On fluid-structure interactions with the Coulomb friction law boundary condition

Loredana BĂLILESCU

Department of Mathematics and Computer Science, University of Pitești, ROMANIA

Joint work with Jorge San Martín and Takéo Takahashi

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

Outline

•**00** 000 000

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

2 Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

 Ω : bounded regular domain

000

 Ω : bounded regular domain

000

 $S_i(t)$: rigid or deformable solids

 Ω : bounded regular domain

000

 $S_i(t)$: rigid or deformable solids

 $\mathcal{F}(t)$: = $\Omega \setminus \bigcup_{i} \overline{\mathcal{S}_{i}(t)}$ fluid

 Ω : bounded regular domain

000

 $S_i(t)$: rigid or deformable solids

$$\mathcal{F}(t)$$
: = $\Omega \setminus \bigcup_{i} \overline{\mathcal{S}_{i}(t)}$ fluid

 Ω : bounded regular domain

000

 $S_i(t)$: rigid or deformable solids

$$\mathcal{F}(t)$$
: = $\Omega \setminus \bigcup_{i} \overline{\mathcal{S}_{i}(t)}$ fluid

 The fluid is viscous incompressible
 Model of fluid part ↔ Navier-Stokes equations Model of the solids ↔ Newton's laws

 Ω : bounded regular domain

000

 $S_i(t)$: rigid or deformable solids

$$\mathcal{F}(t)$$
: = $\Omega \setminus \bigcup_{i} \overline{\mathcal{S}_{i}(t)}$ fluid

- The fluid is viscous incompressible
- Model of fluid part ↔ Navier-Stokes equations
 Model of the solids ↔ Newton's laws

•
$$\rho_F$$
 the density of fluid ($\rho_F = 1$)
 ρ_{S_i} the densities of solids (= constants)

Unknowns

• Fluid part: the Eulerian velocity **u** and the pressure *p*

Unknowns

- Fluid part: the Eulerian velocity **u** and the pressure p
- Solid parts: the centers of mass h_i and the angular velocities ω_i

Unknowns

- Fluid part: the Eulerian velocity u and the pressure p
- Solid parts: the centers of mass h_i and the angular velocities ω_i

Equations of the fluid $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \mu \Delta \mathbf{u} + \nabla p = 0 \quad \text{in } \mathcal{F}(t),$ $\operatorname{div} \mathbf{u} = 0 \quad \text{in } \mathcal{F}(t),$

Unknowns

- Fluid part: the Eulerian velocity **u** and the pressure **p**
- Solid parts: the centers of mass h_i and the angular velocities ω_i

Equations of the fluid

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \mu \Delta \mathbf{u} + \nabla p = 0 \quad \text{in } \mathcal{F}(t), \\ \text{div } \mathbf{u} = 0 \quad \text{in } \mathcal{F}(t),$$

Equations of the solids $\forall i$

$$\begin{split} m_i \boldsymbol{h}_i''(t) &= -\int_{\partial S_i(t)} \boldsymbol{\sigma}(\mathbf{u}, \boldsymbol{\rho}) \mathbf{n} \ d\Gamma, \\ (J_i \omega_i)'(t) &= -\int_{\partial S_i(t)} (\mathbf{x} - \boldsymbol{h}_i) \times \boldsymbol{\sigma}(\mathbf{u}, \boldsymbol{\rho}) \mathbf{n} \ d\Gamma, \\ R_i'(t) &= \mathbb{A}(\boldsymbol{\omega}_i(t)) \ R_i(t), \end{split}$$

00

Unknowns

- Fluid part: the Eulerian velocity **u** and the pressure p
- Solid parts: the centers of mass h_i and the angular velocities ω_i

Equations of the fluid

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \mu \Delta \mathbf{u} + \nabla p = 0 \quad \text{in } \mathcal{F}(t),$$

div $\mathbf{u} = 0 \quad \text{in } \mathcal{F}(t),$

Equations of the solids $\forall i$

$$\begin{split} m_i \boldsymbol{h}_i''(t) &= -\int_{\partial S_i(t)} \boldsymbol{\sigma}(\mathbf{u}, \boldsymbol{\rho}) \mathbf{n} \ d\Gamma, \\ (J_i \omega_i)'(t) &= -\int_{\partial S_i(t)} (\mathbf{x} - \boldsymbol{h}_i) \times \boldsymbol{\sigma}(\mathbf{u}, \boldsymbol{\rho}) \mathbf{n} \ d\Gamma, \\ R_i'(t) &= \mathbb{A}(\omega_i(t)) \ R_i(t), \end{split}$$

Notations

$$\begin{array}{ll} \mu & \mbox{dynamic viscosity of} \\ & \mbox{the fluid;} \\ m_i, J_i & \mbox{mass and the moment} \\ \mbox{of inertia of the solids;} \\ \mbox{auchy stress tensor:} \end{array}$$

$$\boldsymbol{\sigma}(\mathbf{u},\boldsymbol{\rho}) = -\boldsymbol{\rho}\mathbf{I}\mathbf{d} + 2\mu D(\boldsymbol{u}),$$

where

C

$$D(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^*).$$

$$\mathbb{A}(\boldsymbol{\omega}_i) = \begin{bmatrix} 0 & -\omega_{i,3} & \omega_{i,2} \\ \omega_{i,3} & 0 & -\omega_{i,1} \\ -\omega_{i,2} & \omega_{i,1} & 0 \end{bmatrix}.$$

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

2 Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

No-slip boundary condition

Dirichlet condition

$$\begin{aligned} \mathbf{u}(t,\mathbf{x}) &= \mathbf{h}'_i(t) + \boldsymbol{\omega}_i(t) \times (\mathbf{x} - \mathbf{h}_i(t)) & \text{on } \partial \mathcal{S}_i(t), \\ \mathbf{u}(t,\mathbf{x}) &= \mathbf{0} & \text{on } \partial \Omega. \end{aligned}$$

No-slip boundary condition

Dirichlet condition

$$\begin{aligned} \mathbf{u}(t,\mathbf{x}) &= \mathbf{h}'_i(t) + \boldsymbol{\omega}_i(t) \times (\mathbf{x} - \mathbf{h}_i(t)) & \text{on } \partial \mathcal{S}_i(t), \\ \mathbf{u}(t,\mathbf{x}) &= \mathbf{0} & \text{on } \partial \Omega. \end{aligned}$$

There are not collisions between solids!

No-slip boundary condition

Dirichlet condition

$$\begin{aligned} \mathbf{u}(t,\mathbf{x}) &= \mathbf{h}'_i(t) + \boldsymbol{\omega}_i(t) \times (\mathbf{x} - \mathbf{h}_i(t)) & \text{on } \partial \mathcal{S}_i(t), \\ \mathbf{u}(t,\mathbf{x}) &= \mathbf{0} & \text{on } \partial \Omega. \end{aligned}$$

There are not collisions between solids!

Reference

	_	
	_	_
		_
		-

J. A. SAN MARTIN, V. STAROVOITOV, AND M. TUCSNAK, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), pp. 113–147.

Proposition 4.1. Suppose that $i, j \in \{1, ..., N\}$, $i \neq j$, are such that $\partial S(\chi^i) \cap \partial S(\chi^j) \neq \emptyset$. Then, for any $u \in K(\chi)$, there exists a rigid velocity field w such that u(x) = w(x) for all $x \in S(\chi^i) \cup S(\chi^j)$.

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

References

		r	ς.	
		2		
	-	-		

M. HILLAIRET,

Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations, 32 (2007), pp. 1345–1371.

-	-	-	
		-	
-			
		_	- 1

M. HILLAIRET AND T. TAKAHASHI, Collision in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 56 (2008), pp. 125–158.

-	_	_	Ν.
	-	_	
		-	
		_	_ 1
		100	

D. GÉRARD–VARET AND M. HILLAIRET, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., Vol. 195 (2010), pp. 375–407.

-	_	- 1	2
		-	
		_	
		_	

D. GÉRARD-VARET AND M. HILLAIRET, Existence of Weak Solutions up to collision for Viscous Fluid-Solid Systems with Slip, Comm. Pure Appl. Math., Vol. 67 (2014), pp. 2022–2075.

D. GÉRARD-VARET, M. HILLAIRET, AND G. WANG, The influence of boundary confitions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pure Appl., Vol. 103 (2015), pp. 1–38.

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

References

M. HILLAIRET, Lack Corr The body cannot reach the boundary of the cavity in finite time, under assumptions on the shapes of the cavity and the body.
Collision in unee-unnersional nuo su ucure interacuon problems, SIAM J. Math. Anal., 56 (2008), pp. 125–158.
D. GÉRARD-VARET AND M. HILLAIRET, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., Vol. 195 (2010), pp. 375–407.
D. GÉRARD-VARET AND M. HILLAIRET, Existence of Weak Solutions up to collision for Viscous Fluid-Solid Systems with Slip, Comm. Pure Appl. Math., Vol. 67 (2014), pp. 2022–2075.
D. GÉRARD-VARET, M. HILLAIRET, AND G. WANG, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pure Appl., Vol. 103 (2015), pp. 1–38.

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

References

M. HILLAIRET, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations, 32 (2007), pp. 1345–1371.
M. HILLAIRET AND T. TAKAHASHI. <i>Colli</i> SIAN A rigid ball moving into a viscous incompressible fluid over a fixed horizontal plane. They show that the rigid ball never touches the plane.
Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., Vol. 195 (2010), pp. 375–407.
D. GERARD-VARET AND M. HILLARET, Existence of Weak Solutions up to collision for Viscous Fluid-Solid Systems with Slip, Comm. Pure Appl. Math., Vol. 67 (2014), pp. 2022–2075.
D. GÉRARD-VARET, M. HILLAIRET, AND G. WANG, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pure Appl., Vol. 103 (2015), pp. 1–38.

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

References

M. HILLAIRET, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations, 32 (2007), pp. 1345–1371.
M. HILLAIRET AND T. TAKAHASHI, Collision in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 56 (2008), pp. 125–158.
D. GÉRARD-VARET AND M. HILLAIRET. Reg Arch One $C^{1,\alpha}$ -rigid body falling over a flat surface and they show that a collision is D. G. possible in finite time if and only if $\alpha < 1/2$ (with Dirichlet boundary conditions).
Existence of the and containing up to contain of the containing of
D. GÉRARD-VARET, M. HILLAIRET, AND G. WANG, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pure Appl., Vol. 103 (2015), pp. 1–38.

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

References

		ъ		
-		-	•	
	-			

M. HILLAIRET,

Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations, 32 (2007), pp. 1345–1371.

-	-	-	
		-	
-			
		_	- 1

M. HILLAIRET AND T. TAKAHASHI, Collision in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 56 (2008), pp. 125–158.

_	_	ς.
		-

D. GÉRARD-VARET AND M. HILLAIRET, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., Vol. 195 (2010), pp. 375–407.

-			1
	-	=	
		_	

D. GÉRARD-VARET AND M. HILLAIRET.

Exis Com Instead of a no-slip boundary condition, the authors take the Navier condition.

D. GÉRARD-VARET, M. HILLAIRET, AND G. WANG, The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pure Appl., Vol. 103 (2015), pp. 1–38.

Principal reasons for the lack of collisions

- The no-slip boundary condition
- Regularity of boundaries
- H^1 -regularity of solution (div $\mathbf{u} = 0$)

References

			ς.	
-	_	-	-	
			-	

M. HILLAIRET,

Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations, 32 (2007), pp. 1345–1371.

-	-	-	
		-	1
		_	

M. HILLAIRET AND T. TAKAHASHI, Collision in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 56 (2008), pp. 125–158.

_	_	ς.
		•

D. GÉRARD–VARET AND M. HILLAIRET, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., Vol. 195 (2010), pp. 375–407.

5	-			
-	-			-
= •	-			
_		-	_	-

D. GÉRARD-VARET AND M. HILLAIRET, Existence of Weak Solutions up to collision for Viscous Fluid-Solid Systems with Slip, Comm. Pure Appl. Math., Vol. 67 (2014), pp. 2022–2075.

D. GÉRARD-VARET, M. HILLAIRET, AND G. WANG,

J. Ma Using Navier type boundary condition, they prove one can again recover collisions.

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

2 Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

where

 $u_n = 0$

$$I_{\overline{B}(0,g)}(\mathbf{x}) = \left\{ egin{array}{cc} 0 & ext{if} \ |\mathbf{x}| \leq g \ +\infty & ext{if} \ |\mathbf{x}| > g \end{array}
ight.$$

 $-\mathbf{u}_{\tau} \in \partial I_{\overline{B}(0,q)}((\sigma(\mathbf{u}, \boldsymbol{p})\mathbf{n})_{\tau}) \text{ on } \partial\Omega,$

Coulomb coupling condition

- $I_{\overline{B}(0,q)}$ is the characteristic function of the closed ball $\overline{B}(0,g)$;
- g > 0 is a constant characterizing the roughness of boundary.

on $\partial \Omega$,

Coulomb coupling condition

$$\begin{array}{rcl} \mathbf{u}_n &=& 0 & \text{on } \partial\Omega, \\ -\mathbf{u}_\tau &\in& \partial I_{\overline{B}(0,g)}((\sigma(\mathbf{u},p)\mathbf{n})_\tau) \text{ on } \partial\Omega, \end{array}$$

where

$$I_{\overline{B}(0,g)}(\mathbf{x}) = \left\{egin{array}{cc} 0 & ext{if} \; |\mathbf{x}| \leq g \ +\infty & ext{if} \; |\mathbf{x}| > g \end{array}
ight.$$

- $I_{\overline{B}(0,q)}$ is the characteristic function of the closed ball $\overline{B}(0,g)$;
- g > 0 is a constant characterizing the roughness of boundary.
- The subdifferential of $I_{\overline{B}(0,g)}$ is given by

$$\partial I_{\overline{B}(0,g)}(\mathbf{X}) = \left\{ egin{array}{cc} \{0\} & ext{if } |\mathbf{x}| < g \ \{lpha\mathbf{X}\,;\,lpha \geq 0\} & ext{if } |\mathbf{x}| = g \ \emptyset & ext{if } |\mathbf{x}| > g \end{array}
ight.$$

Coulomb coupling condition

$$\begin{array}{rcl} \mathbf{u}_n &=& 0 & \text{on } \partial\Omega, \\ -\mathbf{u}_\tau &\in& \partial I_{\overline{B}(0,g)}((\sigma(\mathbf{u},p)\mathbf{n})_\tau) \text{ on } \partial\Omega, \end{array}$$

where

$$I_{\overline{B}(0,g)}(\mathbf{x}) = \left\{egin{array}{cc} 0 & ext{if} \; |\mathbf{x}| \leq g \ +\infty & ext{if} \; |\mathbf{x}| > g \end{array}
ight.$$

$$l_{[-g,g]} = +\infty$$

$$l_{[-g,g]} = +\infty$$

$$l_{[-g,g]} = 0$$

$$g$$

$$x \in \partial l_{[-g,g]}$$

$$-\overline{e}_{d+1}$$

- $I_{\overline{B}(0,q)}$ is the characteristic function of the closed ball $\overline{B}(0,g)$;
- g > 0 is a constant characterizing the roughness of boundary.
- The subdifferential of $I_{\overline{B}(0,q)}$ is given by

$$\partial I_{\overline{B}(0,g)}(\mathbf{X}) = \begin{cases} \{0\} & \text{if } |\mathbf{x}| < g \\ \{\alpha \mathbf{x} ; \ \alpha \ge 0\} & \text{if } |\mathbf{x}| = g \\ \emptyset & \text{if } |\mathbf{x}| > g \end{cases}.$$

Recall that

$$\mathbf{y} \in \partial F(\mathbf{x}) \iff F(\mathbf{x} + \mathbf{h}) \ge F(\mathbf{x}) + \mathbf{y} \cdot \mathbf{h} \quad \forall \mathbf{h} \in \mathbb{R}^d.$$

Using convex theory

$$- \mathsf{u}_ au \in \partial l_{\overline{\mathcal{B}}(0,g)}((\sigma(\mathsf{u}, oldsymbol{
ho})_ au) \iff -(\sigma(\mathsf{u}, oldsymbol{
ho})_ au \in \partial l^*_{\overline{\mathcal{B}}(0,g)}(\mathsf{u}_ au),$$

where $l^*_{\overline{B}(0,g)}$ is the conjugate function of $l_{\overline{B}(0,g)}$:

$$\begin{array}{ll} \underset{\mathbf{R}(0,g)}{\overset{*}{B}(0,g)}(\mathbf{y}) &= & \left| \begin{array}{c} \sup_{\mathbf{x}\in\mathbb{R}^{d}} \left\{ \mathbf{y}\cdot\mathbf{x} - I_{\overline{B}(0,g)}(\mathbf{x}) \right\} \right| \\ \\ &= & \sup_{\mathbf{x}\in\overline{B}(0,g)} \mathbf{y}\cdot\mathbf{x} = & \sup_{\mathbf{x}\in\overline{B}(0,1)} g\mathbf{y}\cdot\mathbf{y} \\ \\ &= & g|\mathbf{y}| \quad \forall \mathbf{y}\in\mathbb{R}^{d}. \end{array}$$

00

Using convex theory

$$- \mathsf{u}_ au \in \partial l_{\overline{\mathcal{B}}(0,g)}((\sigma(\mathsf{u}, oldsymbol{
ho})_ au) \iff -(\sigma(\mathsf{u}, oldsymbol{
ho})_ au \in \partial l^*_{\overline{\mathcal{B}}(0,g)}(\mathsf{u}_ au),$$

where $l^*_{\overline{B}(0,g)}$ is the conjugate function of $l_{\overline{B}(0,g)}$:

$$\begin{array}{ll} \underset{\mathbf{x}\in\mathbb{R}^{d}}{\overset{*}{B}}(\mathbf{0},g) & = & \left[\begin{array}{c} \sup_{\mathbf{x}\in\mathbb{R}^{d}} \left\{ \mathbf{y}\cdot\mathbf{x} - I_{\overline{B}(0,g)}(\mathbf{x}) \right\} \right] \\ \\ & = & \sup_{\mathbf{x}\in\overline{B}(0,g)} \mathbf{y}\cdot\mathbf{x} = & \sup_{\mathbf{x}\in\overline{B}(0,1)} g\mathbf{y}\cdot\mathbf{x} \\ \\ & = & g|\mathbf{y}| \quad \forall \mathbf{y}\in\mathbb{R}^{d}. \end{array}$$

Thus,

$$(\sigma(\mathbf{u}, \boldsymbol{\rho})\mathbf{n})_{\tau} \cdot \mathbf{y} \geq g|\mathbf{u}_{\tau}| - g|\mathbf{u}_{\tau} + \mathbf{y}| \quad \text{on } \partial\Omega, \forall \mathbf{y} \in \mathbb{R}^{d}.$$

00

On the moving interfaces: rigid case

Primal formulation on the moving interfaces $\partial S_i(t)$

$$(\mathbf{u}_{F})_{n} = (\mathbf{u}_{R_{i}})_{n} \quad \text{on } \partial \mathcal{S}_{i}(t),$$
$$-\left((\mathbf{u}_{F})_{\tau} - (\mathbf{u}_{R_{i}})_{\tau}\right) \in \partial I_{\overline{B}(0,g)}((\sigma(\mathbf{u}_{F}, p_{F})\mathbf{n})_{\tau}) \quad \text{on } \partial \mathcal{S}_{i}(t),$$

where

$$\mathbf{u}_{B_i}(t,\mathbf{x}) := \mathbf{h}'_i(t) + \boldsymbol{\omega}_i(t) \times (\mathbf{x} - \mathbf{h}_i(t)).$$

On the moving interfaces: rigid case

Primal formulation on the moving interfaces $\partial S_i(t)$

$$(\mathbf{u}_{F})_{n} = (\mathbf{u}_{R_{i}})_{n} \quad \text{on } \partial S_{i}(t),$$
$$-\left((\mathbf{u}_{F})_{\tau} - (\mathbf{u}_{R_{i}})_{\tau}\right) \in \partial I_{\overline{B}(0,g)}((\sigma(\mathbf{u}_{F}, p_{F})\mathbf{n})_{\tau}) \quad \text{on } \partial S_{i}(t),$$

where

$$\mathbf{u}_{R_i}(t,\mathbf{x}) := \mathbf{h}'_i(t) + \boldsymbol{\omega}_i(t) \times (\mathbf{x} - \mathbf{h}_i(t)).$$

Dual formulation on the moving interfaces $\partial S_i(t)$

$$-\left((\mathbf{u}_{F})_{\tau}-(\mathbf{u}_{R_{i}})_{\tau}\right)\in\partial I_{\overline{B}(0,g)}((\sigma(\mathbf{u}_{F},\rho_{F})\mathbf{n})_{\tau})$$
$$\iff -(\sigma(\mathbf{u}_{F},\rho_{F})\mathbf{n})_{\tau}\in\partial I_{\overline{B}(0,g)}^{*}\left((\mathbf{u}_{F})_{\tau}-(\mathbf{u}_{R_{i}})_{\tau}\right).$$

Thus,

$$\left(\sigma(\mathbf{u}_{\mathit{F}}, \mathcal{p}_{\mathit{F}})\mathbf{n}
ight)_{ au}\cdot\mathbf{y}\geq g\Big|(\mathbf{u}_{\mathit{F}})_{ au}-(\mathbf{u}_{\mathit{R}_{i}})_{ au}\Big|-g\Big|(\mathbf{u}_{\mathit{F}})_{ au}-(\mathbf{u}_{\mathit{R}_{i}})_{ au}+\mathbf{y}\Big|\quadorall\mathbf{y}\in\mathbb{R}^{d}.$$

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

Complete system

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} - & \operatorname{div} \sigma(\mathbf{u}, p) = 0 & \text{ in } \Omega, \\ & \operatorname{div} \mathbf{u} = 0 & \text{ in } \Omega, \\ & \mathbf{u}_n = 0 & \text{ on } \partial \Omega, \\ (\sigma(\mathbf{u}, p) \mathbf{n})_\tau \cdot \mathbf{y} \geq g |\mathbf{u}_\tau| - g |\mathbf{u}_\tau + \mathbf{y}| & \text{ on } \partial \Omega, \ \forall \mathbf{y} \in \mathbb{R}^d, \\ & \mathbf{u}(\mathbf{x}, 0) = \mathbf{u}^0(\mathbf{x}) & \forall \mathbf{x} \in \Omega. \end{split}$$

Navier-Stokes system without solids

Definition of weak solution

A weak solution **u** of the Navier–Stokes system with the Coulomb friction law is a function

 $\mathbf{u} \in L^{\infty}(0, T; H) \cap L^{2}(0, T; V)$

such that

$$-\int_{\Omega} \mathbf{u}^{0} \cdot \mathbf{v}(0, \cdot) \, d\mathbf{x} - \int_{(0, T) \times \Omega} \left(\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u} \right) \, d\mathbf{x} \, dt$$
$$+ \int_{0}^{T} \mathbf{a}(\mathbf{u}, \mathbf{v}) \, dt + \int_{0}^{T} J(\mathbf{u} + \mathbf{v}) \, dt - \int_{0}^{T} J(\mathbf{u}) \, dt \ge 0$$

holds true for all $\mathbf{v} \in \mathscr{C}^1_c([0, T); V)$.
Navier-Stokes system without solids

Definition of weak solution

A weak solution **u** of the Navier–Stokes system with the Coulomb friction law is a function

 $\mathbf{u}\in L^{\infty}(0,\,T;\,H)\cap L^{2}(0,\,T;\,V)$

such that

$$-\int_{\Omega} \mathbf{u}^{0} \cdot \mathbf{v}(0, \cdot) \, d\mathbf{x} - \int_{(0, T) \times \Omega} \left(\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u} \right) \, d\mathbf{x} \, dt$$
$$+ \int_{0}^{T} \mathbf{a}(\mathbf{u}, \mathbf{v}) \, dt + \int_{0}^{T} J(\mathbf{u} + \mathbf{v}) \, dt - \int_{0}^{T} J(\mathbf{u}) \, dt \ge 0$$

holds true for all $\mathbf{v} \in \mathscr{C}^1_c([0, T); V)$.

Notations

$$\begin{split} \mathbf{a}(\mathbf{u},\mathbf{v}) &= 2\mu \int_{\Omega} D(\mathbf{u}) : D(\mathbf{v}) \ d\mathbf{x}, \\ J(\mathbf{v}) &= \int_{\partial \Omega} g|\mathbf{v}| \ d\Gamma, \end{split}$$

Functional spaces

 $H = \{ \mathbf{v} \in L^2(\Omega)^d : \text{ div } \mathbf{v} = 0, \ \mathbf{v}_n = 0 \ \text{ on } \partial\Omega \},$ $V = \{ \mathbf{v} \in H^1(\Omega)^d : \text{ div } \mathbf{v} = 0, \ \mathbf{v}_n = 0 \ \text{ on } \partial\Omega \}.$

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

000 00 0000 00000000

THEOREM (Existence and Uniqueness)

If $\mathbf{u}^0 \in H$, then there exists at least one weak solution of the Navier–Stokes system with the Coulomb friction law. Moreover, we have

$$\frac{\partial \mathbf{u}}{\partial t} \in L^2(0, T; V') \quad \text{if } d = 2,$$

$$\frac{\partial \mathbf{u}}{\partial t} \in L^{4/3}(0, T; V') \quad \text{if } d = 3,$$

and for almost every $t \in [0, T]$, we have $\frac{1}{2} \|\mathbf{u}(t)\|_{L^{2}(\Omega)^{d}}^{2} + \int_{0}^{t} a(\mathbf{u}, \mathbf{u}) \, ds + \int_{0}^{t} J(\mathbf{u}) \, ds \leq \frac{1}{2} \|\mathbf{u}(0)\|_{L^{2}(\Omega)^{d}}^{2}.$ Additionally, if d = 2, we have that **the solution is unique** and that $\mathbf{u} \in \mathscr{C}^{0}([0, T]; H).$

000 00 0000 00000000

THEOREM (Existence and Uniqueness)

If $\mathbf{u}^0 \in H$, then there exists at least one weak solution of the Navier–Stokes system with the Coulomb friction law. Moreover, we have

$$\frac{\partial \mathbf{u}}{\partial t} \in L^2(0, T; V') \quad \text{if } d = 2,$$

$$\frac{\partial \mathbf{u}}{\partial t} \in L^{4/3}(0, T; V') \quad \text{if } d = 3,$$

and for almost every $t \in [0, T]$, we have $\frac{1}{2} \|\mathbf{u}(t)\|_{L^{2}(\Omega)^{d}}^{2} + \int_{0}^{t} \mathbf{a}(\mathbf{u}, \mathbf{u}) \, ds + \int_{0}^{t} J(\mathbf{u}) \, ds \leq \frac{1}{2} \|\mathbf{u}(0)\|_{L^{2}(\Omega)^{d}}^{2}.$ Additionally, if d = 2, we have that **the solution is unique** and that $\mathbf{u} \in \mathscr{C}^{0}([0, T]; H).$

Complete proof

L. BĂLILESCU, J. SAN MARTÍN, AND T. TAKAHASHI, On the Navier-Stokes system with the Coulomb friction law boundary condition, Z. Angew. Math. Phys., 68, (2017), pp. Art.3, 25.

Loredana Bălilescu (UPIT)

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

000 00 0000 00000000

For any $\varepsilon > 0$ and $m \in \mathbb{N}^*$, we introduce a (ε, m) -regularized problem: • We first define

$$J_{\varepsilon}(\mathbf{v}) = \int_{\partial\Omega} g j_{\varepsilon}(\mathbf{v}) \ d\Gamma,$$

with $j_{\varepsilon}(\mathbf{x}) \in \mathscr{C}^1$ -convex regularized version of $|\mathbf{x}|$ such that: $j_{\varepsilon}(\mathbf{0}) = \mathbf{0}$,

 $\nabla j_{\varepsilon}(\mathbf{x}) \cdot \mathbf{x} \geq 0, \qquad |\nabla j_{\varepsilon}(\mathbf{x})| \leq 1, \qquad |j_{\varepsilon}(\mathbf{x}) - |\mathbf{x}|| \leq \varepsilon \qquad \forall \mathbf{x} \in \mathbb{R}^{d}.$

000 00 0000 00000000

For any ε > 0 and m ∈ N*, we introduce a (ε, m)–regularized problem:
We first define

$$J_{\varepsilon}(\mathbf{v}) = \int_{\partial\Omega} g j_{\varepsilon}(\mathbf{v}) \ d\Gamma,$$

with $j_{\varepsilon}(\mathbf{x})$ a \mathscr{C}^1 -convex regularized version of $|\mathbf{x}|$ such that: $j_{\varepsilon}(\mathbf{0}) = \mathbf{0}$,

 $|
abla j_{arepsilon}(\mathbf{x}) \cdot \mathbf{x} \geq \mathbf{0}, \qquad |
abla j_{arepsilon}(\mathbf{x})| \leq 1, \qquad |j_{arepsilon}(\mathbf{x}) - |\mathbf{x}|| \leq arepsilon \qquad orall \mathbf{x} \in \mathbb{R}^d.$

• We then use the Galerkin method: given an orthonormal basis $\{\mathbf{v}_j\}$ of H, we find the approximate solution of our problem as the function $\mathbf{u}_{\varepsilon,m}(t,\cdot) \in V_m = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$, satisfying the equation:

000 00 **0000** 00000000

For any ε > 0 and m ∈ N*, we introduce a (ε, m)–regularized problem:
We first define

$$J_{\varepsilon}(\mathbf{v}) = \int_{\partial\Omega} g j_{\varepsilon}(\mathbf{v}) \ d\Gamma,$$

with $j_{\varepsilon}(\mathbf{x}) \in \mathcal{C}^1$ -convex regularized version of $|\mathbf{x}|$ such that: $j_{\varepsilon}(\mathbf{0}) = \mathbf{0}$,

 $|
abla j_{arepsilon}(\mathbf{x}) \cdot \mathbf{x} \geq 0, \qquad |
abla j_{arepsilon}(\mathbf{x})| \leq 1, \qquad |j_{arepsilon}(\mathbf{x}) - |\mathbf{x}|| \leq arepsilon \qquad orall \mathbf{x} \in \mathbb{R}^d.$

• We then use the Galerkin method: given an orthonormal basis $\{\mathbf{v}_j\}$ of H, we find the approximate solution of our problem as the function $\mathbf{u}_{\varepsilon,m}(t,\cdot) \in V_m = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$, satisfying the equation:

$$\int_{\Omega} \frac{\partial \mathbf{u}_{\varepsilon,m}}{\partial t} \cdot \mathbf{v} \, d\mathbf{x} - \int_{\Omega} \left[(\mathbf{u}_{\varepsilon,m} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u}_{\varepsilon,m} \, d\mathbf{x} + a(\mathbf{u}_{\varepsilon,m}, \mathbf{v}) + \int_{\partial \Omega} g \nabla j_{\varepsilon}(\mathbf{u}_{\varepsilon,m}) \cdot \mathbf{v} \, d\mathbf{r} = \mathbf{0},$$

for all $\mathbf{v} \in V_m$, with the initial condition $\mathbf{u}_{\varepsilon,m}(0,\cdot)$ being the orthogonal projection of \mathbf{u}^0 onto V_m .

One can easily deduce that

$$\frac{1}{2}\frac{d}{dt}\|\mathbf{u}_{\varepsilon,m}\|_{L^{2}(\Omega)^{d}}^{2}+a(\mathbf{u}_{\varepsilon,m},\mathbf{u}_{\varepsilon,m})+\int_{\partial\Omega}g\nabla j_{\varepsilon}(\mathbf{u}_{\varepsilon,m})\cdot\mathbf{u}_{\varepsilon,m}d\Gamma=0.$$

One can easily deduce that

$$\frac{1}{2}\frac{d}{dt}\|\mathbf{u}_{\varepsilon,m}\|_{L^2(\Omega)^d}^2+a(\mathbf{u}_{\varepsilon,m},\mathbf{u}_{\varepsilon,m})+\int_{\partial\Omega}g\nabla j_{\varepsilon}(\mathbf{u}_{\varepsilon,m})\cdot\mathbf{u}_{\varepsilon,m}d\Gamma=0.$$

Then, taking $\varepsilon = \frac{1}{m}$ and passing to the limit as $m \to \infty$, we get

$\mathbf{u}_{arepsilon,m} ightarrow \mathbf{u}$	weakly* in $L^{\infty}(0, T; H) \cap L^{2}(0, T; V)$,
$\frac{\partial \mathbf{u}_{\varepsilon,m}}{\partial t} \rightharpoonup \frac{\partial \mathbf{u}}{\partial t}$	weakly in $L^{2}(0, T; V')$ if $d = 2$,
$\frac{\partial \mathbf{u}_{\varepsilon,m}}{\partial t} \rightharpoonup \frac{\partial \mathbf{u}}{\partial t}$	weakly in $L^{4/3}(0, T; V')$ if $d = 3$.

One can easily deduce that

$$\frac{1}{2}\frac{d}{dt}\|\mathbf{u}_{\varepsilon,m}\|_{L^{2}(\Omega)^{d}}^{2}+a(\mathbf{u}_{\varepsilon,m},\mathbf{u}_{\varepsilon,m})+\int_{\partial\Omega}g\nabla j_{\varepsilon}(\mathbf{u}_{\varepsilon,m})\cdot\mathbf{u}_{\varepsilon,m}d\Gamma=0.$$

Then, taking $\varepsilon = \frac{1}{m}$ and passing to the limit as $m \to \infty$, we get

$u_{arepsilon,m} ightarrow u$	weakly* in $L^{\infty}(0, T; H) \cap L^{2}(0, T; V)$,
$\frac{\partial \mathbf{u}_{\varepsilon,m}}{\partial t} \rightharpoonup \frac{\partial \mathbf{u}}{\partial t}$	weakly in $L^{2}(0, T; V')$ if $d = 2$,
$\frac{\partial \mathbf{u}_{\varepsilon,m}}{\partial t} \rightharpoonup \frac{\partial \mathbf{u}}{\partial t}$	weakly in $L^{4/3}(0, T; V')$ if $d = 3$.

Using compactness results, one can deduce

 $\mathbf{u}_{\varepsilon,m} \to \mathbf{u}$ strongly in $L^2(0,T;L^2(\partial\Omega))$.

Integrating over $[0, \mathcal{T}]$ the equation satisfied by $\mathbf{u}_{\varepsilon,m}$ and using

$$abla j_arepsilon ({f u}_{arepsilon,m})\cdot ({f v}+{f u}_{arepsilon,m}-{f u}_{arepsilon,m})\leq j_arepsilon ({f v}+{f u}_{arepsilon,m})-j_arepsilon ({f u}_{arepsilon,m}),$$

for any $\mathbf{v} \in \mathscr{C}^1_c([0, T); V_m)$, we get

$$-\int_{\Omega} \mathbf{u}_{\varepsilon,m}^{0}(\mathbf{x}) \cdot \mathbf{v}(0,\mathbf{x}) \, d\mathbf{x} - \int_{(0,T)\times\Omega} \left(\mathbf{u}_{\varepsilon,m} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u}_{\varepsilon,m} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u}_{\varepsilon,m} \right) \, d\mathbf{x} \, dt \\ + \int_{0}^{T} a(\mathbf{u}_{\varepsilon,m},\mathbf{v}) \, dt + \int_{0}^{T} J_{\varepsilon}(\mathbf{v} + \mathbf{u}_{\varepsilon,m}) \, dt - \int_{0}^{T} J_{\varepsilon}(\mathbf{u}_{\varepsilon,m}) \, dt \ge 0.$$

Integrating over [0, T] the equation satisfied by $\mathbf{u}_{\varepsilon,m}$ and using

$$abla j_arepsilon (\mathbf{u}_{arepsilon,m}) \cdot (\mathbf{v} + \mathbf{u}_{arepsilon,m} - \mathbf{u}_{arepsilon,m}) \leq j_arepsilon (\mathbf{v} + \mathbf{u}_{arepsilon,m}) - j_arepsilon (\mathbf{u}_{arepsilon,m}),$$

for any $\mathbf{v} \in \mathscr{C}^1_c([0, T); V_m)$, we get

$$-\int_{\Omega} \mathbf{u}_{\varepsilon,m}^{0}(\mathbf{x}) \cdot \mathbf{v}(0,\mathbf{x}) \, d\mathbf{x} - \int_{(0,T)\times\Omega} \left(\mathbf{u}_{\varepsilon,m} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u}_{\varepsilon,m} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u}_{\varepsilon,m} \right) \, d\mathbf{x} \, dt \\ + \int_{0}^{T} \mathbf{a}(\mathbf{u}_{\varepsilon,m},\mathbf{v}) \, dt + \int_{0}^{T} J_{\varepsilon}(\mathbf{v} + \mathbf{u}_{\varepsilon,m}) \, dt - \int_{0}^{T} J_{\varepsilon}(\mathbf{u}_{\varepsilon,m}) \, dt \ge 0.$$

Fixing $\mathbf{v} \in \mathscr{C}^1_c([0, T); V_m)$, we pass to the limit in all terms, we obtain

$$-\int_{\Omega} \mathbf{u}^{0}(\mathbf{x}) \cdot \mathbf{v}(0, \mathbf{x}) \, d\mathbf{x} - \int_{(0, T) \times \Omega} \left(\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u} \right) \, d\mathbf{x} \, dt \\ + \int_{0}^{T} \mathbf{a}(\mathbf{u}, \mathbf{v}) \, dt + \int_{0}^{T} J(\mathbf{v} + \mathbf{u}) \, dt - \int_{0}^{T} J(\mathbf{u}) \, dt \ge 0.$$

000 00 0000 0000000

Fixing $\mathbf{v} \in \mathscr{C}^1_c([0, T); V_m)$, we pass to the limit in all terms, we obtain

$$-\int_{\Omega} \mathbf{u}^{0}(\mathbf{x}) \cdot \mathbf{v}(0, \mathbf{x}) \, d\mathbf{x} - \int_{(0, T) \times \Omega} \left(\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u} \right) \, d\mathbf{x} \, dt \\ + \int_{0}^{T} \mathbf{a}(\mathbf{u}, \mathbf{v}) \, dt + \int_{0}^{T} J(\mathbf{v} + \mathbf{u}) \, dt - \int_{0}^{T} J(\mathbf{u}) \, dt \ge 0.$$

000 00 0000 00000000

Fixing $\mathbf{v} \in \mathscr{C}^1_c([0, T); V_m)$, we pass to the limit in all terms, we obtain

$$-\int_{\Omega} \mathbf{u}^{0}(\mathbf{x}) \cdot \mathbf{v}(0, \mathbf{x}) \, d\mathbf{x} - \int_{(0, T) \times \Omega} \left(\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial t} + \left[(\mathbf{u} \cdot \nabla) \mathbf{v} \right] \cdot \mathbf{u} \right) \, d\mathbf{x} \, dt \\ + \int_{0}^{T} \mathbf{a}(\mathbf{u}, \mathbf{v}) \, dt + \int_{0}^{T} J(\mathbf{v} + \mathbf{u}) \, dt - \int_{0}^{T} J(\mathbf{u}) \, dt \ge 0.$$

Then, for any $\mathbf{v} \in \mathscr{C}_c^1([0, T); V)$, using the orthogonal projection of \mathbf{v} on V_m , as test function, and due to its strong convergence to \mathbf{v} in $\mathscr{C}_c^1([0, T); V)$, we conclude the existence of a weak solution.

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

Mixed formulation

000 00 0000 00000000

Spaces:

$$V_0 = \Big\{ \mathbf{v} \in H^1(\Omega)^d : \mathbf{v}_n = 0 \text{ on } \partial\Omega \Big\}, \qquad M = \Big\{ q \in L^2(\Omega) : \int_{\Omega} q \, d\mathbf{x} = 0 \Big\}$$

000 00 0000 00000000

Spaces:

$$V_0 = \Big\{ \mathbf{v} \in H^1(\Omega)^d : \mathbf{v}_n = 0 \text{ on } \partial\Omega \Big\}, \qquad M = \Big\{ q \in L^2(\Omega) : \int_{\Omega} q \, d\mathbf{x} = 0 \Big\}$$

We introduce the mixed formulation: Find $(\mathbf{u}, \mathbf{p}) \in V_0 \times M$ such that

$$\int_{\Omega} \frac{d\mathbf{u}}{dt} \cdot \mathbf{v} \ d\mathbf{x} + a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) \ge J(\mathbf{u}) - J(\mathbf{u} + \mathbf{v}) \qquad \forall \mathbf{v} \in V_0,$$
$$b(\mathbf{u}, q) = 0 \qquad \forall q \in M,$$

for a.e. $t \in (0, T)$, where

$$b(\mathbf{u},q) = -\int_{\Omega} \operatorname{div} \mathbf{u} \ q \ d\mathbf{x} \qquad \forall \mathbf{u} \in V_0, \ q \in M.$$

000 00 0000 00000000

Spaces:

$$V_0 = \Big\{ \mathbf{v} \in H^1(\Omega)^d : \mathbf{v}_n = 0 \text{ on } \partial\Omega \Big\}, \qquad M = \Big\{ q \in L^2(\Omega) : \int_{\Omega} q \, d\mathbf{x} = 0 \Big\}$$

We introduce the mixed formulation: Find $(\mathbf{u}, \mathbf{p}) \in V_0 \times M$ such that

$$\int_{\Omega} \frac{d\mathbf{u}}{dt} \cdot \mathbf{v} \ d\mathbf{x} + a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) \ge J(\mathbf{u}) - J(\mathbf{u} + \mathbf{v}) \qquad \forall \mathbf{v} \in V_0,$$
$$b(\mathbf{u}, q) = \mathbf{0} \qquad \forall q \in M,$$

for a.e. $t \in (0, T)$, where

$$b(\mathbf{u},q) = -\int_{\Omega} \operatorname{div} \mathbf{u} \ q \ d\mathbf{x} \qquad \forall \mathbf{u} \in V_0, \ q \in M.$$

Notation

 $\frac{d}{dt} = \frac{\partial}{\partial t} + (\mathbf{u} \cdot \nabla) \iff \text{material derivative associated with } \mathbf{u}.$

The characteristic function

The material derivative is given by

$$\frac{d\mathbf{u}}{dt}(\mathbf{x},t_0) = \frac{d}{dt} \Big[\mathbf{u}\big(t,\psi(t;t_0,\mathbf{x})\big) \Big]_{|t=t_0},$$

where the characteristic function $\psi : [0, T]^2 \times \Omega \rightarrow \Omega$ is defined as solution of

$$\begin{cases} \frac{d}{dt}\psi(t;t_0,\mathbf{x}) &= \mathbf{u}(t,\psi(t;t_0,\mathbf{x})) \quad \forall t \in [0,T], \\ \psi(t_0;t_0,\mathbf{x}) &= \mathbf{x}. \end{cases}$$

The characteristic function

The material derivative is given by

$$\frac{d\mathbf{u}}{dt}(\mathbf{x},t_0) = \frac{d}{dt} \Big[\mathbf{u}\big(t,\psi(t;t_0,\mathbf{x})\big) \Big]_{|t=t_0},$$

where the characteristic function $\psi : [0, T]^2 \times \Omega \rightarrow \Omega$ is defined as solution of

$$\begin{cases} \frac{d}{dt}\psi(t;t_0,\mathbf{x}) &= \mathbf{u}(t,\psi(t;t_0,\mathbf{x})) \quad \forall t \in [0,T], \\ \psi(t_0;t_0,\mathbf{x}) &= \mathbf{x}. \end{cases}$$

 $\psi(t; t_0, \mathbf{x})$: the trajectory of a particle which at time t_0 will be in **x**.

000 00 0000 00000000

Let h > 0 and \mathcal{T}_h a quasi-uniform triangulation of Ω . For $N \in \mathbb{N}^*$, we denote $\Delta t = T/N$ and $t^k = k\Delta t$ for $k \in \{0, \dots, N\}$.

000 00 0000 00000000

Let h > 0 and \mathcal{T}_h a quasi-uniform triangulation of Ω . For $N \in \mathbb{N}^*$, we denote $\Delta t = T/N$ and $t^k = k\Delta t$ for $k \in \{0, \dots, N\}$.

For any $k \in \{1, ..., N\}$, we construct the following approximations:

• spaces: $(W_h, M_h) =$ Taylor-Hood finite element, $V_h = W_h \cap V_0$

000 00 0000 00000000

Let h > 0 and \mathcal{T}_h a quasi-uniform triangulation of Ω . For $N \in \mathbb{N}^*$, we denote $\Delta t = T/N$ and $t^k = k\Delta t$ for $k \in \{0, \dots, N\}$.

For any $k \in \{1, ..., N\}$, we construct the following approximations:

- spaces: $(W_h, M_h) =$ Taylor-Hood finite element, $V_h = W_h \cap V_0$
- velocity: $\mathbf{u}(\cdot, t^k) \sim \mathbf{u}_h^k \in V_h$

000 00 0000 00000000

Let h > 0 and \mathcal{T}_h a quasi-uniform triangulation of Ω . For $N \in \mathbb{N}^*$, we denote $\Delta t = T/N$ and $t^k = k\Delta t$ for $k \in \{0, \dots, N\}$.

For any $k \in \{1, ..., N\}$, we construct the following approximations:

- spaces: $(W_h, M_h) =$ Taylor-Hood finite element, $V_h = W_h \cap V_0$
- velocity: $\mathbf{u}(\cdot, t^k) \sim \mathbf{u}_h^k \in V_h$
- pressure: $p(\cdot, t^k) \sim p_h^k \in M_h$

Let h > 0 and \mathcal{T}_h a quasi-uniform triangulation of Ω . For $N \in \mathbb{N}^*$, we denote $\Delta t = T/N$ and $t^k = k\Delta t$ for $k \in \{0, \dots, N\}$.

For any $k \in \{1, ..., N\}$, we construct the following approximations:

- spaces: $(W_h, M_h) =$ Taylor-Hood finite element, $V_h = W_h \cap V_0$
- velocity: $\mathbf{u}(\cdot, t^k) \sim \mathbf{u}_h^k \in V_h$
- pressure: $p(\cdot, t^k) \sim p_h^k \in M_h$

At time t^k , we know the approximation $\mathbf{u}_h^k \in V_h$, $p_h^k \in M_h$, and let us compute the solution at time t^{k+1} as the solution of

$$\begin{split} \int_{\Omega} \Big(\frac{\mathbf{u}_{h}^{k+1} - \mathbf{u}_{h}^{k} \circ \overline{\mathbf{X}}_{h}^{k}}{\Delta t} \Big) \cdot \mathbf{v} \, d\mathbf{x} + a(\mathbf{u}_{h}^{k+1}, \mathbf{v}) + b(\mathbf{v}, p_{h}^{k+1}) \\ &+ \int_{\partial \Omega} \frac{g}{\max\{2h, |\mathbf{u}_{h}^{k+1}|\}} \mathbf{u}_{h}^{k+1} \cdot \mathbf{v} \, d\Gamma = \mathbf{0} \quad \forall \mathbf{v} \in V_{h}, \\ & b(\mathbf{u}_{h}^{k+1}, q) = \mathbf{0} \quad \forall q \in M_{h}, \end{split}$$

000 00 0000 00000000

At time t^k , we know the approximation $\mathbf{u}_h^k \in V_h$, $p_h^k \in M_h$, and let us compute the solution at time t^{k+1} as the solution of

$$\begin{split} \int_{\Omega} \Big(\frac{\mathbf{u}_{h}^{k+1} - \mathbf{u}_{h}^{k} \circ \overline{\mathbf{X}}_{h}^{k}}{\Delta t} \Big) \cdot \mathbf{v} \, d\mathbf{x} + a(\mathbf{u}_{h}^{k+1}, \mathbf{v}) + b(\mathbf{v}, p_{h}^{k+1}) \\ &+ \int_{\partial \Omega} \frac{g}{\max\{2h, |\mathbf{u}_{h}^{k+1}|\}} \mathbf{u}_{h}^{k+1} \cdot \mathbf{v} \, d\Gamma = \mathbf{0} \quad \forall \mathbf{v} \in V_{h}, \\ & b(\mathbf{u}_{h}^{k+1}, q) = \mathbf{0} \quad \forall q \in M_{h}, \end{split}$$

000 00 0000 00000000

At time t^k , we know the approximation $\mathbf{u}_h^k \in V_h$, $p_h^k \in M_h$, and let us compute the solution at time t^{k+1} as the solution of

$$\int_{\Omega} \left(\frac{\mathbf{u}_{h}^{k+1} - \mathbf{u}_{h}^{k} \circ \overline{\mathbf{X}}_{h}^{k}}{\Delta t} \right) \cdot \mathbf{v} \, d\mathbf{x} + a(\mathbf{u}_{h}^{k+1}, \mathbf{v}) + b(\mathbf{v}, p_{h}^{k+1}) \\ + \int_{\partial \Omega} \frac{g}{\max\{2h, |\mathbf{u}_{h}^{k+1}|\}} \mathbf{u}_{h}^{k+1} \cdot \mathbf{v} \, d\Gamma = 0 \quad \forall \mathbf{v} \in V_{h}, \\ b(\mathbf{u}_{h}^{k+1}, q) = 0 \quad \forall q \in M_{h},$$

000 00 0000 00000000

At time t^k , we know the approximation $\mathbf{u}_h^k \in V_h$, $p_h^k \in M_h$, and let us compute the solution at time t^{k+1} as the solution of

$$\begin{split} \int_{\Omega} \left(\frac{\mathbf{u}_{h}^{k+1} - \mathbf{u}_{h}^{k} \circ \overline{\mathbf{X}}_{h}^{k}}{\Delta t} \right) \cdot \mathbf{v} \, d\mathbf{x} + a(\mathbf{u}_{h}^{k+1}, \mathbf{v}) + b(\mathbf{v}, p_{h}^{k+1}) \\ &+ \int_{\partial \Omega} \frac{g}{\max\{2h, |\mathbf{u}_{h}^{k+1}|\}} \mathbf{u}_{h}^{k+1} \cdot \mathbf{v} \, d\Gamma = \mathbf{0} \quad \forall \mathbf{v} \in V_{h}, \\ & b(\mathbf{u}_{h}^{k+1}, q) = \mathbf{0} \quad \forall q \in M_{h}, \end{split}$$

 $\overline{\mathbf{X}}_{h}^{k}$ is an approximation of the exact characteristic function $\psi(t^{k}; t^{k+1}, \cdot)$:

$$\overline{\mathbf{X}}_{h}^{k}(\mathbf{x}) = \boldsymbol{\psi}_{h}^{k}(t_{k}; t_{k+1}, \mathbf{x}) \qquad \forall \mathbf{x} \in \Omega,$$

where ψ_h^k is defined as the solution of

$$\begin{cases} \frac{d}{dt}\psi_h^k(t;t_{k+1},\mathbf{x}) = \mathbf{u}_h^k(\psi_h^k(t;t_{k+1},\mathbf{x})) & \forall t \in [t_k,t_{k+1}], \\ \psi_h^k(t_{k+1};t_{k+1},\mathbf{x}) = \mathbf{x}. \end{cases}$$

Numerical simulations

000 00 0000 00000000

We consider the fluid flow after a cylindrical obstacle in a horizontal channel:

- Γ₁ Homogeneous Dirichlet boundary condition, modelling the contact with an infinitely adherent wall.
- Γ₂ Inlet Dirichlet boundary condition, where the inlet velocity field is given by a parabolic profile.
- Γ_3 Outlet boundary condition.
- Γ₄ Special wall where we study the Coulomb law effect.

Numerical simulations

Horizontal channel with a cylindrical obstacle

a) Zero Dirichlet boundary condition

b) Neumann boundary condition

Velocity field at t = 2s, obtained as the solution of Navier–Stokes equation with the four boundary conditions on the ball boundary (with Re = 100).

Loredana Bălilescu (UPIT)

000

Numerical simulations

000 00 0000 000000000

Horizontal channel with a cylindrical obstacle

a) Zero Dirichlet boundary condition

b) Neumann boundary condition

c) Coulomb boundary condition with g = 0.07

Velocity field at t = 2s, obtained as the solution of Navier–Stokes equation with the four boundary conditions on the ball boundary (with Re = 100).

Loredana Bălilescu (UPIT)

Dirichlet vs Coulomb (g=0.20)

000 00 0000 00000000

Horizontal velocity and tangential stress on boundary Fg. (T=0.000s)

Tangential velocity and stress

000 00 0000 0000000

Tangential velocity \mathbf{u}_{τ} and tangential stress $(\sigma \mathbf{n})_{\tau}$ on the boundary of the obstacle.

Outline

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

2 Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- Fluid-rigid structure interaction
 Weak formulation
 - Main result

Perspectives

Fluid-rigid structure interaction

Equation of the fluid $\mathcal{F}(t)$

$$\frac{\partial \mathbf{u}_F}{\partial t} + (\mathbf{u}_F \cdot \nabla)\mathbf{u}_F - \operatorname{div} \sigma(\mathbf{u}_F, p_F) = 0,$$

div $\mathbf{u}_F = 0,$

Fluid-rigid structure interaction

Equation of the fluid $\mathcal{F}(t)$

$$\frac{\partial \mathbf{u}_F}{\partial t} + (\mathbf{u}_F \cdot \nabla)\mathbf{u}_F - \operatorname{div} \sigma(\mathbf{u}_F, \mathbf{p}_F) = \mathbf{0},$$

div $\mathbf{u}_F = \mathbf{0},$

Equation of the rigid

$$\begin{split} m \mathbf{h}''(t) &= -\int_{\partial \mathcal{S}(t)} \boldsymbol{\sigma}(\mathbf{u}_F, p_F) \mathbf{n} \ d\Gamma, \quad t > 0, \\ (J \boldsymbol{\omega})'(t) &= -\int_{\partial \mathcal{S}(t)} (\mathbf{x} - \mathbf{h}) \times \boldsymbol{\sigma}(\mathbf{u}, p) \mathbf{n} \ d\Gamma, \quad t > 0, \\ R'(t) &= \mathbb{A}(\boldsymbol{\omega}(t)) R(t), \quad t > 0, \end{split}$$

Fluid-rigid structure interaction

Equation of the fluid $\mathcal{F}(t)$

$$\frac{\partial \mathbf{u}_F}{\partial t} + (\mathbf{u}_F \cdot \nabla)\mathbf{u}_F - \operatorname{div} \sigma(\mathbf{u}_F, \mathbf{p}_F) = \mathbf{0},$$

div $\mathbf{u}_F = \mathbf{0},$

Equation of the rigid

$$\begin{split} m \mathbf{h}''(t) &= -\int_{\partial S(t)} \sigma(\mathbf{u}_F, p_F) \mathbf{n} \ d\Gamma, \quad t > 0, \\ (J\omega)'(t) &= -\int_{\partial S(t)} (\mathbf{x} - \mathbf{h}) \times \sigma(\mathbf{u}, p) \mathbf{n} \ d\Gamma, \quad t > 0 \\ R'(t) &= \mathbb{A}(\omega(t)) R(t), \quad t > 0, \end{split}$$

Boundary condition on $\partial \Omega$

$$(\mathbf{u}_F)_n = \mathbf{0},$$

 $(\sigma(\mathbf{u}_F, \mathbf{p}_F)\mathbf{n})_{ au} \cdot \mathbf{y} \geq g|(\mathbf{u}_F)_{ au}| - g|(\mathbf{u}_F)_{ au} + \mathbf{y}|, \qquad \forall \mathbf{y} \in \mathbb{R}^d,$

Boundary condition on $\partial S(t)$

$$(\mathbf{u}_F)_n = (\mathbf{u}_R)_n,$$

 $(\sigma(\mathbf{u}_F, \rho_F)\mathbf{n})_{\tau} \cdot \mathbf{y} \ge g \Big| (\mathbf{u}_F)_{\tau} - (\mathbf{u}_R)_{\tau} \Big| - g \Big| (\mathbf{u}_F)_{\tau} - (\mathbf{u}_R)_{\tau} + \mathbf{y} \Big| \qquad \forall \mathbf{y} \in \mathbb{R}^d,$

Boundary condition on $\partial S(t)$

$$(\mathbf{u}_F)_n = (\mathbf{u}_R)_n,$$

$$(\sigma(\mathbf{u}_F, \rho_F)\mathbf{n})_\tau \cdot \mathbf{y} \ge g \Big| (\mathbf{u}_F)_\tau - (\mathbf{u}_R)_\tau \Big| - g \Big| (\mathbf{u}_F)_\tau - (\mathbf{u}_R)_\tau + \mathbf{y} \Big| \qquad \forall \mathbf{y} \in \mathbb{R}^d,$$

Initial conditions $h(0) = \mathbf{0}, \qquad R(0) = I_3,$ $h'(0) = \ell^0, \qquad \omega(0) = \omega^0,$ $\mathbf{u}_F(0, \mathbf{x}) = \mathbf{u}_F^0(x) \quad \mathbf{x} \in \mathcal{F}^0.$

Weak formulation

Definition of weak solution

A weak solution is a triplet (h, R, u) with the following properties:

$$\begin{split} (\boldsymbol{h},\boldsymbol{R}) &\in \boldsymbol{W}^{1,\infty}(\boldsymbol{0},T; \mathbb{R}^3\times \boldsymbol{SO}(3)), \quad \boldsymbol{\mathcal{S}}(t) \Subset \boldsymbol{\Omega} \quad (t \in (\boldsymbol{0},T)), \\ \boldsymbol{u} &\in L^\infty(\boldsymbol{0},T; \boldsymbol{V}^0_n(\boldsymbol{\Omega})), \quad \boldsymbol{u}(t,\cdot) \in H_{\boldsymbol{R}}(\boldsymbol{\mathcal{S}}(t)) \quad \text{a.e. in } (\boldsymbol{0},T), \end{split}$$

 $\mathbf{u}_F \in L^2(0, T; H^1(\Omega)), \quad \mathbf{u}_R(t, \mathbf{x}) = \mathbf{h}'(t) + \boldsymbol{\omega}(t) \times (\mathbf{x} - \mathbf{h}(t)),$

such that $R'(t) = \mathbb{A}(\boldsymbol{\omega}(t))R(t), t > 0, h(0) = 0, R(0) = I_3$ hold true, and for any $\mathbf{v} \in \mathcal{T}_T$:

$$-\int_{\mathcal{F}^{0}} \mathbf{u}_{F}^{0} \cdot \mathbf{v}_{F}(0, \cdot) \, d\mathbf{x} - \int_{\mathcal{S}^{0}} \rho_{\mathcal{S}} \mathbf{u}_{R}^{0} \cdot \mathbf{v}_{R}(0, \cdot) \, d\mathbf{x} \\ -\int_{0}^{T} \int_{\mathcal{F}(t)} \mathbf{u}_{F} \cdot \left[\frac{\partial \mathbf{v}_{F}}{\partial t} + \left[(\mathbf{u}_{F} \cdot \nabla) \mathbf{v}_{F} \right] \right] \, d\mathbf{x} \, dt - \int_{0}^{T} \int_{\mathcal{S}(t)} \rho_{\mathcal{S}} \mathbf{u}_{R} \cdot \frac{\partial \mathbf{v}_{R}}{\partial t} \, d\mathbf{x} \, dt \\ + 2\mu \int_{0}^{T} \int_{\mathcal{F}(t)} D(\mathbf{u}_{F}) : D(\mathbf{v}_{F}) \, d\mathbf{x} \, dt + \int_{0}^{T} \int_{\partial \Omega} \left[g |(\mathbf{u}_{F} + \mathbf{v}_{F})_{\tau}| - g |(\mathbf{u}_{F})_{\tau}| \right] d\Gamma \, dt \\ + \int_{0}^{T} \int_{\partial \mathcal{S}(t)} g |(\mathbf{u}_{F} - \mathbf{u}_{R} + \mathbf{v}_{F} - \mathbf{v}_{R})_{\tau}| \, d\Gamma \, dt - \int_{0}^{T} \int_{\partial \mathcal{S}(t)} g |(\mathbf{u}_{F} - \mathbf{u}_{R})_{\tau}| \, d\Gamma \, dt \ge 0$$

and for almost every $t \in (0, T)$

$$\begin{split} \frac{1}{2} \int_{\mathcal{F}} \left| \mathbf{u}_{F}(t,\cdot) \right|^{2} d\mathbf{x} + \frac{\rho_{S}}{2} \int_{S} \left| \mathbf{u}_{R}(t,\cdot) \right|^{2} d\mathbf{x} + 2\mu \int_{0}^{t} \int_{\mathcal{F}(t)} \left| D(\mathbf{u}_{F}) \right|^{2} d\mathbf{x} dt \\ &+ \int_{0}^{t} \int_{\partial\Omega} g |\mathbf{u}_{F}| \, d\Gamma \, dt + \int_{0}^{t} \int_{\partial S(t)} g |\mathbf{u}_{F} - \mathbf{u}_{R}| \, d\Gamma \, dt \\ &\leq \frac{1}{2} \int_{\mathcal{F}^{0}} \left| \mathbf{u}_{F}^{0} \right|^{2} d\mathbf{x} + \frac{\rho_{S}}{2} \int_{S^{0}} \left| \mathbf{u}_{R}^{0} \right|^{2} d\mathbf{x}. \end{split}$$

Functional spaces

$$\begin{aligned} & \mathcal{H}_{R}(\mathcal{S}) = \Big\{ \mathbf{v} \in V_{n}^{0}(\Omega) : \exists \mathbf{v}_{R} \in \mathcal{R}, \ \exists \mathbf{v}_{F} \in \mathcal{H}^{1}(\Omega), \ \mathbf{v} = \mathbf{v}_{F} \text{in } \Omega \setminus \overline{\mathcal{S}}, \ \mathbf{v} = \mathbf{v}_{R} \text{ in } \mathcal{S} \Big\}, \\ & \mathcal{T}_{T} := \Big\{ \mathbf{v} \in \mathcal{C}_{c}^{0}([0, T]; \mathcal{V}_{n}^{0}(\Omega)) : \exists \mathbf{v}_{R} \in \mathcal{C}^{1}([0, T]; \mathcal{R}), \exists \mathbf{v}_{F} \in \mathcal{C}^{1}([0, T]; \mathcal{H}^{1}(\Omega)) \\ & \text{and} \quad \mathbf{v} = \mathbf{v}_{F} \text{in } \mathcal{F}(t), \ \mathbf{v} = \mathbf{v}_{R} \text{in } \mathcal{S}(t) \Big\}, \end{aligned}$$

where

$$V_n^0(A) = \left\{ \mathbf{v} \in L^2(A) : \text{ div } \mathbf{v} = 0 \text{ in } A, \ \mathbf{v}_n = 0 \text{ on } \partial A \right\}$$

and \mathcal{R} is the space of rigid velocities:

1

$$\mathcal{R} := \left\{ oldsymbol{\ell} + oldsymbol{\omega} imes oldsymbol{x} : oldsymbol{\ell}, oldsymbol{\omega} \in \mathbb{R}^3
ight\}.$$

Outline

00000 •0

Setting of the problem

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests

Fluid-rigid structure interaction

- Weak formulation
- Main result

Perspectives

THEOREM (EXISTENCE)

Assume $S^0 \Subset \Omega$, ∂S^0 and $\partial \Omega$ are of class $C^{1,1}$, $\mathbf{u}_F^0 \in V_n^0(\Omega)$, $\mathbf{u}_R^0 \in \mathcal{R}$ with $(\mathbf{u}_F^0)_n = (\mathbf{u}_R^0)_n$ on ∂S^0 . Then, there exist $T \in (0, \infty]$ and a weak solution in (0, T).

Moreover, we can choose T such that one of the following alternatives holds true:

•
$$T = \infty;$$

• $\lim_{t \to T} dist(S(t), \partial \Omega) = 0.$

THEOREM (EXISTENCE)

Assume $S^0 \Subset \Omega$, ∂S^0 and $\partial \Omega$ are of class $C^{1,1}$, $\mathbf{u}_F^0 \in V_n^0(\Omega)$, $\mathbf{u}_R^0 \in \mathcal{R}$ with $(\mathbf{u}_F^0)_n = (\mathbf{u}_R^0)_n$ on ∂S^0 . Then, there exist $T \in (0, \infty]$ and a weak solution in (0, T).

Moreover, we can choose T such that one of the following alternatives holds true:

•
$$T = \infty;$$

• $\lim_{t \to T} dist(S(t), \partial \Omega) = 0.$

Complete proof

	_
	_
-	_

L. BĂLILESCU, J. SAN MARTÍN, AND T. TAKAHASHI, *Fluid-rigid structure interaction system with Coulomb's law*, SIAM J. Math. Anal., 49 (2017), no. 6, pp. 4625–4657.

Outline

Setting of the problen

- No-slip boundary condition
- Coulomb boundary condition

Navier-Stokes system without solids

- Weak formulation
- Main result
- Sketch of the proof
- Numerical tests
- 3 Fluid-rigid structure interaction
 - Weak formulation
 - Main result

Perspectives

Existence of collisions with the Coulomb friction law.

Multiples rigid solids.

Perspectives

- Multiples rigid solids.
- Oeformable solid.

Perspectives

- Multiples rigid solids.
- Oeformable solid.
- Multiple deformable body.

Perspectives

- Multiples rigid solids.
- Oeformable solid.
- Multiple deformable body.
- Navier-Stokes + elastic or viscoelastic body.