The generalized Hermite-Hadamard Inequality on Simplices

Eleutherius Symeonidis

Katholische Universität Eichstätt-Ingolstadt

The Hermite-Hadamard Inequality

Ch. Hermite, 1883:

$$f:[a,b] \to \mathbb{R} \text{ convex} \Longrightarrow f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \mathrm{d}x \le \frac{f(a)+f(b)}{2}$$

J. Hadamard, 1893: Left inequality.

Generalization for a Borel probability measure μ on [a, b]:

$$f(b_{\mu}) \leq \int_{a}^{b} f(x) d\mu(x) \leq \frac{b - b_{\mu}}{b - a} f(a) + \frac{b_{\mu} - a}{b - a} f(b),$$

where $b_{\mu} := \int_{a}^{b} x d\mu(x).$

Generalization to several dimensions:

G. Choquet, in the 1960s:

Let E be a locally convex real Hausdorff space, $K \subset E$ a compact convex subset, μ a Borel probability measure on K. Then, for every continuous convex function $f: K \to \mathbb{R}$,

$$f(b_{\mu}) \leq \int_{K} f(x) \,\mathrm{d}\mu(x)$$

where $b_{\mu} \in K$, the barycenter of μ , is the unique point such that $l(b_{\mu}) = \int_{K} l(x) d\mu(x)$ for every continuous linear functional $l: E \to \mathbb{R}$.

G. Choquet, E. Bishop, K. de Leeuw, 1959 (K and μ as above, K metrizable):

Let $\operatorname{Ext}(K)$ denote the set of all extreme points of K. Then, there exists a probability measure λ on K which has the same barycenter as μ and is concentrated on $\operatorname{Ext}(K)$, such that for every continuous convex function $f: K \to \mathbb{R}$, $\int_K f(x) \, \mathrm{d}\mu(x) \leq \int_{\operatorname{Ext}(K)} f(x) \, \mathrm{d}\lambda(x)$.

Corollary in the case of simplices:

Let $\Delta \subset \mathbb{R}^n$ be a simplex with vertices $P_1, \ldots, P_{n+1}, \mu$ a nonzero Borel measure on Δ with barycenter $b_{\mu} := \frac{1}{\mu(\Delta)} \int_{\Delta} x \, d\mu(x)$. Let $\lambda_1, \ldots, \lambda_{n+1}$ be nonnegative numbers such that

$$b_{\mu} = \sum_{j=1}^{n+1} \lambda_j P_j$$
 and $\sum_{j=1}^{n+1} \lambda_j = 1$.

If $f: \Delta \to \mathbb{R}$ is continuous and convex, then

$$f(b_{\mu}) \leq \frac{1}{\mu(\Delta)} \int_{\Delta} f(x) \, \mathrm{d}\mu(x) \leq \sum_{j=1}^{n+1} \lambda_j f(P_j) \, .$$

Proof: f convex \implies f has a supporting hyperplane at b_{μ} , that is, there is a linear functional h such that

$$f(x) \ge f(b_{\mu}) + h(x - b_{\mu})$$

for every $x \in \Delta$. Therefore,

$$\frac{1}{\mu(\Delta)} \int_{\Delta} f(x) \, \mathrm{d}\mu(x) \ge f(b_{\mu}) + \frac{1}{\mu(\Delta)} \int_{\Delta} h(x - b_{\mu}) \, \mathrm{d}\mu(x)$$

$$= f(b_{\mu}) + h\left(\frac{1}{\mu(\Delta)}\int_{\Delta} (x - b_{\mu}) d\mu(x)\right) = f(b_{\mu}) + h(0) = f(b_{\mu}).$$

For the right inequality let $x = \sum_{j=1}^{n+1} \alpha_j(x) P_j$ with continuous $\alpha_1, \ldots, \alpha_{n+1}$ such that $\sum_{j=1}^{n+1} \alpha_j(x) = 1$. Then,

$$b_{\mu} = \frac{1}{\mu(\Delta)} \int_{\Delta} x \, \mathrm{d}\mu(x) = \frac{1}{\mu(\Delta)} \sum_{j=1}^{n+1} \int_{\Delta} \alpha_j(x) \, \mathrm{d}\mu(x) \cdot P_j,$$

so $\lambda_j = \frac{1}{\mu(\Delta)} \int_{\Delta} \alpha_j(x) d\mu(x)$ for $1 \le j \le n+1$. The Jensen inequality now supplies:

$$\frac{1}{\mu(\Delta)} \int_{\Delta} f(x) \, \mathrm{d}\mu(x) = \frac{1}{\mu(\Delta)} \int_{\Delta} f\left(\sum_{j=1}^{n+1} \alpha_j(x) P_j\right) \, \mathrm{d}\mu(x)$$
$$\leq \frac{1}{\mu(\Delta)} \int_{\Delta} \left(\sum_{j=1}^{n+1} \alpha_j(x) f(P_j)\right) \, \mathrm{d}\mu(x) = \sum_{j=1}^{n+1} \lambda_j f(P_j). \qquad \Box$$

We will refer to these inequalities as (LHH) and (RHH).

The Converse

Theorem (2012)

Let $D \subseteq \mathbb{R}^n$ be nonempty, open, convex, μ a Borel measure on D such that $d\mu(x) = p(x)dx$, where $p: D \to [0, \infty)$ is continuous and $p^{-1}(\{0\})$ does not contain any nontrivial segment. Let $f: D \to \mathbb{R}$ be continuous.

- 1. If f satisfies (LHH) for all simplices $\Delta \subset D$, then f is convex.
- 2. If f satisfies (RHH) for all simplices $\Delta \subset D$, then f is convex.

For a proof see [F.-C. Mitroi & E. Symeonidis, The converse of the Hermite-Hadamard inequality on simplices, *Expo. Math. 30 (2012), 389-396*].

For $p(x) \equiv 1$ this was proved in 2008 [T. Trif, Characterizations of convex functions of a vector variable via Hermite-Hadamard's inequality, J. Math. Inequal. 2 (1) (2008), 37-44].

Theorem (Generalization)

The previous theorem remains valid, when the condition

 $p^{-1}(\{0\})$ does not contain any nontrivial segment

is replaced by the (weaker) condition

There is a dense subset S of D, such that for every $a, b \in S$, $p^{-1}(\{0\}) \cap [a, b]$ ([a, b] stands for the segment of endpoints a and b) is a Lebesgue null set in [a, b].

Proof: Let f satisfy (LHH) or (RHH), the same for all simplices in D. By continuity, it suffices to prove that f is convex on every segment [a, b], where $a, b \in S$.

By reductio ad absurdum let $a, b \in S$ and $\varepsilon \in (0, 1)$ such that

$$f((1-\varepsilon)a+\varepsilon b) > (1-\varepsilon)f(a) + \varepsilon f(b).$$

It follows that there is a subsegment [c, d] of [a, b], such that $f|_{[c,d]}$ is strictly concave. Let $v_1, \ldots, v_{n-1} \in \mathbb{R}^n$ be such that $v_1, \ldots, v_{n-1}, d-c$ is a basis of \mathbb{R}^n . We assume that v_1, \ldots, v_{n-1} are small enough, so that $c + v_i \in D$ for $1 \leq i \leq n-1$. Let

$$P_{i,m} := c + \frac{1}{m}v_i$$

for $m \in \mathbb{N}$ and $1 \leq i \leq n-1$, let Δ_m be the simplex of vertices $c, P_{1,m}, \ldots, P_{n-1,m}, d$.

For a continuous function $h: \Delta_m \to \mathbb{R}$ it then holds:

$$\frac{1}{\mu(\Delta_m)} \int_{\Delta_m} h(x) \,\mathrm{d}\mu(x) = \frac{\int_{\Delta_m} h(x)p(x)\mathrm{d}x}{\int_{\Delta_m} p(x)\mathrm{d}x}$$
$$\stackrel{m \to \infty}{\longrightarrow} (\dots) \int_0^1 h(c+t(d-c)) \cdot \frac{p(c+t(d-c))(1-t)^{n-1}\mathrm{d}t}{\int_0^1 p(c+\tau(d-c))(1-\tau)^{n-1}\mathrm{d}\tau}$$
$$= \frac{1}{\nu([c,d])} \int_{[c,d]} h(x) \,\mathrm{d}\nu(x) \,,$$

where ν is the push-forward (image) by $s \mapsto c + s(d - c)$ of the measure

$$p(c+s(d-c))(1-s)^{n-1}ds$$

on [0, 1]. In particular, the barycenter $b_{\mu,m}$ of μ on Δ_m converges to the barycenter b_{ν} of ν .

— Case 1, f satisfies (LHH).

Letting $m \to \infty$ in

$$f(b_{\mu,m}) \le \frac{1}{\mu(\Delta_m)} \int_{\Delta_m} f(x) \,\mathrm{d}\mu(x)$$

we obtain

$$f(b_{\nu}) \leq \frac{1}{\nu([c,d])} \int_{[c,d]} f(x) \,\mathrm{d}\nu(x) \,.$$

Since $f|_{[c,d]}$ is strictly concave, there exists a linear functional h such that

$$f(x) \le f(b_{\nu}) + h(x - b_{\nu})$$

for $x \in [c,d]$ and strictly on an open subset of [c,d]. This leads to a contradiction.

— Case 2, f satisfies (RHH).

We start with the convex combinations

$$b_{\mu,m} = \left(\sum_{j=1}^{n-1} \lambda_j^{(m)} P_{j,m}\right) + \lambda_n^{(m)} c + \lambda_{n+1}^{(m)} d$$

for $m \in \mathbb{N}$, assume without restriction that all coefficients converge, and set

$$\lambda_j^{\infty} = \lim_{m \to \infty} \lambda_j^m$$
, for $1 \le j \le n+1$.

Then,

$$b_{\nu} = \left(\sum_{j=1}^{n-1} \lambda_j^{\infty} c\right) + \lambda_n^{\infty} c + \lambda_{n+1}^{\infty} d = (1 - \lambda_{n+1}^{\infty}) c + \lambda_{n+1}^{\infty} d.$$

By assumption,

$$\frac{1}{\mu(\Delta_m)} \int_{\Delta_m} f(x) \, \mathrm{d}\mu(x) \le \left(\sum_{j=1}^{n-1} \lambda_j^{(m)} f(P_{j,m})\right) + \lambda_n^{(m)} f(c) + \lambda_{n+1}^{(m)} f(d) \,,$$

so in the limit,

$$\frac{1}{\nu([c,d])} \int_{[c,d]} f(x) \,\mathrm{d}\nu(x) \le \left(\sum_{j=1}^{n-1} \lambda_j^\infty f(c)\right) + \lambda_n^\infty f(c) + \lambda_{n+1}^\infty f(d)$$
$$= (1 - \lambda_{n+1}^\infty) f(c) + \lambda_{n+1}^\infty f(d) \,.$$

On the other hand,

$$(1 - \lambda_{n+1}^{\infty})c + \lambda_{n+1}^{\infty}d = b_{\nu} = \frac{1}{\nu([c,d])} \int_{[c,d]} x \, d\nu(x)$$
$$= \int_{0}^{1} [(1-s)c + sd] \cdot \frac{p((1-s)c + sd)(1-s)^{n-1}}{\int_{0}^{1} p((1-\tau)c + \tau d)(1-\tau)^{n-1} d\tau} \, ds,$$

 \mathbf{SO}

$$\lambda_{n+1}^{\infty} = \int_0^1 \frac{s \cdot p((1-s)c + sd)(1-s)^{n-1}}{\int_0^1 p((1-\tau)c + \tau d)(1-\tau)^{n-1} d\tau} \, \mathrm{d}s \, .$$

From the strict concavity of f and the conditions on p it therefore follows that

$$\begin{split} \frac{1}{\nu([c,d])} &\int_{[c,d]} f(x) \,\mathrm{d}\nu(x) \\ &= \int_0^1 f((1-s)c + sd) \cdot \frac{p((1-s)c + sd)(1-s)^{n-1}}{\int_0^1 p((1-\tau)c + \tau d)(1-\tau)^{n-1} \mathrm{d}\tau} \,\mathrm{d}s \\ &> \int_0^1 [(1-s)f(c) + sf(d)] \cdot \frac{p((1-s)c + sd)(1-s)^{n-1}}{\int_0^1 p((1-\tau)c + \tau d)(1-\tau)^{n-1} \mathrm{d}\tau} \,\mathrm{d}s \\ &= (1-\lambda_{n+1}^\infty)f(c) + \lambda_{n+1}^\infty f(d) \,, \end{split}$$

which leads to a contradiction. $\hfill \Box$