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Chapter 1

Preface

Throughout history, the main role of cryptography has been to keep sensible information

private, even in the presence of an adversary that has control over the communication

channel. Even though privacy remains central to cryptography, the �eld has expanded

and it incorporates other goals, such as data integrity and authenticity, access control or

electronic payments.

Once used only by the military, cryptography is now in widespread use and people bene�t

from it daily, even without know it. For example, when buying an item online a secure

channel is used to process the transaction and implicitly to ensure the privacy of your

credit card. Or, when communicating through messaging apps our private conversations

are protected using end-to-end encryption. With such a growing area of applicability, is

not surprising that modern cryptography intertwines concepts from mathematics, com-

puter science, engineering and physics.

Although a remarkable science, cryptography is also an art and a puzzling game. We

have to think as an attacker would, while defending the system against threats; we have

to juggle between speed, usability and security; we have to twist known concepts in order

to make them �t our scope; we have to design high level concepts, while keeping in mind

the low level ones etc. In�uenced by the plethora of concepts a cryptographer has to

manage, in this work we touch on di�erent areas of cryptography and we either take the

role of the designer or of the attacker. By presenting both sides of the same coin, we

wish that the reader will start to appreciate the beauty of this puzzling science and will

begin to see the relationships that arise between seemingly di�erent concepts.
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Preface 2

1.1 Outline

We further present a brief synopsis of the seven main chapters contained in this work.

One of the most di�cult things about structuring this work was the interdependency of

some of the chapters. We have tried to present the material in this thesis in a logical

and natural order. Without further ado, here is the thesis outline.

Chapter 2 tackles secret key cryptography and is split into three parts. The �rst part

analyses the security of the (a�ne) Hill cipher and their corresponding modes of op-

eration. De�nitions and background information are presented in Section 2.1.1. The

core of the �rst part consists of Sections 2.1.2 and 2.1.3 that contain several key ranking

functions and ciphertext only attacks. Experimental results are provided in Section 2.1.4

and some possible research directions are given in Section 2.1.5. The letter frequencies

and the Vigenère attack used in Section 2.1.4 are given in Appendices A and B. Some

possible methods for increasing the brute-force complexity for the Grain family of stream

ciphers are presented in the second part of this chapter. We introduce notations and give

a quick reminder of the Grain family technical speci�cations in Section 2.2.1. Section

2.2.2 describes generic attacks against the Grain ciphers. In Section 2.2.3 we provide the

reader with a security analysis of IV padding schemes for Grain ciphers. We underline

various interesting ideas as future work in Section 2.2.4. We recall Grain v1 in Appendix

C, Grain-128 in Appendix D and Grain-128a in Appendix E. We do not recall the cor-

responding parameters of Grain v0, even though the results presented in this section

still hold in that case. In Appendices F and G we provide test values for our proposed

algorithms. The last part of this chapter studies the e�ect of using quasigroups isotopic

to groups when designing SPNs. Hence, prerequisites are given in Section 2.3.1. An SPN

generalization is introduced in Section 2.3.2 and its security is studied in Section 2.3.3.

In Chapter 3 we discuss several public key protocols and some of their applications.

The �rst part introduces several hardness assumptions necessary for proving the proto-

cols' security. Zero-knowledge protocols are studied in the second part of this chapter.

Therefore, we recall zero-knowledge concepts in Section 3.2.1. Inspired by Maurer's

Uni�ed-Zero Knowledge construction, in Section 3.2.2 we introduce a Uni�ed Generic

Zero-Knowledge protocol and prove it secure. We provide the reader with various special

cases of UGZK in Section 3.2.3. A hash variant of our core protocol is tackled in Section

3.2.4 together with its security analysis. As a possible application for UGZK, in Section

3.2.5 we describe a lightweight authentication protocol, discuss security and complexity

aspects and present implementation trade-o�s which arise from small variations of the

proposed result. In Section 3.2.6 we underline future work proposals. The third part of

this chapter contains a signature scheme inspired by Maurer's UZK paradigm. The nec-

essary prerequisites are given in Section 3.3.1 and the exact details of the UDS signature
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are provided in Section 3.3.2. An application for UDS is given in the fourth part of this

chapter. More precisely, after introducing preliminaries in Section 3.4.1, we introduce a

co-signing protocol built on the legally fair contract signing protocol of Ferradi et. al in

Section 3.4.2. We discuss some related open problems in Section 3.4.3. Two public key

encryption schemes are presented in the �fth part. In Section 3.5.1 we introduce de�ni-

tions, security assumptions and schemes used throughout the section. First we introduce

in Section 3.5.2 a slight modi�cation of the generalized ElGamal encryption scheme, that

will be used in a subsequent chapter. Then, inspired by the Joye-Libert PKE scheme and

aiming at obtaining a relevant generalization, in Section 3.5.3 we propose a new scheme

based on 2k residues, prove it secure in the standard model and analyze its performance

compared to other related cryptosystems. Future work is presented in Section 3.5.3.5

and in Appendix H we present some optimized decryption algorithms for our proposed

scheme. The �nal part of this chapter provides the reader with an application of our

Joye-Libert based scheme to biometric authentication. Thus, de�nitions and security

requirements are presented in Section 3.6.1, while our proposed authentication protocol

is described in Section 3.6.2.

Some useful results for understating the security of Cocks' identity based encryption and

of certain variations of it are provided in Chapter 4. Basic notions and Cocks' scheme

are presented in the �rst part of the chapter. The second part considers sets of the form

a ` X “ tpa ` xq mod n | x P Xu, where n is a prime or the product of two primes

n “ pq and X is a subset of Z˚
n whose elements have some given Jacobi symbols modulo

prime factors of n. The third part of the chapter points out two applications of the

previously mentioned results. The �rst one provides the reader with a deep analysis of

some distributions related to Cocks' IBE scheme and Galbraith's test, providing thus

rigorous proofs for Galbraith's test. The second application discussed, relates to the

computational indistinguishability of some distributions used for proving the security of

certain variations of Cocks' IBE. We were able to prove statistical indistinguishability

of those distributions without any hardness assumption. The chapter concludes with

Section 4.4.

An unconventional method for backdooring cryptographic systems is studied in Chap-

ter 5. The basic notions about kleptographic attacks are given in Section 5.1. The �rst

part of this chapter deal with a threshold kleptographic attack that can be implemented

in the generalized ElGamal signature. Thus, in Section 5.2.1 we describe a simpli�ed

attack on the generalized ElGamal signature and then extended it in Section 5.2.2. A

series of signatures that support the implementation of our attack are provided in Section

5.2.3. Future work is presented in Section 5.2.4 and a two-party malicious signing proto-

col is presented in Appendix I. We provide a supplementary kleptographic mechanism in

Appendix J. A method for infecting Maurer's UZK protocol is studied in the second part
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of this chapter. In Sections 5.3.1 and 5.3.2 we present our new general kleptographic

attacks and prove them secure. Instantiations of our attacks can be found in Section

5.3.3. Some possible research directions are given in Section 5.3.4. In the third part,

we introduce a subscription based marketing model suitable for selling infected devices.

Hence, some additional preliminaries are given in Section 5.4.1. Based on the ElGamal

encryption algorithm, a series of kleptographic subscriptions that �t di�erent scenarios

are provided in Sections 5.4.2 to 5.4.4. We discuss some open problems in Section 5.4.5.

Hash channels are tackled in the last part of the chapter. By adapting and improving

Wu's mechanism we introduce new hash channels in Section 5.5.1. A series of experi-

ments are conducted in Section 5.5.2, while several applications are provided in Section

5.5.3.

In Chapter 6 we study (pseudo)-random numbers generators. The �rst part of the chapter

deals with Adobe Flash Player's1 vulnerability in the pseudo-random number generator

used for constant blinding. We introduce the necessary prerequisites in Section 6.1.1. The

core of our seed recovering mechanism consists of Sections 6.1.2 and 6.1.3 and contains

a series of algorithms for inverting a generalized version of the hash function used by the

Flash Player. Experimental result are given in Section 6.1.4. Supplementary algorithms

may be found in Appendix K. The second part contain an architecture that can be used

to implement health tests for random numbers generator. De�nitions and background

information are presented in Section 6.2.1. Two classes of digital �lters that amplify

existing biases are described in Sections 6.2.2 and 6.2.3. Some possible applications are

given in Section 6.2.4. In Section 6.2.5 we apply our proposed architecture to broken

Bernoulli noise sources and present some experimental results. The theoretical model is

provided in Section 6.2.6. Some �ner measurements are provided in Section 6.2.7. In

Section 6.2.8 we underline future work proposals.

Chapter 7 contains several protocols that fall in the category of recreational cryptog-

raphy. Thus, in Section 7.1 we describe various schemes which aim at solving Yao's

millionaires' problem and provide the reader with their corresponding security analyses.

In Section 7.2 we present a set of protocols which act as solutions for comparing informa-

tion without revealing it and discuss their security. In Section 7.3 we describe a public

key cryptosystem constructed by means of an electrical scheme and tackle its security.

In Appendix L we recall various physical cryptographic solutions which appeared in the

literature, while in Appendix M we present a generic physical public key encryption

scheme useful for introducing students to di�erent properties of physical systems.

1versions 24.0.0.221 and earlier
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Chapter 2

Secret Key Cryptography

The simplest and also the most common method for protecting the con�dentiality of mes-

sages or authenticating a piece of information is to use a shared secret key between the

sender and the receiver. This is called secret/symmetric key cryptography. In this sce-

nario both participants use functions dependent on the same predetermined key. Usually,

the shared key is randomly generated.

Symmetric key algorithm are assumed to maintain their security properties as long as

adversaries cannot �nd the used key. This can mean three things: either the key is

kept secure by the party using it or the key is large enough to avoid brute forcing

it or the algorithm does not leak any information. In this chapter we will deal with

two of the aforementioned aspects. More precisely, we will show how the (a�ne) Hill

cipher and their corresponding modes of operation leak critical information through the

ciphertext. Then we will describe a method for extending the life of Grain instantiations

by increasing their corresponding brute force complexity. Finally, we provide the reader

with equivalent instantiations of substitution permutation networks.

2.1 (A�ne) Hill Cipher

Two classical ciphers based on linear algebra are the Hill cipher [144] and its a�ne version

[145]. Both use invertible matrices over integers modulo a to encipher messages, where

a is the size of the language alphabet A. The �rst step of the encryption process is the

encoding of each plaintext letter into a numerical equivalent. The simplest encoding is

"a" “ 0, "b" “ 1 and so on. After encoding, the plaintext is divided into blocks of size

k and, then, each block is multiplied with an invertible matrix of size k. In the a�ne

case, a second matrix is added to the result. After each block is transformed, the result
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Secret Key Cryptography 8

is converted back into letters. To decipher messages, one must perform the above steps

in reverse.

Although both ciphers are vulnerable to known plaintext attacks1, e�cient ciphertext

only attacks have been developed only a decade ago [42] and only for the Hill cipher with

small ks. Note that as k increases simple brute force attacks fail. For example, in the

case of the Hill cipher with a “ 26, we have around 217 keys for k “ 2, 240 keys for k “ 3

and 273 keys for k “ 4 [42]. According to [201, 43], given a and k the exact number of

invertible matrices can be computed. Note that in the case of the a�ne Hill cipher the

computational e�ort made to brute force the Hill cipher is multiplied with ak.

In 2007, Bauer and Millward [42] introduced a ciphertext only attack for the Hill cipher2,

that was later improved in [266, 167, 178]. The attack was independently published by

Khazaei and Ahmadi [154]. The main idea of these attacks is to do a brute force attack

on the key rows, instead of the whole matrix, and then recover the decryption matrix.

In [157], Kiele suggests the usage of block-chaining procedures to complicate the algebraic

cryptanalytic techniques developed for the Hill cipher. We will show in this section how

to adapt the attacks described in [42, 266, 154] to di�erent modes of operation (not only

the block-chaining one) for both the Hill cipher and its a�ne version. Note that some

modes do not require the key to be invertible, thus the attack presented in [167] does not

work for all Hill based modes. For uniformity, we will only extend Yum and Lee's attack

and leave as future work the extension of [167] to modes requiring invertible matrices.

We stress that out of the three attacks [42, 266, 154] Yum and Lee's attack has the best

performance to message recovery ratio.

Another paper that motivated this study is [41]. The authors of [41] conjecture that

the fourth cryptogram of the Kryptos sculpture [9] is either encrypted using the a�ne

Hill cipher or some other sort of cipher mode of operation. We provide the reader with

a preliminary study of these conjectures. To prove or disprove these conjectures, one

has to �nd a way to adapt all the presented ciphertext attacks to the secret encoding

versions of the (a�ne) Hill cipher and their corresponding modes of operation. Various

partial answers for the secret encoding Hill cipher are provided in [266].

1i.e. after a number of known messages are encrypted, one can easily recover the encryption key(s)
if he has access to the corresponding ciphertexts.

2Bauer and Millward's attack for k “ 3 was previously and independently described online by Wutka
[257].
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2.2 Grain Cipher Family

The Grain family of stream ciphers consists of four instantiations Grain v0 [140], Grain

v1 [141], Grain-128 [139] and Grain-128a [211]. Grain v1 is a �nalist of the hardware-

based eSTREAM portfolio [4], a competition for choosing both hardware and software

secure and e�cient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading of the LFSR

consists of an initialization vector (IV) and a certain string of bits P whose lengths and

structures depend on the cipher's version. Following the terminology used in [39], we

consider the IV as being padded with P . Thus, throughout this section, we use the term

padding to denote P . Note that Grain v1 and Grain-128 make use of periodic IV padding

and Grain-128a uses aperiodic IV padding.

A series of attacks against the Grain family padding techniques appeared in the literature

[38, 39, 64, 162] during the last decade. In the light of these attacks, we propose the �rst

security analysis3 of generic IV padding schemes for Grain ciphers in the periodic as well

as the aperiodic cases.

In this context, the concerns that arise are closely related to the security impact of

various parameters of the padding, such as the position and structure of the padding

block. Moreover, we consider both compact and fragmented padding blocks in our study.

We refer to the original padding schemes of the Grain ciphers as being compact (i.e.

a single padding block is used). We denote as fragmented padding the division of the

padding block into smaller blocks of equal length4.

By examining the structure of the padding and analyzing its compact and especially

fragmented versions, we actually study the idea of extending the key's life. The latter

could be achieved by introducing a variable padding according to suitable constraints.

Hence, the general question that arises is the following: what is to be loaded in the LFSRs

of Grain ciphers in order to obtain secure settings?. Note that our study is preliminary,

taking into account only slide attacks. We consider other types of attacks as future work.

We stress that �nding better attacks than the ones already presented in the literature

is outside the scope of this section, as our main goal is to establish sound personalized

versions of the Grain cipher. Hence, our work does not have any immediate implication

towards breaking any cipher of the Grain family. Nevertheless, our observations become

meaningful either in the lightweight cryptography scenario or in the case of an enhanced

security context (e.g. secure government applications).

3against slide attacks
4we consider these smaller blocks as being spread among the linear feedback register's data
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Lightweight cryptography lies at the crossroad between cryptography, computer science

and electrical engineering. Thus, trade-o�s between performance, security and cost must

be considered. Given such constraints and the fact that embedded devices operate in

hostile environments, there is an increasing need for new and varied security solutions,

mainly constructed in view of the current ubiquitous computing tendency. As the Grain

family lies precisely within the lightweight primitives' category, we believe that the study

presented in the current section is of interest for the industry and, especially, government

organizations.

When dealing with security devices for which the transmission and processing of the IV

is neither so costly nor hard to handle (e.g. the corresponding communication protocols

easily allow the transmission), shrinking the padding up to complete removal might be

considered. More precisely, we suggest the use of a longer IV in such a context in order

to increase security. Moreover, many Grain-type con�gurations could be obtained if

our proposed padding schemes are used. Such con�gurations could be considered as

personalizations of the main algorithm and, if the associated parameters are kept secret,

the key's life can be extended.

2.3 Quasigroup Substitution Permutation Networks

In its most basic form, di�erential cryptanalysis [55] predicts how certain changes in the

plaintext propagate through a cipher. When considering an ideally randomizing cipher,

the probability of predicting these changes is 1{2n, where n is the number of input bits.

Thus, in the ideal case, it is infeasible for an attacker to use these predictions when n

is, for example, 128. Unfortunately, designers use theoretical estimates based on certain

assumptions that do not always hold in practice. Hence, di�erential cryptanalysis is

often the most e�ective tool against symmetric key cryptographic algorithms [188].

Quasigroups are group-like structures that, unlike groups, are not required to be asso-

ciative and to possess an identity element. The usage of quasigroups as building blocks

for cryptographic primitives is not very common. Regardless of that, various such cryp-

tosystems can be found in the literature [164, 117, 116, 35, 90, 160].

In this paper we introduce a straightforward generalization of substitution-permutation

networks (SPN) and study its security. By replacing the group operation ‹ between keys

and (intermediary) plaintexts with a quasigroup operation b we aimed at extending the

usage of quasigroups. Unfortunately, by means of di�erential cryptanalysis we prove that

in the case of quasigroups isotopic with a group5 the problem of breaking an SPN using

5Note that this is the most popular method for generating quasigroups.
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b reduces to breaking an SPN using ‹ and a substitution box (s-box) di�erent from the

initial one. Thus, if we initialize the SPN with a random secret s-box, replacing ‹ with

b brings no extra security6. In the case of static s-boxes, changing ‹ with b might even

a�ect the SPN's security.

Although the design presented in this paper is not a successful one, we think that its

usefulness is twofold. 1 Most scienti�c reports and papers published appear as sanitized

accounts7 and this gives people a distorted view of scienti�c research [179, 146, 235, 255].

This leads to a view that implies that failure, serendipity and unexpected results are not a

normal part of science [146, 220]. Hence, this report provides students with an indication

of the real processes of experimentation. 2 Negative results and false directions are

rarely reported [146, 248] and, thus, people are bound to repeat the same mistakes. By

presenting our results, we hope to provide an opportunity for others to learn where this

path leads. Hence, preventing them to make the same mistakes8.

6i.e. we simply obtain another instantiation of the SPN
7Authors present their results as if they achieved them in a straightforward manner and not through

a messy process.
8In [236], the author advises people to write down their mistakes so that they avoid making them

again in the future.



Chapter 3

Public Key Cryptography

One of the problems associated with secret key cryptography is key distribution. An

elegant solution for this inconvenience is provided by public/asymmetric key cryptogra-

phy. In an asymmetric setting a participant possesses a pair of keys: a public key and an

associated secret key. The public key is known by everybody and is bound to the partic-

ipant's identity. Using the public key, any party can send messages to the owner, while

he can read them using his secret key. Compared to secret key systems1, in the public

key setting there is no need for a secure channel in order to disseminate the participants'

public keys. Another attractive property of asymmetric algorithms is that their security

can, in most cases, be reduced to di�cult computational problems.

Although initially developed for solving the key distribution problem, public key cryp-

tography has expanded and incorporates other application such as encryption schemes,

digital signatures or zero-knowledge protocols. In this chapter we develop various ex-

amples for the previously mentioned applications and relate their security to some well

known hardness assumptions.

3.1 Zero-Knowledge Protocols

The main issue addressed by ZKP is represented by identi�cation schemes (entity au-

thentication). Thus, building on the most important goal that a ZKP can achieve one

may �nd elegant solutions to various problems that arise in di�erent areas: digital cash,

auctioning, IoT, password authentication and so on.

A typical zero knowledge protocol involves a prover Peggy which possesses a piece of

secret information x associated with her identity and a veri�er V ictor whose job is to

1where a secure channel is needed to distribute the communication key to the participants

12
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check that Peggy really owns x. Two classical examples of such protocols (proposed for

smartcards) are the Schnorr protocol [219] and the Guillou-Quisquater protocol [131].

Working in an abstract framework, Maurer shows in [176] that the previously mentioned

protocols are actually instantiations of the same one.

Building on Maurer's result, we considered of great interest providing the reader with

a generalized perspective of the Uni�ed Zero-Knowledge (UZK) protocol as well as a

hash variant of it. An important consequence of our generic approach is the uni�cation

of Maurer's [176], Feige-Fiat-Shamir's [103] and Chaum-Everste-Van De Graaf's [68]

protocols. Moreover, a special case of our protocol's hash version is the h-variant of the

Fiat-Shamir scheme [108, 115].

As the IoT paradigm arised, lightweight devices2 became more and more popular. Due

to the open and distributed nature of the IoT, proper security is needed for the entire

network to operate accordingly. Now let us consider the case of online wireless sensor

networks (WSNs). The lightweight nature of sensor nodes heavily restricts cryptographic

operations. Thus, the need for speci�c cryptographic solutions becomes obvious. The

Fiat-Shamir-like distributed authentication protocol presented in [78] represents such

an example. Based on this previous construction we propose a uni�ed generic zero-

knowledge protocol. Just as the result described in [78], our protocol can be applied for

securing WSNs and, more generally, IoT-related solutions. Nonetheless, our construction

o�ers �exibility when choosing the assumptions on which its security relies. A secondary

feature of our scheme is the possibility of reusing existing certi�cates when implementing

the distributed authentication protocol.

3.2 Signature Schemes

In 1986, Fiat and Shamir [108] described an important technique for deriving digital

signatures from zero-knowledge protocols. At its core, the signer uses a hash function

in order to create a virtual veri�er. This technique was later used by Schnorr to trans-

form his ZKP into a signature. The resulting signature was proven secure in ROM by

Pointcheval and Stern [208, 209].

The UZK framework incorporates the Schnorr ZKP. Hence, it is natural to apply the

Fiat-Shamir transform to UZK and thus extend Schnorr's signature. We will later use

the resulting signature as the main building block for the contract signing protocol we

propose in Section 3.3.2.

2low-cost devices with limited resources, be it computational or physical
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3.3 Legally Fair Contract Signing Protocols

Various contract signing schemes which fall into three di�erent design categories were

proposed during the last decades: gradual release [122, 207, 111, 127], optimistic [29,

63, 181] and concurrent [71] or legally fair [104] models. A typical co-signing protocol

involves two (mutually distrustful) signing partners, Alice and Bob wishing to compute

a common function on their private inputs.

Compared to older paradigms like gradual release or optimistic models, concurrent sig-

natures or legally fair protocols do not rely on trusted third parties and do not require

too much interaction between co-signers. As such features seem much more attractive for

users, we further consider legally fair co-signing protocols (rather than older solutions)

in our paper.

Inspired by Maurer's generic perspective, we considered of great interest extending the

uni�cation paradigm to contract signing protocols. Therefore, we construct our main idea

considering the stringent issue of scheme compatibility which characterizes communica-

tion systems. Typical examples are the cases of certi�cates in a public key infrastructure

and the general issue of upgrading the version of a system. Thus, working in a general

framework may reduce implementation errors and save application development (and

maintenance) time.

In this section we present a uni�ed class of legally fair co-signing protocols without

keystones and prove its security. To be more precise, we propose a class of UDS (see

Section 3.2) based co-signing protocols that maintains the valuable properties3 of the

scheme presented in [104].

3.4 A Generalisation of the Goldwasser-Micali Cryptosys-

tem

The scope of a public key encryption scheme is to provide con�dentiality, while allow-

ing users to distribute their public keys widely and openly. Therefore, only a user in

possession of the secret key can decrypt messages, while anyone in possession of the cor-

responding public key can encrypt data to send it to this one user. Usually, the design

of PKEs is typically based on computationally intractable problems in number theory.

The authors of [149] introduced a PKE scheme4 representing a rather natural extension of

the Goldwasser-Micali (GM) [123, 124] cryptosystem, the �rst probabilistic encryption
3legal fairness without keystones, guaranteed output delivery
4reconsidered in [51]
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scheme. The Goldwasser-Micali cryptosystem achieves ciphertext indistinguishability

under the Quadratic Residuosity (qr) assumption. Despite being simple and stylish, this

scheme is quite uneconomical in terms of bandwidth5. Various attempts of generalizing

the Goldwasser-Micali scheme were proposed in the literature in order to address the

previously mentioned issue. The Joye-Libert scheme can be considered a follow-up of

the cryptosystems proposed in [190] and [79] and e�ciently supports the encryption of

larger messages.

Inspired by the Joye-Libert scheme, we propose a new public key cryptosystem, analyze

its security and provide the reader with an implementation and performance discussion.

We construct our scheme based on 2k-th power residue symbols. Our generalization of

the Joye-Libert cryptosystem makes use of two important parameters when it comes

to the encryption and decryption functions: the number of bits of a message and the

number of distinct primes of a public modulus n. Thus, our proposal not only supports

the encryption of larger messages (as in the Joye-Libert variant), but also operates on

a variable number of large primes (instead of two in the Joye-Libert case). Both these

parameters can be chosen depending on the desired security application.

Our scheme can be viewed as a �exible solution characterized by the ability of mak-

ing adequate trade-o�s between encryption speed and ciphertext expansion in a given

context.

3.5 Biometric Authentication

In biometric authentication protocols, when a user identi�es himself using his biometric

characteristics (captured by a sensor), the collected data will vary. Thus, traditional

cryptographic approaches (such as storing a hash value) are not suitable in this case, since

they are not error tolerant. As a result, biometric-based protocols must be constructed

in a special way and, moreover, the system must protect the sensitivity and privacy of

a user's biometric characteristics. Such a protocol is proposed in [61]. Its core is the

Goldwasser-Micali encryption scheme. Thus, a natural extension of the protocol in [61]

can be obtained using our generalization of the Joye-Libert scheme. Thus, we describe

such a biometric authentication protocol and discuss its security.

5k ¨ log2 n bits are needed to encrypt a k-bit message, where n is an RSA modulus as described in
[123, 124]



Chapter 4

Identity Based Cryptography

Identity-based cryptography was proposed in 1984 by Adi Shamir [222] who formulated

its basic principles and provided an identity-based signature scheme. In 2000, Sakai,

Ohgishi and Kasahara [216] have proposed an identity-based key agreement scheme, and

one year later, Cocks [77] and Boneh and Franklin [59] have proposed the �rst identity-

based encryption schemes. Cocks' scheme is based on quadratic residues, while Boneh

and Franklin's scheme is based on bilinear maps. Since then, some other IBE schemes

based on quadratic residues have been proposed [60, 147, 31, 76, 99, 100, 148], although

some of them are not secure (see [246] for details).

Cocks'scheme encrypts messages bit by bit and each encrypted bit is a pair of two

integers. The decryption consists of computing the Jacobi symbol of one of the two

integers in each pair. Although Cocks' IBE scheme is e�cient only for small messages,

it is very elegant and per se revolutionary. The scheme attracted the interest of many

researchers [60, 31, 76, 148]. A careful analysis of [77, 60, 31, 76, 148] shows that integers

of the form a`r, where a is an integer and r is a quadratic residue (modulo a given integer

n), play an important role in these papers. Particularly, it turns out to be important

to know the distribution of quadratic residues among all integers of the form a ` r. A

study in this direction was initiated by Perron [206] for the case of a prime modulus p.

However, most applications of quadratic residues to cryptography require the use of a

composite modulus n “ pq. We are thus faced with the need to extend Perron's results

to composite moduli. The same was advocated in [31] (see Section 2.3 in [31]). Here, the

authors avoided the extension of Perron's results to composite moduli with the price of

weaker indistinguishability results (this will be fully discussed in Section 4.3.1).

The contributions presented in this chapter are structured into two parts. The �rst part

(Section 4.2) considers sets of the form a ` X “ tpa ` xq mod n | x P Xu, where n is

a prime or the product of two primes n “ pq, and X is a subset of Z˚
n whose elements

16
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have some given Jacobi symbols modulo prime factors of n. For instance, X may be the

set of all integers in Z˚
n whose Jacobi symbol modulo p is 1 and Jacobi symbol modulo

q is ´1 (assuming n “ pq); we say that the Jacobi pattern of the integers in X, in this

case, is �`´�. Then, given a set a ` X, we look for the distribution of the quadratic

residues, quadratic non-residues, etc., in a ` X. We develop complete results for all

the Jacobi patterns of length one, + and - (this corresponds to quadratic residues and

non-residues modulo a prime) and Jacobi patterns of length two, ``, ´´, `´, and ´`

(this corresponds to moduli that are product of two distinct primes).

The results presented in Section 4.2 are a major extension of Perron's �ndings [206],

where only the distribution of quadratic residues in the set a`QRp, where p is a prime,

has been considered. Related studies to the one conducted in Section 4.3 were performed

in [86, 87, 204, 151], where the problem is to calculate the probability that

JppaqJppa` 1q ¨ ¨ ¨ Jppa` `´ 1q

meets some Jacobi residuosity modulo p, a priori given, for the ` elements, when a is

chosen uniformly at random from a P Z˚
p (p is a prime). Thus, in [204] it was shown that

the number of integers a with the property above is in between p{2` ´ ε and p{2` ` ε,

where ε “ `p3 `
?
pq. Dividing these two bounds by p we obtain the probability that

an integer a induces a given Jacobi residuosity for the ` consecutive elements. A direct

extension of this result to the case of RSA moduli may lead to �much larger bound� than

ε. In [151], an extension to RSA moduli has been proposed by generalizing [87]. Thus, it

was shown that the number of integers a with the property above is n{2``Op
?
n¨log2 nq,

where n is an RSA modulus and 1 ď ` ď p1{2´ δq log2 n, for some 0 ă δ ă 1{2.

The results developed in this chapter are di�erent than those mentioned above for at least

two main reasons. First of all, we have developed exact and not approximate formulas

for the number of integers with a given Jacobi pattern in sets a ` X. Secondly, the

increment factor is arbitrary in all our studies, while it is one in all the results mentioned

above.

The second part of the chapter's contribution (Section 4.3) points out some applications

of the results developed in the �rst part (Section 4.2). There are two main applications

discussed here. The �rst one relates to Galbraith's test for Cocks' IBE scheme. This

test was brie�y described in several papers such us [58, 31, 148], except that some claims

were not rigorously formulated and/or proved. Based on the results developed in Section

4.2, we were able to make a deep analysis of some distributions related to Cocks' IBE

scheme and Galbraith's test, providing thus rigorous proofs for Galbraith's test.
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The second application discussed in Section 4.3 relates to the computational indistin-

guishability of some distributions in [31, 76, 148], under the quadratic residuosity as-

sumption. Based on the results developed in Section 4.2, we were able to prove statistical

indistinguishability of those distributions (without any assumption).

In addition to the applications already mentioned in Section 4.3, we believe that our

study in Section 4.2 is important also because it contributes to a better understanding

of the structure of Z˚
n with respect to Jacobi patterns of length at most two, which are

frequently employed in cryptography.



Chapter 5

Kleptographic Attacks

As more and more countries require individuals and providers to hand over passwords and

decryption keys [22], we might observe an increase in the usage of subliminal channels.

Subliminal channels are secondary channels of communication hidden inside a potentially

compromised communication channel. The concept was introduced by Simmons [226,

227, 228] as a solution to the prisoners' problem. In the prisoners' problem Alice and

Bob are incarcerated and wish to communicate con�dentially and undetected by their

guard Walter who imposes to read all their communication. Note that Alice and Bob

can exchange a secret key before being incarcerated.

Classical security models assume that the cryptographic algorithms found in a device

are correctly implemented and according to technical speci�cations. Unfortunately, in

the real world, users have little control over the design criteria or the implementation

of a security module. When using a hardware device, for example a smartcard, the

user implicitly assumes an honest manufacturer that builds devices according to the

provided speci�cations. The idea of a malicious manufacturer that tampers with the

device or embeds a backdoor in an implementation was �rst suggested by Young and

Yung [261, 262]. As proof of concept, they developed secretly embedded trapdoor with

universal protection (SETUP) attacks. These attacks combine subliminal channels and

public key cryptography to leak a user's private key or a message. Young and Yung

assumed a black-box environment1, while mentioning the existence of other scenarios.

The input and output distributions of a device with SETUP should not be distinguishable

from the regular distribution. However, if the device is reverse engineered, the deployed

mechanism may be detectable.

1A black-box is a device, process or system, whose inputs and outputs are known, but its internal
structure or working is not known or accessible to the user (e.g. tamper proof devices).

19



Kleptographic Attacks 20

Although SETUP attacks were considered far-fetched by some cryptographers, recent

events [36, 205] suggest otherwise. As a consequence, this research area seems to have

been revived [32, 45, 94, 214]. In [47], SETUP attacks implemented in symmetric encryp-

tion schemes are referred to as algorithmic substitution attacks (ASA). The authors of

[47] point out that the sheer complexity of open-source software (e.g. OpenSSL) and the

small number of experts who review them make ASAs plausible not only in the black-box

model. ASAs in the symmetric setting are further studied in [45, 88] and, in the case of

hash functions, in [28]. A link between secret-key steganography and ASAs can be found

in [53].

A practical example of leaking user keys is the Dual-EC generator, a cryptographically

secure pseudorandom number generator standardized by NIST. Internal NSA documents

leaked by Edward Snowden [36, 205] indicated a backdoor embedded into the Dual-EC

generator. As pointed out in [54], using the Dual-EC generator facilitates a third party to

recover a user's private key. Such an attack is a natural application of Young and Yung's

work. Some real world SETUP attack examples may be found in [70, 69]. Building on

the earlier work of [250] and in�uenced by the Dual-EC incident, [94, 89] provide the

readers with a formal treatment of backdoored pseudorandom generators (PRNG).

A more general model entitled subversion attacks is considered in [32]. This model

includes SETUP attacks and ASAs, but generic malware and virus attacks are also

included. The authors provide subversion resilient signature schemes in the proposed

model. Their work is further extended in [214, 215], where subversion resistant solutions

for one-way functions, signature schemes and PRNGs are provided. In [214], the authors

point out that the model from [32] assumes the system parameters are honestly generated

(but this is not always the case). In the discrete logarithm case, examples of algorithms

for generating trapdoored prime numbers may be found in [126, 110].

A di�erent method for protecting users from subversion attacks are cryptographic reverse

�rewalls (RF). RFs represent external trusted devices that sanitize the outputs of infected

machines. The concept was introduced in [184, 96]. A reverse �rewall for signature

schemes is provided in [32].

5.1 Threshold Kleptographic Attacks

In this section, we extend the SETUP attacks of Young and Yung on digital signatures.

We introduce the �rst SETUP mechanism that leaks a user's secret key, only if ` out

of n malicious parties decide to do this. We assume that the signature schemes are
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implemented in a black-box equipped with a volatile memory, erased whenever someone

tampers with it.

In the following we give a few examples where a threshold kleptographic signature may

be useful.

Since digitally signed documents are just as binding as signatures on paper, if a recipient

receives a document signed by A he will act according to A's instructions. Finding A's

private key, can aid a law enforcement agency into collecting additional informations

about A and his entourage. In order to protect citizens from abuse, a warrant must be

issued by a legal commission before starting surveillance. To aid the commission and to

prevent abuse, the manufacturer of A's device can implement an ` out of n threshold

SETUP mechanism. Thus, A's key can be recovered only if there is a quorum in favor

of issuing the warrant.

Digital currencies (e.g. Bitcoin) have become a popular alternative to physical curren-

cies. Transactions between users are based on digital signatures. When a transaction is

conducted, the recipient's public key is linked to the transfered money. Only the owner

of the secret key can now spend the money. To protect his secret keys, a user can choose

to store them in a tamper proof device, called a hardware wallet. Let's assume that a

group of malicious entities manages to infect some hardware wallets and they implement

an ` out of n threshold SETUP mechanism. When ` members decide, they can transfer

the money from the infected wallets without the owner's knowledge. If ` ´ 1 parties

are arrested, the mechanism remains undetectable as long as the devices are not reverse

engineered.

In accordance with the original works, we prove that the threshold SETUP mechanisms

are polynomially indistinguishable from regular signatures. Depending on the infected

signature, we obtain security in the standard or random oracle model (ROM). To do

so, we make use of a public key encryption scheme (introduced in Section 3.5.2) and

Shamir's secret sharing scheme [221]. ROM security proofs are easily deduced from the

standard model security proofs provided in this section. Thus, are omitted.

5.2 Unifying Framework

The initial model proposed by Young and Yung is the black-box model. For our intended

purposes this model su�ces, since the zero-knowledge protocols we attack were designed

for smartcards. An important property is that infected smartcards should have inputs

and outputs indistinguishable from regular smartcards. However, if the smartcard is

reverse engineered, the deployed mechanism may be detectable.
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There are two methods to embed backdoors into a system: either you generate special

public parameters (SPP) or you infect the random numbers (IRN) used by the system.

In the case of discrete logarithm based systems, SPP and IRN were studied in [261, 262,

263, 264, 126, 110]. We only found SPP [83, 261, 262, 265, 264] and not IRN in the case

of factorization based systems.

Using the same level of abstraction as in [176], we show how an attacker (calledMallory)

can insert a backdoor into the UZK protocol and extract Peggy's secret. When instanti-

ated, this attack provides new insight into SETUP attacks. In particular, we provide the

�rst IRN attack on a factoring based system and the �rst attack on systems based on

eth-root representations. We also provide the reader with new instantiations of Maurer's

uni�ed protocol: the Girault protocol, a new proof of knowledge for discrete logarithm

representation in Z˚
n and a proof of knowledge of an eth-root representation.

The second SETUP attack we introduce is a generalization of Young and Yung's work.

When instantiated with the Schnorr protocol, we obtain their results. We also provide

other examples not mentioned by Young and Yung.

5.3 Kleptographic Subscription Plans

One of the classical business models for kleptographic attacks is the following: a client2

C pays up front a manufacturer M , whom will later implement a certain backdoor

in a tamper proof device and deliver that device to a victim. This model puts the

manufacturer at an advantage, because he can charge the customer and not implement

the requested backdoor. Since this transaction is illegal, the customer can not �le a

complain and legally retrieve his money. Thus, this might scare o� some of the potential

clients.

Another classical model is the following: a client pays the manufacturer half the money

up front and the rest after checking the correctness of the backdoor. If the manufacturer

does not take certain precautions, then the client is at an advantage. For example, C

checks the correctness of the backdoor, but fails to pay the second installment. This can

be easily avoided if a backdoor deactivation method is put in place by M3. A possible

deactivation strategy is forM to send D a special input that instructs the device to erase

all incriminating evidence. A similar approach is used in [88, 109] to trigger backdoors.

Both classical approaches have an inherent risk for the manufacturer: the client can

easily prove that M backdoored D either by decrypting all the messages send through
2by de�nition a malicious entity
3As in the previous model, the transaction is illegal and thus, M can not take legal action against

C.
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that device or by revealing the private keys stored in D. Thus, to make the risk worth

while the manufacturer must charge C a high embedding fee. This will certainly scare

away certain resource constrained clients (e.g. small businesses that do not have the

resources of a large corporation). To address this issue, we introduce a subscription

based model suitable for the ElGamal encryption algorithm.

Our model draws inspiration from the subscription services o�ered by companies like

Net�ix [6], Amazon [7] and HBO [8]. These companies give access to streaming content

in exchange for a monthly pay. In our case, a client pays for a backdoor that gives him

access to a limited number of private messages. Subsequently, the client has to renew

his subscription. This balances the risk and reward factors for the manufacturer4 and,

in consequence, M can lower embedding fees. A risk still remains: no guarantees of

output delivery for the clients. But, this is minimum in a subscription based model

because the goal of the manufacturer is to keep clients satis�ed, so they further renew

their subscription5.

Compared to the classical models, our proposed model has a di�erent issue that needs

to be tackled. Clients want access to their services as soon as they pay. But, illegal

transactions mostly use cryptocurrencies [75] and the average con�rmation time for this

type of transactions is large in some cases (e.g. for Bitcoin, it takes on average an hour

per transaction [2]). Thus, to give the manufacturer su�cient time for deactivating the

backdoor6 if the transaction is not valid, we employ a mechanism similar to time-lock

puzzles [213] .

Note that generic kleptographic countermeasures [214, 215, 135] can protect tamper

proof device's users against our proposed mechanisms. Unfortunately, unless users do

not explicitly require the implementation of these defences, a manufacturer is not obliged

to deploy them. Thus, M is free to implement any kleptographic mechanism.

5.4 Hash Channels

Most subliminal channels or SETUP attacks use random numbers to convey information

undetected. In consequence, all the proposed countermeasures focus on sanitizing the

random numbers used by a system. In the case of digital signatures, a di�erent but

laborious method for inserting a subliminal channel in a system is presented in [256].

Instead of using random numbers as information carriers, Alice uses the hash of the

message to convey the message for Bob. In order to achieve this, Alice makes small

4M is exposed only for a limited period of time
5Cheating a client will only bring M a small amount of revenue.
6by means of special triggers
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changes to the message until the hash has the desired properties. Note that the method

presented in [256] bypasses all the countermeasures mentioned so far.

This section studies a generic method that allows the prisoners to communicate through

the subliminal-free signatures found in [214, 215, 73, 135, 32, 57]. To achieve our goal

we work in a scenario where all messages are time-stamped before signing. Note that

we do not break any of the assumptions made by the subversion-free proposals. This

work is motivated by the fact that most end-users to do not verify the claims made by

manufacturers7. Moreover, users often do not know which should be the outputs of a

device [163]. A notable incident in which users where not aware of the correct outputs

and trusted the developers is the Debian incident [50].

7Manufacturers might implement subversion-free signatures just for marketing purposes, while still
backdooring some of the devices produced.



Chapter 6

(Pseudo-)Random Number

Generators

One of the most essential building blocks of cryptography are random numbers genera-

tors. In particular, for ensuring privacy or authenticity is vital that cryptographic keys

are randomly generated. Additionally, most cryptographic algorithms are randomized.

Generating random numbers by means of physical processes is usually time consuming

and expensive, thus in practice most applications use pseudo-random numbers genera-

tors. Such a generator is a deterministic algorithm that takes as input a small random

seed and expands it into a much longer sequence of bits. Not all PRNGs are suitable

for cryptographic application. One such example is the generator used by Adobe Flash

Player. Some of the basic PRNG security requirements are: not to be able to distinguish

it from a real RNG and not to be able to recover its internal state from its output. We

describe a seed recovering algorithm for the Flash Player PRNG in the �rst part of this

chapter.

A popular method for generating cryptographic keys or other random inputs is to have

an entropy pool that accumulates data from a physical noise source and a PRNG that

periodically reseeds from the pool and outputs data at a constant rate. To ensure proper

operation, before adding data to the entropy pool some lightweight tests are applied to

it. In the second part of this chapter we study a possible architecture for adding data to

the pool. Therefore, we provide the reader with experimental results and the theoretical

framework for our proposed architecture.

25



(Pseudo-)Random Number Generators 26

6.1 Flash Player PRNG

JIT compilers (e.g. JavaScript and ActionScript) translate source code or bytecode into

machine code at runtime for faster execution. Due to the fact that the purpose of JIT

compilers is to produce executable data, they are normally exempt from data execution

prevention (DEP1). Thus, a vulnerability in a JIT compiler might lead to an exploit

undetectable by DEP. One such attack, called JIT spraying, was proposed in [56]. By

coercing the ActionScript JIT engine, Blazakis shows how to write shellcode into the

executable memory and thus, bypass DEP. The key insight is that the JIT compiler is

predictable and must copy some constants to the executable page. Hence, these constants

can encode small instructions and then control �ow to the next constant's location.

To defend against JIT spraying attacks, Adobe employs a technique called constant

blinding. This method prevents an attacker from loading his instructions into constants

and thus, blocks the delivery of his malicious script. The idea behind constant blinding

is to avoid storing constants in memory in their original form. Instead, they are �rst

XORed with some randomly generated secret cookie and then stored inside the memory.

If the secret cookie is generated by means of a weak PRNG2, the attacker regains his

ability to inject malicious instructions.

Instead of using an already proven secure PRNG, the Flash Player designers tried to

implement their own PRNG. Unfortunately, in [253, 1] it is shown that the design of the

generator is �awed. In [1] a brute force attack is implemented, while in [253] a re�ned

brute force attack is presented. These results have been reported to Adobe under the

code CVE-2017-3000 [21] and the vulnerability has been patched in version 25.0.0.127.

In this section, we re�ne the attack presented in [253] from a time complexity of Op221q
to one of Op211q. We also show that no matter the parameters used by the PRNG, the

�aw remains. More precisely we show that for any parameters the worst brute force

attack takes Op221q operations. In [253] the authors do not present the full algorithm

for reversing the PRNG, while in [1] we found the full algorithm, but it was not opti-

mized. For completeness, in Appendix K we also present an optimized version of the

full algorithm. Note that in this section we only focus on the Flash Player PRNG. For

more details about JIT spraying attacks and constant blinding we refer the reader to

[33, 56, 212, 253].

1The DEP mechanism performs additional checks on memory to help prevent malicious code from
running on a system.

2i.e., the seed used to generate the cookie can be recovered in reasonable time
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6.2 Bias Ampli�ers

In [264] the authors propose an interesting mechanism that blurs the line between what

constitutes a Trojan horse and what does not. To detect their mechanism, a program

needs to somehow di�erentiate between a naturally unstable random number genera-

tor (RNG) and arti�cially unstable one (obtained by means of certain mathematical

transformations). To our knowledge, [264] is the only previous work that discuses this

topic.

More precisely, in [264] a digital �lter is described. Usually, digital �lters are applied

to RNGs to correct biases3, but this �lter has an opposite purpose. When applied to a

stream of unbiased bits the �lter is benign. On the other hand, if applied to a stream of

biased bits the �lter ampli�es their bias. Thereby, making the RNG worse.

In this section we extend the �lter from [264]4, provide a new class of �lters and discuss

some new possible applications. When designing bias ampli�ers, a couple of rules must

be respected. The �rst one states that if the input bits are unbiased or have a maximum

bias (i.e. the probability of obtaining 1 is either 0 or 1) the �lter must maintain the

original bias. For unbiased bits this rule keeps the ampli�ers transparent to a user,

as long as the noise source functions according to the original design parameters. For

maximum bias the rule is a functional one. Since the RNG is already totally broken,

changing the bias does not make sense (from a designing point of view). The second rule

states that the �lter should amplify the bias in the direction that it already is. This rule

helps the designer amplify the bias in an easier manner.

The main application we propose for these �lters is RNG testing (e.g., boosting health

tests implemented in a RNG). Recent standards [158, 249] require a RNG to detect

failures and one such method for early detection can be to apply an ampli�er and then

do some lightweight testing5. Based on the results obtained in Sections 6.2.2 and 6.2.3,

we introduce a generic architecture for implementing health tests in Section 6.2.4.1.

More precisely, using a lightweight test on the ampli�ed bits the architecture can detect

deviations from the uniform distribution. To validate our architecture, we �rst run

a series of experiments on RNGs that generate uniformly independent and identically

distributed bits. We also show that our architecture can detect deviation from the initial

parameters of the u.i.i.d. source. In Section 6.2.5 we extend the preliminary results

to noise sources that have a Bernoulli distribution and show that the architecture can

detect, starting from the design phase, badly broken sources. To support our results we

3They are called randomness extractors [95].
4The �lter presented in [264] corresponds to the greedy ampli�er with parameter n “ 3 described in

Section 6.2.2.
5for example the tests described in [134]
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develop a theoretical model and provide the reader with simulations based on our model.

Note that our theoretical model also explains why our architecture can detect deviation

from the initial parameters

Due to recent events [36, 205, 50, 69] RNGs have been under a lot of scrutiny. Thus,

wondering what kind of mechanisms can be implemented by a malicious third party in

order to weaken or destabilize a system becomes natural. Amplifying �lters provide a

novel example of how one can achieve this. Based on the failure detection mechanisms

proposed in Section 6.2.4.1, we show, for example, how a manufacturer can manipulate

the architecture to become malicious.



Chapter 7

Physical Cryptography

In this chapter we present a security analysis to a series of problems that can be seen as

abstract games. Our main motivation for studying such protocols is their teaching utility.

Note that we are not aware of any real-world application of any sort, as these problems

fall in the category of �recreational cryptography�. Although recreational, these protocols

can provide interesting insight and techniques that can be useful for understanding the

concepts on which the underlying problems are based.

Physical cryptography [130, 44, 191, 218] makes use of physical properties of systems

for encrypting and/or exchanging information (i.e. without using one-way functions).

Although a very interesting teaching tool, it can be shown that some of the proposed

methods are not safe in practice. Thus, our aim is to attack such physical protocols using

methods similar to classical side channel techniques.

Besides the obvious cryptographic teaching utility of physical cryptography schemes, we

believe that some of the schemes tackled in the current chapter may be successfully used

for introducing concepts corresponding to other domains. We provide the reader with

such examples in the following sections.

Although some authors acknowledge that their proposed protocols are only useful for

playing with children or introducing new concepts to non-technical audiences, the authors

of [129, 130, 128, 225] claim that their schemes can be securely implemented in real-life

scenarios. In [81], Courtois attacks one of the protocols proposed in [129], but the authors

contest his results in [130]. We independently conducted a simulation of the attack and

our results acknowledge Courtois' claim.
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