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Introduction

Motivation: fragmentation examples

o Fragmenation models

e in astrophysics: stellar fragmentation, meteorits
e in crystallography: crystals fragmentation
o in nuclear physics: atoms fission

e in geophysics: rupture phenomena like avalanches, earthquakes, etc.



Introduction

Fragmentation equation

@ Continuous mass model

o Consider the evolution of an infinite particle system

o The particles are completely characterized by their mass (continuous)

o Equation which describes the evolution of the concentration of
particles c(t, x) in the system

o Fragmentation equation (EF)

1
Seclex) = [ Flxy = ety dy
—%c(t,x)/ F(y,x —y)dy,vVt=0,Vx € [0,1],
0

c(0, x) = ¢o(x),Vx € [0, 1]. (EF)

o Properties / Remarks
o Binary fragmentation: a particle of mass x + y splits in two particles
of masses x and y
o F:[0,1] x [0,1] — R fragm. kernel, symmetric F(x,y) = F(y,x)
o Mass conservation
o Complex linear integro-differential —> difficult to solve



Probabilistic approach
Fragmentation equation

o Key property

o Mass conservation

1 1
/ xc(t, x)dx = / xco(x)dx =1,Vt >0
0 0
o Probability Q:(dx) = xc(t,x)dx, Vt >0

@ Objectives and steps

o Construct a stochastic process with jumps (X:):>0 whose law is
Q:(dx)

o Weak form of the equation (EF) in order to introduce the stochastic
approach and the infinitesimal generator

o Construct a Markov process with jumps (stochastic differential
equation)

o Get properties for the solution of (EF) via this approach



Probabilistic approach
Fragmentation and branching process

o Hypothesis on F

(H) F is continuous from [0,1]? to Ry U {+oo}.
The rate of loss of mass for the particle of mass x is:

W(x) = %/0 y(x=y)F(y,x —y)dy ifx>0,
0 if x=0.

F is s.t. % is continuous on [0, 1].

o Remark: the particle mass (size) x € [0,1] - connexion with the
fragmentation introduced by Bertoin

e Example: F(x,y) :=x+y



Probabilistic approach

Weak solution for the fragmentation equation
o Definition The family (Q;)¢>0 of probabilities on [0, 1] is a weak
solution of (EF) with initial data Qp if:
t
(Qu.6) = (@0.0)+ | (QuFo)ds, Vo € CHO.1). 20, (EF-weak)
0

where (Q;, ¢) fo y)Q:(dy) and for all x € [0,1]:

o) = [ 0= ) = o0l L Frox = .

e Aim: Construct a process (X )¢>o0 whose law is (Q¢)¢>0



Probabilistic approach

Stochastic Differential Equation

e Definition of the solution of the SDE (SDE — F)

Let (R2,G,(Gt)t=0,P) be a probability space and Qp a probability on
[0,1].

X is a solution of (SDE-F) if:

o X = (X:t)e>o0 is an adapted process on (2, G, (Gt)e>0, P) having
trajectories in ID([0, +00), [0, 1]).
o The law of Xo = Q.

o There exists a Poisson measure N(ds,dy,du) adapted to (G¢):>o0
on [0, 4+00) x [0,1) x [0,1) with intensity dsdy du s.t.:

t 1l pl
Xe = XO_A /0 /(; y]'{yE(O,X,—)}l{USX;(::y F(y,X, 7_y)}N(dS, dy7 dU)



Probabilistic approach
Interpretation

@ lllustration

@ fragmentation ﬁ CS
—

x+y=7 x=4 and y=3

@ Interpretation

At random Poissonian times the particle splits into two particles with
smaller masses

o Mass the new particle is Xs— —y, y € (0, Xs_)
Xs——y
X,

o Time at a rate F(y, Xs— — y)



Probabilistic approach
Link (EF), (EF-weak) and (SDE-F)

Under (H) there exists a solution X = (X:¢)t>0 of the SDE of
fragmentation (SDE — F). Let Q; be the law of (X;), t=0. Then, the
family {Q¢} >0 is a solution of (EF — weak).

@ How to come back to the initial equation (EF) ?
Suppose that for all >0, Q; is s.t. Q:(dx) = ¢(t,x)dx. Then
c(t,x) = @ is a solution, in the weak sense, of (EF): for all
t >0 and all test function ¢ s.t. ¢(x) = 2% € €1([0,1]) we have:

/01 o(x)c(t, x)dx = /01 o(x)co(x)dx

+% /Ot/o /Ox[so(x =y)+te(y) — e(x)]F(y,x — y)c(s, x)dydxds.



Probabilistic approach
Branching process

E a measurable space (for us E = [0, 1])

m
E:= {,u non-negative measure on E : y = Z(Sxk, X1y .oy Xm € E}U{O}.
k=1

Definition

A Markov process X on Eisa branching process iff for all measures
p1, 2 € E:
XH:I.JFIJZ (i) XM ~|—X’u2.

o Probabilistic interpretation At the initial time the particle starts
in a point from E and evolves according with a basis process X, up
to a random time, when it gives birth to a number m of independent
particles having same law as the mother particle (same law as X).

o Fragmentation The particles split independently one to each other
so we can associate a branching property



Probabilistic approach
Fragmentation and branching

o Steps
o Markov processes and fragmentation equation
o Branching process associated to a fragmentation kernel

o Fragmentation as a limit of the branching process



Probabilistic approach
Markov process and fragmentation equation

Let F be a bounded fragmentation kernel and Qy = 0,. Then:

o (EF — weak) has a unique solution (Q¢ x)t>0-
o The family of kernels (Q:)+>0 on [0, 1]:
QeF(x) = (Qexs F), ¥ € pC([0,1]), x € [0, 1],
is also the transition function of the Markov process with jumps
X% =(Q,G,G:, X2, P), with values in [0, 1] (Ethier, Kurtz).

@ For every function ¢ € C([0,1]) and v € P([0, 1]),
(p(XP) — fot Fp(X2)ds, t=0) is a (G¢)eo-martingale under P”.

e The SDE (SDE — F), with initial condition 6, has a solution and
this solution has same law as (X°,P).




Probabilistic approach
Markov processes for truncated fragmentation kernel

Tools
@ Construct a sequence of thresholds for the particle size fix a

sequence (dp)n>1 C (0,1), strictly non-increasing converging to 0.
o Truncated kernel (bounded)

Let F be a fragmentation kernel. For n>1 define
Fn(Xv.y) = :ﬂ-(d,.,,l](x /\y)F(Xv.y)7 X,y S E= [07 1]

o Markov process for the kernel F, (size greater than d,), by using
the theorem.
@ Markov process truncated by the size d,
@ Result Construct a branching process associated with. We need to:
o Define the Markov process: X = (Q, F, F, X¢, 0, PX), on E
o A Markovian kernel: B : bpBB(E) —s bpB(E)



Probabilistic approach
Branching process associated to the kernel

(Beznea, Deaconu, Lupascu, SPA, 2015)

There exists a branching process on E, induced by the process X with
state space E, and by the Markovian kernel B.

@ Branching process induced by the solution of the
fragmentation equation

By the Theorem, for all n>1, there exists a branching process on /E:,
induced by the process X" on E,, and by the kernel B", associated
to the fragmentation kernel F.



Probabilistic approach

Branching process associated with the fragmentation

o Ildea of proof

For n>1 we note (I/DZ’)QO the transition function of the branching

process on E;, induced by the basis process X" and by the
Markovian kernel B".

We can prove that there exists a projective limit of the sequence
(Pt)e=0 on S*, which is a transition function

@ St link with the fragmentation model introduced by Bertoin



Probabilistic approach

Avalanches and fragmentation phenomenon

o A simplified physical model (fragmentation kernel) for the avalanche
@ Stochastic differential equation of fragmentation

@ Simulation




Probabilistic approach
Physical model for the avalanche kernel

@ Describe the avalanche via the fragmentation model with a
fragmentation kernel which capture the physical properties.

o Fragmentation kernel for the avalanche

X+y—XYy
such that
min(x
0y
max(x, y)
o Example If cst. =1/2
a=3 a;=1 a,=2
| fragmentation I:l ED
be6 b=2 b4

fragmentation El




Probabilistic approach

Stochastic differential equation

o Fragmentation kernel for the avalanche model

There exists a function ¢ : (0,00) — (0, 00) such that

F(x,y):¢(;<—/>,Vx,y>0, and ¢(x):¢<§>,VX>O.

o Example: For r > 0, define the function
. 1 1
d"(x) := §5r(x) + 551/,()(), vV x>0.
In this situation F"(x,y) = %(5,(5) +61,(%)).

o Difficulty: ®" is not continuos but we can construct a sequence of
functions which approximates it and use the results before.



Probabilistic approach

Stochastic differential equation

e Branching kernel associated with F':
NE 1= Xo(Bxdpx + (1= B)xb—g));

B8 | o
where A\g 1= =—3—"== with 3 := ;-
e Warning: NF" is no more Markovian and has no density w.r.t. the

Lebesgue measure.
Take di < 8 <1/2 and dpy1/d, < 8 for all n > 1. For n fixed let

E,= UZ:l Etl<—1-
Define the kernel N/ on E,, as

Npf = 1g N (flg ), Vf € bpB(E,).
k=1

@ First order integral operator 7\/\,2
Fif(x):= ﬁ;f(x) = / [F(y)—f()](N)«(dy), Vf € bpB(E,) and x € E,
En

F is the generator of a (continuous time) jump Markov process
X" = (X{");50- Its transition function is P{"" := e”nt, t > 0.



Probabilistic approach

Stochastic differential equation for the avalanche - discontinuous kernel
Epx:={B(1—BYx: i,j e NVU{0}, Egxn:= EgxNE,

(Beznea, Deaconu, Lupascu-Stamate, MATCOM, 2018)
If n>1 then E, is absorbing w.r.t. the Markov process X"" (in E,) and
(i) For every ¢ € bpB(E,) and each probability v on E,,
(p(X™) — fot Fro(Xmds, t=0) is a martingale under PV, w.r.t.
the natural filtration of X"".
(ii) If x € E,, n > 1, then the following SDE of fragmentation for

avalanches, with initial distribution 0, has a solution which is equal
in law with (X™",P*):

t poo n
Xe = Xo — da,ds)X,— 1-76)1
=%~ [ [ pldaas)x, >0y o

+61 4 d d
[iks SXam <, sod=p <Xo— SxplUlA SXa—<di_y, 5 <Xa— <52

where p(da, ds) is a Poisson measure with intensity q := dads.
(iii) If x € E,, then P*-a.s. X" € Eg x, for all t > 0.




Probabilistic approach
Algorithm

o Initialisation: Sample the initial particle Xo ~ Qo

e Step p:
o Sample a random variable S, ~ Exp(Xo)

o Let Tp = Tpfl + Sp
o Set Xy = Xp_1 for all t € [Tp_1, Tp[
o Define

BXp-1 with probability S Xp—1,

Xp =1 (1—pB)Xp—1 with probability (1 — 5)Xp—1, (0.1)

Xp—1 with probability 1 — X,_1

Stop: When T, > T
Outcome: The approximation of the mass of the particle at time T,
Xo_1



Numerical results

Comparison theoretical and evaluated density F(x,y)=2
T T T T T T =

‘approximation
exact

Figure : Comparison between the exact solution and the algorithm in the case
F(x,y) =2.



Numerical results

B=1/6, T=60 B=4/9, T=60

Figure : Path of the fragmentation process with the discontinuous kernel F"
and the size of the initial particle 1



Numerical results

Monte Carlo with 10° simulations

B | Mean Ty | Confidence interval

0.1566 0.0020

ol

0.1356 0.0017

[

0.1350 0.0016

ol




Numerical results

Figure : Time evolution of the empirical mean t s Iy (t) for r = 0.2, Monte
Carlo parameter M = 10°, and t € [0, 50].



Conclusion and perspectives

o Go further

Construct a complex model of coagulation / fragmentation
depending on the position and with physical kernels

o Phase of snow accumulation (coagulation) before the avalanche
begins

o The rupture phase (fragmentation)

o The phase of accumulation at the end of the avalanche (coagulation)

o Evaluate and control the risk connected to the avalanche

@ Collaboration

o Geophysicians - Irstea Grenoble
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