A spanning Bipartite Quadrangulation of a Triangulation

Kenta Ozeki

(Yokohama National University, Japan)

Joint work with

A. Nakamoto (YNU), and K. Noguchi (Tokyo U. of Science)
Spanning bipartite quadrangulation

✓ (folklore) G: triangulation (of any surface)

∃ 4-coloring in G

\iff ∃ 2 spanning bipartite quadrangulations covering $E(G)$

Find a sp. bip. quad. in triangulations
Spanning bipartite quadrangulation

Prop. Bipartite or non-bipartite?

\(G : \) triangulation of a surface \(\Rightarrow \exists \) a spanning quadrangulation

1. \(G : \) triangulation
2. The dual \(G^* \) has a perfect matching
3. Any PM gives a sp. quad. of \(G \)

17th August, 2018 Bucharest Graph Theory Workshop
Spanning bipartite quadrangulation

Prop.
G: triangulation of a surface $\Rightarrow \exists$ a spanning quadragulation

Bipartite or non-bipartite?

Note: Any quadrangulation of the plane is bipartite.

Cor.
G: triangulation of the plane
$\Rightarrow \exists$ a spanning bipartite quadragulation

What about the case of non-spherical surfaces?
Spanning bipartite quadrangulation

The general cases seem difficult.

→ Our target: **Eulerian triangulation**

(∀ vertex has even degree)

Not all (Eulerian) triangulations have a sp. bip. quadrangulation
The toroidal case

✓ \(K_7 \) on the torus has NO sp. bip. quadrangulation

\[
\therefore K_7 \text{ on the torus has } 7 \text{ vertices, } 21 \text{ edges, and } 14 \text{ faces}
\]

To obtain a sp. bip. quad., we delete exactly \(14/2 = 7 \) edges.

But, \(\nexists \) bip. graph on 7 vertices and \(21 - 7 = 14 \) edges.
The toroidal case

✓ K_7 on the torus has NO sp. bip. quadrangulation

Main Thm.

G: Eulerian triangulation of the torus

∃ a sp. bip. quadrangulation in G

\iff G does NOT have K_7 as a subgraph

✓ Kundgen & Thomassen (17) gave a weaker sufficient condition

✓ Later, I will show an idea of the proof.
The existence of sp. bip. quad.

- Eulerian triangulation

<table>
<thead>
<tr>
<th>Plane</th>
<th>Torus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>⊕ (K_7)</td>
</tr>
</tbody>
</table>
The projective planar case

Main Thm. 2

\[G : \text{Eulerian triangulation of the projective plane} \]

\[\Rightarrow \exists \text{ a sp. bip. quadrangulation in } G \]

Furthermore, if \(G : 3\text{-colorable} \),

\[\Rightarrow \text{ALL sp. quadrangulations in } G \text{ are bipartite} \]

✓ Kundgen & Thomassen (\(^{17}\)) proved the same, but our proof is shorter
The projective planar case

Main Thm. 2

\[G : \text{Eulerian triangulation of the projective plane} \implies \exists \text{ a sp. bip. quadrangulation in } G \]

\[\therefore (\text{Mohar `02}) \quad \forall \text{Eulerian triangulation of the projective plane is the face subdivision of an even embedding} \]

\[\forall \text{facial cycle is even length} \]
The projective planar case

Main Thm. 2

G: Eulerian triangulation of the projective plane

\Rightarrow \exists a sp. bip. quadrangulation in G

\[\therefore\] (Mohar `02)

\forall Eulerian triangulation of the projective plane is the face subdivision of an even embedding

\forall facial cycle is even length

Delete all edges in the even embedding
The projective planar case

Main Thm. 2

\[G : \text{Eulerian triangulation of the projective plane} \]

If \(G \) : 3-colorable,

\[\Rightarrow \text{ALL sp. quadrangulations in } G \text{ are bipartite} \]

\[\therefore \text{ (Youngs `96)} \]

\[\forall \text{ quadrangulation of the projective plane is } \]

either bipartite or non-3-colorable (3-chromatic is impossible)

If \(G \) : 3-colorable, then all sp. quad.s are 3-colorable, so bipartite \(\Box \)
The projective planar case

Main Thm. 2

G: Eulerian triangulation of the projective plane

$\Rightarrow \exists$ a sp. bip. quadrangulation in G

Furthermore, if G: 3-colorable,

\Rightarrow ALL sp. quadrangulations in G are bipartite

✓ Kundgen & Thomassen (\textasciitilde17) proved the same,

but our proof is shorter
The existence of sp. bip. quad.

✓ Eulerian triangulation

<table>
<thead>
<tr>
<th>Plane</th>
<th>Torus</th>
<th>Projective plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O ↔ \overline{\mathbb{A}} K_7</td>
<td>O</td>
</tr>
</tbody>
</table>
The case of other surfaces

Main Thm. 3

\[G : \text{Eulerian triangulation of non-spherical surface} \]
If edge-width of \(G \) is large enough,

\[\Rightarrow \exists \text{ a sp. bip. quadrangulation in } G \]

✓ Edge-width : the length of shortest essential cycle
✓ Shown by using the following result;
 (Hutchinson, Richter, and Seymour `02)
 (Archdeacon, Hutchinson, Nakamoto, Negami, and Ota `99)

∀ Eulerian triangulation \(G \) with large edge-width is 4-colorable,
unless \(G \) is the face subdivision of an even embedding
The existence of sp. bip. quad.

- Eulerian triangulation

<table>
<thead>
<tr>
<th>Plane</th>
<th>Torus</th>
<th>Projective plane</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>☑ \Leftrightarrow $\exists \ K_7$</td>
<td>☑</td>
<td>☑ if edge-width large</td>
</tr>
</tbody>
</table>

- General triangulation

Only little is known:

- Plane: ☑
- "Dense" triangulations: ×

E.g. complete graph
The toroidal case

Main Thm.

\[G : \text{Eulerian triangulation of the torus} \]

\[\exists \text{ a sp. bip. quadrangulation in } G \]

\[\iff G \text{ does NOT have } K_7 \text{ as a subgraph} \]

✓ \[\iff \text{is an easy part, while we need some arguments} \]

✓ \[\Rightarrow \text{is the main part} \]
The toroidal case

✓ Use generating thm., allowing multiple edges

Thm. (Matsumoto, Nakamoto, and Yamaguchi, `18)

∀ Eulerian multi-triangulation of the torus is generated from 27 base graphs or 6-regular ones by a sequence of 4-splittings and 2-vertex additions
4-splittings and 2-vertex-addition
4-splittings and 2-vertex-addition
27 base graphs
6-regular triangulations

Thm. (Altschuler, `73)

∀ 6-regular multi-triangulation of the torus

is represented as follows:

(Yeh and Zhu, `03)

Characterize by p, q, r,

all non-4-colorable

triangulations on the torus
The toroidal case

Main Thm.

\[G : \text{Eulerian triangulation of the torus} \]
\[G \ \text{does NOT have } K_7 \ \text{as a subgraph} \Rightarrow \exists \ \text{a sp. bip. quad. in } G \]

Thm. (Matsumoto, Nakamoto, and Yamaguchi, `18)

\forall \ \text{Eulerian multi-triangulation of the torus}

is generated from 27 base graphs or 6-regular ones

by a sequence of 4-splittings and 2-vertex additions
The toroidal case

Main Thm.

\[G : \text{Eulerian triangulation of the torus} \]

\[G \text{ does NOT have } K_7 \text{ as a subgraph } \implies \exists \text{ a sp. bip. quad. in } G \]

✓ Show that for all the 27 base graphs and 6-regular ones.

✓ Suppose \(H' \) is obtained from a triangulation \(H \)
 by 4-splitting and 2-vertex addition. Then show that
 ➢ If \(H \) has a sp. bip. quad., then so is \(H' \).
 ➢ If \(H \) has \(K_7 \) as a subgraph,
 then either so does \(H' \) or \(H' \) has a sp. bip. quad.
The existence of sp. bip. quad.

- Eulerian triangulation

<table>
<thead>
<tr>
<th>Plane</th>
<th>Torus</th>
<th>Projective plane</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

- General triangulation

Only little is known:

Plane:

```
```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```
The existence of sp. bip. quad.

- Eulerian triangulation

<table>
<thead>
<tr>
<th>Plane</th>
<th>Torus</th>
<th>Projective plane</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

For the existence of sp. NON-bip. quadrangulation

<table>
<thead>
<tr>
<th>Plane</th>
<th>Torus</th>
<th>Projective plane</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

if edge-width large
Thank you for your attention