0,(

zM (e)−
∑
ι

eι

)
zM (e) = 0,

zM (e) =
∑
ι

eι.
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Consequently,
zM (e) 6 qM .

It follows that

(1) qM =
∨
{zM (e); e ∈ P (M) minimal},

so qM is a central projection of M .
By analogy with 8.18, we shall say that M is atomic if every non-zero pro-

jection of M majorizes a minimal projection. Note that

(2) M is atomic⇔ qM = 1M .

Indeed, if M is atomic and 1M − qM 6= 0, then 1M − qM would majorize a minimal
projection, in contradiction with the definition of qM . Conversely, if qM = 1M and
0 6= e ∈ P (M), then there is a minimal projection f in M with zM (e)f 6= 0. By
the minimality of f we have f = zM (e)f 6 zM (e), zM (f) 6 zM (e) so, by Corol-
lary 1/9.30, there exists a projection f0 6 e equivalent with f . Thus, e majorizes
the minimal projection f0. Also, from (2) it follows that

(3)
M is atomic ⇔ every non-zero central projection of M

majorizes a minimal projection.

Now, let A be a C∗-algebra. Using Proposition 4.7, it is easy to see that a
projection e in A∗∗ is minimal if and only if there exists a pure state ϕ on A with
e = sA∗∗(ϕ). Therefore:

(4) qA∗∗ =
∨
{sA∗∗(ϕ); ϕ pure state on A}.

Proposition. Let A be a C∗-algebra. If

((A+
1 )m)m = (A∗∗)+

1

then A∗∗ is atomic.

Proof. Denote M = A∗∗. By the assumption, qM ∈ ((A+
1 )m)m. Let {aι}ι∈I

be a downward directed net in (A+
1 )m such that

qM = inf
ι
aι.

Let ι ∈ I be fixed. There exists an upward directed net {aι,κ}k∈K in A+
1

such that
aι = sup

κ
aι,κ.

If ϕ is an arbitrary pure state on A, then, by (4), we have

sM (ϕ) = sM (ϕ)qMsM (ϕ) 6 sM (ϕ)aιsM (ϕ) 6 sM (ϕ),

sM (ϕ)aιsM (ϕ) = sM (ϕ),
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so
sup
κ
ϕ(aι,κ) = ϕ(aι) = ϕ(sM (ϕ)aιsM (ϕ)) = ϕ(sM (ϕ)) = 1.

Using Corollary 3/4.16, it follows that {aι,κ}k∈K is an increasing approximate
unit of A, thus, with an argument similar to the one used in the proof of Proposi-
tion 1/8.7,

aι = sup
κ
aι,κ = 1M .

Consequently,
qM = inf

ι
aι = 1M ,

that is, M is atomic.

Note that also the converse implication is true: if A∗∗ is atomic, then
((A+

1 )m)m = (A∗∗)+
1 ; but we do not need it for the purpose of this section.

Corollary. If A = C([0, 1]), then ((A+
1 )m)m 6= (A∗∗)+

1 .

Proof. Let ψ be the state on A corresponding to the Lebesgue measure:

ψ(a) =

∫ 1

0

a(t) dt; a ∈ A.

Then
e = sA∗∗(ψ) 6= 0.

Let ϕ be an arbitrary pure state on A. By the last remarks in (4.9), there is
some t ∈ [0, 1] such that

ϕ(a) = a(t); a ∈ A.

Let {ak}k>1 be a decreasing sequence in A+
1 pointwise convergent to the char-

acteristic function of {t}, and let a be the greatest lower bound of {ak} in A∗∗.
Then, by the Lebesgue dominated convergence theorem,

ψ(a) = inf
k
ψ(ak) = 0

and

1 > ϕ(sA∗∗(a)) > ϕ(a) = inf
k
ϕ(ak) = inf

k
ak(t) = 1,

ϕ(sA∗∗(a)) = 1.

Hence
ae = 0, sA∗∗(a)e = 0, sA∗∗(a) 6 1A∗∗ − e

and
sA∗∗(ϕ) 6 sA∗∗(a)

so that
sA∗∗(ϕ) 6 1A∗∗ − e.



346 Algebraic Features of W∗-Algebras

Using (4), it follows that

qA∗∗ 6 1A∗∗ − e
so A∗∗ is not atomic. By the above proposition we conclude that

((A+
1 )m)m 6= (A∗∗)+

1 .

9.41. In this last section we shall show that, given a C∗-subalgebra A of an
arbitrary W ∗-algebra M , the smallest “sequentially monotone closed” subset of
Mh containing Ah is again the real part of some C∗-subalgebra of M .

Let M be a W ∗-algebra.
A subset S of Mh is called sequentially monotone closed (respectively mono-

tone closed) if Sσ = S = Sδ (respectively Sm = S = Sm). Since Mh is monotone
closed and the intersection of any family of sequentially monotone closed (re-
spectively monotone closed) subset of Mh is again sequentially monotone closed
(respectively monotone closed), for every S ⊂ Mh there exists a smallest sequen-
tially monotone closed (respectively monotone closed)subset of Mh containing S,
which is called the sequential monotone closure (respectively monotone closure) of
S in Mh.

By Theorem 9.39, if J is a norm-closed Jordan algebra in M , then the mono-
tone closure of J coincides with its w-closure J

w
which is again a norm-closed

Jordan algebra in M . Moreover, if J is the real part Ah of some C∗-subalgebra
A of M , then its monotone closure is the real part of the C∗-subalgebra A

w
of

M ; note that A
w

is actually the smallest monotone closed C∗-subalgebra of M
containing A.

Here we are concerned with similar statements in the “sequential case”, with-
out assuming the W ∗-algebra M to be countably decomposable.

We begin with two simple remarks. First,

(1)

every countable subset of the sequential monotone closure

of an arbitrary set S ⊂Mh is contained in the sequential

monotone closure of a norm-separable subset of S.

Indeed, let Q be the sequential monotone closure of S in Mh and denote by Q0

the set of all x ∈ Q such that x belongs to the sequential monotone closure of
some norm-separable subset of S. It is sufficient to show that Q0 = Q. But this
is clear, since Q0 ⊃ S and Q0 is sequentially monotone closed.

The second remark is that

(2)
if S ⊂Mh is a real vector subspace with 1M ∈ S,

then the norm-closure of S is contained in Sσ ∩ Sδ.
Indeed, let x∈M be norm-adherent to S. Then there is a sequence {xk}k>1⊂S
norm-convergent to x and such that ‖xk+1 − xk‖ 6 2−k for all k > 1. Moreover,

yn = −1M + x1 +

n∑
k=1

(xk+1 − xk + 2−k) ∈ S; n > 1,

is an increasing sequence, norm-convergent to x, hence x = sup
n
yn ∈ Sσ (see

Lemma 3/9.10). The same argument applied to −x shows that x ∈ Sδ.
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Lemma. Let J be a norm-closed Jordan algebra in the W ∗-algebra M with
1M ∈ J . Then the sequentially monotone closure K of J in Mh is again a norm-
closed Jordan algebra in M.

Proof. The set K1 = {a ∈ Mh; a + x ∈ K for all x ∈ J} contains J and is
sequentially monotone closed, so K1 ⊃ K. Then, the set K2 = {a ∈ Mh; a+ x ∈
K for all x ∈ K} contains J and is sequentially monotone closed, hence K2 ⊃ K,
that is K +K ⊂ K. Similarly, λK ⊂ K for every λ ∈ R. Thus, K is a real vector
subspace of Mh.

By (2), it follows that K is norm-closed.
The set K3 = {x ∈ K; xk ∈ K for all integers k > 1} contains J . Let

{xn}n>1 be an increasing sequence in K3 with ‖xn‖ 6 1 for all n > 1. Then
x = sup

n
xn ∈ K and ‖x‖ 6 1. For each 0 6 t < 1 we have

(1M − txn)−1 =

∞∑
k=0

tkxkn ∈ K,

because K is norm-closed. Since (1M − txn)−1 ↑ (1M − txn)−1 as n→∞, we get

(1M − txn)−1 ∈ K. Since for t → 0 we have t−n−1
(

(1M − txn)−1 −
n∑
k=0

tkxk
)

=

xn+1(1M−txn
)−1 norm−→ xn+1, by induction over n we see that xn ∈ K for all n > 1,

that is x ∈ K3. Thus, K3 is sequentially monotone closed, so that K3 = K. This
shows, in particular, that x ∈ K ⇒ x2 ∈ K.

Hence K is a norm-closed Jordan algebra in M .

Proposition. Let A be a C∗-subalgebra M. Then the sequential monotone
closure of Ah in Mh is the real part if the smallest sequentially monotone closed
C∗-subalgebra of M containing A.

Proof. Without restricting the generality, we may suppose that A a w-dense
in M .

Let K be the sequential monotone closure of Ah in Mh. If B = K + iK is a
C∗-subalgebra of M , then it is clear that B is the smallest sequentially monotone
closed C∗-subalgebra of M containing A.

Thus, all we have to show is that K is the real part of some C∗-subalgebra
of M , i.e. (6.2.(13)) that K is a norm-closed Jordan algebra in M and

(3) x, y ∈ K ⇒ i(xy − yx) ∈ K.
Taking into account the remark (1), we see that it is sufficient to prove the

statement under the supplimentary assumption that A is norm-separable. In this
case, A has a countable increasing approximate unit (3.2) with least upper bound
1M in Mh (8.7), so that 1M ∈ K and we may further assume that 1M ∈ A. Then,
by the above lemma it follows that K is a norm-closed Jordan algebra in M .

It remains to provs that (3) holds. First note that

(4) i(xy − yx) = (1M − iy)x(1M + iy)− x− yxy; x, y ∈Mh.

The set {x ∈ K; i(xy − yx) ∈ K for all y ∈ Ah} contains Ah and, using (4), it is
sequentially monotone closed, so it coincides with K, that is

x ∈ K, y ∈ Ah ⇒ i(xy − yx) ∈ K.
Now, the set {x ∈ K; i(xy− yx) ∈ K for all y ∈ K} contains Ah and, as above, it
is sequentially monotone closed, hence it coincides with K, that is (3) holds.
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Thus, the sequential monotone closure of a C∗-algebra A in its second dual
A∗∗ is a C∗-subalgebra of A∗∗, denoted by Ba(A) and called the Baire envelope
of A.

9.42. Notes. The main ideas contained in the material presented in this Chapter 9
are due to C.E. Rickart [255], I. Kaplansky [158], [160], [162], R.V. Kadison [144], [145],
[150], and the main results concerning W ∗-algebras, in their strongest forms (Lemma
2 and Theorem 1/9.17; Theorem 9.33; Theorem 9.38; Theorem 9.39; Proposition and
Corollary 9.40), are due to G.K. Pedersen [236], [238], [239].

Earlier, Theorem 9.35 has been proved in the commutative case (i.e., Proposition
9.36) by J. Dixmier [72], has been conjectured in general and proved in the “finite case”
by J. Feldman [101], then extended to the “semifinite case” by K. Saitô [265], and gifted
with an elegant proof in this case by D. Laison [170]; namely this last proof has been
refined up to Lemma 2/9.17 by G.K. Pedersen [239] in order to obtain the general result.

On the other hand, R.V. Kadison already proved [144] that every monotone com-
plete C∗-algebra with a sufficient family of normal states is a W ∗-algebra. Moreover,
R.V. Kadison made several detalied analyses [145], [151] of the w-closure of an operator
algebra from the point of view of monotone convergence, further studied by G.K. Peder-
sen [235], and also R.V. Kadison [150] conjectured weak forms of Theorems 9.38 and 9.39,
namely that the w-closure should be attained in a finite number of “up-down” steps. The
proof of Theorem 9.38 is the original proof from [236], [238], Lemma 1/9.39 is a variant
of [8]; Theorem 2.1, (iii) ⇒ (iv) and the proof of Theorem 9.39 is a combination of the
original proof from [238] with that from [351], I, §1. The results included in 9.41 are due
to R.V. Kadison ([145], p. 317–318) and G.K. Pedersen [235]. In [235] it is proved that
for a type I C∗-algebra A its Baire envelope B(A) is equal to the smallest sequentially
w-closed C∗-subalgebra of A containing A (see also [233], [355], [356]).

That not every AW ∗-algebra is a W ∗-algebra has been proved even in the commu-
tative case (J. Dixmier [72] gave an example of a Stone space which is not hyperstonean),
but the following problem remained: is it true that if A is an AW ∗-algebra whose center
ZA is a W ∗-algebra, then is A a W ∗-algebra? The answer to this problem is again nega-
tive, as announced by J.A. Dyer [82] and also proved by J.D. Maitland-Wright [192], [189]
who constructed very natural “wild AW ∗-factors”. However, J.D. Maitland-Wright [190]
proved that if A is a finite AW ∗-algebra with a faithful state and if ZA is a W ∗-algebra,
then A is a W ∗-algebra, and a similar result for monotone complete C∗-algebras has been
obtained by R.V. Kadison and G.K. Pedersen [152]. Some “intrinsic” conditions which
insure that a “semifinite” AW ∗-algebra satisfying them is in fact a W ∗-algebra appeared
in [190], [191].

The first axiom insuring the existence of enough many projections in a C∗-algebra
A concerned the existence of support projections of positive elements of A ([255]). Then
several other axioms were introduced, such as (B1), (Br) from 9.35 ([162]), or the “EP-
axiom”: “for every non-zero element x ∈ A there exists a selfadjoint element y ∈ {{x}′ ∩
A}′ ∩ A with x∗xy2 a non-zero projection” ([162], §13), or the requirement that every
maximal commutative ∗-subalgebra of A be the norm-closed linear hull of its projections
([158]). In our exposition we used spectral axiom (9.1) which is a slightly modified version
of the axiom introduced in ([351], III, §1), modified in order to obtain Proposition 9.7.
This axiom has some advantages, namely it is preserved under passage to quotiente
algebras, it allows the lifting of projections and of partial isometries (9.5; cf. [351],
III.2.4; for AW ∗-algebras this is due to F.B. Wright [345], see also [306], II), and offers
unified smooth proofs in the theory of Rickart and AW ∗-algebras.

For the various characterizations and permanence properties of Rickart and AW ∗-
algebras (9.9, 9.11, 9.12, 9.13, 9.20, 9.21, 9.23, 9.24, 9.25), as well as for the few results
related to the geometry of projections (9.28, 9.29, 9.30), we have used [255], [158], [160],
[161], [162], [25], to which we also refer for further results concerning AW ∗-algebras and
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Baer ∗-rings (see also [136], [254]). Note that the statements from 9.29 and 9.30 are
just particular cases of the unrestricted additivity of equivalence which holds true in
any AW ∗-algebra ([25], §20; [158], Theorem 5.5; [162], Theorem 64). Also, the polar
decomposition theorem holds in any AW ∗-algebra ([25], §21; [162], Theorem 65). We
mention that the C∗-tensor product of two C∗-algebras is an AW ∗-algebra (respectively
a W ∗-algebra) if and only if both are AW ∗-algebras (respectively W ∗-algebras) and at
least one of them is finite dimensional ([24], [315]).

The structure theorem for Jordan ∗-homomorphisms (9.31) is due to N. Jacobson
and C.E. Rickart [133] and to R.V. Kadison ([145], Theorem 10; [352], Theorem 2.6;
see also [297], Theorem 3.3; [301] §5). In completing (9.32) the results from 6.7, 6.8 we
have used [89], [227], [347] (see also [232]). Another equivalent condition in Corollary of
Theorem 2/9.32 is that Φ maps the quasi-unitary elements of A onto the quasi-unitary
elements of B ([227], Theorem 3, Theorem 4).

The terminology “Stone space” seems to be introduced by J. Dixmier [72] in con-
nection with the contributions of M.H. Stone [294], [295]; Stone spaces are also called
“extremally disconnected spaces”. Together with Stone spaces, J. Dixmier [72] also intro-
duced and studied hyperstonean spaces, giving several illuminating examples. The char-
acteristic properties of Stone spaces (Theorem & Corollary 9.27) are due to A.M. Gleason
[109] and M. Hasumi [127], [128]. In our proof we used Proposition 9.27 (cf. [351], II.5.2)
and its Corollary ([296], Cor. 3.6; [301], §6; [351], II.5.7; [357]); for another proof see
[185]. The continuous functions on a Stone space, that is the commutative AW ∗-algebras,
have several interesting Banach space properties. Thus (compare with Theorem 9.27),
a Banach space A is isometrically isomorphic with a commutative AW ∗-algebra if and
only if, whenever A is imbedded as a closed vector subspace of some other Banach space
X, there exists a linear projection of norm one of X onto A ([116], [128], [167], [201]).
Also, if A is a commutative AW ∗-algebra, then every σ(A∗, A)-convergent sequence from
A is already σ(A∗, A∗∗)-convergent (compare with Theorem 8.19), every bounded linear
operator from A to any separable Banach space is weakly compact ([118]) and the closed
unit ball of A is the closed convex hull of its extreme points ([116]). Some other related
results are contained in [21], [203], [317].

For the representation of every commutative W ∗-algebra as an L∞(µ) (Proposition
1/9.37) we refer to [72], [77], [285]. The localizable measure were introduced and studied
by I.E. Segal [284], [285] who proved, among other results, the statements contained in
Proposition 3/9.37.

As we already mentioned, the (sequentially) monotone complete C∗-algebras were
considered by R.V. Kadison [144], [145]. For the various results concerning them (9.6,
9.10, 9.11, 9.12, 9.14, 9.15, 9.17, 9.18, 9.22, 9.23, 9.24) we have used [50], [145], [152],
[166], [233], [235], [236], [237], [238], [239], [302], [330], [355], [356], to which we refer
also for further results; other related results are contained in [186], [187], [188]. Some
results which were proved here for AW ∗-algebras and monotone complete C∗-algebras can
be extended to the “sequential case” with the supplimentary assumption of “countable
generation”. For instance, a Rickart algebra A is called countaby generated if there is
a sequence {xn} ⊂ A such that A is the smallest Rickart subalgebra of A containing
{xn}. If A is a countably generated Rickart algebra, then A is unital, every x ∈ A has a
central support zA(x) ∈ ZA, for every projection e ∈ A we have ZeAe = eZA, and every
countably additive ∗-homomorphism of A onto a W ∗-algebra M maps ZA onto ZM (see
[356], p. 352, 353, 360).

In the present exposition we stated the results for norm-closed Jordan algebras of
selfadjoint operators ([35], [89], [297], [298], [300], [330], [331]) instead of C∗-algebras,
because, applying these results for the real parts of C∗-algebras, we immediately get
the corresponding statements for C∗-algebras and, usually, the proofs are essentially the
same. Besides the abstract Jordan algebras ([132], [139], [140], [207]) one considers also
some normed Jordan algebras, namely JB-algebras ([11], [12], [13]) and JBW -algebras
([289]). As shown by E.M. Alfsen, F.W. Shultz and E. Störmer [13], the study of JB-
algebras can be reduced to that of Jordan algebras of selfadjoint operators and the
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exceptional Jordan algebra M8
3 ([140]). F.W. Shultz [289] proved that the “envelopping

algebra” of a JB-algebra can be identified with its second dual and used this to show that
a JB-algebra J is a dual space, i.e. a JBW -algebra, if and only if it is monotone complete
and admits a separating set of normal states, in which case the predual is unique and J
splits into the direct sum of a “special part”, isomorphic to a w-closed Jordan algebra of
selfadjoint operators, and a “purely exceptional part”, isomorphic to C(Ω,M8

3 ). On the
other hand, I. Kaplansky, in his final lecture to the 1976 St. Andrews Colloquium of the
Edinburgh Mathematical Society, introduced the concept of a Jordan C∗-algebra ([193],
[194], [195]), J.D. Maitland-Wright [193] showed that each JB-algebra is the selfadjoint
part of a unique Jordan C∗-algebra and obtained a structure theorem for Jordan C∗-
algebras and, together with M.A. Youngson [194], [195], showed that surjective unital
linear isometries between Jordan C∗-algebras are Jordan ∗-isomorphisms and extended
the Russo-Dye theorem. Also the Vidav-Palmer theorem (see 1.19) can be generalized
to Jordan algebras ([29]).

The statements: Corollary 9.2, 9.3.(1), Lemma 2/9.10, Proposition 3/9.14, Theo-
rem 2/9.17 in the Jordan case, Corollary 9.31, Theorem 1/9.32 were worked out by the
second author (L.Z.) in October 1978, in Rome; some of these may be new.
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74. Dixmier, J., Sur une inégalité de E. Heinz, Math. Ann. 126(1953), 75–78.
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Anal. Non Linéaire 26(1977), 213–218.
96. Evans, D.E., Conditionally completely positive maps on operator algebras, Quart.

J. Math. Oxford Ser. (2) 28(1977), 271–284.
97. Evans, D.E., Completely positive quasi-free maps on the CAR algebra, Commun.

Math. Phys. 70(1979), 53–68.
98. Evans, D.E.; Lewis, J.T., Dilations of dynamical semigroups, Comm. Math. Phys.

50(1976), 219–228.
99. Evans, D.E.; Lewis, J.T., Completely positive maps on some C∗-algebras, preprint,

Dublin, 1976.
100. Evans, D.E.; Lewis, J.T., Dilations of irreversible evolutions in algebraic quantum

theory, Comm. Dublin Inst. Adv. Studies (A) 24(1977).
101. Feldman, J., Embedding of AW ∗-algebras, Duke Math. J. 23(1956), 303–308.
102. Ford, J.W.M., A square root lemma for Banach star algebras, J. London Math.

Soc. 42(1967), 521–522.
103. Fukamiya, M., On a theorem of Gelfand and Neumark and the B∗-algebras, Ku-

mamoto J. Sci. 1(1952), 17–22.
104. Fukamiya, M.; Misonou, Y.; Takeda, Z., On order and commutativity of B∗-
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36(1957), 97–108.
120. Guichardet, A., Caractères et représentations des produits tensoriels de C∗-algè-
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189–204.

199. Moore, R.T., Hermitian functionals on B∗-algebras and duality characterizations
of C∗-algebras, Trans. Amer. Math. Soc. 162(1971), 253–265.

200. Murray, F.J.; von Neumann, J., On rings of operators, Ann. of Math. 37(1936),
116–229.

201. Nachbin, L., A theorem of the Hahn-Banach type for linear transformations, Trans.
Amer. Math. Soc. 68(1950), 28–46.

202. Nakagami, Y., Dual action of a von Neumann algebra and Takesaki’s duality for
a locally compact group, Publ. Res. Inst. Math. Sci., Kyoto Univ. 12(1976).

203. Nakai, H., Some expectations in AW ∗-algebras, Proc. Japan. Acad. Ser. A Math.
Sci. 34(1958), 411-416.

204. Nakamura, M.; Takesaki, M.; Umegaki, H., A remark on the expectation of
operator algebras, Kodai Math. J. 12(1960), 82-90.

205. von Neumann, J., Zür Algebra der Funktionaloperationen und Theory der Nor-
malen Operatoren, Math. Ann. 102(1929/30), 370-427.
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325–331.
216. Okayasu, T., A structure theorem of automorphisms of von Neumann algebras,
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99(1971), 193–239.

249. Phillips, R.S., On linear transformations, Trans. Amer. Math. Soc. 48(1940), 516–
541.

250. Powers, R.T., Selfadjoint algebras of unbounded operators, I,II, Comm. Math.
Phys. 21(1971); Trans. Amer. Math. Soc. 187(1974), 261–294.

251. Prosser, R.T., On the ideal structure of operator algebras, Mem. Amer. Math.
Soc. 45(1963).



360 References

252. Ptak, V., On the spectral radius in Banach algebras with involution, Bull. London
Math. Soc. 2(1970), 327–334.

253. Ptak, V., Banach algebras with involution, Manuscripta Math. 6(1972), 245–290.
254. Reid, G.A., A generalization of W ∗-algebras, Pacific J. Math. 15(1965), 1019–1026.
255. Rickart, C.E., Banach algebras with an adjoint operation, Ann. of Math. 47(1946),

528–550.
256. Rickart, C.E., The uniqueness of norm problem in Banach algebras, Ann. of Math.

51(1950), 615–628.
257. Rickart, C.E., Spectral permanence for certain Banach algebras, Proc. Amer.

Math. Soc. 4(1953), 191–196.
258. Rickart, C.E., General Theory of Banach Algebras, Van Nostrand, 1960.
259. Ringrose, J.R., Lectures on the trace in finite von Neumann algebras, Lecture

Notes in Math., vol. 247, Springer Verlag, 1972, pp. 309–354.
260. Ringrose, J.R., Linear functionals on operator algebras and their abelian subal-

gebras, J. London Math. Soc. 7(1974), 553–560.
261. Russo, B., Linear mappings of operator algebras, Proc. Amer. Math. Soc. 17(1966),

1019–1022.
262. Russo, B.; Dye, H.A., A note on unitary operators in C∗-algebras, Duke Math. J.

33(1966), 413–416.
263. Saito, K., On the preduals of W ∗-algebras, Tôhoku Math. J. 19(1967), 324–331.
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304. Strătilă, Ş., Modular theory in operator algebras, Editura Academiei and Abacus
Press, 1981.
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