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The Hermite-Hadamard Inequality

Ch. Hermite, 1883:

f:[a,b]—>Rconvex=>f<a_2|_b> < bia/abf(x)deM.

J. Hadamard, 1893: Left inequality.

Generalization for a Borel probability measure p on [a,b]:

b—10,
b—a

b‘u_a

b—a

fla) +

b
flbp) < [ flz)dpu(z) < f(0),

where b, := fbxd,u(x)

a

Generalization to several dimensions:

G. Choquet, in the 1960s:

Let E be a locally convex real Hausdorff space, K C E a compact convex
subset, p a Borel probability measure on K . Then, for every continuous

convex function f: K — R,

F6) < [ fa)duta).
where b, € K, the barycenter of 1, is the unique point such that [(b,) =
[ U(z) dp(zx) for every continuous linear functional ! : E — R.
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G. Choquet, E. Bishop, K. de Leeuw, 1959 ( K and p as above, K metri-
zable):

Let Ext(K) denote the set of all extreme points of K . Then, there exists
a probability measure A on K which has the same barycenter as p and is

concentrated on Ext(K), such that for every continuous convex function

f:K—R,
/ F(@) d(e) < / f(z) dA(a) .
K Ext(K)

Corollary in the case of simplices:

Let A C R" be a simplex with vertices Pi,..., P,.1, i a nonzero Borel
measure on A with barycenter b, := @ fA rdu(z). Let Aq,..., Ays1 be

nonnegative numbers such that

n+1 n+1

bu=Y NP and Y A =1.
j=1 j=1

If f:A — R is continuous and convex, then

1
1) < =5 [ 1) < arp).

n+1
j=1



Proof: f convex == f has a supporting hyperplane at b, , that is, there

is a linear functional A such that
f(z) > f(bu) + h(z — bu)

for every x € A. Therefore,

1 1
[ H@ a0 = 1)+ [ bl =) auo

— f(b) + 1 (@ [e=n) du<x>) — £(b,) + h(0) = f(b,).

For the right inequality let oz = Z;Hll a;(z)P; with continuous oy, . .., apiq

such that Z;Hll aj(xz) = 1. Then,

1 n+1
b :—/azd /a ) dp(z
"ou(A) Ja Z ’

S0 Aj = ﬁA) [x aj(x)dp(z) for 1 < j <n+1. The Jensen inequality now

supplies:

! 1 n+1
—A)/Af(x) du(x) = m/Af (;aj(x)Pj> dp(z)
o (Z% )du(a:)=ZAjf(Pj)- 0

We will refer to these inequalities as (LHH) and (RHH).



The Converse

Theorem (2012)

Let D C R" be nonempty, open, convex, i a Borel measure on D such
that du(x) = p(x)dx, where p : D — [0,00) is continuous and p~1({0})

does not contain any nontrivial segment. Let f : D — R be continuous.
1. If f satisfies (LHH) for all simplices A C D, then f is convex.

2. If f satisfies (RHH) for all simplices A C D, then f is convex.

For a proof see [F.-C. Mitroi & E. Symeonidis, The converse of the Hermite-
Hadamard inequality on simplices, Expo. Math. 30 (2012), 389-396].

For p(z) =1 this was proved in 2008 [T. Trif, Characterizations of convex
functions of a vector variable via Hermite-Hadamard’s inequality, J. Math.

Inequal. 2 (1) (2008), 37-44).



Theorem (Generalization)

The previous theorem remains valid, when the condition
p 1 ({0}) does not contain any nontrivial segment
is replaced by the (weaker) condition

There 1s a dense subset S of D, such that for every a,b € S,
p 1({0})N[a,b] ([a,b] stands for the segment of endpoints a and

b ) is a Lebesque null set in |a,b].

Proof: Let f satisfy (LHH) or (RHH), the same for all simplices in D . By

continuity, it suffices to prove that f is convex on every segment [a,b],

where a,b € S.

By reductio ad absurdum let a,b € S and € € (0,1) such that

f(1—=e)a+eb) > (1 —¢)f(a)+ef(D).

It follows that there is a subsegment [c,d] of [a,b], such that f|.4 is

strictly concave.



Let v,...,v,-1 € R™ be such that vy,...,v,_1,d — ¢ is a basis of R".
We assume that vy,...,v, 1 are small enough, so that ¢4+ v; € D for
1<i<n-—1.Let

1
Pimi=c+—u
m

for m € Nand 1 < i < n—1, let A,, be the simplex of vertices

C, Pl,my"'7pn—1,m7d'

For a continuous function h : 4A,, — R it then holds:

1 o, M@)p(z)de
1(Am) /Am hlw) dulw) = s, p(a)dz

- pletit(d—c)(1 - t)yvlde
Jy ple+7(d—¢))(1 —7)n-1dr

mogo (...)/Oh(c—kt(d—c))

1
- o /[ ) )

where v is the push-forward (image) by s — ¢+ s(d — ¢) of the measure
p(c+s(d—¢))(1 —s)" *ds

on [0,1]. In particular, the barycenter b, ,, of p on A,, converges to the

barycenter b, of v.



— Case 1, f satisfies (LHH).

Letting m — oo in

1
i) < 5 [ @) dute)
we obtain .
fb) < m - f(x)dv(z).

Since flcq is strictly concave, there exists a linear functional h such that
f(x) < f(by) + h(z —by)

for © € [c,d] and strictly on an open subset of [c,d]. This leads to a

contradiction.

— Case 2, f satisfies (RHH).

We start with the convex combinations
n—1
o= (S 478.) e a2
j=1

for m € N, assume without restriction that all coefficients converge, and

set
A = lim A\ for 1<j<n+1.

Then,

n—1
b, = ( A;%) F AR A d = (1= X% )e+ A% d.



By assumption,

n—1
z) dp(r) < (Z)\m ) + Alm )f(C)JF)‘gi)J(d),

so in the limit,

n—1

1 . N
(e d) /M f(w)dv(z) < (Z Ff( )) AT F(e) + A S ()

J=1

= (1 =220 f(e) + A7 f(d).

On the other hand,

1
L= A)et A dzby:—/ zdv(x
( +1) +1 V([C, d]) e ( )

p((1 —s)c+ sd)(1 — )"
Jo p(1 =7)c+7d)(1 —7)""tdr

ds,

SO

/ p((1 = s)c+ sd)(1 — s)"~
- fO (1 =7)e+7d)(1 — 7)»"tdr



From the strict concavity of f and the conditions on p it therefore follows

that

1

o) Jyg T

p((1 —s)c+sd)(1 —s)"!
p(1=7)c+ 7d)(1 — 7)»1dr

= | f((1=s)c+sd)-— ds
I ;

p((l )C+ sd)(1—s)"!
fo T)c+ 7d)(1 — 7)"~1dr

ds

>/O[(1—S)f()+sf

- (1 - )‘Zoﬂ)f( ) n+1f( )

which leads to a contradiction. [J
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