Quasimartingales functionals and their Doob-Meyer decompositions

Iulian Cîmpean

Simion Stoilow Institute of Mathematics of the Romanian Academy Joint work with Lucian Beznea

Atelier de travail en Stochastique et EDP

14, 15 Septembre 2018, Bucarest, Roumanie

Semimartingale = martingale + BV process ((pre)locally)

Statement

i) Knowing that a process is a semimartingale is very nice

ii) In most of the cases i) is not enough!

We need

$$Z_t = M_t + A_t, t \ge 0$$

$$Z_t = M_t + A_t, t \ge 0$$

1. Ito calculus. $f \in C^2(\mathbb{R})$

$$f(Z_t) - f(Z_0) = \underbrace{\int_0^t f'(Z_s) dM_s}_{\text{martingale}} + \underbrace{\int_0^t f'(Z_s) dA_s + \frac{1}{2} \int_0^t f''(Z_s) d[M]_s}_{\text{BV process}}$$

If we are interested in expectation

$$\mathbb{E}\{f(Z_t)\} - \mathbb{E}\{f(Z_0)\} = \mathbb{E}\{\int_0^t f'(Z_s) dA_s\} + \frac{1}{2} \mathbb{E}\{\int_0^t f''(Z_s) d[M]_s\}$$

2. Skorohod decomposition. Let *D* a domain in \mathbb{R}^d and X(t), t > 0 be the diffusion associated to (the closure of)

$$\mathcal{E}(u,v) = \int_D \nabla u \cdot \nabla v \ dx, \text{ for } u, v \in C_0^1(\mathbb{R}^d)$$

• If *D* is Caccioppoli then *X* is a semimartingale.

$$X(t) - X(0) = \underbrace{M_t}_{B(t)} + \underbrace{A_t}_{\int_0^t n(X_s) dL_s}, t \ge 0$$

• More general reflected diffusions in both finite and infinite dimensions!

3. BV functions.

Definition. $\rho \in L^1_{loc}(\mathbb{R}^d)$ is a BV function if for any bounded open set $V \subset \mathbb{R}^d$

$$\int_{V} \frac{\partial v}{\partial x_{i}} \rho \, dx \leq ct \cdot |v|_{\infty} \quad \text{ for all } v \in C_{0}^{1}(V), i = \overline{1:n}.$$

If $\pi_i(x) := x_i$, this rewrites as

$$\int \nabla \pi_i \cdot \nabla \boldsymbol{v} \ \rho \ \boldsymbol{dx} =: \mathcal{E}_{\rho}(\pi_i, \boldsymbol{v}) \leq \boldsymbol{ct} \cdot |\boldsymbol{v}|_{\infty}$$

which means that $\pi_i(X^{\rho})$ is a semimartingale. Actually

$$\pi_i(X^{\rho}(t)) - \pi_i(X^{\rho}(0)) = B_i(t) + A_i(t)$$

 $A_i(t)$ is in Revuz correspondence with the measure $\frac{\partial \rho}{\partial x}$.

Works in infinite dimensions!

- [Z. M. Ma and M. Röckner, Springer, 1992]

$$\mathcal{E}(u,v) = \sum_{i,j=1}^{d} \int a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} dx + \sum_{i}^{d} \int u \frac{\partial v}{\partial x_i} d_i dx + \sum_{i}^{d} \int v \frac{\partial u}{\partial x_i} b_i dx + \int uv c dx + \int \int_{x \neq y} (u(x) - u(y))(v(x) - v(y))k(x, y) dx dy,$$

Formal definition of a Dirichlet form

Let \mathcal{E} be a bilinear form on $L^2(E, \mu)$ with dense domain \mathcal{F} ; $\mathcal{E}_{\alpha}(\cdot, \cdot) = \mathcal{E}(\cdot, \cdot) + \alpha(\cdot, \cdot)_{L^2}, \alpha > 0.$

 $(\mathcal{E},\mathcal{F})$ is a coercive closed form if:

- $\mathcal{E}(u, u) \geq 0$.
- \mathcal{F} is a Hilbert space w.r.t. $\mathcal{E}_1(u, u)^{\frac{1}{2}}$.
- $|\mathcal{E}_1(u,v)| \leq const \cdot \mathcal{E}_1(u,u)^{\frac{1}{2}} \mathcal{E}_1(v,v)^{\frac{1}{2}}, \ u,v \in \mathcal{F}.$

$$\mathcal{E}(u,v) = (-Lu,v)_{L^2}, \ u \in D(A), \quad P_t := e^{tL}.$$

Dual structure: \widehat{L} , \widehat{P}_t , $t \ge 0$.

- Semi-Dirichlet form if $0 \le P_t f \le 1$ for all $0 \le f \le 1$.
- Dirichlet form if $0 \le P_t f$, $\hat{P}_t f \le 1$ for all $0 \le f \le 1$.

• Lower-bounded (semi) Dirichlet form if there exists $\alpha > 0$ s.t. $(\mathcal{E}_{\alpha}, \mathcal{F})$ is a (semi) Dirichlet form.

Assume that the (lower bounded) semi-Dirichlet form is quasi-regular.

• $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \mathbb{P}^x)$ is a right Markov process on E.

• $P_t f(x) = \mathbb{E}^x f(X_t), t \ge 0$ its transition function; $P_t^{\alpha} := e^{-\alpha t} P_t.$

• $u: E \to [0, \infty]$ is called α -excessive if $P_t^{\alpha} u \leq u$ and $P_t^{\alpha} u \to u, t \to 0$.

Q1: For which $u \in \mathcal{F}$ it follows that u(X) is a real valued semimartingale?

If u(X) is a semimartingale then u(X) = M + A.

Q2: Can we identify M and A merely in terms of \mathcal{E} and u, and maybe compute

$$\mathbb{E}^{x}\int_{0}^{t}f(X_{s})dA_{s}$$
 or $\mathbb{E}^{x}\int_{0}^{t}f(X_{s})d[M]_{s}$?

• **R. F. Bass, P. Hsu** (1990), The semimartingale structure of reflecting Brownian motion, PAMS.

• **R.J. Williams and W.A. Zheng** (1990), On reflecting Brownian motion—a weak convergence approach, AIHP.

• **E. Pardoux, R. J. Williams** (1994), Symmetric Reflected Diffusions, AIHP.

• **Z. Q. Chen**, (1993) On reflecting diffusion processes and Skorokhod decompositions, PTRF.

• Z. Q. Chen, P. J. Fitzsimmons, R. J. Williams (1993), Reflecting Brownian motions: quasimartingales and strong Caccioppoli sets, Pot. Anal.

• M. Fukushima

- (1996) Distorted Brownian motions and BV functions, Trends in probability and related analysis,

- (1999) On semi-martingale characerizations of functionals of symmetric Markov processes, EJP,

- (2000) BV functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space, JFA,

- (2001) with **M. Hino**: On the space of BV functions and a related stochastic calculus in infinite dimensions JFA.

• (2012) **M. Röckner, R.-C. Zhu and X.-C. Zhu**, The stochastic reflection problem on an infinite dimensional convex set and BV functions in a Gelfand triple, The Anals of Prob.

Common tool: Fukushima decomposition!

• An increasing sequence of closed sets $F_n \subset E$, $n \ge 1$ is called a *nest* if $\bigcup_n \{v \in \mathcal{F} : v = 0 \text{ on } F_n^c\}$ is \mathcal{E}_1 -dense in \mathcal{F} .

Theorem

Let \mathcal{E} be a lower-bounded semi-Dirichlet, $u \in \mathcal{F}$ and assume that there exists a "nest" $(F_n)_{n>1}$ and constants c_n such that

(*) $|\mathcal{E}(u, v)| \leq c_n ||v||_{\infty}$ for all bounded $v \in \mathcal{F}$, v = 0 on F_n^c .

Then u(X) is a semimartingale.

Proof: No Fukushima decomposition!

• u(X) is a (local) quasimartingale (difference of supermartingales) by showing that u has finite variation w.r.t. (P_t) (new analytical object!)

Beznea, L., Cîmpean, I.: *Quasimartingales associated to Markov processes*, TAMS (2018)

Assume (*) so that u(X) = M + A.

Theorem

There exist two smooth measures μ and ν (signed) such that for all $\nu \in \bigcup_n \{\nu \in \mathcal{F} : \nu = 0 \text{ on } F_n^c\}$

$$\nu(\mathbf{v}) = \mathcal{E}(\mathbf{u}, \mathbf{v})$$

$$\mu(\mathbf{v}) = 2\mathcal{E}(\mathbf{u}, \mathbf{u}\mathbf{v}) - \mathcal{E}(\mathbf{u}^2, \mathbf{v})$$

and for all bounded *f* and *v* α -co-excessive, $\alpha > 0$

$$\mathbb{E}_{v \cdot m} \{ \int_0^t f(X_s) dA_s \} = \int_0^t \nu(f \widehat{P}_s v) ds$$
$$\mathbb{E}_{v \cdot m} \{ \int_0^t f(X_s) d[M]_s \} = \int_0^t \mu(f \widehat{P}_s v) ds$$

Proof: Doob-Meyer decomp. + Revuz correspondence

Example

Let
$$b: (-1, 1) \rightarrow \mathbb{R}$$
, $b(x) = \sqrt{x+1}$ and set
 $\mathcal{E}(u, v) = \int_{-1}^{1} u'v' dx + \int_{-1}^{1} bu'v dx, \quad u, v \in \mathcal{F} = H_0^1(-1, 1)$

$$Lu = u'' - bu'$$

Then $(\mathcal{E}, \mathcal{F})$ is a quasi-regular lower-bounded semi-Dirichlet form on $L^2(-1, 1)$, which is not Dirichlet: $\hat{P}_t 1 \leq 1$ does NOT hold.

Take $u(x) = |x|(x^2 - 1), x \in (-1, 1)$. Then $u \in \mathcal{F}$

$$\nu(\cdot) = \mathcal{E}(u, \cdot) = 2\delta_0 + \mathbf{fdx}$$

 $f(x) = \sqrt{x+1}(x^2-1)sgn(x) + (2x-6)|x|$ and

$$\mu(\mathbf{v}) = 2\mathcal{E}(u, u\mathbf{v}) - \mathcal{E}(u^2, \mathbf{v}) = g(x)dx$$

 $g(x) = 4x^2 + (x^2 - 1)[x^2 + 2x^2 - 2x\sqrt{x + 1}(5x^2 - 1) - 1]$

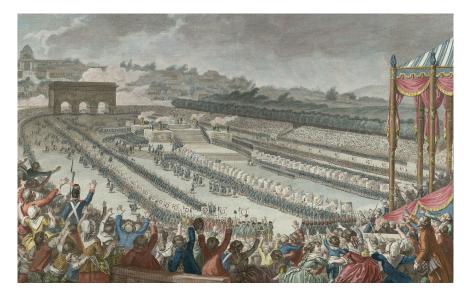
Work in progress

Partially, the previous results remain valid for generalized Dirichlet forms (no sector condition)!

100 years ago 1 December 1918

Photo: Samoila Sturza

228 years ago 14 July 1790



Painting: C. Monet

Thank You!