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Toughness of a graph

The toughness of a graph G is

the minimum of % taken over all S C V(G) such that ¢(G — S) > 2,

where ¢(G — S) denotes the number of components of G — S.
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Toughness of a graph

The toughness of a graph G is

the minimum of % taken over all S C V(G) such that ¢(G — S) > 2,

where ¢(G — S) denotes the number of components of G — S.

For instance, the toughness of C; is 1.
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Toughness of a graph

The toughness of a graph G is

the minimum of C(%S) taken over all S C V(G) such that ¢(G — S) > 2,

where ¢(G — S) denotes the number of components of G — S.

The toughness of a complete graph is defined to be co.
A graph is t-tough

if its toughness is at least t.

Conjecture (Chvatal, 1973)

There exists t such that every t-tough graph (on at least 3 vertices) is
Hamiltonian.

Chvatal's Conjecture remains open. Many related results are to be found
in the survey of Bauer, Broersma, and Schmeichel (2006).
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Spanning a tough enough graph

Theorem (Win, 1989)

For k > 3, every ﬁ—tough graph has a spanning tree of maximum degree
at most k.

Theorem (Enomoto, Jackson, Katerinis, Saito, 1985)

For k > 1, every k-tough graph (on n vertices such that n > k + 1 and kn
is even) has a k-factor.

Conjecture (Tkag, Voss, 2002)

For k > 2, there exists tx such that every tx-tough graph (on at least 3
vertices) has a 2-connected spanning subgraph of maximum degree at
most k.
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Tough enough Kj -free graphs

Proposition

For £ > 3, every k-connected Kj ¢-free graph is Z_Ll—tough.

Conjecture (Matthews, Sumner, 1984)

Every 4-connected Kj 3-free graph is Hamiltonian.

Question (Jackson, Wormald, 1990)

If k > 4, is every k-connected K ,-free graph Hamiltonian?

Question

For £ > 4, is there k such that every k-connected Kj ,-free graph is
Hamiltonian?
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Partial results on Chvatal's t-tough conjecture

Conjecture (Chvatal, 1973)

There exists t such that every t-tough graph (on at least 3 vertices) is
Hamiltonian.

1-tough interval graphs (Keil, 1985)

%—tough split graphs (Kratsch, Lehel, Miiller, 1996)

%—tough spider graphs (Kaiser, Kral’, Stacho, 2007)

2-tough multisplit graphs (Broersma, K., Qi, Vumar, 2018+)

chordal planar graphs of toughness greater than 1 (sshme, Harant, Tkéz, 1999)
k-trees of toughness greater than % (for k > 2) (K., 2018+)

10-tough chordal graphs (K., Kaiser, 2017)

25-tough 2K>-free graphs (Broersma, Patel, Pyatkin, 2014)
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10-tough chordal graphs

Theorem (K., Kaiser, 2017)

Every 10-tough chordal graph is Hamilton-connected.

@ We view a chordal graph as an intersection graph of subtrees of a tree.

@ We use the hypergraph extension of Hall's theorem (Aharoni, Haxell, 2000).

Corollary of Hall's theorem for hypergraphs

Let A be a family of hypergraphs of rank at most n. If for every B C A,
there exists a matching in | J B of size greater than n(|B| — 1), then there
exists a system of disjoint representatives for A.
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Intersection representation and Hall's theorem for hypergraphs

Note

Every 4-tough circular arc graph (on at least 3 vertices) is Hamiltonian.

Idea of the proof:
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Thank you for your attention.
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