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Introduction
Motivation: fragmentation examples

Fragmenation models

in astrophysics: stellar fragmentation, meteorits

in crystallography: crystals fragmentation

in nuclear physics: atoms fission

in geophysics: rupture phenomena like avalanches, earthquakes, etc.



Introduction
Fragmentation equation

Continuous mass model
Consider the evolution of an infinite particle system
The particles are completely characterized by their mass (continuous)
Equation which describes the evolution of the concentration of
particles c(t, x) in the system

Fragmentation equation (EF )
∂

∂t
c(t, x) =

∫ 1

x
F (x , y − x)c(t, y) dy

−1
2
c(t, x)

∫ x

0
F (y , x − y) dy ,∀t>0,∀x ∈ [0, 1],

c(0, x) = c0(x),∀x ∈ [0, 1]. (EF )

Properties / Remarks
Binary fragmentation: a particle of mass x + y splits in two particles
of masses x and y
F : [0, 1]× [0, 1]→ R+ fragm. kernel, symmetric F (x , y) = F (y , x)
Mass conservation
Complex linear integro-differential —> difficult to solve



Probabilistic approach
Fragmentation equation

Key property

Mass conservation∫ 1

0
xc(t, x)dx =

∫ 1

0
xc0(x)dx = 1, ∀t ≥ 0

Probability Qt(dx) = xc(t, x)dx , ∀t ≥ 0

Objectives and steps

Construct a stochastic process with jumps (Xt)t≥0 whose law is
Qt(dx)

Weak form of the equation (EF) in order to introduce the stochastic
approach and the infinitesimal generator

Construct a Markov process with jumps (stochastic differential
equation)
Get properties for the solution of (EF) via this approach



Probabilistic approach
Fragmentation and branching process

Hypothesis on F

(H) F is continuous from [0, 1]2 to R+ ∪ {+∞}.
The rate of loss of mass for the particle of mass x is:

ψ(x) =


1
x

∫ x

0
y(x − y)F (y , x − y)dy if x > 0,

0 if x = 0.

F is s.t. ψ is continuous on [0, 1].

Remark: the particle mass (size) x ∈ [0, 1] - connexion with the
fragmentation introduced by Bertoin

Example: F (x , y) := x + y



Probabilistic approach
Weak solution for the fragmentation equation

Definition The family (Qt)t>0 of probabilities on [0, 1] is a weak
solution of (EF ) with initial data Q0 if:

〈Qt , φ〉 = 〈Q0, φ〉+
∫ t

0
〈Qs ,Fφ〉ds, ∀φ ∈ C1([0, 1]), t>0, (EF-weak)

where 〈Qt , φ〉 =
∫ 1
0 φ(y)Qt(dy) and for all x ∈ [0, 1]:

Fφ(x) =

∫ x

0
[φ(x − y)− φ(x)]

x − y
x

F (y , x − y)dy .

Aim: Construct a process (Xt)t>0 whose law is (Qt)t>0



Probabilistic approach
Stochastic Differential Equation

Definition of the solution of the SDE (SDE − F )

Let (Ω,G, (Gt)t>0,P) be a probability space and Q0 a probability on
[0, 1].

X is a solution of (SDE-F) if:

X = (Xt)t>0 is an adapted process on (Ω,G, (Gt)t>0,P) having
trajectories in D([0,+∞), [0, 1]).

The law of X0 = Q0.

There exists a Poisson measure N(ds, dy , du) adapted to (Gt)t>0

on [0,+∞)× [0, 1)× [0, 1) with intensity ds dy du s.t.:

Xt = X0−
∫ t

0

∫ 1

0

∫ 1

0
y1{y∈(0,Xs−)}1{u≤Xs−−y

Xs− F (y ,Xs−−y)
}N(ds, dy , du)



Probabilistic approach
Interpretation

Illustration
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Interpretation

At random Poissonian times the particle splits into two particles with
smaller masses

Mass the new particle is Xs− − y , y ∈ (0,Xs−)

Time at a rate F (y ,Xs− − y)
Xs−−y

Xs−



Probabilistic approach
Link (EF), (EF-weak) and (SDE-F)

Theorem
Under (H) there exists a solution X = (Xt)t>0 of the SDE of
fragmentation (SDE − F ). Let Qt be the law of (Xt), t>0. Then, the
family {Qt}t>0 is a solution of (EF − weak).

How to come back to the initial equation (EF ) ?
Suppose that for all t>0, Qt is s.t. Qt(dx) = q(t, x)dx . Then
c(t, x) := q(t,x)

x is a solution, in the weak sense, of (EF ): for all
t ≥ 0 and all test function ϕ s.t. φ(x) = ϕ(x)

x ∈ C1([0, 1]) we have:∫ 1

0
ϕ(x)c(t, x)dx =

∫ 1

0
ϕ(x)c0(x)dx

+
1
2

∫ t

0

∫ 1

0

∫ x

0
[ϕ(x − y) + ϕ(y)− ϕ(x)]F (y , x − y)c(s, x)dydxds.



Probabilistic approach
Branching process

E a measurable space (for us E = [0, 1])

Ê :=

{
µ non-negative measure on E : µ =

m∑
k=1

δxk , x1, . . . , xm ∈ E

}
∪{0}.

Definition

A Markov process X on Ê is a branching process iff for all measures
µ1, µ2 ∈ Ê :

Xµ1+µ2
(d)
= Xµ1 + Xµ2 .

Probabilistic interpretation At the initial time the particle starts
in a point from E and evolves according with a basis process X , up
to a random time, when it gives birth to a number m of independent
particles having same law as the mother particle (same law as X ).

Fragmentation The particles split independently one to each other
so we can associate a branching property



Probabilistic approach
Fragmentation and branching

Steps

Markov processes and fragmentation equation

Branching process associated to a fragmentation kernel

Fragmentation as a limit of the branching process



Probabilistic approach
Markov process and fragmentation equation

Theorem

Let F be a bounded fragmentation kernel and Q0 = δx . Then:

(EF − weak) has a unique solution (Qt,x)t>0.

The family of kernels (Qt)t>0 on [0, 1]:

Qt f (x) := 〈Qt,x , f 〉, ∀ f ∈ pCb([0, 1]), x ∈ [0, 1],

is also the transition function of the Markov process with jumps
X 0 = (Ω,G,Gt ,X 0

t ,Px), with values in [0, 1] (Ethier, Kurtz).

For every function φ ∈ C([0, 1]) and ν ∈ P([0, 1]),
(φ(X 0

t )−
∫ t
0 Fφ(X 0

s )ds, t>0) is a (Gt)t>0-martingale under Pν .

The SDE (SDE − F ), with initial condition δx , has a solution and
this solution has same law as (X 0,Px).



Probabilistic approach
Markov processes for truncated fragmentation kernel

Tools
Construct a sequence of thresholds for the particle size fix a
sequence (dn)n>1 ⊆ (0, 1), strictly non-increasing converging to 0.

Truncated kernel (bounded)

Let F be a fragmentation kernel. For n>1 define

Fn(x , y) := 1(dn,1](x ∧ y)F (x , y), x , y ∈ E = [0, 1].

Markov process for the kernel Fn (size greater than dn), by using
the theorem.

Markov process truncated by the size dn

Result Construct a branching process associated with. We need to:
Define the Markov process: X = (Ω,F ,Ft ,Xt , θt ,Px), on E

A Markovian kernel: B : bpB(Ê) −→ bpB(E)



Probabilistic approach
Branching process associated to the kernel

Theorem
(Beznea, Deaconu, Lupaşcu, SPA, 2015)

There exists a branching process on Ê , induced by the process X with
state space E, and by the Markovian kernel B.

Branching process induced by the solution of the
fragmentation equation

By the Theorem, for all n>1, there exists a branching process on Ên,
induced by the process X n on En, and by the kernel Bn, associated
to the fragmentation kernel F .



Probabilistic approach
Branching process associated with the fragmentation

Idea of proof

For n>1 we note (P̂n
t )t>0 the transition function of the branching

process on Ên, induced by the basis process X n and by the
Markovian kernel Bn.

We can prove that there exists a projective limit of the sequence
(P̂t)t>0 on S↓, which is a transition function

S↓ link with the fragmentation model introduced by Bertoin



Probabilistic approach
Avalanches and fragmentation phenomenon

A simplified physical model (fragmentation kernel) for the avalanche

Stochastic differential equation of fragmentation

Simulation



Probabilistic approach
Physical model for the avalanche kernel

Describe the avalanche via the fragmentation model with a
fragmentation kernel which capture the physical properties.

Fragmentation kernel for the avalanche

x + y → x , y
such that

min(x , y)

max(x , y)
= cst.

Example If cst. = 1/2

b2=4	
  

a=3	
   a1=1	
  

fragmenta0on	
  
a2=2	
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   b1=2	
  

fragmenta0on	
  



Probabilistic approach
Stochastic differential equation

Fragmentation kernel for the avalanche model

There exists a function Φ : (0,∞) −→ (0,∞) such that

F (x , y) = Φ

(
x
y

)
, ∀ x , y > 0, and Φ(x) = Φ

(
1
x

)
, ∀ x > 0.

Example: For r > 0, define the function

Φr (x) :=
1
2
δr (x) +

1
2
δ1/r (x), ∀ x > 0.

In this situation F r (x , y) = 1
2 (δr ( x

y ) + δ1/r ( y
x )).

Difficulty: Φr is not continuos but we can construct a sequence of
functions which approximates it and use the results before.



Probabilistic approach
Stochastic differential equation

Branching kernel associated with F r :

NF r

x := λ0(βxδβx + (1− β)xδ(1−β)x),

where λ0 := β2+(1−β)2
4 with β := r

1+r

Warning: NF r
is no more Markovian and has no density w.r.t. the

Lebesgue measure.
Take d1 < β 6 1/2 and dn+1/dn < β for all n > 1. For n fixed let
En =

⋃n
k=1 E

′
k−1.

Define the kernel N r
n on En as

N r
nf :=

n∑
k=1

1E ′k−1
NF r

(f 1E ′k−1
), ∀f ∈ bpB(En).

First order integral operator Ñ r
n,

F r
nf (x) := Ñ r

nf (x) =

∫
En

[f (y)−f (x)](N r
n)x(dy), ∀f ∈ bpB(En) and x ∈ En.

F r
n is the generator of a (continuous time) jump Markov process

X r ,n = (X r ,n
t )t>0. Its transition function is P r ,n

t := eF
r
nt , t > 0.



Probabilistic approach
Stochastic differential equation for the avalanche - discontinuous kernel

Eβ,x := {βi (1− β)jx : i , j ∈ N} ∪ {0}, Eβ,x,n := Eβ,x ∩ En

Theorem

(Beznea, Deaconu, Lupaşcu-Stamate, MATCOM, 2018)
If n>1 then En is absorbing w.r.t. the Markov process X r ,n (in En) and
(i) For every φ ∈ bpB(En) and each probability ν on En,

(φ(X r ,n
t )−

∫ t
0 F

r
nφ(X r ,n

s )ds, t>0) is a martingale under Pν , w.r.t.
the natural filtration of X r ,n.

(ii) If x ∈ En, n > 1, then the following SDE of fragmentation for
avalanches, with initial distribution δx , has a solution which is equal
in law with (X r ,n,Px):

Xt = X0 −
∫ t

0

∫ ∞
0

p(dα,ds)Xα−
n∑

k=1

(1− β)1
[
dk
β 6Xα−<dk−1,

s
λoβ<Xα−]

+β1
[

dk
1−β6Xα−<

dk
β ,

s
λo (1−β)<Xα−6 s

λoβ ]∪[
dk
β 6Xα−<dk−1,

s
λo
<Xα−6 s

λoβ ]
,

where p(dα,ds) is a Poisson measure with intensity q := dαds.
(iii) If x ∈ En then Px -a.s. X r ,n

t ∈ Eβ,x,n for all t > 0.



Probabilistic approach
Algorithm

Initialisation: Sample the initial particle X0 ∼ Q0

Step p:
Sample a random variable Sp ∼ Exp(λ0)

Let Tp = Tp−1 + Sp

Set Xt = Xp−1 for all t ∈ [Tp−1,Tp[

Define

Xp =


βXp−1 with probability βXp−1,

(1− β)Xp−1 with probability (1− β)Xp−1,

Xp−1 with probability 1− Xp−1

(0.1)

Stop: When Tp > T

Outcome: The approximation of the mass of the particle at time T ,
Xp−1



Numerical results
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Figure : Comparison between the exact solution and the algorithm in the case
F (x , y) = 2.



Numerical results
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Figure : Path of the fragmentation process with the discontinuous kernel F r

and the size of the initial particle 1



Numerical results

Monte Carlo with 105 simulations

β Mean ÎM Confidence interval

1
6 0.1566 0.0020

1
3 0.1356 0.0017

4
9 0.1350 0.0016



Numerical results
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Figure : Time evolution of the empirical mean t 7→ ÎM(t) for r = 0.2, Monte
Carlo parameter M = 106, and t ∈ [0, 50].



Conclusion and perspectives

Go further

Construct a complex model of coagulation / fragmentation
depending on the position and with physical kernels

Phase of snow accumulation (coagulation) before the avalanche
begins

The rupture phase (fragmentation)

The phase of accumulation at the end of the avalanche (coagulation)

Evaluate and control the risk connected to the avalanche

Collaboration

Geophysicians - Irstea Grenoble
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