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Toughness of a graph

The toughness of a graph G is

the minimum of |S |
c(G−S) taken over all S ⊆ V (G ) such that c(G − S) ≥ 2,

where c(G − S) denotes the number of components of G − S .

For instance, the toughness of C7 is 1.
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Toughness of a graph

The toughness of a graph G is

the minimum of |S |
c(G−S) taken over all S ⊆ V (G ) such that c(G − S) ≥ 2,

where c(G − S) denotes the number of components of G − S .

The toughness of a complete graph is defined to be ∞.

A graph is t-tough

if its toughness is at least t.

Conjecture (Chvátal, 1973)

There exists t such that every t-tough graph (on at least 3 vertices) is
Hamiltonian.

Chvátal’s Conjecture remains open. Many related results are to be found
in the survey of Bauer, Broersma, and Schmeichel (2006).
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Spanning a tough enough graph

Theorem (Win, 1989)

For k ≥ 3, every 1
k−2 -tough graph has a spanning tree of maximum degree

at most k .

Theorem (Enomoto, Jackson, Katerinis, Saito, 1985)

For k ≥ 1, every k-tough graph (on n vertices such that n ≥ k + 1 and kn
is even) has a k-factor.

Conjecture (Tkáč, Voss, 2002)

For k ≥ 2, there exists tk such that every tk -tough graph (on at least 3
vertices) has a 2-connected spanning subgraph of maximum degree at
most k .
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Tough enough K1,k-free graphs

Proposition

For ` ≥ 3, every k-connected K1,`-free graph is k
`−1 -tough.

Conjecture (Matthews, Sumner, 1984)

Every 4-connected K1,3-free graph is Hamiltonian.

Question (Jackson, Wormald, 1990)

If k ≥ 4, is every k-connected K1,k -free graph Hamiltonian?

Question

For ` ≥ 4, is there k such that every k-connected K1,`-free graph is
Hamiltonian?
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Partial results on Chvátal’s t-tough conjecture

Conjecture (Chvátal, 1973)

There exists t such that every t-tough graph (on at least 3 vertices) is
Hamiltonian.

1-tough interval graphs (Keil, 1985)

3
2 -tough split graphs (Kratsch, Lehel, Müller, 1996)

3
2 -tough spider graphs (Kaiser, Král’, Stacho, 2007)

2-tough multisplit graphs (Broersma, K., Qi, Vumar, 2018+)

chordal planar graphs of toughness greater than 1 (Böhme, Harant, Tkáč, 1999)

k-trees of toughness greater than k
3 (for k ≥ 2) (K., 2018+)

10-tough chordal graphs (K., Kaiser, 2017)

25-tough 2K2-free graphs (Broersma, Patel, Pyatkin, 2014)
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10-tough chordal graphs

Theorem (K., Kaiser, 2017)

Every 10-tough chordal graph is Hamilton-connected.

We view a chordal graph as an intersection graph of subtrees of a tree.

We use the hypergraph extension of Hall’s theorem (Aharoni, Haxell, 2000).

Corollary of Hall’s theorem for hypergraphs

Let A be a family of hypergraphs of rank at most n. If for every B ⊆ A,
there exists a matching in

⋃
B of size greater than n(|B| − 1), then there

exists a system of disjoint representatives for A.
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Intersection representation and Hall’s theorem for hypergraphs

Note

Every 4-tough circular arc graph (on at least 3 vertices) is Hamiltonian.

Idea of the proof:
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Thank you for your attention.
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