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The Hermite-Hadamard Inequality

Ch. Hermite, 1883:

f : [a, b] → R convex =⇒ f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

J. Hadamard, 1893: Left inequality.

Generalization for a Borel probability measure µ on [a, b] :

f(bµ) ≤
∫ b

a

f(x) dµ(x) ≤ b− bµ
b− a

f(a) +
bµ − a

b− a
f(b) ,

where bµ :=
∫ b

a x dµ(x) .

Generalization to several dimensions:

G. Choquet, in the 1960s:

Let E be a locally convex real Hausdorff space, K ⊂ E a compact convex

subset, µ a Borel probability measure on K . Then, for every continuous

convex function f : K → R ,

f(bµ) ≤
∫
K

f(x) dµ(x) ,

where bµ ∈ K , the barycenter of µ , is the unique point such that l(bµ) =∫
K l(x) dµ(x) for every continuous linear functional l : E → R .
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G. Choquet, E. Bishop, K. de Leeuw, 1959 (K and µ as above, K metri-

zable):

Let Ext(K) denote the set of all extreme points of K . Then, there exists

a probability measure λ on K which has the same barycenter as µ and is

concentrated on Ext(K) , such that for every continuous convex function

f : K → R , ∫
K

f(x) dµ(x) ≤
∫
Ext(K)

f(x) dλ(x) .

Corollary in the case of simplices:

Let ∆ ⊂ Rn be a simplex with vertices P1, . . . , Pn+1 , µ a nonzero Borel

measure on ∆ with barycenter bµ := 1
µ(∆)

∫
∆ x dµ(x) . Let λ1, . . . , λn+1 be

nonnegative numbers such that

bµ =
n+1∑
j=1

λjPj and
n+1∑
j=1

λj = 1 .

If f : ∆ → R is continuous and convex, then

f(bµ) ≤
1

µ(∆)

∫
∆

f(x) dµ(x) ≤
n+1∑
j=1

λjf(Pj) .
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Proof: f convex =⇒ f has a supporting hyperplane at bµ , that is, there

is a linear functional h such that

f(x) ≥ f(bµ) + h(x− bµ)

for every x ∈ ∆ . Therefore,

1

µ(∆)

∫
∆

f(x) dµ(x) ≥ f(bµ) +
1

µ(∆)

∫
∆

h(x− bµ) dµ(x)

= f(bµ) + h

(
1

µ(∆)

∫
∆

(x− bµ) dµ(x)

)
= f(bµ) + h(0) = f(bµ).

For the right inequality let x =
∑n+1

j=1 αj(x)Pj with continuous α1, . . . , αn+1

such that
∑n+1

j=1 αj(x) = 1 . Then,

bµ =
1

µ(∆)

∫
∆

x dµ(x) =
1

µ(∆)

n+1∑
j=1

∫
∆

αj(x) dµ(x) · Pj,

so λj =
1

µ(∆)

∫
∆ αj(x) dµ(x) for 1 ≤ j ≤ n+1 . The Jensen inequality now

supplies:

1

µ(∆)

∫
∆

f(x) dµ(x) =
1

µ(∆)

∫
∆

f

(
n+1∑
j=1

αj(x)Pj

)
dµ(x)

≤ 1

µ(∆)

∫
∆

(
n+1∑
j=1

αj(x)f(Pj)

)
dµ(x) =

n+1∑
j=1

λjf(Pj). �

We will refer to these inequalities as (LHH) and (RHH).
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The Converse

Theorem (2012)

Let D ⊆ Rn be nonempty, open, convex, µ a Borel measure on D such

that dµ(x) = p(x)dx , where p : D → [0,∞) is continuous and p−1({0})

does not contain any nontrivial segment. Let f : D → R be continuous.

1. If f satisfies (LHH) for all simplices ∆ ⊂ D , then f is convex.

2. If f satisfies (RHH) for all simplices ∆ ⊂ D , then f is convex.

For a proof see [F.-C. Mitroi & E. Symeonidis, The converse of the Hermite-

Hadamard inequality on simplices, Expo. Math. 30 (2012), 389-396].

For p(x) ≡ 1 this was proved in 2008 [T. Trif, Characterizations of convex

functions of a vector variable via Hermite-Hadamard’s inequality, J. Math.

Inequal. 2 (1) (2008), 37-44].
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Theorem (Generalization)

The previous theorem remains valid, when the condition

p−1({0}) does not contain any nontrivial segment

is replaced by the (weaker) condition

There is a dense subset S of D , such that for every a, b ∈ S ,

p−1({0})∩[a, b] ( [a, b] stands for the segment of endpoints a and

b ) is a Lebesgue null set in [a, b] .

Proof: Let f satisfy (LHH) or (RHH), the same for all simplices in D . By

continuity, it suffices to prove that f is convex on every segment [a, b] ,

where a, b ∈ S .

By reductio ad absurdum let a, b ∈ S and ε ∈ (0, 1) such that

f((1− ε)a+ εb) > (1− ε)f(a) + εf(b) .

It follows that there is a subsegment [c, d] of [a, b] , such that f |[c,d] is

strictly concave.
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Let v1, . . . , vn−1 ∈ Rn be such that v1, . . . , vn−1, d− c is a basis of Rn .

We assume that v1, . . . , vn−1 are small enough, so that c + vi ∈ D for

1 ≤ i ≤ n− 1 . Let

Pi,m := c+
1

m
vi

for m ∈ N and 1 ≤ i ≤ n − 1 , let ∆m be the simplex of vertices

c, P1,m, . . . , Pn−1,m, d .

For a continuous function h : ∆m → R it then holds:

1

µ(∆m)

∫
∆m

h(x) dµ(x) =

∫
∆m

h(x)p(x)dx∫
∆m

p(x)dx

m→∞−→ (. . .)

∫ 1

0

h(c+ t(d− c)) · p(c+ t(d− c))(1− t)n−1dt∫ 1

0 p(c+ τ(d− c))(1− τ)n−1dτ

=
1

ν([c, d])

∫
[c,d]

h(x) dν(x) ,

where ν is the push-forward (image) by s 7→ c+ s(d− c) of the measure

p(c+ s(d− c))(1− s)n−1ds

on [0, 1] . In particular, the barycenter bµ,m of µ on ∆m converges to the

barycenter bν of ν .
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— Case 1, f satisfies (LHH).

Letting m → ∞ in

f(bµ,m) ≤
1

µ(∆m)

∫
∆m

f(x) dµ(x)

we obtain
f(bν) ≤

1

ν([c, d])

∫
[c,d]

f(x) dν(x) .

Since f |[c,d] is strictly concave, there exists a linear functional h such that

f(x) ≤ f(bν) + h(x− bν)

for x ∈ [c, d] and strictly on an open subset of [c, d] . This leads to a

contradiction.

— Case 2, f satisfies (RHH).

We start with the convex combinations

bµ,m =

(
n−1∑
j=1

λ
(m)
j Pj,m

)
+ λ(m)

n c+ λ
(m)
n+1d

for m ∈ N , assume without restriction that all coefficients converge, and

set
λ∞
j = lim

m→∞
λm
j , for 1 ≤ j ≤ n+ 1 .

Then,

bν =

(
n−1∑
j=1

λ∞
j c

)
+ λ∞

n c+ λ∞
n+1d = (1− λ∞

n+1)c+ λ∞
n+1d .

8



By assumption,

1

µ(∆m)

∫
∆m

f(x) dµ(x) ≤

(
n−1∑
j=1

λ
(m)
j f(Pj,m)

)
+ λ(m)

n f(c) + λ
(m)
n+1f(d) ,

so in the limit,

1

ν([c, d])

∫
[c,d]

f(x) dν(x) ≤

(
n−1∑
j=1

λ∞
j f(c)

)
+ λ∞

n f(c) + λ∞
n+1f(d)

= (1− λ∞
n+1)f(c) + λ∞

n+1f(d) .

On the other hand,

(1− λ∞
n+1)c+ λ∞

n+1d = bν =
1

ν([c, d])

∫
[c,d]

x dν(x)

=

∫ 1

0

[(1− s)c+ sd] · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds,

so

λ∞
n+1 =

∫ 1

0

s · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds .

9



From the strict concavity of f and the conditions on p it therefore follows

that

1

ν([c, d])

∫
[c,d]

f(x) dν(x)

=

∫ 1

0

f((1− s)c+ sd) · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds

>

∫ 1

0

[(1− s)f(c) + sf(d)] · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds

= (1− λ∞
n+1)f(c) + λ∞

n+1f(d) ,

which leads to a contradiction. �
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