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• E : a Lusin topological space endowed with the Borel σ-algebra B

• X = (Ω,F ,Ft ,Xt ,Px , ζ) be a right Markov process with state space
E , transition function :
• (Pt )t>0 : the transition function of X ,

Ptu(x) = Ex (u(Xt ); t < ζ), t > 0, x ∈ E .

Supermedian and excessive functions
• For β > 0, a B-measurable function f : E → [0,∞] is called
β-supermedian if Pβ

t f 6 f , t > 0;
(Pβ

t )t>0 denotes the β-level of the semigroup of kernels (Pt )t>0,
Pβ

t := e−βtPt .

• If f is β-supermedian and lim
t→0

Pt f = f pointwise on E , then it is

called β-excessive.

• A B-measurable function f is β-excessive if and only if αUα+βf 6 f ,
α > 0, and lim

α→∞
αUαf = f pointwise on E ,

where U = (Uα)α>0 is the resolvent family of the process X ,
Uα :=

∫∞
0 e−αtPtdt .



• Uβ:= the β-level of the resolvent U , Uβ := (Uβ+α)α>0;

• E(Uβ):= the convex cone of all β-excessive functions.
If β = 0 we drop the index β from notations.

Proposition
The following assertions are equivalent for a non-negative real-valued
B-measurable function u and β > 0.

(i) (e−βtu(Xt ))t>0 is a right continuous Ft -supermartingale w.r.t. Px for
all x ∈ E.

(ii) The function u is β-excessive.

Remark. The implication (ii) =⇒ (i) is essentially due to J.L. Doob,
[Semimartingales and subharmonic functions, TAMS 1954],
in the case β = 0, for the Brownian motion and classical
superharmonic functions.



First aim: To show that this connection can be extended between the
space of differences of excessive functions on the one hand, and
quasimartingales on the other hand, with concrete applications to
semi-Dirichlet forms.
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I. Differences of excessive functions and
quasimartingales of Markov processes

Theorem. The following assertions are equivalent for a non-negative
real-valued B-measurable function u.

(i) u(X ) is an Ft -semimartingale w.r.t. all Px , x ∈ E.

(ii) u is locally the difference of two finite 1-excessive functions.

[E. Çinlar, J. Jacod, P. Protter, M.J. Sharpe, Z. W. verw. Gebiete 1980]



Quasimartingales

Let (Ω,F ,Ft ,P) be a filtered probability space satisfying the usual
hypotheses.

An Ft -adapted, right-continuous integrable process (Zt )t>0 is called
P-quasimartingale if

VarP(Z ) := sup
τ

E{
n∑

i=1

|E[Zti − Zti−1 |Fti−1 ]|+ |Ztn |} <∞,

where the supremum is taken over all partitions
τ : 0 = t0 6 t1 6 . . . 6 tn <∞.

[Donald F. Fisk, Quasi-martingales, TAMS, 1965]

• Every positive, right-continuous supermartingale is a quasimartingale.

• Every quasimartingale is a semimartingale.

• The set of all quasimartingales is a vector space.



M. Rao’s characterization of the quasimartingales

A real-valued process on a filtered probability space (Ω,F ,Ft ,P)
satisfying the usual hypotheses is a quasimartingale if and only if it is
the difference of two positive right-continuous Ft -supermartingales.

[P.E. Protter, Stochastic Integration and Diff. Equations., Springer 2005]

[C. Dellacherie, P.A. Meyer, Probabilité et potentiels B, Hermann 1980]



Remark. If u(X ) is a quasimartingale, then the following two conditions
for u are necessary:

(i) sup
t>0

Pt |u| <∞

and

(ii) u is finely continuous.

The first assertion is clear since for each x ∈ E

sup
t

Pt |u|(x) = sup
t

Ex |u(Xt )| 6 VarP
x
(u(X )) <∞.

The second one follows from the Blumenthal-Getoor’s characterisation
of the fine continuity.



For a real-valued function u,
a finite partition τ of R+, τ : 0 = t0 6 t1 6 . . . 6 tn <∞,
and α > 0 we set

Vα
τ (u) :=

n∑
i=1

Pα
ti−1
|u − Pα

ti−ti−1
u|+ Pα

tn |u|,

Vα(u) := sup
τ

Vα
τ (u).

where the supremum is taken over all finite partitions of R+.

Admissible sequence of partitions: an increasing sequence (τn)n>1
of finite partitions of R+ such that

⋃
k>1

τk is dense in R+ and if r ∈
⋃

k>1
τk

then r + τn ⊂
⋃

k>1
τk for all n > 1.



Theorem
Let u be a real-valued B-measurable function and β > 0 such that
Pt |u| <∞ for all t . Then the following assertions are equivalent.

(i) (e−βtu(Xt ))t>0 is a Px -quasimartingale for all x ∈ E.

(ii) u is finely continuous and sup
n

V β
τn (u) <∞ on E for one (hence all)

admissible sequence of partitions (τn)n.

(iii) u is a difference of two real-valued β-excessive functions.

[L. Beznea, I. Cîmpean, Trans. Amer. Math. Soc. 2018]



Comments about the proof

• Key idea: By the Markov property one can show that

VarP
x
((e−αtu(Xt )t>0) = Vα(u)(x) for all x ∈ E ,

meaning that assertion (i) holds if and only if Vα(u) <∞.

• Vα(u) is a supremum of measurable functions taken over an
uncountable set of partitions, hence it may no longer be measurable.
However, the set [Vα(u) <∞] is of interest to us, not necessarily
Vα(u).

• It turns out that [Vα(u) <∞] is measurable and, moreover, it is
completely determined by sup

n
Vα
τn (u) for any admissible sequence of

partitions (τn)n>1. This aspect is crucial in order to give criteria to check
the quasimartingale nature of u(X ).



Criteria for quasimartingale functions on Lp-spaces
Assume that µ is a σ-finite sub-invariant measure for (Pt )t>0;
i.e., µ ◦ Pt 6 µ for all t > 0.

Proposition
The following assertions are equivalent for a B-measurable function
u ∈

⋃
16p6∞

Lp(µ) and β > 0.

(i) There exists a µ-version ũ of u such that (e−βt ũ(Xt ))t>0 is a
Px -quasimartingale for x ∈ E µ-a.e.
(ii) For an admissible sequence of partitions of (τn)n>1 of R+,
sup

n
V β
τn (u) <∞ µ-a.e.

(iii) There exist u1,u2 ∈ E(Uβ) finite µ-a.e. such that u = u1 − u2 µ-a.e.

Remark. If u is finely continuous and one of the above equivalent
assertions is satisfied then all of the statements hold quasi everywhere,
not only µ-a.e., since an µ-negligible finely open set is µ-polar.
If in addition µ is a reference measure then the assertions hold
everywhere on E .



The generator on Lp-spaces

Since µ is sub-invariant, (Pt )t>0 and U extend to strongly continuous
semigroup resp. resolvent family of contractions on Lp(µ), 1 6 p <∞.

• The corresponding generator (Lp,D(Lp) ⊂ Lp(µ)) is defined as

D(Lp) = {Uαf : f ∈ Lp(m)},

Lp(Uαf ) := αUαf − f for all f ∈ Lp(µ), 1 6 p <∞,

with the remark that this definition is independent of α > 0.

• The analogous notations for the dual structure are P̂t and
(L̂p,D(L̂p)), and note that the adjoint of Lp is L̂p∗ ; 1

p + 1
p∗ = 1.

We focus our attention on a class of β-quasimartingale functions which
arises as a natural extension of D(Lp).



• Any function u ∈ D(Lp), 1 6 p <∞, has a representation
u = Uβf = Uβ(f+)− Uβ(f−) with Uβ(f±) ∈ E(Uβ) ∩ Lp(µ), hence u has
a β-quasimartingale version for all β > 0; moreover,
‖Ptu − u‖p =

∥∥∥∫ t
0 PsLpuds

∥∥∥
p
6 t‖Lpu‖p.

• The converse is also true, namely if 1 < p <∞, u ∈ Lp(µ), and
‖Ptu − u‖p 6 const · t , t > 0, then u ∈ D(Lp). But this is no longer the
case if p = 1 (because of the lack of reflexivity of L1), i.e.
‖Ptu − u‖1 6 const · t does not imply u ∈ D(L1).
However, it turns out that this last condition on L1(µ) is yet enough to
ensure that u is a β-quasimartingale function.

Proposition

Let 1 6 p <∞ and suppose A ⊂ {u ∈ Lp∗

+ (µ) : ‖u‖p∗ 6 1}, P̂sA ⊂ A
for all s > 0, and E =

⋃
f∈A

supp(f ) µ-a.e. If u ∈ Lp(µ) satisfies

sup
f∈A

∫
E |Ptu − u|fdµ 6 const · t for all t > 0,

then there exists an µ-version ũ of u such that (e−βt ũ(Xt ))t>0 is a
Px -quasimartingale for all x ∈ E µ-a.e. and every β > 0.



II. Applications to semi-Dirichlet forms

• Assume that the semigroup (Pt )t>0 is associated to a
semi-Dirichlet form (E ,F) on L2(E ,m), where m is a σ-finite measure
on the Lusin measurable space (E ,B).

• By [L. Beznea, N. Boboc, M. Röckner, Pot. Anal. 2006] there exists
a (larger) Lusin topological space E1 such that E ⊂ E1, E belongs to B1
(the σ-algebra of all Borel subsets of E1), B = B1|E , and (E ,F)
regarded as a semi-Dirichlet form on L2(E1,m) is quasi-regular, where
m is the measure on (E1,B1) extending m by zero on E1 \ E .
Consequently, we may consider a right Markov process X with state
space E1 which is associated with the semi-Dirichlet form (E ,F).

• If u ∈ F then ũ denotes a quasi continuous version of u as a
function on E1 which always exists and it is uniquely determined quasi
everywhere.



For a closed set F define
Fb,F := {v ∈ F : v is bounded and v = 0 m-a.e. on E \ F}.

Theorem
Let u ∈ F and assume there exist a nest (Fn)n≥1 and constants (cn)n>1
such that

E(u, v) 6 cn‖v‖∞ for all v ∈ Fb,Fn .

Then ũ(X ) is a Px -semimartingale for x ∈ E1 quasi everywhere.

• If E is a bounded domain in Rd (or more generally in an abstract
Wiener space) and the condition from the theorem holds for u replaced
by the canonical projections, then the conclusion is that the underlying
Markov process is a semimartingale.

• In particular, the semimartingale nature of reflected diffusions on
general bounded domains can be studied.
This problem dates back to the work of
[R.F Bass, P. Hsu, Proc. Amer. Math. Soc. 1990]
where the authors showed that the reflected Brownian motion on a
Lipschitz domain in Rd is a semimartingale.



• Later on, this result has been extended to more general domains
and diffusions:
[R.J. Williams, W.A. Zheng, Ann. Inst. Henri Poincaré, 1990],
[Z. Q. Chen, Probab. Theory Related Fields, 1993],
[Z.Q. Chen, PJ. Fitzsimmons, R.J. Williams, Pot. Anal., 1993], and
[E. Pardoux, R. J. Williams, Ann. Inst. H. Poincaré Probab. Statist., 1994]

• A clarifying result has been obtained in
[Z.Q. Chen, PJ. Fitzsimmons, R.J. Williams, Pot. Anal., 1993],
showing that the stationary reflecting Brownian motion on a bounded
Euclidian domain is a quasimartingale on each compact time interval if
and only if the domain is a strong Caccioppoli set.

• A complete study of these problems, but only in the symmetric
case, have been done in a series of papers by M. Fukushima and
co-authors, with deep applications to BV functions in both finite and
infinite dimensions:
[M. Fukushima, Electronic J. of Probability 1999, J. Funct. Anal. 2000]
and
[M. Fukushima, M. Hino, J. Funct. Anal., 2001].



• All these previous results have been obtained using the same
common tools: symmetric Dirichlet forms and Fukushima decomposition.

• Further applications to the reflection problem in infinite dimensions
have been studied in
[M. Röckner, R. Zhu, X. Zhu, Anna. Probab., 2012] and
[M. Röckner, R. Zhu, X. Zhu, Forum Math., 2015]
where non-symmetric situations were also considered.

• In the case of semi-Dirichlet forms, a Fukushima decomposition is
not yet known to hold, unless some additional hypotheses are
assumed; see e.g. [Y. Oshima, Walter de Gruyter 2013].
Here is where our study played its role, allowing us to completely avoid
Fukushima decomposition or the existence of the dual process.



The case of the local semi-Dirichlet forms

Assume that (E ,F) is quasi-regular and that it is local, i.e.,
E(u, v) = 0 for all u, v ∈ F with disjoint compact supports.
The local property is equivalent with the fact that the associated
process is a diffusion.

As in [M. Fukushima, J. Funct. Anal., 2000] the local property of E
allows us to extend the results to the case when u is only locally in the
domain of the form, or to even more general situation, as stated in the
next result.

Corollary

Assume that (E ,F) is local. Let u be a real-valued B-measurable finely
continuous function and let (vk )k ⊂ F such that vk −→

k→∞
u pointwise

except an m-polar set and boundedly on each element of a nest
(Fn)n>1. Further, suppose that there exist constants cn such that

|E(vk , v)| 6 cn‖v‖∞ for all v ∈ Fb,Fn .

Then u(X ) is a Px -semimartingale for x ∈ E quasi everywhere.



III. Martingale functions with respect to the dual
Markov process

Assume that U = (Uα)α>0 is the resolvent of a right process X with
state space E and let T0 be the Lusin topology of E , having B as Borel
σ-algebra, and let m be a fixed U- sub-invariant measure, i.e.
m ◦ αUα 6 m, α > 0.

Aim: To identify martingale functions and co-martingale ones,
i.e., martingales w.r.t. some dual process.

• There exists a second sub-Markovian resolvent of kernels on E
denoted by Û = (Ûα)α>0 which is in weak duality with U w.r.t. m in the
sense that

∫
E fUαg dm =

∫
E gÛαf dm for all f ,g > 0, and α > 0.

• Both resolvents U and Û can be contractively extended to any
Lp(E ,m) space for all 1 6 p <∞, and they are strongly continuous.



• There exist a larger Lusin measurable space (E ,B), with E ⊂ E ,
E ∈ B, B = B|E , and two processes X and X̂ with common state space
E , such that X is a right process with E endowed with a convenient
Lusin topology having B as Borel σ-algebra (resp. X̂ is a right process
w.r.t. to a second Lusin topology on E , also generating B), the
restriction of X to E is precisely X , and the resolvents of X and X̂ are
in duality with respect to m, where m is the extension of m from E to E
with zero on E \ E .

• The α-excessive functions, α > 0, with respect to X̂ on E are
precisely the unique extensions by continuity in the fine topology
generated by X̂ of the Ûα-excessive functions.
In particular, the set E is dense in E in the fine topology of X̂ .

• The strongly continuous resolvent of sub-Markovian contractions
induced on Lp(m), 1 6 p <∞, by the process X (resp. X̂ ) coincides
with U (resp. Û).

[L. Beznea, M. Röckner, Pot. Anal., 2015]
[L. Beznea, N. Boboc, M. Röckner, Pot. Anal., 2006]



Theorem

Let u be function from Lp(E ,m), 1 6 p <∞. Then the following
assertions are equivalent.

(i) The process (u(Xt ))t>0 is a martingale w.r.t. Px for all x ∈ E m-a.e.

(ii) The process (u(X̂t ))t>0 is a martingale w.r.t. P̂x for all x ∈ E m-a.e.

(iii) The function u is Lp-harmonic, i.e. u ∈ D(Lp) and Lpu = 0.

(iv) The function u is L̂p-harmonic, i.e. u ∈ D(L̂p) and L̂pu = 0.



IV. Excessive and invariant functions on Lp-spaces

Assume that U = (Uα)α>0 is a sub-Markovian resolvent of kernels on E
and m is a σ-finite sub-invariant measure. Let Û = (Ûα)α>0 be a
second sub-Markovian resolvent of kernels on E which is in weak
duality with U w.r.t. m.

We focus on a special class of differences of excessive functions
(which are in fact harmonic when the resolvent is Markovian).

• A real-valued B-measurable function v ∈
⋃

16p6∞ Lp(E ,m) is
called U-invariant provided that Uα(vf ) = vUαf m-a.e. for all bounded
and B-measurable functions f and α > 0.

• A set A ∈ B is called U-invariant if 1A is U-invariant; the collection
of all U-invariant sets is a σ-algebra.



• If v > 0 is U-invariant then there exists u ∈ E(U) such that u = v m-a.e.

• If αUα1 = 1 m-a.e. then for every invariant function v we have
αUαv = v m-a.e, which is equivalent (if U is strongly continuous) with v
being Lp-harmonic, i.e. v ∈ D(Lp) and Lpv = 0.

The next result is a straightforward consequence of the duality between
U and Û .

Proposition
The following assertions hold.
(i) A function u is U-invariant if and only if it is Û-invariant.

(ii) The set of all U-invariant functions from Lp(E ,m) is a vector lattice
with respect to the pointwise order relation.



Theorem
Let u ∈ Lp(E ,m), 1 6 p <∞, and consider the following conditions.
(i) αUαu = u m-a.e. for one (and thus for all) α > 0.

(ii) αÛαu = u m-a.e., α >0.
(iii) The function u is U-invariant.
(iv) Uαu = uUα1 and Ûαu = uÛα1 m-a.e. for one (and thus for all) α >0.
(v) The function u is measurable w.r.t. the σ-algebra of U-invariant sets.

Then Ip := {u ∈ Lp(E ,m) : αUαu = u m-a.e., α > 0} is a vector lattice
w.r.t. the pointwise order relation and (i)⇔ (ii)⇒ (iii)⇔ (iv)⇔ (v).
If αUα1 = 1 or αÛα1 = 1 m-a.e. then assertions (i) - (v) are equivalent.
If m(E) <∞ and p =∞ then all of the statements above are still true.
If p =∞ and U is m-recurrent (i.e. there exists 0 6 f ∈ L1(E ,m) s.t.
Uf =∞ m-a.e.) then the equivalences of (i)-(v) remain valid.



• Similar characterizations for invariance as in the above theorem,
but in the recurrent case and for functions which are bounded or
integrable with bounded negative parts were investigated in
[R. L. Schilling, Probab. Math. Statist., 2004].

• Of special interest is the situation when the only invariant functions
are the constant ones (irreducibility) because it entails ergodic
properties for the semigroup resp. resolvent; see e.g.

[K.T. Sturm, J. Reine Angew. Math., 1994],
[S. Albeverio, Y. G. Kondratiev, and M. Röckner, J. Funct. Anal., 1997],
and
[L. Beznea, I. Cîmpean, M. Röckner, Stoch. Proc. & Appl., 2018]



V. L1-harmonic functions and invariant probability
measures

Assume that U is the resolvent of a right Markov process with transition
function (Pt )t>0 and m is a σ-finite sub-invariant measure for U and
hence for (Pt )t>0, while L1 and L̂1 stand for the generator, resp. the
co-generator on L1(E ,m).

Corollary
The following assertions are equivalent.
(i) There exists an invariant probability measure for (Pt )t>0 which is
absolutely continuous w.r.t. m.
(ii) There exists a non-zero element ρ ∈ D(L1) such that L1ρ = 0.

• Regarding the previous result, we point out that if m(E) <∞ and
(Pt )t>0 is conservative (i.e. Pt1 = 1 m-a.e. for all t > 0) then it is clear
that m itself is invariant, so that the last corollary has got a point only
when m(E) =∞.
• We emphasize that the sub-invariance property of m is an essential
assumption.



Auxiliary measure

• Assume that (Pt )t>0 is a measurable Markovian transition function
on a measurable space (E ,B) and m is an auxiliary measure for
(Pt )t>0, i.e. it is a finite positive measure such that
m(f ) = 0⇒ m(Pt f ) = 0 for all t > 0 and f > 0.

Aim: To investigate the existence of an invariant probability measure
for (Pt )t>0 which is absolutely continuous with respect to m.

• The measure m is not assumed sub-invariant, since otherwise it
would be automatically invariant.

• Any invariant measure is clearly auxiliary, but the converse is far
from being true.

• The condition on m of being auxiliary is a minimal one: for every
finite measure µ and α > 0 one has that µ ◦ Uα is auxiliary; see e.g.
[M. Röckner, G. Trutnau, IDAQP, 2007],
[L. Beznea, I. Cîmpean, M. Röckner, Ann. l’Inst. H. Poincaré, 2018].



Almost invariant and invariant measures

An auxiliary measure m is called almost invariant for (Pt )t>0 if there
exist δ ∈ [0,1) and a set function φ : B → R+ which is absolutely
continuous with respect to m (i.e. lim

m(A)→0
φ(A) = 0) such that

m(Pt1A) 6 δm(E) + φ(A) for all t > 0.

Any positive finite invariant measure is almost invariant.

Theorem

The following assertions are equivalent.

(i) There exists a nonzero positive finite invariant measure for (Pt )t>0
which is absolutely continuous with respect to m.

(ii) m is almost invariant.



Lemma

(i) The adjoint semigroup (P∗t )t>0 on (L∞(m))∗ maps L1(m) into itself,
and restricted to L1(m) it becomes a semigroup of positivity preserving
operators.

(ii) A probability measure ν = ρ ·m is invariant with respect to (Pt )t>0 if
and only if ρ is m-co-excessive, i.e. P∗t ρ 6 ρ for all t > 0.

• Inspired by ergodic properties for semigroups and resolvents, our
idea in order to produce co-excessive functions is to apply (not for
(Pt )t>0 but for its adjoint semigroup) a compactness result in L1(m) due
to
[J. Komlós, Acta Math. Acad. Sci. Hungar. 1967],
saying that:

an L1(m)-bounded sequence of functions possesses a subsequence
whose Cesaro means are almost surely convergent to a limit from L1(m).



J.L. Doob, Classical potential theory and its probabilistic counterpart,
Springer 1984, page 808:

Under the respective names "semimartingale" and "lower
semimartingale," submartingales and supermartingales were
introduced in [J.L. Snell, TAMS 1952] and [Doob, Stochastic Processes
1953]. This obviously inappropriate nomenclature was chosen under
the malign influence of the noise level of radio’s SUPERman program,
a favorite supper-time program of Doob’s son during the writing of
[Doob, Stochastic Processes 1953].



Proof. (i) =⇒ ( ii). If (e−βtu(Xt ))t>0 is a right-continuous
supermartingale then by taking expectations we get that
e−βtExu(Xt ) 6 Exu(X0), hence u is β-supermedian.
- If u is β-supermedian then to prove that it is β-excessive reduces to
prove that u is finely continuous, which in turns follows by the well
known characterization for the fine continuity:
u is finely continuous if and only if u(X ) has right continuous
trajectories Px -a.s. for all x ∈ E.

(ii) =⇒ (i). Since u is β-supermedian and by the Markov property we
have for all 0 6 s 6 t

Ex [e−β(t+s)u(Xt+s)|Fs] = e−β(t+s)EXsu(Xt ) =

e−β(t+s)Ptu(Xs) 6 e−βsu(Xs),

hence (e−βtu(Xt ))t>0 is an Ft -supermartingale.
The right-continuity of the trajectories follows by the fine continuity of u
via the previously mentioned characterization.


