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Structure of the presentation:

1 Motivation: S(P)DEs with non-regular drifts.

2 A brief overview of potential theoretical tools for
constructing Markov processes.

3 Back to S(P)DEs with non-regular drifts



Cauchy problem on Rd : existence and uniqueness

Consider on Rd , d ≥ 1{
x
′
(t) = b(x(t)), t > 0

x(0) = x0.
(0.1)

b is continuous: local existence (Peano)
b is locally Lipschitz: local existence and uniqueness
b is locally Lipschitz (or monotone) + |b(x)| ≤ c(1 + |x |):
global existence and uniqueness

! If Rd is replaced by an infinite dimensional Banach space,
then Peano’s local existence may fail (Jean Dieudonné):
• C0 := {x := (xn)n≥1 : xn→n 0}, | · |∞
• b(x) = (

√
|x(n)|+ 1

n+1)n≥1

• b is Holder continuous, but there is NO solution for (0.1)



Back to Rd , d = 1

! If b is not locally Lipschitz then uniqueness is in general not
guaranteed:

b(x) = 2sgn(x)
√
|x |

is Holder continuous and has sublinear growth, but{
x
′
(t) = 2sgn(x(t))

√
|x(t)|, t > 0

x(0) = 0.
(0.2)

has infinitely many (global) solutions:

x0(t) = 0, x+ = t2, x−(t) = −t2

x(t) =

{
0, 0 ≤ t ≤ t0
(t − t0)2, t ≥ t0.





SDEs: existence and uniqueness

Consider now an SDE (with additive noise) on Rd , d ≥ 1{
dX (t) = b(X (t))dt + σdW (t), t > 0
X (0) = x ∈ Rd ,

(0.3)

where (W (t))t≥0 is a d-Brownian motion on (Ω,F , (Ft )t≥0,P),
and σ ∈ Rd×d . In Ito formulation

X (t) = x +

∫ t

0
b(X (s))ds + σW (t), t ≥ 0 P-a.e. (0.4)

Different notions of solutions:
• X is a strong solution if: for any given B.m. W on
(Ω,F , (Ft ),P), X is Ft -adapted, path-continuous and satisfies
(0.4).
• pathwise uniqueness holds if: for any two solutions X ,Y
s.t. X (0) = Y (0) P-a.e., then X (t) = Y (t), t ≥ 0 P-a.e.
Well posedeness: if b is locally Lipschitz (or monotone) and of
at most linear growth, then there exists a pathwise unique
strong solution for (0.4); Krylov ’99, Liu & Röckner ’15...



Weak solutions and uniqueness in law

• X is a weak solution if: there exists a B.m. W on some
(Ω,F , (Ft ),P), X is Ft -adapted, path-continuous and satisfies
(0.4).
• uniqueness in law holds if: for any two weak solution
X ,P,W and X ′,P′,W ′, we have for any 0 ≤ t1 ≤ . . . tn <∞

P ◦ (Xt1 , · · · ,Xtn )−1 = P′ ◦ (X ′t1 , · · · ,X
′
tn )−1

Girsanov transform
If |b(x)| ≤ c(1 + |x |) then weak existence and uniqueness in
law hold.
In fact, W (t)0≤t≤T is a weak solution under

QT := e
∫ T

0 〈b(W (s)),W (s)〉− 1
2

∫ t
0 |b|

2(W (s))ds · P.

! In particular, if b(x) = 2sgn(x)
√
|x |, then there exists a

(unique in law) weak solution for (0.3)







Yamada-Watanabe and strong solutions

Theorem (Yamada-Watanabe ’71)
Weak existence + pathwise uniqueness⇒ strong existence

Theorem (Veretennikov ’81)
If b ∈ L∞ then there exist a pathwise unique strong solution.

Theorem (Krylov and Röckner ’05)

If b ∈ Lp,p > d , then there exist a pathwise unique strong
solution.



Martingale solutions (Strook & Varadhan)

If X is a (weak or strong) solution for (0.4) and f ∈ C2
b(Rd ), then

by Ito’s formula:

f (X (t))

= f (X (0)) +

∫ t

0

[
〈∇f (X (s)),b(X (s))〉+

1
2

tr(σTσD2f )(X (s))
]
ds

+

∫ t

0
〈Df (X (s)),dW (s)〉

= f (x) +

∫ t

0
Lf (X (s))ds + martingale ,

where
Lf =

1
2

tr(σTσD2f ) + 〈∇f ,b〉, f ∈ C2.

• A process X is a martingale solution starting at x ∈ Rd if

f (X (t))− f (x) +

∫ t

0
Lf (X (s))ds, t ≥ 0 is a martingale

for a sufficiently large class of test functions f .



From martingale solutions to strong solutions

Strong solutions⇒Weak solution⇒ Martingale solutions

Mart. sol. =⇒︸︷︷︸
often

Weak sol. =⇒︸︷︷︸
path uniqueness

Strong sol.

So, one strategy (see e.g. the recent work of Da Prato,
Flandoli, Priola, Röckner, Veretennikov, Wang ’02, ’09, ’16):

(L,D(L)) =⇒ (Pt )t≥0 =⇒ Markov process X =⇒ mart. sol.⇒

=⇒ weak sol. =⇒︸︷︷︸
path uniqueness

Strong solution.



Kolmogorov construction and Feller semigroups

Theorem (Kolmogorov)

Given a semigroup of Markov kernels (Pt )t≥0 on (E ,B), there is
always a canonical Markov process (Xt )t≥0 s.t.

Pt f (x) = Ex f (Xt ) for all bounded f

Such a "raw" Markov process is not enough, we need
path-regularity.

Definition: If E is locally compact separable metric space, then
(Pt )t≥0 is called Feller if

1 Pt (C0) ⊂ C0
2 lim

t→0
Pt f = f for all f ∈ C0.

Theorem (classic)

If (Pt )t≥0 is Feller, then there exists an associated normal
strong Markov process with cadlag trajectories.



Pathwise-regular Markov processes by potential
theory

• E be a Lusin topological space (e.g. a Polish space) with
Borel σ-algebra B. For several slides we work only with B !
• (Pt )t≥0 is a semigroup of Markov kernels on E , with resolvent

Uαf (x) =

∫ ∞
0

Pt f (x)dt , f : E → R bounded

• u : E → [0,∞] is called α-excessive if Pα
t u := e−αtPtu ↗

t→0
u.

• E(Uα) := {u : u is α-excessive}

Fact: u ∈ E(Uα)⇔ βUα+βu ↗
β→∞

u

• A σ-finite measure ξ on E is called α-excessive if
ξ ◦ (βUα+β) ≤ ξ for all β > 0.



Fine and natural topologies on E

In order to have a "fine" potential theory for U we assume:

(H.1) σ(E(Uα)) = B, 1 ∈ E(Uα) and E(Uα) is min-stable.

• The fine topology: is the one generated by E(Uα) for some
α > 0.
Remark: The fine topology is non-metrizable and hard to
characterize! Therefore we introduce:

Definition: Any Lusin topology on E coarser than the fine
topology, whose Borel σ-algebra is B is called a natural
topology.

Definition (on brief): A process (Xt )t≥0 on
(Ω,F ,Ft ,Px , x ∈ E) is called a right process with state space
(E , τ), and transition function (Pt )t≥0 if τ is natural and
• X is a normal strong Markov process with τ -r.c. trajectories
under all Px

• t 7→ u(Xt ) is Px -a.s. right continuous for all u ∈ E(Uα).
• Pt f (x) = Ex f (Xt ) for all bounded f .



There is always a right process behind!

Remark: If there exists a right Markov process, then (H.1) is
satisfied.

Question: Is (H.1) also sufficient? Answer: No, but...

Theorem (L. Beznea, N. Boboc, M. Röckner ’04,’06)
Under (H.1), there is always a larger measurable space
(E ,B) ⊂ (E1,B1) and a resolvent U1 on E1 such that:

• U1 has a right process w.r.t. any natural topology τ1 on E1.

• U1 is an extension of U :

• U1
αf |E = Uα(f |E ) on E for all bounded f and α > 0

• U1
α(1E ) = 0 on E1 \ E .

Remark: 1. The extension (E1,U1) can be taken to be maximal
and unique (up to an isomorphism)!
2. τ1 can be chosen s.t. τ1|E is natural on E and s.t. it makes
continuous any given countable S0 ⊂ E(Uα).



Polarity, solidity of potentials and right processes

Reduced and balayaged functions: If u ∈ E(Uα) and A ∈ B

RA
αu := inf{v ∈ E(Uα) : v ≥ u on A}.

BA
αu = lim

β
βUα+β(RA

αu) ∈ E(Uα).

Definition: A ∈ B is called polar if BA
α1 = 0, α > 0.

Theorem (Beznea, Boboc, Röckner ’06), (Steffens ’89)
The following assertions are equivalent, if (H.1) holds:

1 There exists a right process for U on E w.r.t. one (hence
any) natural topology.

2 E1 \ E is polar w.r.t. U1.
3 If ξ is α-excessive s.t. ξ ≤ µ ◦ Uα then ξ = ν ◦ Uα.



Cadlag trajectories: tightness of capacity

Let λ be a reference measure on E : λ(A) = 0⇒ Uα1A ≡ 0.
Let τ be a natural topology on E .
Choquet capacity:

c1
λ(A) := inf

G=
◦
G

{λ(RG
1 1) : A ⊂ G}, A ⊂ E .

Theorem (Lyons, Röckner ’92) (Beznea, Boboc, Röckner ’06)
Assume that X is a right process for U . Then the following
assertions are equivalent.

1 X has τ -cadlag trajectories.
2 The capacity is tight w.r.t. τ -compact sets.
3 There exists v ∈ Uα with τ -compact sublevel sets, s.t.

v <∞ λ a.e.



Continuous paths: harmonic measure

Assume that X is a right process for U and τ is natural,
generated by some metric d .

Theorem (Hunt):

BA
1 u(x) = Ex{e−TAu(XTA); TA <∞},

where TA := inf{t > 0 : Xt ∈ A}.

If A is closed, then u 7→ BA
1 u(x) is a measure µA

x supported on
A.

Theorem (essentially known), e.g. Fukushima, Stannat

The following assertions are equivalent:

1 X has continuous paths w.r.t. any natural topology.
2 If B := B(z, r) is any ball in E , then µBc

x is supported on ∂B.



Back to S(P)DEs with non-regular drifts

We are in the framework of Da Prato, Flandoli, Priola, Röckner,
Veretennikov, Wang ’02, ’09, ’16.
On (H, 〈·, ·〉):{

dX (t) = (AX (t) + F0(X (t)) + B(X (t)))dt + σdW (t)
X (0) = x ∈ H.

(0.5)

Hypothesis 1. (i) A : D(A) ⊂ H → H is a self-adjoint

〈Ax , x〉 ≤ ω|x |2,
(ii) F : D(F ) ⊂ H → 2H is m-dissip.

F0(x) := arg min
y∈F (x)

|y |, x ∈ D(F ),

(iii) σ ≥ 0 is sym. s.t. σ−1 ∈ L(H) and for some α > 0∫ ∞
0

(1 + t−α)|Ttσ|2HS dt <∞

(iv) B : H → H is bounded and measurable.



The Kolmogorov operator for B ≡ 0

L0ϕ =
1
2

Tr[σ2D2ϕ] + 〈x ,ADϕ〉+ 〈F0,Dϕ〉, ϕ ∈ EA(H),

where EA(H) is the linear space generated by the (real parts of)
functions of type ϕ(x) = exp{i〈x ,h〉} with h ∈ D(A).

Hypothesis 2. There exists a Borel probability measure µ on H
such that

(i)
∫

D(F )
(1 + |x |2)(1 + |F0(x)|) ν(dx) <∞ .

(ii) L0(EA(H)) ⊂ L2(H, ν) and∫
H

L0ϕ dν = 0.

(iii) ν(D(F )) = 1.

• H0 := supp(ν).



The case B ≡ 0

Theorem (Da Prato and Röckner, ’02)
If (H.1) and (H.2) hold, then

(L0, EA(H)) is closable on L2(H0,ν)

The closure (L,D(L)) is m-dissipative and there exits a
semigroup of Markov kernels (Pt )t≥0 on H0 s.t. Pt = etA on
L2(ν);
Pt is Lip strong Feller and ν is invariant.

Theorem (Da Prato, Röckner, Wang ’02, ’09)

There exists a set M ⊂ H0 s.t. ν(H0 \M) = 0, and a
| · |-continuous right process (X (t))t≥0 on M with transition
function (Pt )t≥0.
Moreover, for all "good" starting points x ∈ M

X is a weak solution for (0.5).
Pathwise uniqueness holds, so by Yamada-Watanabe,
(0.5) admits also strong solutions.



General B

{
dX = (AX + F0(X ) + B(X ))dt + dWt

X (0) = x ∈ H0.
(0.6)

We fix W on (Ω,F ,Ft ,P), and (X x
t )t≥0 to be the extended

solution for B ≡ 0.

ρx
t := e

∫ t
0 〈B(X x

s )dWs〉− 1
2

∫ t
0 |B|

2(X x
s )ds

Proposition (Girsanov transform)

If x ∈ M then (X x
t )t∈[0,T ] is a solution for (0.6) under ρx

T · P.
Moreover, uniqueness in law holds.

!!! On M, if F0 = ∇V , pathwise uniqueness was obtained in
[Da Prato, Flandoli, Priola, Röckner and Veretennikov, ’16].



What about the "bad" starting points H0 \M?

Ongoing work, jointly with L. Beznea and M. Röckner:

Aim
Extend X x

t to a Markov diffusion process on the entire H0 and
investigate in which sense the extended process is a solution to
equation (0.6)!
• use potential theoretical tools in order to provide a general

and natural way of extending Markov processes.



Thank you!


