Invariant, super and quasi-martingale functions of a Markov process

Lucian Beznea

Simion Stoilow Institute of Mathematics of the Romanian Academy and University of Bucharest

Based on joint works with Iulian Cîmpean and Michael Röckner

Atelier de travail en Stochastique et EDP

September 15th, 2018, Bucharest

- E: a Lusin topological space endowed with the Borel σ -algebra \mathcal{B}
- $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \mathbb{P}^x, \zeta)$ be a right Markov process with state space *E*, transition function :
- $(P_t)_{t \ge 0}$: the transition function of *X*,

$$P_t u(x) = \mathbb{E}^x(u(X_t); t < \zeta), t \ge 0, x \in E.$$

Supermedian and excessive functions

• For $\beta \ge 0$, a \mathcal{B} -measurable function $f : E \to [0, \infty]$ is called β -supermedian if $P_t^{\beta} f \le f, t \ge 0$;

 $(P_t^{\beta})_{t \ge 0}$ denotes the β -level of the semigroup of kernels $(P_t)_{t \ge 0}$, $P_t^{\beta} := e^{-\beta t} P_t$.

- If *f* is β -supermedian and $\lim_{t\to 0} P_t f = f$ pointwise on *E*, then it is called β -excessive.
- A *B*-measurable function *f* is β -excessive if and only if $\alpha U_{\alpha+\beta}f \leq f$, $\alpha > 0$, and $\lim_{\alpha \to \infty} \alpha U_{\alpha}f = f$ pointwise on *E*, where $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ is the resolvent family of the process *X*, $U_{\alpha} := \int_{0}^{\infty} e^{-\alpha t} P_{t} dt$.

- U_β:= the β-level of the resolvent U, U_β := (U_{β+α})_{α>0};
- $E(\mathcal{U}_{\beta})$:= the convex cone of all β -excessive functions.
- If $\beta = 0$ we drop the index β from notations.

Proposition

The following assertions are equivalent for a non-negative real-valued \mathcal{B} -measurable function u and $\beta \ge 0$.

(i) $(e^{-\beta t}u(X_t))_{t\geq 0}$ is a right continuous \mathcal{F}_t -supermartingale w.r.t. \mathbb{P}^x for all $x \in E$.

(ii) The function u is β -excessive.

Remark. The implication (*ii*) \implies (*i*) is essentially due to J.L. Doob, [Semimartingales and subharmonic functions, *TAMS* 1954], in the case $\beta = 0$, for the Brownian motion and classical superharmonic functions.

First aim: To show that this connection can be extended between the space of **differences of excessive functions** on the one hand, and **quasimartingales** on the other hand, with concrete applications to semi-Dirichlet forms.

References

- L. Beznea, I. Cîmpean, M. Röckner, Stoch. Proc. & Appl., 2018
- L. Beznea, I. Cîmpean, Trans. Amer. Math. Soc., 2018
- L. Beznea, I. Cîmpean, M. Röckner, A new approach to the existence of invariant measures for Markovian semigroups, *Ann. l'Inst. H. Poincaré, Probab. et Statistiques*, 2018, to appear
- L. Beznea, I. Cîmpean, In: *Stochastic Partial Differential Equations and Related Fields*, Springer 2018

- **Theorem.** The following assertions are equivalent for a non-negative real-valued \mathcal{B} -measurable function u.
- (i) u(X) is an \mathcal{F}_t -semimartingale w.r.t. all \mathbb{P}^x , $x \in E$.
- (ii) u is locally the difference of two finite 1-excessive functions.
- [E. Çinlar, J. Jacod, P. Protter, M.J. Sharpe, Z. W. verw. Gebiete 1980]

Quasimartingales

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ be a filtered probability space satisfying the usual hypotheses.

An \mathcal{F}_t -adapted, right-continuous integrable process $(Z_t)_{t \ge 0}$ is called \mathbb{P} -quasimartingale if

$$\operatorname{Var}^{\mathbb{P}}(Z) := \sup_{\tau} \mathbb{E}\{\sum_{i=1}^{n} |\mathbb{E}[Z_{t_i} - Z_{t_{i-1}}|\mathcal{F}_{t_{i-1}}]| + |Z_{t_n}|\} < \infty,$$

where the supremum is taken over all partitions $\tau : \mathbf{0} = t_0 \leqslant t_1 \leqslant \ldots \leqslant t_n < \infty$.

[Donald F. Fisk, Quasi-martingales, TAMS, 1965]

- Every positive, right-continuous supermartingale is a quasimartingale.
- Every quasimartingale is a semimartingale.
- The set of all quasimartingales is a vector space.

A real-valued process on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ satisfying the usual hypotheses is a quasimartingale if and only if it is the difference of two positive right-continuous \mathcal{F}_t -supermartingales.

[P.E. Protter, Stochastic Integration and Diff. Equations., Springer 2005][C. Dellacherie, P.A. Meyer, Probabilité et potentiels B, Hermann 1980]

Remark. If u(X) is a quasimartingale, then the following two conditions for *u* are necessary:

(i) $\sup_{t>0} P_t |u| < \infty$

and

(ii) *u* is finely continuous.

The first assertion is clear since for each $x \in E$

$$\sup_{t} P_t |u|(x) = \sup_{t} \mathbb{E}^x |u(X_t)| \leqslant Var^{\mathbb{P}^x}(u(X)) < \infty.$$

The second one follows from the Blumenthal-Getoor's characterisation of the fine continuity.

For a real-valued function u, a finite partition τ of \mathbb{R}^+ , $\tau : 0 = t_0 \leq t_1 \leq \ldots \leq t_n < \infty$, and $\alpha > 0$ we set

$$egin{aligned} V^lpha_{ au}(u) &:= \sum_{i=1}^n P^lpha_{t_{i-1}} |u - P^lpha_{t_i - t_{i-1}} u| + P^lpha_{t_n} |u|, \ V^lpha(u) &:= \sup_{ au} V^lpha_{ au}(u). \end{aligned}$$

where the supremum is taken over all finite partitions of \mathbb{R}_+ .

Admissible sequence of partitions: an increasing sequence $(\tau_n)_{n \ge 1}$ of finite partitions of \mathbb{R}_+ such that $\bigcup_{k \ge 1} \tau_k$ is dense in \mathbb{R}_+ and if $r \in \bigcup_{k \ge 1} \tau_k$ then $r + \tau_n \subset \bigcup_{k \ge 1} \tau_k$ for all $n \ge 1$.

Theorem

Let u be a real-valued \mathcal{B} -measurable function and $\beta \ge 0$ such that $P_t|u| < \infty$ for all t. Then the following assertions are equivalent.

(i) $(e^{-\beta t}u(X_t))_{t\geq 0}$ is a \mathbb{P}^x -quasimartingale for all $x \in E$.

(ii) *u* is finely continuous and $\sup_{n} V_{\tau_n}^{\beta}(u) < \infty$ on *E* for one (hence all) admissible sequence of partitions $(\tau_n)_n$.

(iii) u is a difference of two real-valued β -excessive functions.

[L. Beznea, I. Cîmpean, Trans. Amer. Math. Soc. 2018]

• Key idea: By the Markov property one can show that $Var^{\mathbb{P}^{x}}((e^{-\alpha t}u(X_{t})_{t \ge 0}) = V^{\alpha}(u)(x)$ for all $x \in E$,

meaning that assertion (i) holds if and only if $V^{\alpha}(u) < \infty$.

• $V^{\alpha}(u)$ is a supremum of measurable functions taken over an uncountable set of partitions, hence it may no longer be measurable. However, the set $[V^{\alpha}(u) < \infty]$ is of interest to us, not necessarily $V^{\alpha}(u)$.

• It turns out that $[V^{\alpha}(u) < \infty]$ is measurable and, moreover, it is completely determined by $\sup_{n} V^{\alpha}_{\tau_{n}}(u)$ for any admissible sequence of partitions $(\tau_{n})_{n \ge 1}$. This aspect is crucial in order to give criteria to check the quasimartingale nature of u(X).

Criteria for quasimartingale functions on L^p-spaces

Assume that μ is a σ -finite **sub-invariant measure** for $(P_t)_{t \ge 0}$; i.e., $\mu \circ P_t \le \mu$ for all t > 0.

Proposition

The following assertions are equivalent for a \mathcal{B} -measurable function $u \in \bigcup_{1 \le p \le \infty} L^p(\mu)$ and $\beta \ge 0$.

(i) There exists a μ -version \tilde{u} of u such that $(e^{-\beta t}\tilde{u}(X_t))_{t\geq 0}$ is a \mathbb{P}^x -quasimartingale for $x \in E$ μ -a.e.

(ii) For an admissible sequence of partitions of $(\tau_n)_{n\geq 1}$ of \mathbb{R}_+ , $\sup_n V^{\beta}_{\tau_n}(u) < \infty \mu$ -a.e.

(iii) There exist $u_1, u_2 \in E(\mathcal{U}_\beta)$ finite μ -a.e. such that $u = u_1 - u_2 \mu$ -a.e.

Remark. If *u* is finely continuous and one of the above equivalent assertions is satisfied then all of the statements hold quasi everywhere, not only μ -a.e., since an μ -negligible finely open set is μ -polar. If in addition μ is a reference measure then the assertions hold everywhere on *E*.

Since μ is sub-invariant, $(P_t)_{t\geq 0}$ and \mathcal{U} extend to strongly continuous semigroup resp. resolvent family of contractions on $L^p(\mu)$, $1 \leq p < \infty$.

The corresponding generator (L_p, D(L_p) ⊂ L^p(µ)) is defined as

 $D(\mathsf{L}_{p}) = \{ U_{\alpha}f : f \in L^{p}(m) \},\$

 $L_{\rho}(U_{\alpha}f) := \alpha U_{\alpha}f - f$ for all $f \in L^{\rho}(\mu), \ 1 \leq \rho < \infty$,

with the remark that this definition is independent of $\alpha > 0$.

• The analogous notations for the **dual** structure are \hat{P}_t and $(\hat{L}_p, D(\hat{L}_p))$, and note that the adjoint of L_p is \hat{L}_{p^*} ; $\frac{1}{p} + \frac{1}{p^*} = 1$.

We focus our attention on a class of β -quasimartingale functions which arises as a natural extension of $D(L_p)$.

• Any function $u \in D(L_p)$, $1 \le p < \infty$, has a representation $u = U_{\beta}f = U_{\beta}(f^+) - U_{\beta}(f^-)$ with $U_{\beta}(f^{\pm}) \in E(\mathcal{U}_{\beta}) \cap L^p(\mu)$, hence u has a β -quasimartingale version for all $\beta > 0$; moreover, $\|P_t u - u\|_p = \left\| \int_0^t P_s L_p u ds \right\|_p \le t \|L_p u\|_p$.

• The converse is also true, namely if $1 , <math>u \in L^p(\mu)$, and $||P_t u - u||_p \leq const \cdot t$, $t \geq 0$, then $u \in D(L_p)$. But this is no longer the case if p = 1 (because of the lack of reflexivity of L^1), i.e. $||P_t u - u||_1 \leq const \cdot t$ does not imply $u \in D(L_1)$. However, it turns out that this last condition on $L^1(\mu)$ is yet enough to ensure that u is a β -quasimartingale function.

Proposition

Let $1 \leq p < \infty$ and suppose $\mathcal{A} \subset \{u \in L^{p^*}_+(\mu) : \|u\|_{p^*} \leq 1\}, \widehat{P}_s \mathcal{A} \subset \mathcal{A}$ for all $s \geq 0$, and $E = \bigcup_{\substack{f \in \mathcal{A} \\ f \in \mathcal{A}}} \operatorname{supp}(f) \mu$ -a.e. If $u \in L^p(\mu)$ satisfies $\sup_{f \in \mathcal{A}} \int_E |P_t u - u| f d \mu \leq \operatorname{const} \cdot t \text{ for all } t \geq 0$, then there exists an μ -version \widetilde{u} of u such that $(e^{-\beta t} \widetilde{u}(X_t))_{t \geq 0}$ is a \mathbb{P}^x -quasimartingale for all $x \in E$ μ -a.e. and every $\beta > 0$. • Assume that the semigroup $(P_t)_{t\geq 0}$ is associated to a semi-Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(E, m)$, where *m* is a σ -finite measure on the Lusin measurable space (E, \mathcal{B}) .

• By [L. Beznea, N. Boboc, M. Röckner, *Pot. Anal.* 2006] there exists a (larger) Lusin topological space E_1 such that $E \subset E_1$, E belongs to \mathcal{B}_1 (the σ -algebra of all Borel subsets of E_1), $\mathcal{B} = \mathcal{B}_1|_E$, and $(\mathcal{E}, \mathcal{F})$ regarded as a semi-Dirichlet form on $L^2(E_1, \overline{m})$ is quasi-regular, where \overline{m} is the measure on (E_1, \mathcal{B}_1) extending m by zero on $E_1 \setminus E$. Consequently, we may consider a right Markov process X with state space E_1 which is associated with the semi-Dirichlet form $(\mathcal{E}, \mathcal{F})$.

• If $u \in \mathcal{F}$ then \tilde{u} denotes a quasi continuous version of u as a function on E_1 which always exists and it is uniquely determined quasi everywhere.

For a closed set *F* define $\mathcal{F}_{b,F} := \{ v \in \mathcal{F} : v \text{ is bounded and } v = 0 \text{ } m\text{-a.e. on } E \setminus F \}.$

Theorem

Let $u \in \mathcal{F}$ and assume there exist a nest $(F_n)_{n \ge 1}$ and constants $(c_n)_{n \ge 1}$ such that

$$\mathcal{E}(u,v) \leqslant c_n \|v\|_{\infty}$$
 for all $v \in \mathcal{F}_{b,F_n}$.

Then $\tilde{u}(X)$ is a \mathbb{P}^x -semimartingale for $x \in E_1$ quasi everywhere.

• If *E* is a bounded domain in \mathbb{R}^d (or more generally in an abstract Wiener space) and the condition from the theorem holds for *u* replaced by the canonical projections, then the conclusion is that the underlying Markov process is a semimartingale.

• In particular, the semimartingale nature of reflected diffusions on general bounded domains can be studied. This problem dates back to the work of [R.F Bass, P. Hsu, *Proc. Amer. Math. Soc.* 1990] where the authors showed that the reflected Brownian motion on a Lipschitz domain in \mathbb{R}^d is a semimartingale. • Later on, this result has been extended to more general domains and diffusions:

[R.J. Williams, W.A. Zheng, Ann. Inst. Henri Poincaré, 1990],

[Z. Q. Chen, Probab. Theory Related Fields, 1993],

[Z.Q. Chen, PJ. Fitzsimmons, R.J. Williams, Pot. Anal., 1993], and

[E. Pardoux, R. J. Williams, Ann. Inst. H. Poincaré Probab. Statist., 1994]

A clarifying result has been obtained in

[Z.Q. Chen, PJ. Fitzsimmons, R.J. Williams, *Pot. Anal.*, 1993], showing that the stationary reflecting Brownian motion on a bounded Euclidian domain is a quasimartingale on each compact time interval if and only if the domain is a strong Caccioppoli set.

• A complete study of these problems, but only in the symmetric case, have been done in a series of papers by M. Fukushima and co-authors, with deep applications to BV functions in both finite and infinite dimensions:

[M. Fukushima, *Electronic J. of Probability* 1999, *J. Funct. Anal.* 2000] and

[M. Fukushima, M. Hino, J. Funct. Anal., 2001].

• All these previous results have been obtained using the same common tools: symmetric Dirichlet forms and Fukushima decomposition.

Further applications to the reflection problem in infinite dimensions have been studied in
[M. Röckner, R. Zhu, X. Zhu, Anna. Probab., 2012] and
[M. Röckner, R. Zhu, X. Zhu, Forum Math., 2015] where non-symmetric situations were also considered.

• In the case of semi-Dirichlet forms, a Fukushima decomposition is not yet known to hold, unless some additional hypotheses are assumed; see e.g. [Y. Oshima, Walter de Gruyter 2013]. Here is where our study played its role, allowing us to completely avoid Fukushima decomposition or the existence of the dual process.

The case of the local semi-Dirichlet forms

Assume that $(\mathcal{E}, \mathcal{F})$ is quasi-regular and that it is **local**, i.e., $\mathcal{E}(u, v) = 0$ for all $u, v \in \mathcal{F}$ with disjoint compact supports. The local property is equivalent with the fact that the associated process is a diffusion.

As in [M. Fukushima, *J. Funct. Anal.*, 2000] the local property of \mathcal{E} allows us to extend the results to the case when *u* is only locally in the domain of the form, or to even more general situation, as stated in the next result.

Corollary

Assume that $(\mathcal{E}, \mathcal{F})$ is local. Let u be a real-valued \mathcal{B} -measurable finely continuous function and let $(v_k)_k \subset \mathcal{F}$ such that $v_k \underset{k \to \infty}{\longrightarrow} u$ pointwise except an m-polar set and boundedly on each element of a nest $(F_n)_{n \ge 1}$. Further, suppose that there exist constants c_n such that

 $|\mathcal{E}(v_k, v)| \leqslant c_n \|v\|_{\infty}$ for all $v \in \mathcal{F}_{b, F_n}$.

Then u(X) is a \mathbb{P}^x -semimartingale for $x \in E$ quasi everywhere.

III. Martingale functions with respect to the dual Markov process

Assume that $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ is the resolvent of a right process X with state space E and let \mathcal{T}_0 be the Lusin topology of E, having \mathcal{B} as Borel σ -algebra, and let m be a fixed \mathcal{U} - sub-invariant measure, i.e. $m \circ \alpha U_{\alpha} \leq m, \alpha > 0$.

Aim: To identify martingale functions and co-martingale ones, i.e., martingales w.r.t. some dual process.

• There exists a second sub-Markovian resolvent of kernels on *E* denoted by $\widehat{\mathcal{U}} = (\widehat{U}_{\alpha})_{\alpha>0}$ which is in **weak duality** with \mathcal{U} w.r.t. *m* in the sense that $\int_{E} fU_{\alpha}g \, dm = \int_{E} g\widehat{U}_{\alpha}f \, dm$ for all $f, g \ge 0$, and $\alpha > 0$.

• Both resolvents \mathcal{U} and $\widehat{\mathcal{U}}$ can be contractively extended to any $L^{p}(E, m)$ space for all $1 \leq p < \infty$, and they are strongly continuous.

• There exist a larger Lusin measurable space $(\overline{E}, \overline{B})$, with $E \subset \overline{E}$, $E \in \mathcal{B}, \mathcal{B} = \overline{\mathcal{B}}|_{E}$, and two processes \overline{X} and \widehat{X} with common state space \overline{E} , such that \overline{X} is a right process with \overline{E} endowed with a convenient Lusin topology having $\overline{\mathcal{B}}$ as Borel σ -algebra (resp. \widehat{X} is a right process w.r.t. to a second Lusin topology on \overline{E} , also generating $\overline{\mathcal{B}}$), the restriction of \overline{X} to E is precisely X, and the resolvents of \overline{X} and \widehat{X} are in duality with respect to \overline{m} , where \overline{m} is the extension of m from E to \overline{E} with zero on $\overline{E} \setminus E$.

• The α -excessive functions, $\alpha > 0$, with respect to \widehat{X} on \overline{E} are precisely the unique extensions by continuity in the fine topology generated by \widehat{X} of the $\widehat{\mathcal{U}}_{\alpha}$ -excessive functions. In particular, the set *E* is dense in \overline{E} in the fine topology of \widehat{X} .

• The strongly continuous resolvent of sub-Markovian contractions induced on $L^p(m)$, $1 \le p < \infty$, by the process \overline{X} (resp. \widehat{X}) coincides with \mathcal{U} (resp. $\widehat{\mathcal{U}}$).

[L. Beznea, M. Röckner, Pot. Anal., 2015]

[L. Beznea, N. Boboc, M. Röckner, Pot. Anal., 2006]

Theorem

Let u be function from $L^p(E, m)$, $1 \le p < \infty$. Then the following assertions are equivalent.

(*i*) The process $(u(X_t))_{t \ge 0}$ is a martingale w.r.t. \mathbb{P}^x for all $x \in E$ m-a.e. (*ii*) The process $(u(\widehat{X}_t))_{t \ge 0}$ is a martingale w.r.t. $\widehat{\mathbb{P}}^x$ for all $x \in E$ m-a.e. (*iii*) The function u is L_p -harmonic, i.e. $u \in D(L_p)$ and $L_p u = 0$. (*iv*) The function u is \widehat{L}_p -harmonic, i.e. $u \in D(\widehat{L}_p)$ and $\widehat{L}_p u = 0$. Assume that $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ is a sub-Markovian resolvent of kernels on E and m is a σ -finite sub-invariant measure. Let $\widehat{\mathcal{U}} = (\widehat{U}_{\alpha})_{\alpha>0}$ be a second sub-Markovian resolvent of kernels on E which is in weak duality with \mathcal{U} w.r.t. m.

We focus on a special class of differences of excessive functions (which are in fact harmonic when the resolvent is Markovian).

• A real-valued \mathcal{B} -measurable function $v \in \bigcup_{1 \le p \le \infty} L^p(E, m)$ is called \mathcal{U} -invariant provided that $U_{\alpha}(vf) = vU_{\alpha}f$ *m*-a.e. for all bounded and \mathcal{B} -measurable functions *f* and $\alpha > 0$.

• A set $A \in \mathcal{B}$ is called \mathcal{U} -invariant if 1_A is \mathcal{U} -invariant; the collection of all \mathcal{U} -invariant sets is a σ -algebra.

• If $v \ge 0$ is \mathcal{U} -invariant then there exists $u \in E(\mathcal{U})$ such that u = v m-a.e.

• If $\alpha U_{\alpha} 1 = 1$ *m*-a.e. then for every invariant function *v* we have $\alpha U_{\alpha} v = v$ *m*-a.e, which is equivalent (if \mathcal{U} is strongly continuous) with *v* being L_p-harmonic, i.e. $v \in D(L_p)$ and L_pv = 0.

The next result is a straightforward consequence of the duality between $\mathcal U$ and $\widehat{\mathcal U}.$

Proposition

The following assertions hold.

(i) A function u is \mathcal{U} -invariant if and only if it is $\hat{\mathcal{U}}$ -invariant.

(ii) The set of all \mathcal{U} -invariant functions from $L^p(E, m)$ is a vector lattice with respect to the pointwise order relation.

Theorem

Let $u \in L^{p}(E, m)$, $1 \leq p < \infty$, and consider the following conditions.

(i) $\alpha U_{\alpha}u = u$ m-a.e. for one (and thus for all) $\alpha > 0$.

(ii) $\alpha \widehat{U}_{\alpha} u = u m$ -a.e., $\alpha > 0$.

(iii) The function u is \mathcal{U} -invariant.

(iv) $U_{\alpha}u = uU_{\alpha}1$ and $\hat{U}_{\alpha}u = u\hat{U}_{\alpha}1$ m-a.e. for one (and thus for all) $\alpha > 0$ (v) The function u is measurable w.r.t. the σ -algebra of \mathcal{U} -invariant sets.

Then $\mathcal{I}_p := \{u \in L^p(E, m) : \alpha U_\alpha u = u \text{ m-a.e.}, \alpha > 0\}$ is a vector lattice w.r.t. the pointwise order relation and (i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v). If $\alpha U_\alpha 1 = 1$ or $\alpha \widehat{U}_\alpha 1 = 1$ m-a.e. then assertions (i) - (v) are equivalent. If $m(E) < \infty$ and $p = \infty$ then all of the statements above are still true. If $p = \infty$ and \mathcal{U} is m-recurrent (i.e. there exists $0 \leq f \in L^1(E, m)$ s.t. $Uf = \infty$ m-a.e.) then the equivalences of (i)-(v) remain valid. • Similar characterizations for invariance as in the above theorem, but in the recurrent case and for functions which are bounded or integrable with bounded negative parts were investigated in [R. L. Schilling, *Probab. Math. Statist.*, 2004].

• Of special interest is the situation when the only invariant functions are the constant ones (*irreducibility*) because it entails ergodic properties for the semigroup resp. resolvent; see e.g.

[K.T. Sturm, J. Reine Angew. Math., 1994],

[S. Albeverio, Y. G. Kondratiev, and M. Röckner, *J. Funct. Anal.*, 1997], and

[L. Beznea, I. Cîmpean, M. Röckner, Stoch. Proc. & Appl., 2018]

V. *L*¹-harmonic functions and invariant probability measures

Assume that \mathcal{U} is the resolvent of a right Markov process with transition function $(P_t)_{t\geq 0}$ and *m* is a σ -finite sub-invariant measure for \mathcal{U} and hence for $(P_t)_{t\geq 0}$, while L₁ and \widehat{L}_1 stand for the generator, resp. the co-generator on $L^1(E, m)$.

Corollary

The following assertions are equivalent.

(i) There exists an invariant probability measure for $(P_t)_{t\geq 0}$ which is absolutely continuous w.r.t. m.

(ii) There exists a non-zero element $\rho \in D(L_1)$ such that $L_1\rho = 0$.

• Regarding the previous result, we point out that if $m(E) < \infty$ and $(P_t)_{t \ge 0}$ is conservative (i.e. $P_t 1 = 1$ *m*-a.e. for all t > 0) then it is clear that *m* itself is invariant, so that the last corollary has got a point only when $m(E) = \infty$.

• We emphasize that the sub-invariance property of *m* is an essential assumption.

Auxiliary measure

• Assume that $(P_t)_{t \ge 0}$ is a measurable Markovian transition function on a measurable space (E, B) and *m* is an **auxiliary measure** for $(P_t)_{t \ge 0}$, i.e. it is a finite positive measure such that $m(f) = 0 \Rightarrow m(P_t f) = 0$ for all t > 0 and $f \ge 0$.

Aim: To investigate the existence of an invariant probability measure for $(P_t)_{t \ge 0}$ which is absolutely continuous with respect to *m*.

• The measure *m* is not assumed sub-invariant, since otherwise it would be automatically invariant.

• Any invariant measure is clearly auxiliary, but the converse is far from being true.

• The condition on *m* of being auxiliary is a minimal one: for every finite measure μ and $\alpha > 0$ one has that $\mu \circ U_{\alpha}$ is auxiliary; see e.g. [M. Röckner, G. Trutnau, *IDAQP*, 2007],

[L. Beznea, I. Cîmpean, M. Röckner, Ann. l'Inst. H. Poincaré, 2018].

An auxiliary measure *m* is called **almost invariant** for $(P_t)_{t\geq 0}$ if there exist $\delta \in [0, 1)$ and a set function $\phi : \mathcal{B} \to \mathbb{R}_+$ which is absolutely continuous with respect to *m* (i.e. $\lim_{m(A)\to 0} \phi(A) = 0$) such that

 $m(P_t 1_A) \leq \delta m(E) + \phi(A)$ for all t > 0.

Any positive finite invariant measure is almost invariant.

Theorem

The following assertions are equivalent.

(i) There exists a nonzero positive finite invariant measure for $(P_t)_{t \ge 0}$ which is absolutely continuous with respect to m.

(ii) m is almost invariant.

Lemma

(i) The adjoint semigroup $(P_t^*)_{t\geq 0}$ on $(L^{\infty}(m))^*$ maps $L^1(m)$ into itself, and restricted to $L^1(m)$ it becomes a semigroup of positivity preserving operators.

(ii) A probability measure $\nu = \rho \cdot m$ is invariant with respect to $(P_t)_{t \ge 0}$ if and only if ρ is m-co-excessive, i.e. $P_t^* \rho \le \rho$ for all $t \ge 0$.

• Inspired by ergodic properties for semigroups and resolvents, our idea in order to produce co-excessive functions is to apply (not for $(P_t)_{t\geq 0}$ but for its adjoint semigroup) a compactness result in $L^1(m)$ due to

[J. Komlós, Acta Math. Acad. Sci. Hungar. 1967], saying that:

an $L^1(m)$ -bounded sequence of functions possesses a subsequence whose Cesaro means are almost surely convergent to a limit from $L^1(m)$. J.L. Doob, *Classical potential theory and its probabilistic counterpart*, Springer 1984, page 808:

Under the respective names "semimartingale" and "lower semimartingale," submartingales and supermartingales were introduced in [J.L. Snell, *TAMS* 1952] and [Doob, *Stochastic Processes* 1953]. This obviously inappropriate nomenclature was chosen under the malign influence of the noise level of radio's SUPERman program, a favorite supper-time program of Doob's son during the writing of [Doob, *Stochastic Processes* 1953]. **Proof.** (i) \implies (ii). If $(e^{-\beta t}u(X_t))_{t\geq 0}$ is a right-continuous supermartingale then by taking expectations we get that $e^{-\beta t}\mathbb{E}^x u(X_t) \leq \mathbb{E}^x u(X_0)$, hence *u* is β -supermedian.

- If *u* is β -supermedian then to prove that it is β -excessive reduces to prove that *u* is finely continuous, which in turns follows by the well known characterization for the fine continuity:

u is finely continuous if and only if u(X) has right continuous trajectories \mathbb{P}^x -a.s. for all $x \in E$.

(ii) \implies (i). Since *u* is β -supermedian and by the Markov property we have for all $0 \leq s \leq t$

$$\mathbb{E}^{\mathsf{X}}[e^{-eta(t+s)}u(X_{t+s})|\mathcal{F}_s] = e^{-eta(t+s)}\mathbb{E}^{\mathsf{X}_s}u(X_t) =$$

$$e^{-\beta(t+s)}P_tu(X_s)\leqslant e^{-\beta s}u(X_s),$$

hence $(e^{-\beta t}u(X_t))_{t\geq 0}$ is an \mathcal{F}_t -supermartingale.

The right-continuity of the trajectories follows by the fine continuity of u via the previously mentioned characterization.