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1 Introduction

In the previous paper [6] we introduced and studied emergent algebras, as a
generalization of differentiable algebras. An emergent algebra is a uniform idem-
potent right quasigroup, definition 5.2.

In this paper we explain with details previous results concerning conical
groups, section 6, dilatation structures (metric spaces with dilations), section 7
as well as new results concerning braided sets which are also dilatation struc-
tures, section 9, in the frame of emergent algebras. Finally, we show that
sub-riemannian symmetric spaces (which are not Loos symmetric spaces) can
be seen as braided dilatation structures.

There is another, but related, line of research concerning symmetric spaces
as emergent algebras, based on the notion of a ”approximate symmetric space”.
We postpone the presentation of this for a future paper.

For yet another research line concerning the generalization of spaces with
dilations to deformations of normed groupoids see the paper [7].

Acknowledgements. Thanks are due to Radu Iordanescu for the invitation
to participate to the Workshop on Differential Geometry and its Applications,
Iasi 2009, where part of this research was presented. I also wish to express my
thanks to IHES, where another part of this work has been done during a visit
in March 2010.

2 Quandles, Loos symmetric spaces, contractible

groups

For braided sets see the paper [10].

Definition 2.1 Let X be a non-empty set and S : X×X → X×X, S(x1, x2) =
(S1(x1, x2), S2(x1, x2)) be a bijection. We define for i = 1, 2 the maps Sii+1 :
X3 → X3, S12 = S × idX , S23 = idX × S.

(i) A map S is called non-degenerate if for any fixed y, z ∈ X the maps
x 7→ S2(x, y) and x 7→ S1(z, x) are bijections.

(ii) A pair (X, S) is a braided set (and S is a braided map) if S satisfies the
braid relation

S12S23S12 = S23S12S23 (2.0.1)

(iii) S is involutive if S2 = idX×X.
A braided set which is involutive is called symmetric set.

A large class of braided sets is made by pairs (X, S), with

S(x, y) = (x ∗ y, x)

and (X, ∗) is a rack. Racks and quandles are right quasigroups, a notion that
we shall use further, so here is the definition.
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Definition 2.2 A right quasigroup is a set X with a binary operation ∗ such
that for each a, b ∈ X there exists a unique x ∈ X such that a ∗ x = b. We
write the solution of this equation x = a \ b.

A quasigroup is a set X with a binary operation ∗ such that for each a, b ∈ X
there exist unique elements x, y ∈ X such that a ∗ x = b and y ∗ a = b. We
write the solution of the last equation y = b / a.

An idempotent right quasigroup (irq) is a right quasigroup (X, ∗) such that
for any x ∈ X x ∗ x = x. Equivalently, it can be seen as a set X endowed with
two operations ◦ and •, which satisfy the following axioms: for any x, y ∈ X

(P1) x ◦ (x • y) = x • (x ◦ y) = y

(P2) x ◦ x = x • x = x

The correspondence between notations using ∗, \ and those using ◦, •, is: ∗ = ◦,
\ = •.

In knot theory, J.C. Conway and G.C. Wraith, in their unpublished corre-
spondence from 1959, used the name ”wrack” for a self-distributive right quasi-
group generated by a link diagram. Later, Fenn and Rourke [11] proposed
the name ”rack” instead. Quandles are particular case of racks, namely self-
distributive idempotent right quasigroups. They were introduced by Joyce [15],
as a distillation of the Reidemeister moves. More precisely, the axioms of a (rack
; quandle ; irq) correspond respectively to the (2,3 ; 1,2,3 ; 1,2) Reidemeister
moves.

We are interested in two particular cases of quandles. The first is related to
symmetric spaces in the sense of Loos [16] chapter II, definition 1.

Definition 2.3 (X, inv) is a Loos algebraic symmetric space if inv : X ×X →
X is an operation which satisfies the following axioms:

(L1) inv is idempotent: for any x ∈ X we have inv(x, x) = x,

(L2) distributivity: for any x, y, z ∈ X we have

inv(x, inv (y, z)) = inv (inv (x, y) , inv (x, z))

(L3) for any x, y ∈ X we have inv (x, inv (x, y)) = y,

(L4) for every x ∈ X there is a neighbourhood U(x) such that inv(x, y) = y
and y ∈ U(x) then x = y.

If X is a manifold, inv is smooth (of class C∞) and (L4) is true locally then
(X, inv) is a symmetric space as defined by Loos [16] chapter II, definition 1.

Remark that if (X, inv) is a Loos symmetric space then it is clearly a quan-
dle, therefore (X, Inv) is a braided symmetric set, where:

Inv(x, y) = (invxy, x)
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Definition 2.4 A contractible group is a pair (G, α), where G is a topological
group with neutral element denoted by e, and α ∈ Aut(G) is an automorphism
of G such that:

- α is continuous, with continuous inverse,

- for any x ∈ G we have the limit lim
n→∞

αn(x) = e.

If (G, α) is a contractible group then (G, ∗) is a quandle, with:

x ∗ y = xα(x−1y)

Contractible groups are particular examples of conical groups. In [6] we
proved that conical groups, as well as some symmetric spaces, can be described
as emergent algebras, coming from uniform idempotent right quasigroups.

3 Motivation: emergent algebras

A differentiable algebra, is an algebra (set of operations A) over a manifold X
with the property that all the operations of the algebra are differentiable with
respect to the manifold structure of X . Let us denote by D the differential
structure of the manifold X .

From a more computational viewpoint, we may think about the calculus
which can be done in a differentiable algebra as being generated by the elements
of a toolbox with two compartments:

- A contains the algebraic information, that is the operations of the alge-
bra, as well as algebraic relations (like for example ”the operation ∗ is
associative”, or ”the operation ∗ is commutative”, and so on),

- D contains the differential structure informations, that is the information
needed in order to formulate the statement ”the function f is differen-
tiable”,

- the compartments A and D are compatible, in the that any operation
from A is differentiable according to D.

In the paper [6] we proposed the notion of a emergent algebra as a general-
ization of a differentiable algebra. Computations in a emergent algebra (short
name for a uniform idempotent right quasigroup, definition 5.2) are generated
by a class E of operations and relations from which a algebra A and a generaliza-
tion of a differentiable structure D ”emerge”. The meaning of this emergence is
the following: all elements of A and D (algebraic operations, relations, differen-
tial operators, ...) are constructed by finite or virtually infinite ”recipes”, which
can be implemented by some class of circuits made by very simple gates (the
operations in the uniform idempotent right quasigroup). An emergent algebra
space is then described by:
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- a class of transistor-like gates (that is binary operations), with in/out
ports labeled by points of the space and a internal state variable which
can be interpreted as ”scale”.

- a class of elementary circuits made of such gates (these are the ”genera-
tors” of the emergent algebra). The elementary circuits are in fact certain
ternary operations constructed from the operations in the uniform idempo-
tent right quasigroup. They have the property that the output converges
as the scale goes to zero, uniformly with respect to the input.

- a class of equivalence rules saying that some simple assemblies of elemen-
tary circuits have equivalent function (these are the ”relations” of the
emergent algebra).

We shall explore in more detail this point of view, concentrating on braided
sets which are also spaces with dilations (dilatation structures).

4 Γ-idempotent right quasigroups

Definition 4.1 We use the operations of a irq to define the sum, difference and
inverse operations of the irq: for any x, u, v ∈ X

(a) the difference operation is (xuv) = (x ◦ u) • (x ◦ v). By fixing the
first variable x we obtain the difference operation based at x: v −x u =
difx(u, v) = (xuv).

(b) the sum operation is )xuv(= x •((x ◦ u) ◦ v). By fixing the first variable
x we obtain the sum operation based at x: u +x v = sumx(u, v) = )xuv(.

(a) the inverse operation is inv(x, u) = (x ◦ u) • x. By fixing the first variable
x we obtain the inverse operator based at x: −x u = invxu = inv(x, u).

For any k ∈ Z
∗ = Z \ {0} we define also the following operations:

- x ◦1 u = x ◦ u, x •1 u = x • u,

- for any k > 0 let x ◦k+1 u = x ◦ (x ◦k u) and x •k+1 u = x • (x •k u),

- for any k < 0 let x ◦k u = x •−k u and x •k u = x ◦−k u.

For any k ∈ Z
∗ the triple (X, ◦k, •k) is a irq. We denote the difference, sum

and inverse operations of (X, ◦k, •k) by the same symbols as the ones used for
(X, ◦, •), with a subscript ”k”.

In [6] we introduced idempotent right quasigroups and then iterates of the
operations indexed by a parameter k ∈ N. This was done in order to simplify
the notations mostly. Here, in the presence of the group Γ, we might define a
Γ-irq.
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Definition 4.2 Let Γ be a commutative group. A Γ-idempotent right quasigroup
is a set X with a function ε ∈ Γ 7→ ◦ε such that (X, ◦ε) is a irq and moreover
for any ε, µ ∈ Γ and any x, y ∈ X we have

x ◦ε (x ◦µ y) = x ◦εµ y

It is then obvious that if (X, ◦) is a irq then (X, k ∈ Z 7→ ◦k) is a Z-irq (we
define x ◦0 y = y).

The following is a slight modification of proposition 3.4 and point (k) propo-
sition 3.5 [6], for the case of Γ-irqs (the proof of this proposition is almost
identical, with obvious modifications, with the proof of the original proposi-
tion).

Proposition 4.3 Let (X, ◦ε)ε∈Γ be a Γ-irq. Then we have the relations:

(a) (u +x
ε v) −x

ε u = v

(b) u +x
ε (v −x

ε u) = v

(c) v −x
ε u = (−x

εu) +x◦u
ε v

(d) −x◦u
ε (−x

ε u) = u

(e) u +x
ε (v +x◦u

ε w) = (u +x
ε v) +x

ε w

(f) −x
ε u = x −x

ε u

(g) x +x
ε u = u

(k) for any ε, µ ∈ Z
∗ and any x, u, v ∈ X we have the distributivity property:

(x ◦µ v) −x
ε (x ◦µ u) = (x ◦εµ u) ◦µ

(

v −x
εµ u

)

5 Uniform idempotent right quasigroups

Let Γ be a topological commutative group. We suppose that Γ as a topological
space is separable.

Definition 5.1 Let (X, τ) be a topological space. τ is the collection of open sets
in X. A filter in (X, τ) is a function µ : τ → {0, 1} such that:

(a) µ(X) = 1,

(b) for any A, B ∈ τ , if A ⊂ B then µ(A) ≤ µ(B),

(c) for any A, B ∈ τ we have µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B).
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An absolute of a separable topological commutative group Γ is a class Abs(Γ) of
filters µ in Γ with the properties:

(i) for any ε ∈ Γ there are A ∈ τ and µ ∈ Abs(Γ) such that µ(A) = 1 and
x 6∈ A,

(ii) for any µ, µ′ ∈ Abs(Γ) there is A ∈ τ such that µ(A) > µ′(A),

(iii) for any ε ∈ Γ and µ ∈ Abs(Γ) the transport of µ by ε, defined as ε µ(A) =
µ(εA), belongs to Abs(Γ).

Let f : Γ → (X, τ) be a function from Γ to a separable topological space, let
Abs(Γ) be an absolute of Γ, and µ ∈ Abs(Γ). We say that f converges to z ∈ X
as ε goes to µ if for any open set A in X with z ∈ A we have µ(f−1(A)) = 1.
We write:

lim
ε→µ

f(ε) = z

For example, if Γ = (0, +∞) with multiplication, then Abs(Γ) = {0} is an
absolute, where ”0” is the filter defined by 0(A) = 1 if and only if the number 0
belongs to the closure of A in R. Also, Abs(Γ) = {0,∞} is an absolute, where
”∞” is the filter defined by: ∞(A) = 1 if and only if A is unbounded.

Let Γ be a commutative separable topological group, χ : Γ → (0, +∞) a
continuous morphism and Abs((0, +∞)) an absolute of (0, +∞). Let Abs(Γ)
be the class of filters on Γ constructed like this: µ ∈ Abs(Γ) if there exists
α ∈ Abs((0, +∞)) such that for any open set A in Γ, µ(A) = 1 if there is an
open set B ⊂ (0, +∞) with χ−1(B) ⊂ A and α(B) = 1. Then Abs(Γ) is an
absolute of Γ.

Another example: let Γ0 be a topological separable commutative group,let
G be a finite commutative group and let Γ = Γ0 × G. We think now about
G and Γ0 as being subgroups of Γ. Let Abs(Γ0) be an absolute of Γ0. We
construct Abs(Γ) as the collection of all filters µ on Γ such that there is g ∈ G
with gµ ∈ Abs(Γ0). Then Abs(Γ) is an absolute of Γ.

Definition 5.2 A Γ-uniform irq (X, ∗, \) is a separable uniform space X en-
dowed with continuous irq operations ∗, \ such that:

(C) the operation ∗ is compactly contractive: for each compact set K ⊂ X
and open set U ⊂ X, with x ∈ U , there is an open set A(K, U) ⊂ Γ with
µ(A) = 1 for any µ ∈ Abs(Γ) and for any u ∈ K and ε ∈ A(K, U), we
have x ∗ε u ∈ U ;

(D) the following limits exist for any µ ∈ Abs(Γ)

lim
ε→µ

v −x
ε u = v −x

∞ u , lim
ε→µ

u +x
ε v = u +x

∞ v

and are uniform with respect to x, u, v in a compact set.
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The main property of a uniform irq is the following. It is a consequence of
relations from proposition 4.3.

Theorem 5.3 Let (X, ∗, \) be a uniform irq. Then for any x ∈ X the operation
(u, v) 7→ u +x

∞ v gives X the structure of a conical group with the dilatation
u 7→ x ∗ε u.

Conical groups are described in the next section.

6 Conical groups are distributive uniform irqs

For a dilatation structure (see section 7) the metric tangent spaces have a group
structure which is compatible with dilatations. This structure, of a group with
dilatations, is interesting by itself. The notion has been introduced in [8], [2];
we describe it further.

Let Γ be a topological commutative groups with an absolute Abs(Γ).

Definition 6.1 A group with dilatations (G, δ) is a topological group G with an
action of Γ (denoted by δ), on G such that for any µ ∈ Abs(Γ)

H0. the limit lim
ε→µ

δεx = e exists and is uniform with respect to x in a compact

neighbourhood of the identity e.

H1. the limit
β(x, y) = lim

ε→µ
δ−1
ε ((δεx)(δεy))

is well defined in a compact neighbourhood of e and the limit is uniform.

H2. the following relation holds

lim
ε→µ

δ−1
ε

(

(δεx)−1
)

= x−1

where the limit from the left hand side exists in a neighbourhood of e and
is uniform with respect to x.

Definition 6.2 A conical group (N, δ) is a group with dilatations such that for
any ε ∈ Γ the dilatation δε is a group morphism.

A conical group is the infinitesimal version of a group with dilatations ([2]
proposition 2).

Proposition 6.3 Under the hypotheses H0, H1, H2, (G, β, δ), is a conical
group, with operation β, dilatations δ.

One particular case is the one of contractible groups, definition 2.4, which
are also normed groups. Indeed, in this case we may take Γ = Z.

Locally compact conical groups are locally compact groups admitting a con-
tractive automorphism group. We begin with the definition of a contracting
automorphism group [20], definition 5.1.
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Definition 6.4 Let G be a locally compact group. An automorphism group on
G is a family T = (τt)t>0 in Aut(G), such that τt τs = τts for all t, s > 0.

The contraction group of T is defined by

C(T ) =
{

x ∈ G : lim
t→0

τt(x) = e
}

.

The automorphism group T is contractive if C(T ) = G.

Next is proposition 5.4 [20], which gives a description of locally compact
groups which admit a contractive automorphism group.

Proposition 6.5 For a locally compact group G the following assertions are
equivalent:

(i) G admits a contractive automorphism group;

(ii) G is a simply connected Lie group whose Lie algebra admits a positive
graduation.

The proof of the next proposition is an easy application of the previously
explained facts.

Proposition 6.6 Let (G, δ) be a locally compact conical group. Then the asso-
ciate irq (G, ∗) is an uniform irq.

A particular class of locally compact groups which admit a contractive auto-
morphism group is made by Carnot groups. They are related to sub-riemannian
or Carnot-Carathéodory geometry, which is the study of non-holonomic man-
ifolds endowed with a Carnot-Carathéodory distance. Non-holonomic spaces
were discovered in 1926 by G. Vrănceanu [22], [23]. The Carnot-Carathéodory
distance on a non-holonomic space is inspired by Carathéodory [9] work from
1909 on the mathematical formulation of thermodynamics. Such spaces appear
in applications to thermodynamics, to the mechanics of non-holonomic sys-
tems, in the study of hypo-elliptic operators cf. Hörmander [14], in harmonic
analysis on homogeneous cones cf. Folland, Stein [12], and as boundaries of
CR-manifolds.

The following result is a slight modification of [6], theorem 6.1, consisting in
the replacement of ”contractible” by ”conical” in the statement of the theorem.

Theorem 6.7 Let (G, α) be a locally compact conical group and G(α) be the as-
sociated uniform irq. Then the irq is distributive, namely it satisfies the relation:
for any ε, λ ∈ Γ

x ∗ε (y ∗λ z) = (x ∗ε y) ∗λ (x ∗ε z) (6.0.1)

Conversely, let (G, ∗) be a distributive uniform irq. Then there is a group
operation on G (denoted multiplicatively), with neutral element e, such that:

(i) xy = x +e
∞ y for any x, y ∈ G,
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(ii) for any x, y, z ∈ G we have (xyz)∞ = xy−1z,

(iii) for any x, y ∈ G we have x ∗ε y = x(e ∗ε (x−1y)).

In conclusion there is a bijection between distributive Γ-uniform irqs and conical
groups.

7 Normed uniform irqs are dilatation structures

For simplicity we shall list the axioms of a dilatation structure (X, d, δ) without
concerning about domains and codomains of dilatations. For the full definition
of dilatation structures, as well as for their main properties and examples, see
[2], [3], [4]. The notion appeared from my efforts to understand the last section
of the paper [1] (see also [19], [13], [17], [18]).

Let Γ be a topological commutative groups with an absolute Abs(Γ) and
with a morphism | · |: Γ → (0, +∞) such that for any µ ∈ Abs(Γ)

lim
ε→µ

| ε |= 0

Definition 7.1 A triple (X, d, δ) is a dilatation structure if (X, d) is a locally
compact metric space and the dilatation field

δ : Γ × {(x, y) ∈ X × X : y ∈ dom(ε, x)} → X , δ(ε, x, y) = δx
ε y

gives to X the structure of a uniform idempotent right quasigroup over Γ (defi-
nition 5.2), with the operation: for any ε ∈ Γ

x ∗ε y = δx
ε y

Moreover, the distance is compatible with the dilatations, in the sense:

A1. the uniformity on (X, δ) is the one induced by the distance d,

A2. There is A > 1 such that for any x there exists a function (u, v) 7→ dx(u, v),
defined for any u, v in the closed ball (in distance d) B̄(x, A), such that
for any µ ∈ Abs(Γ)

lim
ε→µ

sup

{

|
1

| ε |
d(δx

ε u, δx
ε v) − dx(u, v) | : u, v ∈ B̄d(x, A)

}

= 0

uniformly with respect to x in compact set. Moreover the uniformity in-
duced by dx is the same as the uniformity induced by d, in particular
dx(u, v) = 0 implies u = v.

In order to make connection with the original definition of a dilatation struc-
ture introduced and studied in [2], [3], we shall relate the notations used here
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with the original ones. The operations induced by the uniform irq structure on
X are:

v −x
ε u = ∆x

ε (u, v) = δ
δx

ε
u

ε−1 δx
ε v

u +x
ε v = Σx

ε (u, v) = δx
ε−1δ

δx

ε
u

ε v

where ∆x
ε , Σx

ε are the approximate difference, respectively approximate sum
operations induced by dilatation structures. Similarily we have the following
correspondence of notations:

v −x
∞ u = ∆x(u, v) = lim

ε→µ
δ

δx

ε
u

ε−1 δx
ε v

u +x
ε v = Σx(u, v) = lim

ε→µ
δx
ε−1δ

δx

ε
u

ε v

The conclusion is therefore that adding a distance in the story of uniform
irqs gives us the notion of a dilatation structure.

We go a bit into details.

Proposition 7.2 Let (X, d, δ) be a dilatation structure, x ∈ X, and let

δx
ε d(u, v) =

1

| ε |
d(δx

ε u, δx
ε v)

Then the net of metric spaces (B̄d(x, A), δx
ε d) converges in the Gromov-Hausdorff

sense to the metric space (B̄d(x, A), dx). Moreover this metric space is a metric
cone, in the following sense: for any λ ∈ Γ we have

dx(δx
λu, δx

λv) = | λ | dx(u, v)

Proof. The first part of the proposition is just a reformulation of axiom A2,
without the condition of uniform convergence. For the second part remark that

1

| ε |
d(δx

ε δx
λu, δx

ε δx
λv) = | λ |

1

| ελ |
d(δx

ελu, δx
ελv)

Therefore if we pass to the limit with ε → µ in these two relations we get the
desired conclusion. �

Particular examples of dilatation structures are given by normed groups with
dilatations.

Definition 7.3 A normed group with dilatations (G, δ, ‖ · ‖) is a group with
dilatations (G, δ) endowed with a continuous norm function ‖ · ‖ : G → R which
satisfies (locally, in a neighbourhood of the neutral element e) the properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,

(b) for any x, y we have ‖xy‖ ≤ ‖x‖ + ‖y‖,
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(c) for any x we have ‖x−1‖ = ‖x‖,

(d) the limit lim
ε→µ

1

| ε |
‖δεx‖ = ‖x‖N exists, is uniform with respect to x in

compact set,

(e) if ‖x‖N = 0 then x = e.

In a normed group with dilatations we have a natural left invariant distance
given by

d(x, y) = ‖x−1y‖ . (7.0.1)

Any normed group with dilatations has an associated dilatation structure on
it. In a group with dilatations (G, δ) we define dilatations based in any point
x ∈ G by

δx
ε u = xδε(x

−1u). (7.0.2)

The following result is theorem 15 [2].

Theorem 7.4 Let (G, δ, ‖ · ‖) be a locally compact normed group with dilata-
tions. Then (G, d, δ) is a dilatation structure, where δ are the dilatations defined
by (7.0.2) and the distance d is induced by the norm as in (7.0.1).

The general theorem 5.3 has a stronger conclusion in the case of dilatation
structures, namely ”conical groups” are replaced by ”normed conical groups”.

8 Differentiability

We have seen that to any uniform irq we can associate a bundle of contractible
groups x ∈ X 7→ (X, +x

∞, x∗). This bundle can be seen as a tangent bundle,
namely: to any x ∈ X is associated a conical group with x as neutral element,
which is the tangent space at x. We shall denote it by T xX .

In the particular case of a manifold, this is indeed a correct definition in the
following sense: if we look to a small portion of the manifold then we know that
there is a chart of this small portion, which puts it in bijection with an open set
in R

n. We have seen that we can associate to R
n a uniform irq by using as the

operation ∗ a homothety with fixed ratio ε < 1. This uniform irq is transported
on the manifold by the chart. If we ignore the facts that we are working not
with the whole manifold, but with a small part of it, and not with R

n, but
with a open set, then indeed we may identify, for any point x in the manifold,
a neighbourhood of the point with a neighbourhood of the tangent space at the
point, such that the operation of addition of vectors in the tangent space at x
is just the operation +x

∞ and scalar multiplication by (any integer power of) ε
is just u 7→ x ∗ε u .

The same is true in the more complex situation of a sub-riemannian manifold,
as shown in [4], in the sense that (locally) we may associate to each point x a
”dilatation” of ratio ε, which in turn gives us a structure of uniform irq. In
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the end we get a bundle of Carnot group operations which can be seen as a
tangent bundle of the sub-riemannian manifold. (In this case we actually have
more structure given by the Carnot-Carathéodory distance, which induces also
a ”group norm” on each Carnot group.)

A uniform irq can be seen as a generalization of a differential structure.
For this we give a definition of differentiable functions between two uniform
irqs. This definition corresponds to uniform differentiability in the metric case
of dilatation structures, definition 16 and the comments after it in [2]. It is a
generalization of Pansu differentiability [19].

Definition 8.1 Let (X, ∗, \) and (Y, ◦, \\) be two Γ-uniform irqs. A function
f : X → Y is differentiable if there is a function Tf : X × X → Y such that

lim
k→∞

f(x) \\k f(x ∗k u) = Tf(x, u)

uniformly with respect to x, u in compact sets.

By abstract nonsense the application Tf has nice properties, like Tf(x, ·) :
(X, +x) → (Y, +f(x)) is a morphism of conical groups.

9 Sub-riemannian symmetric spaces as braided

R × Z2-dilatation structures

Sub-riemannian symmetric spaces have been introduced in [21], section 9. We
shall be interested in the description of sub-riemannian geometry by dilatation
structures, therefore we shall use the same notations as in the previous paper
[4] (see also the relevant citations in that paper, as well as the long paper [5],
where the study of sub-riemannian geometry as a length dilatation structure is
completed).

Definition 9.1 (adaptation of [21] definition 8.1) Let (M, D, g) be a regular
sub-riemannian manifold. We say that Ψ : M → M is an infinitesimal isometry
if Ψ is C1 and DΨ preserves the metric g. An infinitesimal isometry is regular
if for any x ∈ M and any tangent vector u ∈ TxM

Ψ(expx(u)) = expΨ(x)(DΨ(x)u)

By [21] theorem 8.2., C1 isometries are regular infinitesimal isometries and,
conversely, regular infinitesimal isometries are isometries.

An equivalent description of regular infinitesimal isometries is the following:
they are C1 Pansu differentiable isometries.

Definition 9.2 ([21] definition 9.1) A sub-riemannian symmetric space is a
regular sub-riemannian manifold M, D, g) which has a transitive Lie group G of
regular infinitesimal isometries acting differentiably on M such that:
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(i) there is a point x ∈ X such that the isotropy subgroup K of x is compact,

(ii) K contains an element Ψ such that DΨ(x)|Dx
= − id and Ψ is involutive.

If G is a group for which (i), (ii) holds then we call G an admissible isometry
group for M .

Theorem 9.3 ([21] theorem 9.2) If M is a sub-riemannian symmetric space
and G is an admissible isometry group, then there exists an involution σ of G
such that σ(K) ⊂ K with the following properties (we write g = g+ + g−, where
g+, g− are the subspaces of g on which Dσ acts as Id, −Id):

(a) g is generated as a Lie algebra by a subspace p and the Lie algebra t of K
with p ⊂ g−, t ⊂ g+,

(b) there exists a positive definite quadratic form g on p and adK maps p to
itself and preserves g. Furthermore, p may be identified with Dx under
the exponential map of the Lie algebra g, and g with the sub-riemannian
metric on Dx.

Conversely, given a Lie group G and an involution σ such that (a) and (b)
hold, then G/K forms a sub-riemannian symmetric space, where Dx0

= exp p

for the point x0 identified with the coset K, and the sub-riemannian metric on
Dx0

is given by g. The bundle D and its metric is then uniquely determined by
the requirement that elements of G be infinitesimal isometries.

As a consequence of this theorem we see that we may endow a sub-riemannian
symmetric space, with admissible isometry group G, with a (reflexive space) op-
eration

(x, y) ∈ M2 7→ Ψ(x, y) = Ψxy

such that Ψ is distributive, for any x ∈ X the map Ψx satisfies (ii) definition
9.2, and for any g ∈ G and any x, y ∈ X we have

g (Ψxy) = Ψg(x)g(y)

We explained in [4] that we can construct a dilatation structure over a regular
sub-riemannian manifold by using adapted frames.

Let us consider now dilatations structures with Γ isomorphic with R × Z2.
That means Γ is the commutative group made by two copies of (0, +∞), gen-
erated by (0, +∞) and an element σ 6∈ (0, +∞), with the properties: for any
ε ∈ (0, +∞) we have εσ = σε and σσ = 1. The absolute we take has two
elements, one corresponding to ε → 0 (we denote it by ”0”) and the other one
is the transport by σ of 0, denoted by ”0σ”. The morphism | · | is defined by

| ε |= | σε |= ε

Let (X, d, δ) be a dilatation structure with respect to the group Γ , absolute
Abs(Γ) and morphism | · | described previously. Then for any ε ∈ (0, +∞) and
any x ∈ X we have the relations:

δx
σ δx

ε = δx
ε δx

σ , δx
σ δx

σ = id
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Proposition 9.4 Denote by σxy = δx
σy and suppose that for any x ∈ X the

map σx is not the identity map. Then σx is involutive, a isometry of dx and an
isomorphism of the conical group T xX.

Proof. For any x ∈ X clearly σx is involutive, commutes with dilatations δx
ε

and as a consequence of proposition 7.2, is an isometry of of dx. We need to
show that it preserves the operation +x

∞. We shall work with the notations
from dilatation structures. We have then, for any ε ∈ (0, +∞):

σδx

εσ
u ∆x

σε(u, v) = δ
δx

σε
u

ε−1 δx
σεv = ∆x

ε (σxu, σxv)

We pass to the limit with ε → 0 and we get the relation:

σx∆x(u, v) = ∆x(σxu, σxv)

which shows that σx is an isomorphism of T xX . �

This proposition motivates us to introduce braided R × Z2-dilatation struc-
tures.

Definition 9.5 Let (X, d, δ) be a dilatation structure, with respect to the group
Γ , absolute Abs(Γ) and morphism | · | described previously, and such that for
any x ∈ X the map σx is not the identity map. This dilatation structure is
braided if the map

(x, y) ∈ X2 7→ (σxy, x)

is a braided map.

Theorem 9.6 A sub-riemannian symmetric space M with admissible isometry
group G can be endowed with a braided R × Z2-dilatation structure which is
G-invariant, that is for any g ∈ G, for any x, y ∈ M , and for any ε ∈ Γ we
have

g (δx
ε y) = δg(x)

ε g(y)

Sketch of the proof. In the particular case of a sub-riemannian symmetric
space we may obviously take the adapted frames to be G-invariant, therefore
we may construct a dilatation structure (over the group (0, +∞) with multipli-
cation) which is G-invariant. Because Ψx satisfies (ii) definition 9.2, it follows
Ψx is differentiable in x in the sense of dilatation structures. We extend the
dilatation structure to a braided one by defining for any x ∈ X

σx = TΨx(x, ·)

By G-invariance of both the dilatation structure and the operation Ψ it follows
that

TΨx(x, ·) = Ψx

therefore σx commutes with δx
ε , which ensures us that we well defined a braided

dilatation structure. �
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