Sur les hypothèses optimales dans deux résultats classiques d'analyse

Vicențiu D. Rădulescu

Département de Mathématiques, Université de Craiova, 200585 Craiova Institut de Mathématiques "Simion Stoilow" de l'Académie Roumaine, Bucarest vicentiu.radulescu@imar.ro http://math.ucv.ro/~radulescu

Potentiel et Probabilités – Conférence dédiée à la 80ème anniversaire de Prof. Gheorghe Bucur

IMAR Bucarest, le 24 janvier 2019

Main References

- P. Pucci and J. Serrin, A note on the strong maximum principle for elliptic differential inequalities, *J. Math. Pures Appl.* **79** (2000), 57-71.
- P. Pucci and J. Serrin, The strong maximum principle revisited,
 J. Differential Equations 196 (2004), 1-66.
- ▶ P. Pucci and J. Serrin, *The Maximum Principle*, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007.
- ► G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus, Séminaire de Mathématiques Supérieures, No. 16, Les Presses de l'Université de Montréal, 1966.
- ▶ J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, *Applied Mathematics and Optimization* **12** (1984), 191-202.

I. The Maximum Principle

I. The Maximum Principle

1. Assume that

$$\left\{ \begin{array}{cc} -\Delta u \geqslant 0 & \text{ in } \Omega \\ u \geqslant 0 & \text{ on } \partial \Omega. \end{array} \right.$$

I. The Maximum Principle

1. Assume that

$$\left\{ \begin{array}{cc} -\Delta u \geqslant 0 & \text{in } \Omega \\ u \geqslant 0 & \text{on } \partial \Omega. \end{array} \right.$$

Then $u \geqslant 0$ in Ω .

Moreover, the following alternative holds:

- (i) either $u \equiv 0$ in Ω ;
- (ii) or u > 0 in Ω .

Let $a \in L^{\infty}(\Omega)$ be such that, for some $\alpha > 0$,

$$\int_{\Omega} (|\nabla u|^2 + a(x)u^2) dx \geqslant \alpha \|u\|_{H_0^1(\Omega)}^2, \quad \forall u \in H_0^1(\Omega).$$

Let $a \in L^{\infty}(\Omega)$ be such that, for some $\alpha > 0$,

$$\int_{\Omega} (|\nabla u|^2 + a(x)u^2) dx \geqslant \alpha \|u\|_{H_0^1(\Omega)}^2, \quad \forall u \in H_0^1(\Omega).$$

Assume that

$$\begin{cases} -\Delta u + a(x)u \geqslant 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

Let $a \in L^{\infty}(\Omega)$ be such that, for some $\alpha > 0$,

$$\int_{\Omega} (|\nabla u|^2 + a(x)u^2) dx \geqslant \alpha \|u\|_{H_0^1(\Omega)}^2, \quad \forall u \in H_0^1(\Omega).$$

Assume that

$$\begin{cases} -\Delta u + a(x)u \geqslant 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

Then either $u \equiv 0$ in Ω or u > 0 in Ω and $\frac{\partial u}{\partial \nu} < 0$ on $\partial \Omega$.

Let $f: [0, \infty) \to \mathbb{R}$ be a continuous nondecreasing function such that f(0) = 0 (with f > 0 in $(0, \infty)$) and $\int_{0+} F(t)^{-1/2} dt = +\infty$, $F(t) := \int_{0}^{t} f(s) ds$.

Let $f:[0,\infty)\to\mathbb{R}$ be a continuous nondecreasing function such that f(0)=0 (with f>0 in $(0,\infty)$) and $\int_{0+}F(t)^{-1/2}dt=+\infty$, $F(t):=\int_0^t f(s)ds$. Assume that $u\in C^2(\Omega)\cap C(\overline{\Omega})$ satisfies $\begin{cases} -\Delta u+f(u)\geqslant 0 & \text{in }\Omega\\ u\geqslant 0 & \text{on }\partial\Omega. \end{cases}$

Let $f: [0, \infty) \to \mathbb{R}$ be a continuous nondecreasing function such that f(0) = 0 (with f > 0 in $(0, \infty)$) and $\int_{0+} F(t)^{-1/2} dt = +\infty$, $F(t) := \int_0^t f(s) ds$. Assume that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$\begin{cases} & -\Delta u + f(u) \geqslant 0 & \text{in } \Omega \\ & u \geqslant 0 & \text{on } \partial \Omega. \end{cases}$$

Then either $u \equiv 0$ in Ω or u > 0 in Ω .

Let $f: [0, \infty) \to \mathbb{R}$ be a continuous nondecreasing function such that f(0) = 0 (with f > 0 in $(0, \infty)$) and $\int_{0+} F(t)^{-1/2} dt = +\infty$, $F(t) := \int_0^t f(s) ds$. Assume that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$\begin{cases} & -\Delta u + f(u) \geqslant 0 & \text{in } \Omega \\ & u \geqslant 0 & \text{on } \partial \Omega. \end{cases}$$

Then either $u \equiv 0$ in Ω or u > 0 in Ω .

Remark. The growth assumption $\int_{0+} F(t)^{-1/2} dt = +\infty$ implies that f(t) must not be very large near t_0 . This condition is satisfied if $f(t) \le ct$ for a certain c > 0 and $0 < t < t_0$. But it is also satisfied by some f for which f(t)/t is not bounded at 0, for instance $f(t) \le t(\log t)^2$. This version of the maximum principle holds for **superlinear** nonlinearities like $f(t) = t^p$, p > 1.

Let $\Omega \subset \mathbb{R}^N$ be a domain and consider the canonical divergence structure inequality

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

Let $\Omega \subset \mathbb{R}^N$ be a domain and consider the canonical divergence structure inequality

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

Let $\Omega \subset \mathbb{R}^N$ be a domain and consider the canonical divergence structure inequality

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

Hypotheses:

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

(A2) $s \mapsto sA(s)$ is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;

Let $\Omega \subset \mathbb{R}^N$ be a domain and consider the canonical divergence structure inequality

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

(A1)
$$A \in C(\mathbb{R}^+)$$
, $\mathbb{R}^+ = (0, \infty)$;
(A2) $s \mapsto sA(s)$ is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;
(F1) $f \in C(\mathbb{R}^+_0)$);

Let $\Omega \subset \mathbb{R}^N$ be a domain and consider the canonical divergence structure inequality

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

Hypotheses:

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

(A2) $s \mapsto sA(s)$ is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;

$$(F1) f \in C(\mathbb{R}_0^+));$$

(F2) f(0) = 0 and f is non-decreasing on some interval $(0, \delta)$.

Let $\Omega \subset \mathbb{R}^N$ be a domain and consider the canonical divergence structure inequality

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

Hypotheses:

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

(A2) $s \mapsto sA(s)$ is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;

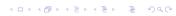
$$(F1) f \in C(\mathbb{R}_0^+));$$

(F2) f(0) = 0 and f is non-decreasing on some interval $(0, \delta)$.

The variational integral associated to (P) is

$$(V) I(u) = \int_{\Omega} \{ \mathcal{G}(|\nabla u|) + F(u) \} dx, F(u) := \int_{0}^{u} f(s) ds,$$

where
$$A(s) = \mathcal{G}'(s)/s$$
, $s > 0$.



Let

$$\Phi(s) := sA(s) \quad \text{for } s > 0; \quad \Phi(0) = 0$$

$$H(s) := s\Phi(s) - \int_0^s \Phi(t)dt, \quad s \geqslant 0.$$

Let

$$\Phi(s) := sA(s) \quad \text{for } s > 0; \quad \Phi(0) = 0$$

$$H(s) := s\Phi(s) - \int_0^s \Phi(t)dt, \quad s \geqslant 0.$$

Examples. For the Laplace operator, the *p*-Laplace operator and the mean curvature operator, respectively, we have

$$H(s) = \frac{s^2}{2}$$
, $H(s) = (p-1)\frac{s^p}{p}$, $H(s) = 1 - \frac{1}{\sqrt{1+s^2}}$.

Let

$$\Phi(s) := sA(s) \quad \text{for } s > 0; \quad \Phi(0) = 0$$

$$H(s) := s\Phi(s) - \int_0^s \Phi(t)dt, \quad s \geqslant 0.$$

Examples. For the Laplace operator, the *p*-Laplace operator and the mean curvature operator, respectively, we have

$$H(s) = \frac{s^2}{2}$$
, $H(s) = (p-1)\frac{s^p}{p}$, $H(s) = 1 - \frac{1}{\sqrt{1+s^2}}$.

For the variational problem (V) we have

$$H(s) = s\mathcal{G}'(s) - \mathcal{G}(s).$$

By the *strong maximum principle* for (P) we mean the statement that if u is a non-negative classical solution of (P) with $u(x_0) = 0$ at some point $x_0 \in \Omega$, then $u \equiv 0$ in Ω .

By the *strong maximum principle* for (P) we mean the statement that if u is a non-negative classical solution of (P) with $u(x_0) = 0$ at some point $x_0 \in \Omega$, then $u \equiv 0$ in Ω .

Strong Maximum Principle (P. Pucci and J. Serrin) *In order for the strong maximum principle to hold for problem (P) it is necessary and sufficient that either* $f \equiv 0$ *in* [0,d] *with* d > 0, *or that* f(s) > 0 *for* $s \in (0,\delta)$ *and*

$$\int_{0^+} \frac{ds}{H^{-1}(F(s))} = +\infty.$$

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

(A2)
$$s \mapsto sA(s)$$
 is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;

- (A1) $A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$
- (A2) $s \mapsto sA(s)$ is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;

$$(F1) f \in C(\mathbb{R}_0^+));$$

(A1)
$$A \in C(\mathbb{R}^+), \mathbb{R}^+ = (0, \infty);$$

(A2)
$$s \mapsto sA(s)$$
 is strictly increasing in \mathbb{R}^+ and $sA(s) \to 0$ as $s \to 0$;

$$(F1) f \in C(\mathbb{R}_0^+));$$

$$(F2) f(0) = 0, f > 0$$
 in $(0, \infty)$ and

$$\int_{0^+} \frac{ds}{H^{-1}(F(s))} = +\infty.$$

Consider the problem

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

Theorem (P. Pucci, V.R., 2018) Let $x_0 \in \partial \Omega$ and suppose that Ω satisfies the interior sphere condition at x_0 .

(i) If
$$u \in C^1(\overline{\Omega})$$
 satisfies $u(x_0) = 0$ and

$$\begin{cases} -\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \end{cases}$$

then
$$\frac{\partial u}{\partial \nu}(x_0) < 0$$
.

Consider the problem

(P)
$$-\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 \quad \text{in } \Omega.$$

Theorem (P. Pucci, V.R., 2018) Let $x_0 \in \partial \Omega$ and suppose that Ω satisfies the interior sphere condition at x_0 .

(i) If
$$u \in C^1(\overline{\Omega})$$
 satisfies $u(x_0) = 0$ and

$$\begin{cases} -\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 & \text{in } \Omega \\ u > 0 & \text{in } \Omega \end{cases}$$

then $\frac{\partial u}{\partial \nu}(x_0) < 0$.

(ii) Assume that $u \in C^1(\overline{\Omega})$ is a solution of

$$\begin{cases} -\operatorname{div}\left\{A(|\nabla u|)\nabla u\right\} + f(u) \geqslant 0 & \text{in } \Omega \\ u \geqslant 0 & \text{in } \Omega. \end{cases}$$

If u *vanishes somewhere in* Ω , *then* $u \equiv 0$ *in* Ω .

Sketch of the proof in a particular case. Let $B_{\rho} \subset \Omega$ be a ball such that ∂B_{ρ} is tangent to $\partial \Omega$ at x_0 . Let $A_{\rho} = B_{\rho} \setminus B_{\rho/2}$ and consider the problem

(3)
$$\begin{cases} -\Delta_{p}\phi + f(\phi) = 0 & \text{in } A_{\rho} \\ \phi = 0 & \text{on } \partial B_{\rho} \\ \phi = c & \text{on } \partial B_{\rho/2}. \end{cases}$$

where $c = \min\{u(x); x \in \partial B_{\rho/2}\} > 0$. Step 1. Problem (3) has a minimal solution $\phi \ge 0$ in A_{ρ} .

40.44.4.4.

Step 2: ϕ is a radial function.

The function $\phi \circ R$ is still a nonnegative solution of (3), provided that R is any rotation of \mathbb{R}^N . By minimality of ϕ ,

$$\phi(x) \leqslant \phi(R(x))$$
 for all $x \in A_{\rho}$.

Applying this inequality at $y = R^{-1}(x)$ we deduce that ϕ is radial. Thus, problem (3) reduces to:

$$\begin{cases} -(p-1)|\phi^{'}|^{p-2}\phi^{''} - \frac{N-1}{r}|\phi^{'}|^{p-2}\phi^{'} + f(\phi) = 0 & \text{in } (\frac{\rho}{2};\rho) \\ \phi(\frac{\rho}{2}) = c, & \phi(\rho) = 0. \end{cases}$$

Step 3: $\phi' < 0$. Since $\phi \geqslant 0$ in $(\rho/2, \rho)$ and $\phi(\rho) = 0$, then $\phi'(\rho) \leqslant 0$. We multiply by r^{N-1} in (4) and integrate on $[r, \rho]$, where $\rho/2 \leqslant r < \rho$. Then

(5)
$$-r^{N-1}|\phi'(r)|^{p-2}\phi'(r) = \int_{r}^{\rho} t^{N-1}f(\phi(t))dt$$

Since $f \ge 0$, relation (5) shows that the mapping

$$[\rho/2, \rho) \ni r \mapsto r^{N-1} |\phi'(r)|^{p-2} \phi'(r)$$

is nonpositive and nondecreasing in $[\rho/2,\rho)$. Moreover, since f>0 on $(0,\infty)$ and $\phi(\rho/2)=c>0$, relation (5) shows that $\phi'(\rho/2)<0$.

Step 3: $\phi' < 0$. Since $\phi \geqslant 0$ in $(\rho/2, \rho)$ and $\phi(\rho) = 0$, then $\phi'(\rho) \leqslant 0$. We multiply by r^{N-1} in (4) and integrate on $[r, \rho]$, where $\rho/2 \leqslant r < \rho$. Then

(5)
$$-r^{N-1}|\phi'(r)|^{p-2}\phi'(r) = \int_r^\rho t^{N-1}f(\phi(t))dt$$

Since $f \ge 0$, relation (5) shows that the mapping

$$[\rho/2,\rho)\ni r\mapsto r^{N-1}|\phi^{'}(r)|^{p-2}\phi^{'}(r)$$

is nonpositive and nondecreasing in $[\rho/2,\rho)$. Moreover, since f>0 on $(0,\infty)$ and $\phi(\rho/2)=c>0$, relation (5) shows that $\phi'(\rho/2)<0$. By contradiction, assume that $\exists r_0\in(\rho/2,\rho]$ such that $\phi'(r_0)=0$ and $\phi'(r)<0$ for all $r\in(\rho/2,r_0]$. Applying (5) for $r=r_0$ we conclude that $\phi\equiv0$ in $[r_0,\rho]$.

Next, we multiply (4) by ϕ' and integrate on $[r, r_0]$, where $\rho/2 < r < r_0$. It follows that

(6)
$$\frac{p-1}{p} |\phi'(r)|^p - (N-1) \int_r^{r_0} \frac{|\phi'(t)|^p}{t} dt - F(\phi(r)) = 0$$

But

$$\int_{r}^{r_0} \frac{|\phi'(t)|^p}{t} dt = \int_{r}^{r_0} t^{p-1-pN} |t^{N-1}\phi'(t)|^p dt \leq |r^{N-1}\phi'(r)|^p \int_{r}^{r_0} t^{p-1-pN} dt.$$

Therefore

$$\lim_{r \to r_0^-} \frac{\int_r^{r_0} \frac{|\phi'(t)|^p}{t} dt}{|\phi'(r)|^p} = 0.$$

Returning to (6) we obtain

(7)
$$\frac{p-1}{p} |\phi'(r)|^p (1+o(1)) = F(\phi(r))$$
 as $r \to r_0^-$.

Returning to (6) we obtain

(7)
$$\frac{p-1}{p} |\phi'(r)|^p (1+o(1)) = F(\phi(r))$$
 as $r \to r_0^-$.

Fix $\epsilon > 0$. Then, by (7) and for all $r < r_0$ sufficiently close to r_0 ,

$$\left(\frac{p-1}{p}\right)^{1/p} \int_{r}^{r_0} \frac{-\phi'(t)}{(F(\phi(t)))^{\frac{1}{p}}} dt \le (1+\epsilon)(r_0-r).$$

Returning to (6) we obtain

(7)
$$\frac{p-1}{p} |\phi'(r)|^p (1+o(1)) = F(\phi(r))$$
 as $r \to r_0^-$.

Fix $\epsilon > 0$. Then, by (7) and for all $r < r_0$ sufficiently close to r_0 ,

$$\left(\frac{p-1}{p}\right)^{1/p} \int_{r}^{r_0} \frac{-\phi'(t)}{(F(\phi(t)))^{\frac{1}{p}}} dt \le (1+\epsilon)(r_0-r).$$

Since $\phi' < 0$ in $(\rho/2, r_0)$, the change of variable $s = \phi(t)$ yields

$$\left(\frac{p-1}{p}\right)^{1/p} \int_0^{\phi(r)} \frac{ds}{(F(s))^{1/p}} \le (1+\epsilon)(r_0-r) < +\infty,$$

contradiction. This implies that $\phi'(\rho) < 0$.

Step 4: Sign of the normal derivative. By construction, $u \ge \phi$ in A_{ρ} . Therefore

$$-\frac{\partial u}{\partial \nu}(x_0) = \lim_{t \to 0^+} \frac{u((1-t)x_0)}{t} \geqslant \lim_{t \to 0^+} \frac{\phi((1-t)\rho)}{t} = -\phi'(\rho) > 0.$$

Step 4: Sign of the normal derivative. By construction, $u \ge \phi$ in A_ρ . Therefore

$$-\frac{\partial u}{\partial \nu}(x_0) = \lim_{t \to 0^+} \frac{u((1-t)x_0)}{t} \geqslant \lim_{t \to 0^+} \frac{\phi((1-t)\rho)}{t} = -\phi'(\rho) > 0.$$

Step 5: Proof of Theorem concluded. We argue by contradiction and assume that u vanishes at some point in Ω but the set

$$\omega = \{x \in \Omega; u(x) > 0\} \neq \emptyset.$$

We consider a point $x_1 \in \omega$ which is closer to $\partial \omega$ than to $\partial \Omega$ and consider the largest ball $B \subset \omega$ centered at x_1 . Then $u(x_0) = 0$ for some $x_0 \in \partial B$, while u > 0 in B. Since x_0 is an interior minimum point of ω , we have $\nabla u(x_0) = 0$. On the other hand, $\frac{\partial u}{\partial \nu}(x_0) < 0$, hence $\nabla u(x_0) \neq 0$. This contradicts the fact that x_0 is an interior minimum point of u.

II. Boundary Blow-up with Lack of Monotonicity

References

- ▶ J. Keller, On solutions to $\Delta u = f(u)$, Comm. Pure and Applied Math. 10 (1957), 503-510.
- ▶ R. Osserman, On the inequality $\Delta u \ge f(u)$, Pacific J. Math. 7 (1957), 1641-1647.
- C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contribution to Analysis, Academic Press, New York (1974), 245-272.
- S. Dumont, L. Dupaigne, O. Goubet, V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, *Advanced Nonlinear Studies* **7** (2007), 271-298.
- M. Ghergu, V. Rădulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford University Press, 2008.

Consider the problem

$$\begin{cases} \Delta u = f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = +\infty & \text{on } \partial \Omega, \end{cases}$$

Consider the problem

(1)
$$\begin{cases} \Delta u = f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = +\infty & \text{on } \partial \Omega, \end{cases}$$

where $f \in C^1[0,\infty)$, f is non-decreasing in $(0,\infty)$, f(0) = 0 and f(s) > 0 for s > 0.

Consider the problem

(1)
$$\begin{cases} \Delta u = f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = +\infty & \text{on } \partial \Omega, \end{cases}$$

where $f \in C^1[0,\infty)$, f is non-decreasing in $(0,\infty)$, f(0) = 0 and f(s) > 0 for s > 0.

Theorem (Keller and Osserman) *Under these hypotheses, problem* (1) has a solution if and only if

(KO)
$$\int_{-\infty}^{\infty} \frac{dt}{\sqrt{F(t)}} < \infty, \quad \text{where } F(t) = \int_{0}^{t} f(s) \, ds.$$

Let $f:[0,\infty)\to [0,\infty)$ be a C^1 -function such that f(0)=0. We assume, for the sake of simplicity that f is a C^1 function (**no** monotonicity assumption).

Let $f: [0, \infty) \to [0, \infty)$ be a C^1 -function such that f(0) = 0. We assume, for the sake of simplicity that f is a C^1 function (**no** monotonicity assumption).

Let

$$\Phi(\alpha) := \int_{\alpha}^{\infty} \frac{ds}{\sqrt{F(s) - F(\alpha)}} ,$$

where we let by convention $\Phi(\alpha)=+\infty$, whenever the integral is divergent or $F(s)=F(\alpha)$ on a set of positive measure.

We say that f satisfies the weak Keller-Osserman condition whenever

$$(wKO) \exists \alpha > 0 \quad \Phi(\alpha) < \infty.$$

We say that f satisfies the weak Keller-Osserman condition whenever

$$(wKO) \exists \alpha > 0 \quad \Phi(\alpha) < \infty.$$

We say that f satisfies the *sharpened Keller-Osserman condition* whenever

$$\liminf_{\alpha \to \infty} \Phi(\alpha) = 0.$$

We say that f satisfies the weak Keller-Osserman condition whenever

$$(wKO) \exists \alpha > 0 \quad \Phi(\alpha) < \infty.$$

We say that f satisfies the *sharpened Keller-Osserman condition* whenever

$$\lim_{\alpha \to \infty} \inf \Phi(\alpha) = 0.$$

Remark. In general, $\lim_{\alpha\to\infty}\Phi(\alpha)$ may not exist: for example, if $f(u)=u^2(1+\cos u)$, then $\limsup_{\alpha\to\infty}\Phi(\alpha)=+\infty$. However, (sKO) still holds.

Theorem (Dumont, Dupaigne, Goubet, V.R.) *The following statements are equivalent:*

- (a) f satisfies the Keller-Osserman condition (KO);
- (b) f satisfies the weak Keller-Osserman condition (wKO);
- (c) f satisfies the sharpened Keller-Osserman condition (sKO);
- (d) there exists a ball $\Omega = B_R$ such that problem (1) admits at least one solution;
- (e) given any smooth bounded domain Ω , problem (1) admits at least one solution.

Sketch of the proof. Step 1: Mimimality Principle. Let $f \in C(\mathbb{R})$ and $g \in C(\partial\Omega)$ and assume that there exist $\underline{u}, \overline{u} \in C(\overline{\Omega})$ such that $u \leqslant \overline{u}$ and

$$(2) \quad \begin{cases} \Delta \underline{u} \geqslant f(\underline{u}) \text{ in } \mathcal{D}'(\Omega), & \text{ (resp. } \Delta \overline{u} \leqslant f(\overline{u}) \text{ in } \mathcal{D}'(\Omega)) \\ \underline{u} \leqslant g \text{ on } \partial \Omega, & \text{ (resp. } \overline{u} \geqslant g \text{ on } \partial \Omega), \end{cases}$$

Consider the problem

(3)
$$\begin{cases} \Delta u = f(u) \text{ in } \mathcal{D}'(\Omega), \\ u = g \text{ on } \partial \Omega. \end{cases}$$

Then there exists a unique solution $u \in C(\overline{\Omega})$ of (3) such that $\underline{u} \leq u$ and $u|_{\omega} \leq \overline{v}$ for any open subset ω of Ω and any function $\overline{v} \in C(\overline{\omega})$ satisfying

$$\begin{cases} \Delta \overline{v} \leqslant f(\overline{v}) \text{ in } \mathcal{D}'(\omega), \\ \overline{v} \geqslant \underline{u} \text{ in } \omega, \\ \overline{v} \geqslant u \text{ on } \partial \omega. \end{cases}$$

Step 2: Minimality Principle for blow-up solutions. Let $f \in C(\mathbb{R})$. Assume that there exist $\underline{u} \in C(\overline{\Omega})$ such that $\Delta \underline{u} \geqslant f(\underline{u})$ in $\mathcal{D}'(\Omega)$ and $v \in C(\Omega)$ such that $\Delta v \leqslant f(v)$ in $\mathcal{D}'(\Omega)$, $\lim_{x \to x_0} v(x) = +\infty$ for all $x_0 \in \partial \Omega$ and $v \geqslant \underline{u}$.

Then there exists a unique solution $u \in C(\Omega)$ of problem (1) such that $\underline{u} \leq u$ and $u|_{\omega} \leq \overline{v}$ for any open subset $\omega \subset \Omega$ and any $\overline{v} \in C(\omega)$ satisfying

$$\begin{cases} \Delta \overline{v} \leqslant f(\overline{v}) & \text{in } \mathcal{D}'(\omega), \\ \overline{v} \geqslant \underline{u} & \text{in } \omega, \\ \lim_{x \to x_0} \overline{v}(x) = +\infty & \text{for all } x_0 \in \partial \omega. \end{cases}$$

We call u the minimal solution of (1) relative to \underline{u} .

Step 3: (wKO) \Rightarrow existence of a blow-up boundary solution on some ball

Lemma

Let $\phi \in C^2(0,R)$ be a nondecreasing function solving

$$\phi'' + \frac{N-1}{r}\phi' = f(\phi)$$
 in $(0, R)$.

Then, given $0 < r_1 < r_2 < R$,

$$\frac{1}{\sqrt{2}} \int_{\phi(r_1)}^{\phi(r_2)} \frac{1}{\sqrt{F(s) - F(\phi(r_1))}} \, ds \geqslant \frac{1}{N - 2} r_1 \left(1 - \left(\frac{r_1}{r_2} \right)^{D - 2} \right),$$

if $N \geqslant 3$ and

$$\frac{1}{\sqrt{2}} \int_{\phi(r_1)}^{\phi(r_2)} \frac{1}{\sqrt{F(s) - F(\phi(r_1))}} ds \geqslant r_1 \ln \frac{r_2}{r_1},$$

if N=2.

Let B be a ball of radius R and assume that $\underline{u} \in C(\overline{B})$ is such that $\Delta \underline{u} \geqslant f(\underline{u})$ in B. Assume (wKO) holds for some $\alpha \geqslant \sup_B \underline{u}$ and let $\overline{u} = \alpha$. Let u be the minimal solution relative to u of

$$\begin{cases} \Delta u = f(u) \text{ in } B, \\ u = \alpha \text{ on } \partial B. \end{cases}$$

Repeating the proof of the previous step, we conclude that u can be extended to a radially symmetric boundary blow-up solution on some ball \tilde{B} of radius $\tilde{R} > R$, satisfying $u \ge \underline{u}$ in B.

Step 4: (sKO) \Rightarrow existence of solutions on small balls

Step 4: (sKO) \Rightarrow existence of solutions on small balls

Step 5: (sKO) \Rightarrow existence of solutions on small domains

Step 4: (sKO) \Rightarrow existence of solutions on small balls

Step 5: (sKO) \Rightarrow existence of solutions on small domains

Step 6: Conclusion

ABC concave-convex problem

A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, *J. Funct. Anal.* **122** (1994), 519-543.

ABC concave-convex problem

A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, *J. Funct. Anal.* **122** (1994), 519-543.

Consider the concave-convex problem

$$\begin{cases} -\Delta u = \lambda u^q + u^p & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where 0 < q < 1 < p and $\lambda > 0$.

ABC concave-convex problem

A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, *J. Funct. Anal.* **122** (1994), 519-543.

Consider the concave-convex problem

$$\begin{cases} -\Delta u = \lambda u^q + u^p & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where 0 < q < 1 < p and $\lambda > 0$.

Authors' remark. "One can substitute u^q with any concave function that behaves like u^q near $u \equiv 0$. When p < (N+2)/(N-2), u^p can be substituted by any superlinear function that behaves like u^p near u = 0 and near $u = +\infty$."

ABC concave-convex problem

A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, *J. Funct. Anal.* **122** (1994), 519-543.

Consider the concave-convex problem

$$\begin{cases} -\Delta u = \lambda u^q + u^p & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where 0 < q < 1 < p and $\lambda > 0$.

Authors' remark. "One can substitute u^q with any concave function that behaves like u^q near $u \equiv 0$. When p < (N+2)/(N-2), u^p can be substituted by any superlinear function that behaves like u^p near u = 0 and near $u = +\infty$."

Open problem 1. Do the results of this paper remain valid if $u^q \to f(u)$, $u^p \to g(u)$, f is concave, g is convex but they are **not** monotone?

The sublinear Brezis-Kamin problem

H. Brezis, S. Kamin, Sublinear elliptic equations in \mathbb{R}^n , *Manuscripta Math.* **74** (1992), 87-106.

The sublinear Brezis-Kamin problem

H. Brezis, S. Kamin, Sublinear elliptic equations in \mathbb{R}^n , *Manuscripta Math.* **74** (1992), 87-106.

Consider the problem

$$(BK) -\Delta u = \rho(x)u^{\alpha} \text{in } \mathbb{R}^n, \ n \geqslant 3,$$

with $0 < \alpha < 1$, $\rho \in L^{\infty}_{loc}(\mathbb{R}^n)$, $\rho \geqslant 0$, $\rho \not\equiv 0$.

The sublinear Brezis-Kamin problem

H. Brezis, S. Kamin, Sublinear elliptic equations in \mathbb{R}^n , *Manuscripta Math.* **74** (1992), 87-106.

Consider the problem

$$(BK) -\Delta u = \rho(x)u^{\alpha} \text{in } \mathbb{R}^n, \ n \geqslant 3,$$

with $0 < \alpha < 1$, $\rho \in L^{\infty}_{loc}(\mathbb{R}^n)$, $\rho \geqslant 0$, $\rho \not\equiv 0$.

Theorem. Problem (BK) has a nonnegative (positive) bounded solution if and only if the linear problem

$$-\Delta U = \rho \quad in \ \mathbb{R}^n$$

has a bounded solution.

The sublinear Brezis-Kamin problem

H. Brezis, S. Kamin, Sublinear elliptic equations in \mathbb{R}^n , *Manuscripta Math.* **74** (1992), 87-106.

Consider the problem

$$(BK) -\Delta u = \rho(x)u^{\alpha} \text{in } \mathbb{R}^n, \ n \geqslant 3,$$

with $0 < \alpha < 1$, $\rho \in L^{\infty}_{loc}(\mathbb{R}^n)$, $\rho \geqslant 0$, $\rho \not\equiv 0$.

Theorem. Problem (BK) has a nonnegative (positive) bounded solution if and only if the linear problem

$$-\Delta U = \rho \quad in \ \mathbb{R}^n$$

has a bounded solution.

Open problem 2. Does this result remain true if u^{α} is replaced by a sublinear function with no monotonicity assumption?

The Pucci-Serrin dead core phenomenon

P. Pucci, J. Serrin, Dead cores and bursts for quasilinear singular elliptic equations, *SIAM J. Math. Anal.* **38** (2006), 259-278.

The Pucci-Serrin dead core phenomenon

P. Pucci, J. Serrin, Dead cores and bursts for quasilinear singular elliptic equations, *SIAM J. Math. Anal.* **38** (2006), 259-278.

The equation

$$\Delta u = |u|^{q-1}u$$

allows dead cores only if 0 < q < 1.

The Pucci-Serrin dead core phenomenon

P. Pucci, J. Serrin, Dead cores and bursts for quasilinear singular elliptic equations, *SIAM J. Math. Anal.* **38** (2006), 259-278.

The equation

$$\Delta u = |u|^{q-1}u$$

allows dead cores only if 0 < q < 1.

Open problem 3. Does this result remain true for general non-monotone sublinear terms?

Joyeux Anniversaire, Monsieur le Professeur Bucur!