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Grinberg’s Criterion (Grinberg, 1968)

Given a plane graph with a hamiltonian cycle S and
fr (fi) faces of size k inside (outside) of S, we have

> (k—=2)(f, — fr) = 0.

k>3

Or — with s(f) the size of a face f:

>, Hh-2)= > () —-2).

f inside S f outside S
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This graph G is hypohamiltonian
(Thomassen (1976)):




Hamiltonicity of vertex-deleted subgraphs:
just give a Hamiltonian cyclel

Non-hamiltonicity of G:

One 10-gon, all other faces pentagons, so

Y (s(H-2(mod3) = Y (s()-2)(mod3).

f inside S f outside S

One side 0 — the other not.

X , O
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Generalizations by Gehner (1976), Shimamoto
(1978), and finally Zaks (1982):

Let Cq,...,Cy be disjoint cycles in a plane
graph, so that
“no cycle separates two others’ .

ood
good g bad
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If v; vertices are strictly inside the cycles
and v, vertices strictly outside, then

> (k—2)(fr, — fr) = 4(n — 1) + 2(vo — v;).

k>3

Y. (s(f)—2)—2v;+41= >, ((H)—2)—2vo+4n.
f inside S f outside S
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Inside and outside are vague. ..

ood
good g bad
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better talk about black and white:

1 black component
1 white component 5 white components
5 black components

2 white components
4 black components




The minimum requirement to talk about
an equality for two sets of faces is to be
able to distinguish the two sets. ..

Partitioning subgraph 5

a subgraph of an embedded graph G that
allows to colour the faces black and
white so that the edges of S are exactly
those between the black and the white
faces.
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partitioning not partitioning
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black/white component: induced by (b/w) faces
sharing an edge

one white component 3 black components

2

The white component has 3 faces that are originally
no white faces (marked in red).
Some are originally no faces at all.
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If S is a Hamiltonian cycle in a plane graph:

e one white and one black component

e both components are outerplanar graphs

e both components have one new (red)
face: the outer face
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1 black component with genus O
2 white components with genus O
1 white component with genus 1
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Now apply the Euler formula to each
component C:

> rer,(s(f) —2)
2

2 —2v(C) = |Vo| — |Ec| + | Feo| = Vel

Introduce all kinds of parameters and
determine the number of edges in C N S:

Ecsl= Y, (s(f)—2)—2|Ve,;|+4—4~7(C)—2|B¢ s|42d¢c
JE€FC
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one white component 3 black components
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Then sum up over all (e.g. black) components and get

[Egl = >, (s(f) —2) =2|V,| + 4|Cy| — 4 > ~(C) —2|By| + 24,
fEFb C'eCy

7 \& 4

GrinBerg correction term

V,: set of black vertices not in S
Ch: set of black components
By: set of red faces in black components

dp: sum over all black components C of
|[Ec N Eg| —[Ve N Vgl



T heorem:

> (s(f)=2)=2|Vp|+4ICp|—4 > ~(C)—=2|By|+2dy,
fek, C'eCly

= |Eg| =

S (5(£)=2) 2|V |+4|Cul—2 3 7(C)=2| Bul+2ds
fEFy CeCy

3 ¥ = T Ea

Faculty of Science




This 1s ugly!

So best check when the correction terms
—2|Vp| + 4|Cy| — 4 X cec, 7(C) — 2| By| + 24,
—2|Vw| + 4|Cw| - 4ZCeCw’Y(C) — 2|Bw| + 2dy

(almost) cancel out!

g O o
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Corollary:

Let G be plane and let S be connected and
spanning (and of course partitioning. . .).
Then

> (N)=2)+2(Cl = ) (s(f)=2)+2|Cu

Ch: set of black components
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Corollary:
(Combinatorial generalization of Grinberg’'s theorem)

Let G be plane and let S be connected and
spanning with |Cy| = |Cyw|. Then Grinberg's
original formula is valid:

> G(H—-2)= ) ((f)-2)

feky feFy

Grinberg’s theorem is just the special case
|Cy| = |Cuw| =1

3 - ¥ = T Ea
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We had for some plane graphs:

Grinberg’s theorem is just the special case |Cy| = |Cy| =1

Let's now fix |Cy| = |Cw| =1

but allow higher genera.

3 - ¥ = TES
WL, e = AT
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Corollary:

Let G be an embedded graph of arbitrary
genus and S be a partitioning 2-factor with
|Cy| = |Cw| = 1. Then

> (s(H=2)—-4v(Cy) = > (s(f)—2)—4~(Cuw)
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Planarizing 2-factor:

A partitioning 2-factor with |Cy| = |Cw| =1
and v(Cp) = ~(Cy) = 0.

Informally: Obtained by identifying
2-factors consisting of faces of two plane
graphs.

Hamiltonian cycle in plane graph: obtained by
identifying the boundaries of two outerplanar

graphs.

3 w S — TE=
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two plane graphs

1 toroidal graph
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Corollary:
(Topological generalization of Grinberg’'s theorem)

Let G be an embedded graph of arbitrary
genus and S be a planarizing 2-factor. Then

> () =2)= > (s(f)—2)

Grinberg’s theorem is just the special case that v(G) = 0.

3 - ¥ = T Ea
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Example applications:

3,3,34,7 4,444,444

e Find a planarizing 2-factor of the Petersen graph.
e T he Heawood graph has no planarizing 2-factor.

e Any hamiltonian cycle in the toroidal embedding
of the Heawood graph is not null-homotopic.



Further impact:

e An easy proof of a theorem of Lewis on
the length of spanning walks.

e A generalization of a theorem by Bondy
and Haggkvist on the decomposability of
a graph into two hamiltonian cycles.
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Conclusion

e \We have proven a very general formula
generalizing Grinberg’'s theorem.

e AS a consequence even Grinberg’'s orig-
inal formula in all its simplicity can be
generalized to larger classes of graphs.

e [ heorems entirely or at least essentially
based on Grinberg’'s formula can be proven
in @ more general context.
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