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A furniture arrangement problem

 

– Where should I put the bed, to keep warm in the long run?
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Heuristics

Heuristics

Consider u (t, x) the solution of the Neumann heat equation in a smooth
bounded domain D ⊂ Rd with generic initial condition u0.
Let x+t be the hot spot at time t and x−t be the cold spot, i.e.

u
(
t, x+t

)
= max

x∈D
u (t, x) and u

(
t, x−t

)
= min

x∈D
u (t, x)

If the second Neumann eigenvalue λ2 is simple, and ϕ2 is a corresponding
second Neumann eigenfunction, for large t we have

u (t, x) =
∫

D
u0 + e−λ2tϕ2 (x)

∫
D

u0ϕ2 + R2(t, x) ≈ c0 + c1e−λ2tϕ2 (x) ,

so x+t and x−t are close to the maximum/minimum points of ϕ2.
Hot spots (x+t ) and cold spots (x−t ) repel each other, so the distance between
them tends to increase wrt t. In convex domains, the maximum distance is
attained for points on the boundary.
This suggests the following.
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Hot Spots conjecture

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

For any smooth bounded convex domain D ⊂ Rd

min
y∈D

ϕ2(y) < ϕ2(x) < max
y∈D

ϕ2(y), x ∈ D,

where ϕ2 is any second Neumann eigenfunction of the Laplacian on D.

B. Kawohl: true for balls, annuli, parallelipipeds in Rd

K. Burdzy and W. Werner: counterexample (non-convex D): min∈ D, max∈ ∂D

R. Bass and K. Burdzy: stronger counterexample (non-convex D): min, max∈ D

D. Jerisson and N. Nadirashvili: true if D has two orthogonal axis of symmetry

R. Bañuelos and K. Burdzy: true if D has two orthogonal axes of symmetry, or just one axis of
symmetry and ϕ2 symmetric wrt it

P: true if D has two orthogonal axes of symmetry, or just one axis of symmetry and ϕ2
antisymmetric wrt it, or ... (some condition on the nodal set of ϕ2)

Other results: true for obtuse triangles, for some some doubly connected domains (Burdzy), for
nearly circular domains (Miyamoto), for certain acute triangles (Siudeja).

HS still open in its full generality! (e.g., proof for acute triangles?...)
Mihai N. Pascu (Transilvania Univ) A new attempt to HS † September 14, 2018 † 4 / 25
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Hot Spots conjecture

A possible new approach to tackle HS

Using a mirror coupling of RBMs, we showed [JFA’11] that the Neumann heat kernel in the ball satisfies

pU (t, y, z) ≤ pU (t, x, z) ,

whenever ‖y‖ ≤ ‖x‖ and ‖x− z‖ ≤ ‖y− z‖.

Using this we obtained∫
∂U

pU (t, x + ru, x) dσ(u) ≤ pU

(
t, x + r

x
‖x‖ , x

)
≤ pU

(
t, x + r

x
‖x‖ , x + r‖x‖

)
, (1)

which implies that the radial derivative of pU (t, x, x) is non-negative, hence pU (t, x, x) is
increasing in ‖x‖ (Laugesen-Morpurgo conjecture).

In turn, LM conjecture implies the HS conjecture.
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A radiator arrangement problem

Laugesen-Morpurgo conjecture: a furniture arrangement problem

– Where should I put the radiator, to feel warmest at all times?
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A radiator arrangement problem

A possible new approach to tackle HS

Raw idea: borrowing from this, try to prove the following inequality for a
general convex domain D

pD (t, x, x) ≤
∫
∂U

pD (t, x∗, x + ru) dµ(u) ≤ pD (t, x∗, x∗) , (2)

for a certain probability measure µ on ∂U and x∗ with ‖x− x∗‖ = r
(depending on D and x).

Remark: the above would prove a general LM conjecture, thus also proving
HS conjecture.
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A radiator arrangement problem

Fixed-distance couplings of RBMs

The ideea for proving the first inequality is to construct a fixed-distance coupling of RBMs.

Remark: there are no shy couplings in sufficiently regular domains (Burdzy, Kendall et.al.)!

Ideea is still feasible, if we require fixed-distance when processes are away from the boundary.

Example: in the case of the upper half=planeH, if B̃t = (Xt, Yt) is a free 2-dimensional BM,
then

Bt = (Xt, |Yt|), Wt = (Xt + a, |Yt + b|) (3)

defines a fixed-distance coupling of RBMs inH:

|Wt − Bt| = |vt| = |v0|,

at all times t when processes are away from the boundary, where v0 = W0 − B0 = (a, b).
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A radiator arrangement problem

B̃t = (Xt, Yt) Bt = (Xt, |Yt|)

Figure : From BM to RBM in a half-plane (i.e. Tanaka’s formula)
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A radiator arrangement problem

Dynamics of the spin (“translation vector”) vt = Wt − Bt = v0eiθt :

constant magnitude

constant direction during excursions

direction can change (by reflection in the boundary) with probability 1/2 at
beginning of excursions

(Bt,Wt) = (Bt,
(
Re(B̃t + vt), |Im(B̃t + vt)|

)
) defines a “fixed-distance coupling“ (shy

coupling) of RBMs, save the times when near the boundary.

Same can be done in

wedges of angles π
n (perhaps any angle)

equilateral triangles (perhaps any triangles)

convex polygonal domains (perhaps)

smooth convex domains (perhaps)
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A radiator arrangement problem

Gain: Px(Bt ∈ dy) =
∫ 2π

0
Px+v0(Wt ∈ v0eiθ

t + dy, θt ∈ dθ)

Control (monotonicity) of IHM =⇒ control (monotonicity) of θt

=⇒ pD(t, x, y) ≶ pD(t, x + v0, y + v) for some v = v(x, y, t)
(monotonicity of transition density of RBM in D)

=⇒ monotonicity of second Neumann eigenfunction(s) for D
(a.k.a. Hot Spots conjecture)
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A radiator arrangement problem

Harmonic measure
Harmonic measure (Rolf Nevanlinna, 1928-1929, [9]): the measure ωD (z, α) on the boundary of
a domain D ⊂ C, which is harmonic and bounded with respect to z ∈ D, and assumes the value 1
on α ⊂ ∂D, and 0 on ∂D− α.
Remarks:

extends naturally to higher dimensional Euclidean spaces
important tool in the study of harmonic and analytic functions: maximum principles of
analytic functions, solution of the first boundary problem, connection to Poisson kernel and
Green’s function, aso.

Probabilistic interpretation (S. Kakutani, 1944, [7]): harmonic measure is just the exit distribution
of the Brownian motion from the domain, that is:

ω (z,C) = Pz (BτD ∈ C) , C ∈ ∂D. (4)

Connection with differential equations: the solution of the Dirichlet problem for D with
continuous boundary data f : ∂D→ R has the representation

u (z) = Ezf (Bτ ) =

∫
∂D

f (w)ω (z, dw) , (5)

i.e. the kernel of the harmonic measure ω (z, ·) is just the Poisson kernel for the Dirichlet problem
for D with respect to z ∈ D.
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A radiator arrangement problem

Extension: iterated harmonic measure

Idea: replace the Brownian motion by a reflecting Brownian motion in D (the same up
to the first exit time from the domain).
Consider a partition A1, . . . ,Am ⊂ ∂D of ∂D into measurable sets, and define the
succesive hitting times T1 < T2 < . . . of the boundary ∂D when the reflected
Brownian motion hits a set Ai different from the previous hit.

B0

A1 A2

Am

BT1

Ai

BT2
BT3

D

We define the iterated harmonic measure by

ωA1,...,Am
D,n (z,C1, . . . ,Cm) = Pz (BT1 ∈ C1, . . . ,BTm ∈ Cm) . (6)

The name iterated harmonic measure was suggested to us by Theorem 3 below, which
gives an “iterative” construction of the above generalized harmonic measure.
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A radiator arrangement problem

IHM (setup)

Consider D ⊂ R2 a smooth planar domain (Lipschitz or C1,α domain (0 < α < 1)).

Let A1, . . . ,Am ⊂ ∂D be unions of disjoint open arcs, A = ∪m
i=1Ai, and A0 = ∂D− A.

Denote by TC the first hit of C by RBM (Bt)t≥0 in D.

Define the sequence (Tn)n≥1 of random times defined by T1 = TA, and for i ≥ 1 by

Ti+1 = inf {t ≥ Ti : Bt ∈ A′i} , (7)

where A′i = A− Aj if BTi ∈ Aj for some j ∈ {1, . . . , n}.
Remark. (Tn)n≥1 is a strictly increasing sequence of a.s. finite stopping times.
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A radiator arrangement problem

IHM (definition)

Definition 2

For n ≥ 1 fixed, the iterated harmonic measure with respect D, z ∈ D, and the
partition A0,A1, . . . ,Am is defined by

ωA1,...,Am
D,n (z,C1, . . . ,Cn) = Pz (BT1 ∈ C1, . . . ,BTn ∈ Cn) , (8)

for measurable subsets C1, . . . ,Cn ⊂ ∂D, where Pz denotes the probability distribution
of the RBM (Bt)t≥0 in D starting at B0 = z ∈ D.

Remarks
fixing (n− 1) sets Ci in the definition (8), IHM becomes a measure on B (∂D)

in particular, ωA1,...,Am
D,n (z, ∂D, . . . , ∂D,C) = Pz(BTn ∈ C) is a measure on ∂D.

The case n = 1 gives the usual harmonic measure.

using a version of Carathéodory’s extension theorem, one can extend uniquely
ωA1,...,Am

D,n (z, ·) to a measure on B (∂Dn).
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A radiator arrangement problem

Main results on IHM

Theorem 3 (Properties of iterated harmonic measure)

a) ωA1,...,Am
D,n (z,C1, . . . ,Cn) is a bounded harmonic function of z ∈ D, continuous on

D, and it is a measure in each of the variables Ci, i = 1, . . . , n.

b) (Conformal invariance) If f : D→ D′ is a conformal map, then

ωA1,...,Am
D,n (z,C1, . . . ,Cn) = ω

f (A1),...,f (Am)
D′,n (f (z) , f (C1) , . . . , f (Cn)) , z ∈ D,

(9)
for any n ≥ 1 and any measurable subsets C1, . . . ,Cn ⊂ ∂D.

c) (Recursive/iterative construction) If A0 is polar for Brownian motion, then

ωA1,...,Am
D,1 (z, ·) = ωD (z, ·) , (10)

and for any n > 1 and measurable sets C1, . . . ,Cn ⊂ ∂D we have

ω
A1,...,Am
D,n (z,C1, . . . ,Cn) =

∫
C1

ω
A1,...,Am
D,1 (z, dy1)

∫
C2

ω
A1,...,Am
D,2 (y1, dy2) · · ·

∫
Cn

ω
A1,...,Am
D,2 (yn−1, dyn) .

(11)
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A radiator arrangement problem

The case of the half-planeH = {z ∈ C : Im z > 0}

Consider A1 = (−∞, 0) , A2 (0, 1) , A3 = (1,∞), and A0 = {0, 1}.

Theorem 4

The distribution of the RBM (Bt)t≥0 inH starting at B0 = u ∈ ∂H−{0, 1} at time T2 is given by

Pu (Re BT2 ≤ v) =


1− 2

π
arctan

√
1−v
u−1 , v < 1 < u,

1− 2
π

arctan
√
− u

v , u < 0 < v,

1− 2
π

arctan
√

v(1−u)
u(v−1) , u ∈ (0, 1), v ∈ (−∞, 0) ∪ (1,∞) ,

(12)

In particular, the Poisson kernel for the BM inH reflected on the part Ai ⊂ ∂H where the Brownian motion
starts (i = 1, 2, or 3), and killed on the remaining part of ∂H, is given by

kH (u, v) =
ωA1,A2,A3
H,2 (u, Ai, dv)

dv
=

Pu (Re BT2 ∈ dv)

dv
=


1
π

1
u−v

√
u−1
1−v , v < 1 < u,

1
π

1
v−u

√
−u

v , u < 0 < v,
1
π

1
v−u

√
(1−u)u
(v−1)v , u ∈ (0, 1), v /∈ [0, 1],

(13)
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A radiator arrangement problem

Proof.

Consider the case B0 = u > 1 (reflection on A3), and let v < 1 be arbitrarily fixed.

1v −
√
1− v

f(z) = i
√
z − 1

i
√
u− 1

0

u
√
1− v

Figure : The image of the slit plane D = C− (−∞, 1] under the conformal map f (z) = i
√

z− 1.

Pu
(Re BT2

≤ v) = Pu
(Re ZτD

≤ v) = Pi
√

u−1
(

Re WτH ≤ −
√

1− v
)
+ Pi
√

u−1
(

Re WτH ≥
√

1− v
)
.

The last two probabilities are equal by symmetry, and using the Poisson kernel for the half-plane we conclude

Pu
(Re BT1

≤ v) = 2Pi
√

u−1
(

Re WτH ≤ −
√

1− v
)
=

2

π

∫ −√1−v

−∞

√
u− 1

x2 + u− 1
dx = 1−

2

π
arctan

√
1− v

u− 1
.
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A radiator arrangement problem

Corollary 5

For arbitrarily fixed z ∈ H, n ≥ 1 and measurable subsets C1, . . . ,Cn ⊂ ∂H, we have

ωA1,A2,A3
H,n (z,C1, . . . ,Cn) =

∫
C1×...×Cn

k (z, y1) kH (y1, y2)·. . .·kH (yn−1, yn) dy1 . . . dyn,

(14)
where k (z, y) = 1

π
Im z
|z−y|2 , z ∈ H, y ∈ ∂H, is the Poisson kernel forH, and kH is the

Poisson kernel for the Brownian motion inH with reflection on a part of the boundary,
given by (13).
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A radiator arrangement problem

Monotonicity properties of IHM inH
Theorem 6
Consider A1 = (−∞, 0) ,A2 (0, 1) ,A3 = (1,∞), Ci ⊂ {A1,A2,A3}, and
z, z̃ ∈ H. We have

a) If z, z̃ are symmetric wrt the circle C(0, 1) and |z| < 1, we have:

ωA1,A2,A3
H,n (z,A2,C2, . . . ,Cn) ≥ ωA1,A2,A3

H,n (z̃,A2,C2, . . . ,Cn).

b) If z, z̃ are symmetric wrt the line y = mx, Rez < Rez̃, then

ωA1,A2,A3
H,n (z,A1,C2, . . . ,Cn) ≥ ωA1,A2,A3

H,n (z̃,A1,C2, . . . ,Cn).

c) If z, z̃ are symmetric wrt the line y = m(x− 1), Rez > Rez̃, then

ωA1,A2,A3
H,n (z,A3,C2, . . . ,Cn) ≥ ωA1,A2,A3

H,n (z̃,A3,C2, . . . ,Cn).
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A radiator arrangement problem

Proof.

a) Consider (Bt,Wt) =
(

Bt,
Bt
|Bt|2

)
a coupling of (time-changed) RBM inH

starting at (z, z̃). Geometric considerations show that Wt cannot hit A2 before
hitting C(0, 1), hence before coupling with Bt.

b) Consider (Bt,Wt) a mirror coupling of RBM wrt y = mx, starting ar (z, z̃).
Geometric considerations show that Wt cannot hit A1 before coupling first
with Bt.

c) Similar to b).

0 1

z

z̃

a)

0 1

z

z̃

b)

0 1

z

z̃

c)

y = mx

A1 A2 A3A2 A1 A2 A3A2 A1 A2 A3A2
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A radiator arrangement problem

Application: connection of IHM to extremal distance
The extremal distance dD(A1,A2) between the disjoint closed arcs A1,A2 ⊂ ∂D is given by

dD(A1,A2)
−1 =

∫
D

|∇u|2dxdy,

where u is the solution of the mixed Dirichlet-Neumann problem for D
∆u = 0 in D
u = 1 on A1

u = 0 on A2
∂u
∂n = 0 on A0 = ∂D− (A1 ∪ A2)

,

A1 A2D

Remark. The solution of the above problem is given by u(z) = ωA1,A2
D,2 (z,A1,A2).
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