The generalized Hermite-Hadamard Inequality on Simplices

Eleutherius Symeonidis

Katholische Universität Eichstätt-Ingolstadt

The Hermite-Hadamard Inequality

Ch. Hermite, 1883:

$$
f:[a, b] \rightarrow \mathbb{R} \text { convex } \Longrightarrow f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{2}
$$

J. Hadamard, 1893: Left inequality.

Generalization for a Borel probability measure μ on $[a, b]$:

$$
f\left(b_{\mu}\right) \leq \int_{a}^{b} f(x) \mathrm{d} \mu(x) \leq \frac{b-b_{\mu}}{b-a} f(a)+\frac{b_{\mu}-a}{b-a} f(b),
$$

where $b_{\mu}:=\int_{a}^{b} x \mathrm{~d} \mu(x)$.

Generalization to several dimensions:
G. Choquet, in the 1960s:

Let E be a locally convex real Hausdorff space, $K \subset E$ a compact convex subset, μ a Borel probability measure on K. Then, for every continuous convex function $f: K \rightarrow \mathbb{R}$,

$$
f\left(b_{\mu}\right) \leq \int_{K} f(x) \mathrm{d} \mu(x)
$$

where $b_{\mu} \in K$, the barycenter of μ, is the unique point such that $l\left(b_{\mu}\right)=$ $\int_{K} l(x) \mathrm{d} \mu(x)$ for every continuous linear functional $l: E \rightarrow \mathbb{R}$.
G. Choquet, E. Bishop, K. de Leeuw, 1959 (K and μ as above, K metrizable):

Let $\operatorname{Ext}(K)$ denote the set of all extreme points of K. Then, there exists a probability measure λ on K which has the same barycenter as μ and is concentrated on $\operatorname{Ext}(K)$, such that for every continuous convex function $f: K \rightarrow \mathbb{R}$,

$$
\int_{K} f(x) \mathrm{d} \mu(x) \leq \int_{\operatorname{Ext}(K)} f(x) \mathrm{d} \lambda(x)
$$

Corollary in the case of simplices:

Let $\Delta \subset \mathbb{R}^{n}$ be a simplex with vertices $P_{1}, \ldots, P_{n+1}, \mu$ a nonzero Borel measure on Δ with barycenter $b_{\mu}:=\frac{1}{\mu(\Delta)} \int_{\Delta} x \mathrm{~d} \mu(x)$. Let $\lambda_{1}, \ldots, \lambda_{n+1}$ be nonnegative numbers such that

$$
b_{\mu}=\sum_{j=1}^{n+1} \lambda_{j} P_{j} \quad \text { and } \quad \sum_{j=1}^{n+1} \lambda_{j}=1
$$

If $f: \Delta \rightarrow \mathbb{R}$ is continuous and convex, then

$$
f\left(b_{\mu}\right) \leq \frac{1}{\mu(\Delta)} \int_{\Delta} f(x) \mathrm{d} \mu(x) \leq \sum_{j=1}^{n+1} \lambda_{j} f\left(P_{j}\right)
$$

Proof: f convex $\Longrightarrow f$ has a supporting hyperplane at b_{μ}, that is, there is a linear functional h such that

$$
f(x) \geq f\left(b_{\mu}\right)+h\left(x-b_{\mu}\right)
$$

for every $x \in \Delta$. Therefore,

$$
\begin{aligned}
& \frac{1}{\mu(\Delta)} \int_{\Delta} f(x) \mathrm{d} \mu(x) \geq f\left(b_{\mu}\right)+\frac{1}{\mu(\Delta)} \int_{\Delta} h\left(x-b_{\mu}\right) \mathrm{d} \mu(x) \\
= & f\left(b_{\mu}\right)+h\left(\frac{1}{\mu(\Delta)} \int_{\Delta}\left(x-b_{\mu}\right) \mathrm{d} \mu(x)\right)=f\left(b_{\mu}\right)+h(0)=f\left(b_{\mu}\right) .
\end{aligned}
$$

For the right inequality let $x=\sum_{j=1}^{n+1} \alpha_{j}(x) P_{j}$ with continuous $\alpha_{1}, \ldots, \alpha_{n+1}$ such that $\sum_{j=1}^{n+1} \alpha_{j}(x)=1$. Then,

$$
b_{\mu}=\frac{1}{\mu(\Delta)} \int_{\Delta} x \mathrm{~d} \mu(x)=\frac{1}{\mu(\Delta)} \sum_{j=1}^{n+1} \int_{\Delta} \alpha_{j}(x) \mathrm{d} \mu(x) \cdot P_{j},
$$

so $\lambda_{j}=\frac{1}{\mu(\Delta)} \int_{\Delta} \alpha_{j}(x) \mathrm{d} \mu(x)$ for $1 \leq j \leq n+1$. The Jensen inequality now supplies:

$$
\begin{aligned}
& \frac{1}{\mu(\Delta)} \int_{\Delta} f(x) \mathrm{d} \mu(x)=\frac{1}{\mu(\Delta)} \int_{\Delta} f\left(\sum_{j=1}^{n+1} \alpha_{j}(x) P_{j}\right) \mathrm{d} \mu(x) \\
& \leq \frac{1}{\mu(\Delta)} \int_{\Delta}\left(\sum_{j=1}^{n+1} \alpha_{j}(x) f\left(P_{j}\right)\right) \mathrm{d} \mu(x)=\sum_{j=1}^{n+1} \lambda_{j} f\left(P_{j}\right) .
\end{aligned}
$$

We will refer to these inequalities as (LHH) and (RHH).

The Converse

Theorem (2012)

Let $D \subseteq \mathbb{R}^{n}$ be nonempty, open, convex, μ a Borel measure on D such that $\mathrm{d} \mu(x)=p(x) \mathrm{d} x$, where $p: D \rightarrow[0, \infty)$ is continuous and $p^{-1}(\{0\})$ does not contain any nontrivial segment. Let $f: D \rightarrow \mathbb{R}$ be continuous.

1. If f satisfies (LHH) for all simplices $\Delta \subset D$, then f is convex.
2. If f satisfies (RHH) for all simplices $\Delta \subset D$, then f is convex.

For a proof see [F.-C. Mitroi \& E. Symeonidis, The converse of the HermiteHadamard inequality on simplices, Expo. Math. 30 (2012), 389-396].

For $p(x) \equiv 1$ this was proved in 2008 [T. Trif, Characterizations of convex functions of a vector variable via Hermite-Hadamard's inequality, J. Math. Inequal. 2 (1) (2008), 37-44].

Theorem (Generalization)

The previous theorem remains valid, when the condition $p^{-1}(\{0\})$ does not contain any nontrivial segment
is replaced by the (weaker) condition
There is a dense subset S of D, such that for every $a, b \in S$, $p^{-1}(\{0\}) \cap[a, b]([a, b]$ stands for the segment of endpoints a and $b)$ is a Lebesgue null set in $[a, b]$.

Proof: Let f satisfy (LHH) or (RHH), the same for all simplices in D. By continuity, it suffices to prove that f is convex on every segment $[a, b]$, where $a, b \in S$.

By reductio ad absurdum let $a, b \in S$ and $\varepsilon \in(0,1)$ such that

$$
f((1-\varepsilon) a+\varepsilon b)>(1-\varepsilon) f(a)+\varepsilon f(b) .
$$

It follows that there is a subsegment $[c, d]$ of $[a, b]$, such that $\left.f\right|_{[c, d]}$ is strictly concave.

Let $v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$ be such that $v_{1}, \ldots, v_{n-1}, d-c$ is a basis of \mathbb{R}^{n}. We assume that v_{1}, \ldots, v_{n-1} are small enough, so that $c+v_{i} \in D$ for $1 \leq i \leq n-1$. Let

$$
P_{i, m}:=c+\frac{1}{m} v_{i}
$$

for $m \in \mathbb{N}$ and $1 \leq i \leq n-1$, let Δ_{m} be the simplex of vertices $c, P_{1, m}, \ldots, P_{n-1, m}, d$.

For a continuous function $h: \Delta_{m} \rightarrow \mathbb{R}$ it then holds:

$$
\begin{gathered}
\frac{1}{\mu\left(\Delta_{m}\right)} \int_{\Delta_{m}} h(x) \mathrm{d} \mu(x)=\frac{\int_{\Delta_{m}} h(x) p(x) \mathrm{d} x}{\int_{\Delta_{m}} p(x) \mathrm{d} x} \\
\xrightarrow{m \rightarrow \infty}(\ldots) \int_{0}^{1} h(c+t(d-c)) \cdot \frac{p(c+t(d-c))(1-t)^{n-1} \mathrm{~d} t}{\int_{0}^{1} p(c+\tau(d-c))(1-\tau)^{n-1} \mathrm{~d} \tau} \\
=\frac{1}{\nu([c, d])} \int_{[c, d]} h(x) \mathrm{d} \nu(x),
\end{gathered}
$$

where ν is the push-forward (image) by $s \mapsto c+s(d-c)$ of the measure

$$
p(c+s(d-c))(1-s)^{n-1} \mathrm{~d} s
$$

on $[0,1]$. In particular, the barycenter $b_{\mu, m}$ of μ on Δ_{m} converges to the barycenter b_{ν} of ν.

- Case 1, f satisfies (LHH).

Letting $m \rightarrow \infty$ in

$$
f\left(b_{\mu, m}\right) \leq \frac{1}{\mu\left(\Delta_{m}\right)} \int_{\Delta_{m}} f(x) \mathrm{d} \mu(x)
$$

we obtain

$$
f\left(b_{\nu}\right) \leq \frac{1}{\nu([c, d])} \int_{[c, d]} f(x) \mathrm{d} \nu(x) .
$$

Since $\left.f\right|_{[c, d]}$ is strictly concave, there exists a linear functional h such that

$$
f(x) \leq f\left(b_{\nu}\right)+h\left(x-b_{\nu}\right)
$$

for $x \in[c, d]$ and strictly on an open subset of $[c, d]$. This leads to a contradiction.

- Case 2, f satisfies (RHH).

We start with the convex combinations

$$
b_{\mu, m}=\left(\sum_{j=1}^{n-1} \lambda_{j}^{(m)} P_{j, m}\right)+\lambda_{n}^{(m)} c+\lambda_{n+1}^{(m)} d
$$

for $m \in \mathbb{N}$, assume without restriction that all coefficients converge, and set

$$
\lambda_{j}^{\infty}=\lim _{m \rightarrow \infty} \lambda_{j}^{m}, \quad \text { for } \quad 1 \leq j \leq n+1 .
$$

Then,

$$
b_{\nu}=\left(\sum_{j=1}^{n-1} \lambda_{j}^{\infty} c\right)+\lambda_{n}^{\infty} c+\lambda_{n+1}^{\infty} d=\left(1-\lambda_{n+1}^{\infty}\right) c+\lambda_{n+1}^{\infty} d
$$

By assumption,

$$
\frac{1}{\mu\left(\Delta_{m}\right)} \int_{\Delta_{m}} f(x) \mathrm{d} \mu(x) \leq\left(\sum_{j=1}^{n-1} \lambda_{j}^{(m)} f\left(P_{j, m}\right)\right)+\lambda_{n}^{(m)} f(c)+\lambda_{n+1}^{(m)} f(d),
$$

so in the limit,

$$
\begin{gathered}
\frac{1}{\nu([c, d])} \int_{[c, d]} f(x) \mathrm{d} \nu(x) \leq\left(\sum_{j=1}^{n-1} \lambda_{j}^{\infty} f(c)\right)+\lambda_{n}^{\infty} f(c)+\lambda_{n+1}^{\infty} f(d) \\
=\left(1-\lambda_{n+1}^{\infty}\right) f(c)+\lambda_{n+1}^{\infty} f(d) .
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
\left(1-\lambda_{n+1}^{\infty}\right) c+\lambda_{n+1}^{\infty} d=b_{\nu}=\frac{1}{\nu([c, d])} \int_{[c, d]} x \mathrm{~d} \nu(x) \\
=\int_{0}^{1}[(1-s) c+s d] \cdot \frac{p((1-s) c+s d)(1-s)^{n-1}}{\int_{0}^{1} p((1-\tau) c+\tau d)(1-\tau)^{n-1} \mathrm{~d} \tau} \mathrm{~d} s,
\end{gathered}
$$

SO

$$
\lambda_{n+1}^{\infty}=\int_{0}^{1} \frac{s \cdot p((1-s) c+s d)(1-s)^{n-1}}{\int_{0}^{1} p((1-\tau) c+\tau d)(1-\tau)^{n-1} \mathrm{~d} \tau} \mathrm{~d} s
$$

From the strict concavity of f and the conditions on p it therefore follows that

$$
\begin{gathered}
\frac{1}{\nu([c, d])} \int_{[c, d]} f(x) \mathrm{d} \nu(x) \\
=\int_{0}^{1} f((1-s) c+s d) \cdot \frac{p((1-s) c+s d)(1-s)^{n-1}}{\int_{0}^{1} p((1-\tau) c+\tau d)(1-\tau)^{n-1} \mathrm{~d} \tau} \mathrm{~d} s \\
>\int_{0}^{1}[(1-s) f(c)+s f(d)] \cdot \frac{p((1-s) c+s d)(1-s)^{n-1}}{\int_{0}^{1} p((1-\tau) c+\tau d)(1-\tau)^{n-1} \mathrm{~d} \tau} \mathrm{~d} s \\
=\left(1-\lambda_{n+1}^{\infty}\right) f(c)+\lambda_{n+1}^{\infty} f(d)
\end{gathered}
$$

which leads to a contradiction.

