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Motivation

Semimartingale = martingale + BV process ((pre)locally)

Statement
i) Knowing that a process is a semimartingale is very nice

ii) In most of the cases i) is not enough!

We need
Zt = Mt + At , t ≥ 0



Zt = Mt + At , t ≥ 0

1. Ito calculus. f ∈ C2(R)

f (Zt )−f (Z0) =

∫ t

0
f ′(Zs)dMs︸ ︷︷ ︸

martingale

+

∫ t

0
f ′(Zs)dAs +

1
2

∫ t

0
f ′′(Zs)d [M]s︸ ︷︷ ︸

BV process

If we are interested in expectation

E{f (Zt )} − E{f (Z0)} = E{
∫ t

0
f ′(Zs)dAs}+

1
2
E{

∫ t

0
f ′′(Zs)d [M]s}



2. Skorohod decomposition. Let D a domain in Rd and
X (t), t > 0 be the diffusion associated to (the closure of)

E(u, v) =

∫
D
∇u · ∇v dx , for u, v ∈ C1

0(Rd )

• If D is Caccioppoli then X is a semimartingale.

X (t)− X (0) = Mt︸︷︷︸
B(t)

+ At︸︷︷︸∫ t
0 n(Xs)dLs

, t ≥ 0

• More general reflected diffusions in both finite and infinite
dimensions!



3. BV functions.

Definition. ρ ∈ L1
loc(Rd ) is a BV function if for any bounded

open set V ⊂ Rd∫
V

∂v
∂xi

ρ dx ≤ ct · |v |∞ for all v ∈ C1
0(V ), i = 1 : n.

If πi(x) := xi , this rewrites as∫
∇πi · ∇v ρ dx =: Eρ(πi , v) ≤ ct · |v |∞

which means that πi(X ρ) is a semimartingale.
Actually

πi(X ρ(t))− πi(X ρ(0)) = Bi(t) + Ai(t)

Ai(t) is in Revuz correspondence with the measure ∂ρ
∂xi

.

• Works in infinite dimensions!



Dirichlet forms

- [Z. M. Ma and M. Röckner, Springer, 1992]

E(u, v) =
d∑

i,j=1

∫
aij
∂u
∂xi

∂v
∂xj

dx+
d∑
i

∫
u
∂v
∂xi

didx+
d∑
i

∫
v
∂u
∂xi

bidx+

+

∫
uvcdx +

∫ ∫
x 6=y

(u(x)− u(y))(v(x)− v(y))k(x , y)dxdy ,



Formal definition of a Dirichlet form

Let E be a bilinear form on L2(E , µ) with dense domain F ;
Eα(·, ·) = E(·, ·) + α(·, ·)L2 , α > 0.

(E ,F) is a coercive closed form if:

• E(u,u) ≥ 0.
• F is a Hilbert space w.r.t. E1(u,u)

1
2 .

• |E1(u, v)| ≤ const · E1(u,u)
1
2E1(v , v)

1
2 , u, v ∈ F .

E(u, v) = (−Lu, v)L2 , u ∈ D(A), Pt := etL.

Dual structure: L̂, P̂t , t ≥ 0.

• Semi-Dirichlet form if 0 ≤ Pt f ≤ 1 for all 0 ≤ f ≤ 1.

• Dirichlet form if 0 ≤ Pt f , P̂t f ≤ 1 for all 0 ≤ f ≤ 1.

• Lower-bounded (semi) Dirichlet form if there exists α > 0
s.t. (Eα,F) is a (semi) Dirichlet form.



Markov process associated to semi-Dirichlet forms

Assume that the (lower bounded) semi-Dirichlet form is
quasi-regular.

• X = (Ω,F ,Ft ,Xt ,Px ) is a right Markov process on E .

• Pt f (x) = Ex f (Xt ), t ≥ 0 its transition function;
Pα

t := e−αtPt .

• u : E → [0,∞] is called α-excessive if Pα
t u ≤ u and

Pα
t u → u, t → 0.



Returning to semimartingales...

Q1: For which u ∈ F it follows that u(X ) is a real valued
semimartingale?

If u(X ) is a semimartingale then u(X ) = M + A.

Q2: Can we identify M and A merely in terms of E and u, and
maybe compute

Ex
∫ t

0
f (Xs)dAs or Ex

∫ t

0
f (Xs)d [M]s?
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- (1996) Distorted Brownian motions and BV functions,

Trends in probability and related analysis,
- (1999) On semi-martingale characerizations of

functionals of symmetric Markov processes, EJP,
- (2000) BV functions and distorted Ornstein Uhlenbeck

processes over the abstract Wiener space, JFA,
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Common tool: Fukushima decomposition!



Q1

• An increasing sequence of closed sets Fn ⊂ E , n ≥ 1 is
called a nest if

⋃
n
{v ∈ F : v = 0 on F c

n } is E1-dense in F .

Theorem
Let E be a lower-bounded semi-Dirichlet, u ∈ F and assume
that there exists a "nest" (Fn)n≥1 and constants cn such that

(∗) |E(u, v)| ≤ cn‖v‖∞ for all bounded v ∈ F , v = 0 on F c
n .

Then u(X ) is a semimartingale.

Proof: No Fukushima decomposition!
• u(X ) is a (local) quasimartingale (difference of
supermartingales) by showing that u has finite variation w.r.t.
(Pt ) (new analytical object!)

Beznea, L., Cîmpean, I.: Quasimartingales associated to Markov processes,
TAMS (2018)



Q2

Assume (*) so that u(X ) = M + A.

Theorem
There exist two smooth measures µ and ν (signed) such that
for all v ∈

⋃
n
{v ∈ F : v = 0 on F c

n }

ν(v) = E(u, v)

µ(v) = 2E(u,uv)− E(u2, v)

and for all bounded f and v α-co-excessive, α > 0

Ev ·m{
∫ t

0
f (Xs)dAs} =

∫ t

0
ν(f P̂sv)ds

Ev ·m{
∫ t

0
f (Xs)d [M]s} =

∫ t

0
µ(f P̂sv)ds

Proof: Doob-Meyer decomp. + Revuz correspondence



Example

Let b : (−1,1)→ R,b(x) =
√

x + 1 and set

E(u, v) =

∫ 1

−1
u′v ′dx +

∫ 1

−1
bu′vdx , u, v ∈ F = H1

0 (−1,1)

Lu = u′′ − bu′

Then (E ,F) is a quasi-regular lower-bounded semi-Dirichlet
form on L2(−1,1), which is not Dirichlet: P̂t1 ≤ 1 does NOT
hold.
Take u(x) = |x |(x2 − 1), x ∈ (−1,1). Then u ∈ F

ν(·) = E(u, ·) =2δ0 + fdx

f (x) =
√

x + 1(x2 − 1)sgn(x) + (2x − 6)|x | and

µ(v) = 2E(u,uv)− E(u2, v) =g(x)dx

g(x) = 4x2 + (x2 − 1)[x2 + 2x2 − 2x
√

x + 1(5x2 − 1)− 1]



Work in progress

Partially, the previous results remain valid for generalized
Dirichlet forms (no sector condition)!
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Thank You!


