Local Properties of Graphs and the Hamilton Cycle Problem

Johan de Wet1,2 and Marietjie Frick1

1University of Pretoria
2DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS)

Bucharest 2018
Definitions

Background

NP-completeness of the HCP
- Locally connected (LC) graphs
- Locally traceable (LT) graphs
- Locally hamiltonian (LH) graphs
- Locally 2-nested hamiltonian (L2H) graphs
- Locally Hamilton-connected (LHC) graphs
- Locally Chvátal-Erdös graphs

Discussion

References
A graph G is traceable if it has a path that visits every vertex.

A graph G is hamiltonian if it has a cycle that visits every vertex.
A graph G is **traceable** if it has a path that visits every vertex.
A graph G is **traceable** if it has a path that visits every vertex.

A graph G is **hamiltonian** if it has a cycle that visits every vertex.
A graph G is called locally P if $\langle N(v) \rangle$ has the property P for every $v \in V(G)$.

M_3 is locally traceable (LT).
A graph G is called **locally** \mathcal{P} if $\langle N(v) \rangle$ has the property \mathcal{P} for every $v \in V(G)$.
A graph G is called **locally \mathcal{P}** if $\langle N(v) \rangle$ has the property \mathcal{P} for every $v \in V(G)$.

M_3 is locally traceable (LT).
A graph G is called **locally \mathcal{P}** if $\langle N(v) \rangle$ has the property \mathcal{P} for every $v \in V(G)$.

M_3 is locally traceable (LT).
The Hamilton Cycle Problem (HCP) is the problem of determining whether a graph contains a Hamilton cycle. Oberly and Sumner (1979) Theorem: A connected, claw-free graph that is locally connected is hamiltonian. Speculation: A connected, locally hamiltonian graph is hamiltonian. Conjecture: A connected graph that is locally k-connected and $K_{1,k+2}$-free is hamiltonian.
The Hamilton Cycle Problem (HCP) is the problem of determining whether a graph contains a Hamilton cycle.
The Hamilton Cycle Problem (HCP) is the problem of determining whether a graph contains a Hamilton cycle.

Oberly and Sumner (1979)

Theorem: A connected, claw-free graph that is locally connected is hamiltonian.
Background

The Hamilton Cycle Problem (HCP) is the problem of determining whether a graph contains a Hamilton cycle.

Oberly and Sumner (1979)

Theorem: A connected, claw-free graph that is locally connected is hamiltonian.

Speculation: A connected, locally hamiltonian graph is hamiltonian.
The Hamilton Cycle Problem (HCP) is the problem of determining whether a graph contains a Hamilton cycle.

Oberly and Sumner (1979)

Theorem: A connected, claw-free graph that is locally connected is hamiltonian.

Speculation: A connected, locally hamiltonian graph is hamiltonian.

Conjecture: A connected graph that is locally k-connected and $K_{1,k+2}$-free is hamiltonian.
Background

Local properties to be investigated

locally connected
locally traceable
locally hamiltonian
locally 2-nested hamiltonian
locally Hamilton-connected
locally Chvátal-Erdős
closed locally Chvátal-Erdős
locally Ore
locally Dirac
Local properties to be investigated

- locally connected
Local properties to be investigated

- locally connected
- locally traceable
Background

Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
- locally 2-nested hamiltonian
Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
- locally 2-nested hamiltonian
- locally Hamilton-connected
Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
- locally 2-nested hamiltonian
- locally Hamilton-connected
- locally Chvátal-Erdős
Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
- locally 2-nested hamiltonian
- locally Hamilton-connected
- locally Chvátal-Erdös
- closed locally Chvátal-Erdös
Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
- locally 2-nested hamiltonian
- locally Hamilton-connected
- locally Chvátal-Erdös
- closed locally Chvátal-Erdös
- locally Ore
Background

Local properties to be investigated

- locally connected
- locally traceable
- locally hamiltonian
- locally 2-nested hamiltonian
- locally Hamilton-connected
- locally Chvátal-Erdös
- closed locally Chvátal-Erdös
- locally Ore
- locally Dirac
Locally connected (LC) graphs

Smallest connected nonhamiltonian LC graph has order 5 and $\Delta = 4$.

HCP NP-complete for $\Delta = 5$ (and $\delta = 2$) (Irzhavski 2014)
Locally connected (LC) graphs

- Smallest connected nonhamiltonian LC graph has order 5 and $\Delta = 4$.
Smallest connected nonhamiltonian LC graph has order 5 and $\Delta = 4$.
Locally connected (LC) graphs

- Smallest connected nonhamiltonian LC graph has order 5 and $\Delta = 4$.

- HCP NP-complete for $\Delta = 5$ (and $\delta = 2$) (Irzhavski 2014)
Locally traceable (LT) graphs

Smallest connected nonhamiltonian (LT) graph has order 7 and $\Delta = 5$ (van Aardt et al. 2016).

HCP NP-complete for $\Delta = 6$
Smallest connected nonhamiltonian (LT) graph has order 7 and \(\Delta = 5 \) (van Aardt et al. 2016).
Smallest connected nonhamiltonian (LT) graph has order 7 and $\Delta = 5$ (van Aardt et al. 2016).

HCP NP-complete for $\Delta = 6$
The HCP for LT graphs with maximum degree 6

Theorem:
The Hamilton Cycle Problem for LT graphs with maximum degree 6 is NP-complete.

The HCP for cubic graphs is NP-complete. (Akiyama et al. 1980)

A nonhamiltonian locally traceable graph with maximum degree 5.
The HCP for LT graphs with maximum degree 6

Theorem:

The Hamilton Cycle Problem for LT graphs with maximum degree 6 is NP-complete.
The HCP for LT graphs with maximum degree 6

Theorem:
The Hamilton Cycle Problem for LT graphs with maximum degree 6 is NP-complete.

The HCP for cubic graphs is NP-complete. (Akiyama et al. 1980)
The HCP for LT graphs with maximum degree 6

Theorem:
The Hamilton Cycle Problem for LT graphs with maximum degree 6 is NP-complete.

The HCP for cubic graphs is NP-complete. (Akiyama et al. 1980)

A nonhamiltonian locally traceable graph with maximum degree 5.

\(M_3 \) (a) \quad (b) \quad S
The edges are replaced by “borders”
The HCP for LT graphs with maximum degree 6

The edges are replaced by “borders”
The HCP for LT graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
The HCP for \(LT \) graphs with maximum degree 6

Graph \(G' \)

\[z_1 \quad z_2 \quad z_3 \quad z_4 \quad z_5 \quad z_6 \]

\(z_i \in V(G') \)

\(Z_i \) is the corresponding node in \(G \)

Graph \(G \)

\(Z_1 \quad Z_2 \quad Z_3 \quad Z_4 \quad Z_5 \quad Z_6 \)
The HCP for \(LT \) graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
The HCP for LT graphs with maximum degree 6
Locally hamiltonian (LH) graphs

Smallest connected nonhamiltonian LH graph has order 11 and $\Delta = 8$ (Pareek et al. 1983).

HCP NP-complete for $\Delta = 9$.
Smallest connected nonhamiltonian LH graph has order 11 and $\Delta = 8$ (Pareek et al. 1983).
Smallest connected nonhamiltonian LH graph has order 11 and $\Delta = 8$ (Pareek et al. 1983).
Locally hamiltonian (LH) graphs

- Smallest connected nonhamiltonian LH graph has order 11 and $\Delta = 8$ (Pareek et al. 1983).

- HCP NP-complete for $\Delta = 9$
Hamilton Cycle Problem for LH graphs

The HCP for maximally planar graphs is NP-complete (Chvátal 1985) if $\Delta \geq 12$.

Theorem (van Aardt et al. 2016)

If G is a connected LH graph with $\Delta(G) \leq 6$, then G is hamiltonian.

There exist connected LH graphs with maximum degree 8 that are nonhamiltonian.
The HCP for maximally planar graphs is NP-complete (Chvátal 1985)
The Hamilton Cycle Problem for LH graphs

The Hamilton Cycle Problem (HCP) for maximally planar graphs is NP-complete (Chvátal 1985).

Chvátal’s proof is valid for \(\Delta \geq 12 \).

There exist connected LH graphs with maximum degree 8 that are nonhamiltonian.
The HCP for maximally planar graphs is NP-complete (Chvátal 1985).

Chvátal’s proof is valid for $\Delta \geq 12$.

Theorem (van Aardt et al. 2016)

If G is a connected LH graph with $\Delta(G) \leq 6$, then G is hamiltonian.
The HCP for maximally planar graphs is NP-complete (Chvátal 1985).

Chvátal’s proof is valid for $\Delta \geq 12$.

Theorem (van Aardt et al. 2016)

If G is a connected LH graph with $\Delta(G) \leq 6$, then G is hamiltonian.

There exist connected LH graphs with maximum degree 8 that are nonhamiltonian.
Locally Hamiltonian Graphs

Triangle identification

Theorem

Let G_1 and G_2 be two LH graphs, and let G be a graph obtained from G_1 and G_2 by identifying suitable triangles. Then

(a) G is LH.

(b) If G_1 and G_2 are planar, then so is G.

(c) If G is hamiltonian, so are both G_1 and G_2.

Johan de Wet et al. (UP, CoE)
Theorem

Let G_1 and G_2 be two LH graphs, and let G be a graph obtained from G_1 and G_2 by identifying suitable triangles. Then

(a) G is LH.

(b) If G_1 and G_2 are planar, then so is G.

(c) If G is hamiltonian, so are both G_1 and G_2.
Let G_1 and G_2 be two LH graphs, and let G be a graph obtained from G_1 and G_2 by identifying suitable triangles. Then
Theorem

Let G_1 and G_2 be two LH graphs, and let G be a graph obtained from G_1 and G_2 by identifying suitable triangles. Then

(a) G is LH.
Theorem

Let G_1 and G_2 be two LH graphs, and let G be a graph obtained from G_1 and G_2 by identifying suitable triangles. Then

(a) G is LH.

(b) If G_1 and G_2 are planar, then so is G.
Theorem

Let G_1 and G_2 be two LH graphs, and let G be a graph obtained from G_1 and G_2 by identifying suitable triangles. Then

(a) G is LH.

(b) If G_1 and G_2 are planar, then so is G.

(c) If G is hamiltonian, so are both G_1 and G_2.
Theorem

The HCP for \(LH \) graphs with \(\Delta \geq 9 \) is NP-complete.

We will use the same approach as for \(LT \) graphs.

The graph \(H \) is locally hamiltonian and nonhamiltonian.
Theorem

The HCP for \(LH \) graphs with \(\Delta \geq 9 \) is NP-complete.
Theorem

The HCP for LH graphs with $\Delta \geq 9$ is NP-complete.

We will use the same approach as for LT graphs.
Theorem
The HCP for \(LH \) graphs with \(\Delta \geq 9 \) is NP-complete.

We will use the same approach as for \(LT \) graphs.

The graph \(H \) is locally hamiltonian and nonhamiltonian.
Graph H is combined with two copies of graph D to create the graph F:
Graph H is combined with two copies of graph D to create the graph F:

\[F_i \]
LH Graphs - the Hamilton Cycle Problem

Vertices and edges in G'

Nodes and borders in G
LH Graphs - the Hamilton Cycle Problem

Vertices and edges in G'

Nodes and borders in G
LH Graphs - the Hamilton Cycle Problem

Vertices and edges in \(G' \)

Nodes and borders in \(G \)
LH Graphs - the Hamilton Cycle Problem

Graph G'

Graph G

$z_i \in V(G')$

Z_i is the corresponding node in G
LH Graphs - the Hamilton Cycle Problem

\[F_i \]
Locally 2-nested hamiltonian (L2H) graphs

A graph G is L2H if G is LH and $\langle N(v) \rangle$ is LH for any $v \in V(G)$.

The smallest connected nonhamiltonian (L2H) graph has order 13 and $\Delta = 10$.

HCP NP-complete for $\Delta = 13$
A graph G is L2H if G is LH and $\langle N(v) \rangle$ is LH for any $v \in V(G)$.
A graph G is L2H if G is LH and $\langle N(v) \rangle$ is LH for any $v \in V(G)$.

- Smallest connected nonhamiltonian (L2H) graph has order 13 and $\Delta = 10$.

Locally 2-nested hamiltonian (L2H) graphs
A graph G is L2H if G is LH and $\langle N(v) \rangle$ is LH for any $v \in V(G)$.

Smallest connected nonhamiltonian (L2H) graph has order 13 and $\Delta = 10$.

![Diagram of a graph with 13 vertices and 20 edges, illustrating the L2H property.](image-url)
A graph \(G \) is L2H if \(G \) is LH and \(\langle N(v) \rangle \) is LH for any \(v \in V(G) \).

- Smallest connected nonhamiltonian (L2H) graph has order 13 and \(\Delta = 10 \).

- HCP NP-complete for \(\Delta = 13 \)
L2H Graphs - the Hamilton Cycle Problem

Graph G'

$z_i \in V(G')$

Z_i is the corresponding node in G

Graph G

Z_1

Z_2

Z_3

Z_4

Z_5

Z_6
A graph G is Hamilton-connected if there is a Hamilton path connecting any two vertices u and v in $V(G)$.

Smallest connected nonhamiltonian (LHC) graph has order 15 and $\Delta = 11$.

HCP NP-complete for $\Delta = 15$
A graph G is Hamilton-connected if there is a Hamilton path connecting any two vertices u and v in $V(G)$.
A graph G is Hamilton-connected if there is a Hamilton path connecting any two vertices u and v in $V(G)$.

- Smallest connected nonhamiltonian (LHC) graph has order 15 and $\Delta = 11$.
A graph G is Hamilton-connected if there is a Hamilton path connecting any two vertices u and v in $V(G)$.

Smallest connected nonhamiltonian (LHC) graph has order 15 and $\Delta = 11$.

![Graph Image]
A graph G is Hamilton-connected if there is a Hamilton path connecting any two vertices u and v in $V(G)$.

- Smallest connected nonhamiltonian (LHC) graph has order 15 and $\Delta = 11$.

- HCP NP-complete for $\Delta = 15$
The graph G'

The graph G
A graph G is Chvátal-Erdös if $\alpha(G) \leq \kappa(G)$.
A graph G is Chvátal-Erdős if $\alpha(G) \leq \kappa(G)$.

- A graph is locally Chvátal-Erdős if $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle)$ for any $v \in V(G)$.
A graph G is Chvátal-Erdös if $\alpha(G) \leq \kappa(G)$.

- A graph is locally Chvátal-Erdös if $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle)$ for any $v \in V(G)$.
- A graph is closed-locally Chvátal-Erdös if $\alpha(\langle N[v] \rangle) \leq \kappa(\langle N[v] \rangle)$ for any $v \in V(G)$.
A graph G is Chvátal-Erdös if $\alpha(G) \leq \kappa(G)$.

- A graph is locally Chvátal-Erdös if $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle)$ for any $v \in V(G)$.
- A graph is closed-locally Chvátal-Erdös if $\alpha(\langle N[v] \rangle) \leq \kappa(\langle N[v] \rangle)$ for any $v \in V(G)$.
- A cl-LCE graph is 1-tough (Chen et al. 2013).
A graph G is Chvátal-Erdös if $\alpha(G) \leq \kappa(G)$.

- A graph is locally Chvátal-Erdös if $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle)$ for any $v \in V(G)$.
- A graph is closed-locally Chvátal-Erdös if $\alpha(\langle N[v] \rangle) \leq \kappa(\langle N[v] \rangle)$ for any $v \in V(G)$.
- A cl-LCE graph is 1-tough (Chen et al. 2013).
- It is not known if cl-LCE graphs are hamiltonian.
Table: The values of key parameters for various local properties.

<table>
<thead>
<tr>
<th></th>
<th>LC</th>
<th>LT</th>
<th>LH</th>
<th>L2H</th>
<th>LHC</th>
<th>cl-LCE</th>
<th>LCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum (n(G)) if (G) is not 1-tough</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum (\Delta(G)) if (G) is not 1-tough</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HCP is NP-complete for (\Delta(G)) at least</td>
<td>5</td>
<td>6</td>
<td>9*</td>
<td>13*</td>
<td>15*</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Minimum degree of local connectedness</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

*It is not known whether these values are best possible.
Discussion

We can generalize the concept of L2H graphs to LkH graphs. Locally \((k + 1)\)-connected, the HCP for LkH graphs is NP-complete for any \(k \geq 1\). The important variable is the relationship between the local connectivity and local independence number.
We can generalize the concept of L2H graphs to LkH graphs.
Discussion

- We can generalize the concept of L2H graphs to LkH graphs.
- Locally $(k + 1)$-connected
Discussion

- We can generalize the concept of L2H graphs to LkH graphs.
- Locally \((k + 1)\)-connected
- The HCP for LkH graphs is NP-complete for any \(k \geq 1\).
We can generalize the concept of L2H graphs to LkH graphs. Locally \((k + 1)\)-connected. The HCP for LkH graphs is NP-complete for any \(k \geq 1\).

The important variable is the relationship between the local connectivity and local independence number.
Oberly-Sumner Conjecture: A connected graph that is locally k-connected and $K_1, k+2$-free is hamiltonian.

Saito's Conjecture: A connected graph that is locally Chvátal-Erdős is hamiltonian.
Oberly-Sumner Conjecture: A connected graph that is locally \(k\)-connected and \(K_{1,k+2}\)-free is hamiltonian.
Discussion

- Oberly-Sumner Conjecture: A connected graph that is locally k-connected and $K_{1,k+2}$-free is hamiltonian.
- Saito’s Conjecture: A connected graph that is locally Chvátal-Erdös is hamiltonian.
Discussion

For a cl-LCE graph, $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1$, where $v \in V(G)$.

For a graph meeting Oberly-Sumner condition, $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1$, where $v \in V(G)$.

Saito's conjecture is stronger than the Oberly-Sumner Conjecture.
For a cl-LCE graph, $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1$, where $v \in V(G)$.
For a cl-LCE graph, \(\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1 \), where \(v \in V(G) \).

For a graph meeting Oberly-Sumner condition, \(\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1 \), where \(v \in V(G) \).
For a cl-LCE graph, $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1$, where $v \in V(G)$.

For a graph meeting Oberly-Sumner condition, $\alpha(\langle N(v) \rangle) \leq \kappa(\langle N(v) \rangle) + 1$, where $v \in V(G)$.

For a graph meeting Oberly-Sumner condition, $\alpha(\langle N(v) \rangle) \leq (k + 1)$, where $v \in V(G)$.

Saito's conjecture is stronger than the Oberly-Sumner Conjecture.
For a cl-LCE graph, \(\alpha(⟨N(ν)⟩) \leq κ(⟨N(ν)⟩) + 1 \), where \(ν \in V(G) \).

For a graph meeting Oberly-Sumner condition, \(\alpha(⟨N(ν)⟩) \leq κ(⟨N(ν)⟩) + 1 \), where \(ν \in V(G) \).

For a graph meeting Oberly-Sumner condition, \(\alpha(⟨N(ν)⟩) \leq (k + 1) \), where \(ν \in V(G) \).

Saito’s conjecture is stronger than the Oberly-Sumner Conjecture.
Unanswered questions

- Is the Oberly-Sumner Conjecture correct?
- Is Saito's Conjecture correct?
- Is the HCP NP-complete for LH graphs with maximum degree 8?
- Can a local condition slightly weaker than cl-LCE be usefully defined?
- Can either conjecture be proved for a smaller local independence number?
Unanswered questions

- Is the Oberly-Sumner Conjecture correct?
Unanswered questions

- Is the Oberly-Sumner Conjecture correct?
- Is Saito’s Conjecture correct?
Unanswered questions

- Is the Oberly-Sumner Conjecture correct?
- Is Saito’s Conjecture correct?
- Is the HCP NP-complete for LH graphs with maximum degree 8?
Unanswered questions

- Is the Oberly-Sumner Conjecture correct?
- Is Saito’s Conjecture correct?
- Is the HCP NP-complete for LH graphs with maximum degree 8?
- Can a local condition slightly weaker than cl-LCE be usefully defined?
Unanswered questions

- Is the Oberly-Sumner Conjecture correct?
- Is Saito’s Conjecture correct?
- Is the HCP NP-complete for LH graphs with maximum degree 8?
- Can a local condition slightly weaker than cl-LCE be usefully defined?
- Can either conjecture be proved for a smaller local independence number?
References

9. D. Oberly and P. Sumner, Every locally connected nontrivial graph with no induced claw is hamiltonian, J. Graph Theory 3 (1979) 351-356.
