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Asymptotic behaviour of solutions to fractional
diffusion-convection equations

Liviu I. Ignat and Diana Stan

Abstract

We consider a convection-diffusion model with linear fractional diffusion in the sub-critical range.
We prove that the large time asymptotic behavior of the solution is given by the unique entropy
solution of the convective part of the equation. The proof is based on suitable a-priori estimates,
among which proving an Oleinik type inequality plays a key role.

1. Introduction and main results

We consider the convection diffusion equation

ut(t, x) + (−∆)α/2u(t, x) + (f(u(t, x)))x = 0 for t > 0 and x ∈ R, (CD)

where u : (0,∞)× R → R, (−∆)α/2 is the Fractional Laplacian operator of order α ∈ (0, 2)
and f(·) is a locally Lipschitz function whose prototype is f(s) = |s|q−1s/q with q > 1. This
model has received considerable attention since the 1990s due to the interesting phenomena
that appear: there is a competition between the effects of the diffusion and convection terms.
Depending on the parameters α and q, the asymptotic behaviour is given by either the solution
of the diffusion equation:

ut(t, x) + (−∆)α/2u(t, x) = 0 for t > 0 and x ∈ R, (D)

or the convective one

ut(t, x) + (f(u(t, x)))x = 0 for t > 0 and x ∈ R, (C)

or by a self-similar solution of (CD) in a critical case. The classical case α = 2 has been analysed
for all q > 1 in the quoted papers of Escobedo, Vázquez and Zuazua [21, 22, 23].
In the last twenty years there has been a great interest in models with nonlocal diffusion,

specially fractional diffusion since the fractional Laplacian (−∆)α/2 is the infinitesimal
generator of a stable Levy process. There are many applications in physical sciences where
models with anomalous diffusion are needed, see the survey [45] for a description of possible
applications, and the lecture notes [42] for a presentation of recent models involving nonlocal
diffusion.
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We are interested in the large time asymptotic behavior of solutions to the initial value
problem





ut(t, x) + (−∆)α/2u(t, x) + (f(u(t, x)))x = 0 for t > 0 and x ∈ R,

u(0, x) = u0(x) for x ∈ R.
(1.1)

The critical case q = α makes the difference in the asymptotic behavior since equation (CD)
is invariant by scaling uλ(t, x) = λu(λαt, λx), and it admits self-similar solutions. In this case
the asymptotic behavior of the solutions is given by the self-similar solution with the same
mass as the initial datum u0 (see [6]). In the supercritical range α ∈ (1, 2), q > max{1, α} the
asymptotic behaviour is given by the fundamental solution of the diffusion model (D) multiplied
by the mass of the initial datum (see [7] for α ∈ (1, 2)). We will provide more details in next
section.
In this paper we consider the case α ∈ (1, 2) and the nonlinearity f(u) = |u|q−1u/q in the

subcritical range 1 < q < α, which has been an open issue so far. The main result of this paper
is the following theorem.

Theorem 1.1. For any 1 < q < α < 2, f(u) = |u|q−1u/q and u0 ∈ L1(R) ∩ L∞(R) non-
negative there exists a unique mild solution u ∈ C([0,∞), L1(R)) ∩ L∞((0,∞)× R) of system
(1.1). Moreover, for any 1 ≤ p <∞, solution u satisfies

lim
t→∞

t
1
q (1−

1
p )‖u(t)− UM (t)‖Lp(R) = 0, (1.2)

where M is the mass of the initial data u0 and UM is the unique entropy solution of the
equation 




ut + (f(u))x = 0 for t > 0 and x ∈ R,

u(0) =Mδ0.
(1.3)

Remark 1. We believe that the L∞-assumption on the initial data can be dropped.
Through the paper we will consider nonnegative solutions. The general case of changing sign
solutions can be analysed following the same arguments as in [14, Section 6]. We emphasise
that since the nonlinearity should be locally Lipschitz we should impose q > 1. Since we are
interested in the subcritical case where the convection is dominant we have to impose α > q
and hence α should belong to the interval (1, 2).

An interesting phenomenon happens: the diffusion is dominant over the convection for α > 1,
having a regularizing effect on the solution. However, when 1 < q < α in the asymptotic limit
as time t goes to infinity the solution approaches the unique entropy solution to the pure
convective equation which is discontinuous and develops shocks. This phenomenon has been
established for the local case α = 2 by Escobedo, Vázquez and Zuazua in [21]. In this paper
we prove that this behavior holds as long as 1 < q < α < 2. This is done using both parabolic
and hyperbolic arguments and dealing with the difficulties created by the nonlocal operator
and the nonlinearity of the convective term.
The organization of the paper is as follows. In Section 2 we give a panorama on previous

results on the model both in local and nonlocal cases. Also we provide a reminder on the
diffusion equation which will be useful throughout the paper. In Section 3 we are concerned
with the existence and main properties of solutions. Entropy and mild solutions are introduced.
The key estimate is given in Proposition 3.4 where we show that for any α, q ∈ (1, 2] and any
initial data uniformly bounded above and below by two positive constants, the solution of our
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problem satisfies an Oleinik type inequality, (uq−1)x ≤ 1/t. We emphasize that this estimate
does not require q < α. In Section 4 we prove the asymptotic behavior of solutions stated in
Theorem 1.1.

2. Preliminaries

2.1. Panorama: from local to nonlocal diffusion

We describe some of the results known so far for this convection-diffusion model. We try to
cover all the ranges of parameters and finally to better place our contribution in this field.
The general model is




ut(t, x) + L[u](t, x) + b · ∇(f(u(t, x))) = 0 for t > 0 and x ∈ R
N ,

u(0, x) = u0(x) for x ∈ R
N ,

(2.1)

where L is a Lévy type operator, L̂v(ξ) = a(ξ)v̂(ξ), whose symbol a is written in the form

a(ξ) = ikξ + µ(ξ) +

∫
RN

(
1− e−iηξ − iηξ1|η|<1

)
Π(dη).

Usually k ∈ R
N , µ is a positive semi-definite quadratic form on R

N and Π is a positive Radon
measure satisfying ∫

RN

min{|z|2, 1}Π(dz) <∞.

Two particular cases are the Laplacian, L = −∆ and L = (−∆)α/2 corresponding to k = 0,
µ(ξ) = |ξ|2, Π = 0 and k = 0, µ(ξ) = 0, Π(dz) = |z|−N−αdz respectively.

Local Diffusion. The local diffusion case, i.e. L = −∆, has been intensively studied for linear
diffusion ut −∆u + b · ∇(|u|q−1u) = 0, see [23] for the supercritical and critical cases (q ≥
1 + 1/N in R

N ) and [21] for the subcritical case 1 < q < 2 in dimension N = 1. The subcritical
case q < 1 + 1/N in any dimension N ≥ 1 has been analysed in [22] for nonnegative solutions
and for changing sign solutions in [13].

Nonlocal Diffusion. There is always a competition between the diffusion, which is differen-
tiable of order α, and the convection terms having one derivative. This implies the consideration
of certain classes of solutions: entropy solutions, weak solutions, mild solutions. The study
takes into consideration the fractional order α, the nonlinearity f(u), the dimension N and the
regularity of the initial data u0.
Existence of solutions. For all ranges or parameters α ∈ (0, 2), q > 1, the model admits a
unique entropy solution. More precisely, for α ∈ (1, 2) and f locally Lipshitz, the existence
and uniqueness of entropy solutions were proved by Droniou [17]. Then Alibaud [1] proved
the same for α ∈ (0, 2). Cifani and Jakobsen [16] proved the existence of entropy solutions
for the degenerate nonlinear nonlocal integral equation ut + (−∆)α/2A(u) + (f(u))x = 0 with
α ∈ (0, 2) and developed a numerical scheme that gives an idea of the asymptotic behavior of
the solution.
The existence of entropy solutions for (2.1) with merely bounded (possibly non-integrable)

data has been proved by Endal and Jakobsen [20]. If moreover f ∈ C∞, α ∈ (1, 2) and q > 1
then there exists a unique mild solution with good regularity properties, see Droniou, Gallouet,
Vovelle [18].
When the diffusion is smaller, α ∈ (0, 1] regularity is lost, since the convection has the effect

of shock formation. There is non-uniqueness of weak solutions, as proved by Alibaud and
Andreianov [2]. However, uniqueness holds in the class of entropy solutions.
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Asymptotic Behaviour. Concerning the asymptotic behavior of solutions there are previous
works in some ranges of exponents.
(i) Integrable data. When the data is u0 ∈ L1(RN ) there are previous works in the critical

and supercritical cases. The critical case corresponds to q = 1 + α−1
N when the equation (CD)

admits a unique self-similar solution U(t, x) = t−N/αU(1, xt−1/α) with data U(0, x) =Mδ(x).
For α ∈ (1, 2) the critical case has been analyzed Biler, Karch and Woyczyński [8] who proved
that the asymptotic profile as t→ ∞ is given by the self-similar solution U(t, x) described
above. When α ∈ (0, 1) the critical exponent q is less than one and the nonlinearity would not
be Lipschitz which is out the scope of this analysis.
In the supercritical case q > 1 + (α− 1)/N , α ∈ (1, 2), the diffusion is dominant and then the

asymptotic behavior of solutions to (1.1) with u0 ∈ L1(R) ∩ L∞(R) is given by e−t(−∆)α/2

u0,
the solution of the linear diffusion problem Ut + (−∆)α/2U = 0 with data U(0, x) = u0(x) (see
Biler, Karch and Woyczyński [7, Th. 4.1, Lemma 4.1]). Some results in the one dimensional
case were obtained by Biler, Funaki and Woyczyński [6]. The analysis of the linear semigroup
generated by (D) shows that the first term in the asymptotic behaviour may be chosen as
MKα

t where Kα
t is the fundamental solution of problem (D). See for instance [10, Theorem

6.3]. In Section 2.2 we present more details about the linear model (D) and its properties.
When α ∈ (0, 1) all the nonlinearities considered here are super-critical since q > 1 > 1 +

(α− 1)/N . The asymptotic behavior is given again by the linear semigroup. We state in the
following theorem the result in the one-dimensional case.

Theorem 2.1. For any α ∈ (0, 1), q > 1, f(u) = |u|q−1u/q and u0 ∈ L1(R) ∩ L∞(R) there
exists a unique entropy solution u of system (1.1). Moreover, for any 1 ≤ p <∞, solution u
satisfies

lim
t→∞

t
1
α (1− 1

p )‖u(t)− U(t)‖Lp(R) = 0,

where U is the unique weak solution of the equation




Ut(t, x) + (−∆)α/2U(t, x) = 0 for t > 0 and x ∈ R,

U(0, x) = u0(x) for x ∈ R.

Proof. The proof should follow as in [3, Th. 1.1, Th. 3.5] by using the technique of
approximation with a vanishing viscosity term:

(uǫ)t + (−∆)α/2uǫ + (f(uǫ))x = ǫ∆uǫ.

The asymptotic behavior is proved first for this approximating problem and then by letting
ǫ→ 0 for the initial problem. We could also work directly with entropy solutions as in this
present paper, but one should consider a parabolic scaling uλ(t, x) = λ2u(λ2t, λx) instead of
the one used in Section 4. A detailed proof of these fact does not bring great novelty and we
consider it is beyond the purpose of this paper.

In this work we make a step further by describing the asymptotic behavior of mild solutions
in the subcritical case 1 < q < 1 + (α− 1)/N and dimension one, that is 1 < q < α < 2, for
bounded integrable data.

(ii) Step-like data. There is an interesting phenomenon when f(u) = u2/2 supplemented by
a step-like initial datum approaching the constants u±, u− < u+, as x→ ±∞, respectively.
For α ∈ (1, 2) in [31] the authors study the one dimensional case and they prove that the
limit profile is given by a rarefaction wave, that is the unique entropy solution of the Riemann
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problem

wt + wwx = 0, w(0, x) =

{
u−, x < 0,
u+, x > 0.

When α ∈ (0, 1) the convection is negligible and the asymptotic behavior is given by the solution
of the diffusion problem (D) with the same initial initial data w(0, x) as above. This is proved
in [3] in dimension one. The two-dimensional case of the above results has been analysed by
Karch, Pudelko and Xu [32]. The characterization depends on the fractional order α and on
the direction b of the convective nonlinearity in (2.1).

Remarks. (i) There is a connection with Hamilton-Jacobi equations. By considering
the integrated solution v(t, x) =

∫x
−∞ u(t, y)dy, it follows that v(t, x) solves the equation

vt + (−∆)α/2[v] + 1
q (vx)

q = 0, which is a type of Hamilton-Jacobi equation with fractional
diffusion. The problem admits classical solutions when α ∈ (1, 2) ([19, 28]). For α = 1 this is
related to drift-diffusion equations ([38]).
(ii) There is a considerable interest in nonlocal equations with zero-order operators L[u] =

J ⋆ u− u, where J is a non-singular, integrable kernel with mass one. This is a quite different
topic, since the nonlocal operator does not provide any regularity for the solution, as it happens
in the fractional derivative case, and then other techniques must be used. When q < 2, the first
author considers the model ut = J ⋆ u− u− (f(u))x in [14]. The asymptotic behavior is given
by the solution of (1.3). The case q = 2 has been analyzed in [34] and q > 2 in [26]. There are
situations when the convection is also nonlocal, ut = J ⋆ u− u+G ∗ f(u)− f(u). We refer to
[27] for the supercritical case q > 1 + 1/N and [25] for the critical case q = 1 + 1/N . However,
for the subcritical case, i.e. q < 1 + 1/N there are no results on the long time behavior of the
solutions.
(iii) The case of nonlinear local diffusion also brings considerable difficulties, for instance

for porous-medium type diffusion and convection the model becomes ut = ∆um − (uq)x. The
third parameter m of the nonlinearity changes the behaviour of the solution. For slow diffusion
and slow convection we refer to Laurençot and Simondon [35]. See [33] for fast convection
0 < q < 1 and slow diffusionm > 1. The asymptotics of both fractional and nonlinear diffusion,
(−∆)α/2(um) plus convection has not been considered as far as we know.

2.2. Reminder on linear fractional diffusion

We recall some useful results concerning the associated diffusion problem (D), that is the
Fractional Heat Equation for 0 < α < 2. We consider the initial value problem

{
Ut(t, x) + (−∆)α/2U(t, x) = 0 for x ∈ R and t > 0,
U(0, x) = U0(x) for x ∈ R.

(2.2)

This problem has been widely studied and many results are known (see [4, 5, 9] for the
probabilistic point of view, [41] for a nice motivation of the model and the recent survey [10]
for a complete characterization). Some useful properties are proved in [18, Section 2]. For initial
data U0 ∈ L1(R) the solution of Problem (2.2) has the integral representation

U(t, x) = (Kα
t (·) ⋆ U0)(x) =

∫
R

Kα
t (x− z)U0(z)dz ,

where the kernel Kα
t has Fourier transform K̂α

t (ξ) = e−|ξ|αt. If α = 2, the function K2
t is the

Gaussian heat kernel. We recall some detailed information on the behaviour of the kernelKα
t (x)

for 0 < α < 2. In the particular case α = 1, the kernel is explicit, given by the formula

K1
t (x) = Ct(|x|2 + t2)−1.
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Kernel Kα
t (x) is the fundamental solution of Problem (2.2), that is Kα

t (x) solves the problem
with initial data Dirac delta δ0. It is known [9] that the kernel Kα

t has the self-similar form

Kα
t (x) = t−1/αFα(|x|t

−1/α),

for some profile function, Fα(r). For any α ∈ (0, 2) the profile Fα is C∞(R), positive and
decreasing on (0,∞), and behaves at infinity like Fα(r) ∼ r−(1+α). Moreover, the solution of
Problem (2.2) behaves as time t→ ∞ as MKα

t , where M =
∫
R
U0(x)dx is the total mass:

t
1
α (1−

1
p )‖U(t, ·)−MKα

t (·)‖Lp(R) → 0 as t→ ∞.

See for instance [10, Theorem 6.3]. Throughout the paper we will need the following time decay
estimates on the fractional derivatives of the kernel.

Lemma 2.2. For any α ∈ (0, 2), s ≥ 0 and 1 ≤ p ≤ ∞ the kernel Kα
t satisfies the following

estimates for any positive t:

‖Kα
t ‖Lp(R) ≃ Kt−

1
α (1− 1

p ), (2.3)

‖|D|sKα
t ‖Lp(R) . t−

1
α (1− 1

p )−
s
α , (2.4)

‖|D|s∂xK
α
t ‖Lp(R) . t−

1
α (1− 1

p )−
s+1

α . (2.5)

We used the notation |D|s := (−∆)s/2. The proof of these estimates is given in the Appendix.

3. Existence of solutions and main properties

3.1. Concept of solution: entropy and mild solutions

We now recall some classical results for systems (1.1) and (1.3). In the case of the conservation
law (1.3) the entropy formulation is as follows.

Definition 1. ([36]) By an entropy solution of system (1.3) we mean a function

w ∈ L∞((0,∞), L1(R)) ∩ L∞((τ,∞)× R), ∀τ ∈ (0,∞)

such that:
C1) For every constant k ∈ R and ϕ ∈ C∞

c ((0,∞)× R), ϕ ≥ 0, the following inequality holds∫∞
0

∫
R

(
|w − k|

∂ϕ

∂t
+ sgn(w − k)(f(w)− f(k))

∂ϕ

∂x

)
dxdt ≥ 0.

C2) For any bounded continuous function ψ

lim ess
t↓0

∫
R

w(t, x)ψ(x)dx =Mψ(0).

The existence of a unique entropy solution of system (1.3), as well as its properties were
deeply analysed in [36]. For f(u) = |u|q−1u/q system (1.3) has an unique entropy solution UM ,
see [36, Section 2], which is given by the N -wave profile

UM (t, x) =





(x/t)
1

q−1 , 0 < x < r(t),

0, otherwise,
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with r(t) = ( q
q−1 )

q−1

q M (q−1)/qt1/q.
Let us first recall the representation of the fractional Laplacian in [19]. For any α ∈ (0, 2):

there exists a positive constant c(α) such that for all ϕ ∈ C2
b (R), all r > 0 and all x ∈ R the

following holds

[(−∆)α/2ϕ](x) = −c(α)

∫
|z|≥r

ϕ(x+ z)− ϕ(x)

|z|1+α
dz − c(α)

∫
|z|≤r

ϕ(x + z)− ϕ(x) − ϕ′(x)z

|z|1+α
dz.

(3.1)
Using this representation, we introduce, according to [1], the following definition of the entropy
solution for system (1.1).

Definition 2. ([1]) Let u0 ∈ L∞(R). We define an entropy solution of Problem (1.1) as a
function u ∈ L∞((0,∞)× R) such that for all r > 0, all non-negative ϕ ∈ C∞

c ([0,∞)× R), all
smooth convex functions η : R → R and all φ such that φ′ = η′f ′, f(s) = |s|q−1s/q,∫∞

0

∫
R

(η(u)∂tϕ+ φ(u)∂xϕ)dxdt

+ c(α)

∫∞

0

∫
R

∫
|z|≥r

η′(u(t, x))

∫
|z|≤r

u(t, x+ z)− u(t, x)

|z|1+α
ϕ(t, x)dzdxdt+

+ c(α)

∫∞

0

∫
R

∫
|z|≤r

η(u(t, x))
ϕ(t, x + z)− ϕ(t, x)− ϕ′(t, x)z

|z|1+α
dzdxdt

+

∫
R

η(u0)ϕ(0, x)dx ≥ 0.

Remark 2. In the above definition it is sufficient to consider the particular entropy-flux
pairs, ηk(s) = |s− k|, ϕk(s) = sgn(s− k)(f(s)− f(k)), for any real number k.

For any u0 ∈ L∞(R) and f : R → R locally Lipschitz there exists a unique entropy solution
of Problem (1.1). Entropy solutions belong to C([0,∞), L1

loc(R)). If u0 ∈ L1(R) ∩ L∞(R), then
so does u(t), for all t > 0, and moreover u ∈ C([0,∞), L1(R)). All these properties have been
proved in [18, 1]. In the above papers the authors introduce a splitting in time approximation
in order to prove the existence of an entropy solution. In fact for any δ > 0 they define the
approximation uδ in the following way: let uδ(0, ·) = u0; for all n ≥ 0, on the time interval
(2nδ, (2n+ 1)δ], uδ is the solution of ∂tu

δ + 2(−∆)α/2uδ = 0 with initial condition uδ(2nδ, ·),
and on the time interval ((2n+ 1)δ, 2(n+ 1)δ], uδ is the entropy solution of ∂tu

δ + 2∂x(f(u
δ)) =

0 with initial condition uδ((2n+ 1)δ, ·). For any initial data in L∞(R) the approximation uδ

converges in C([0, T ), L1
loc(R)), T > 0, to the entropy solution of Problem (1.1).

In [18], for α ∈ (1, 2), and [1] for 0 < α < 1, the authors prove that the entropy solutions in
the sense of Definition 2 are solutions in the sense of distributions. Moreover when α ∈ (1, 2),
Droniou [18] proved that this distributional solution is the unique mild solution in the sense
of Definition 3 below.

Definition 3. Let u0 ∈ L∞(R) and T > 0 or T = ∞. We say that a mild solution of
Problem (1.1) is a function u ∈ L∞((0,∞)× R) which satisfies for a.e. (t, x) ∈ (0, T )× R,

u(t, x) = (Kα
t ⋆ u0)(x) +

∫ t
0

(Kα
t−σ)x ⋆ f(u(σ, x))dσ. (3.2)

The existence and regularity of the mild solution are given in the following Proposition.
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Proposition 3.1. For any u0 ∈ L∞(R) there exists a unique global mild solution u of
Problem (1.1). Moreover u satisfies:
(i) ess inf u0 ≤ u(t, x) ≤ ess supu0.
If u0 ∈ L1(R) ∩ L∞(R) then
(ii) u ∈ C([0,+∞), L1(R)) ∩ C((0,∞), L∞(R)). Moreover, ‖u(t)‖L1(R) ≤ ‖u0‖L1(R).
(iii) for any s < α+min{α, q} − 1 and 1 < p <∞ solution u satisfies ut ∈ C((0,∞), Lp(R))

and u ∈ C((0,∞), Hs,p(R)).

Remark 3. Since α+min{α, q} − 1 > 1 we have for any t > 0 that ux(t) ∈ Lp(R) for any
1 < p <∞. Moreover for any t > 0, the map x 7→ u(t, x) is continuous. The last property also
guarantees that various integrations by parts used in the paper are allowed.

Proof. The global existence, uniqueness and the first two properties are proved in [18]. We
now prove property (iii). Its proof relays on a classical bootstrap argument: one starts with
some regularity of u in the right-hand side and obtain that this right hand side term is slightly
better than the hypothesis. For a nice review of the method we refer to [40, Ch. 1.3, p. 20]. Let
us fix T > 0. We first remark that since u ∈ C([0, T ], L1(R)) ∩ L∞((0,∞)× R) we have that
f(u) = |u|q−1u/q belongs to the same space. Moreover, it is sufficient to prove that for any
t > 0, u(t) ∈ Hs,p(R) with a norm that is bounded in any interval [τ, T ] with τ > 0.
The main steps of the proof are as follows: we first prove that for u ∈ L∞((0, T ), L1(R) ∩

L∞(R)) the right hand side in (3.2) belongs to Hs,p(R) for any 0 < s < α− 1, 1 < p <∞. The
next step is to use this new regularity to prove the same for 0 < s < α. The last step, the most
technical one, is to extend the regularity up to s < α+min{α, q} − 1.
Step I. We first prove that we gain some regularity for u, u ∈ C((0, T ), Hs,p(R)) for any

0 < s < α− 1 and 1 < p <∞. Let 0 < s < α− 1. We have

|D|su(t) = |D|sKα
t ∗ u0 +

∫ t
0

|D|s∂xK
α
t−σ ∗ f(u(σ))dσ. (3.3)

Using the decay of the s derivative of Kα
t in (2.4), (2.5) and that 0 < s < α− 1 we find that

for any 1 < p <∞ the following holds for any t ∈ (0, T ]:

‖|D|su(t)‖Lp(R) ≤ ‖|D|sKα
t ‖L1(R)‖u0‖Lp(R) +

∫ t
0

‖|D|s∂xK
α
t−σ‖L1(R)‖f(u(σ))‖Lp(R)dσ

. t−
s
α +

∫ t

0

(t− σ)−
s+1

α dσ = t−
s
α (1 + t1−

1
α ) . t−

s
α .

Let us now explain why identity (3.3) holds. We know that u0 ∈ L1(R) ∩ L∞(R) and by
Lemma 2.2 kernel Kα

t satisfies |D|sKα
t ∈ Lp(R) for any 1 ≤ p ≤ ∞. Hence |D|s(Kα

t ∗ u0) =
(|D|sKα

t ) ∗ u0. Let us now prove that for a.e. x ∈ R the following holds

|D|s
∫ t
0

∂xK
α
t−σ ∗ f(u(σ))dσ =

∫ t
0

|D|s∂xK
α
t−σ ∗ f(u(σ))dσ. (3.4)

For any ρ > 0, the Tonelli-Fubini theorem can be applied to obtain that

|D|s
∫ t−ρ

0

∂xK
α
t−σ ∗ f(u(σ))dσ =

∫ t−ρ

0

|D|s∂xK
α
t−σ ∗ f(u(σ))dσ. (3.5)
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Indeed, (3.5) is true since we avoid the singularity of Kα
t at t = 0. Moreover, as ρ→ 0, 0 <

s < α− 1, using (2.5) we obtain that for any 1 ≤ p ≤ ∞ the following holds∫ t
t−ρ

‖|D|s∂xK
α
t−σ ∗ f(u(σ))‖Lp(R)dσ ≤

∫ t
t−ρ

‖|D|s∂xK
α
t−σ‖L1(R)‖f(u(σ))‖Lp(R)dσ

.

∫ t
t−ρ

(t− σ)−
s+1

α dσ = ρ1−
s+1

α → 0.

Similarly, using (2.4) it follows that∫ t
t−ρ

‖∂xK
α
t−σ ∗ f(u(σ))‖Lp(R)dσ → 0 as ρ→ 0.

Therefore we obtain that∫ t−ρ

0

∂xK
α
t−σ ∗ f(u(σ))dσ →

∫ t
0

∂xK
α
t−σ ∗ f(u(σ))dσ

and ∫ t−ρ

0

|D|s∂xK
α
t−σ ∗ f(u(σ))dσ →

∫ t
0

|D|s∂xK
α
t−σ ∗ f(u(σ))dσ (3.6)

in any Lp(R), 1 ≤ p ≤ ∞. In view of (3.5) and (3.6) we obtain that |D|s
∫t
0 ∂xK

α
t−σ ∗ f(u(σ))dσ

belongs to Lp(R) for any 1 ≤ p ≤ ∞ and moreover (3.4) holds in Lp(R), 1 ≤ p ≤ ∞, so for a.e.
x ∈ R.
This type of arguments apply also in the rest of the paper, whenever one needs to commute

Ds := (−∆)s with the integral
∫t
0
.

Step II. In order to extend the range of s we first recall the chain rule for fractional derivatives
(see [24, Prop. 5 (a)], [15, Prop. 3.1]). For any 0 < s < 1 and F ∈ C1(R) the following inequality
holds

‖|D|sF (u)‖Lp(R) . ‖F ′(u)‖Lp1(R)‖|D|su‖Lp2(R), (3.7)

where 1 < p, p2 <∞, 1 < p1 ≤ ∞ and 1
p = 1

p1
+ 1

p2
.

Let us now choose two positive numbers s1 and s2 such that s1 < α− 1, s2 < 1 and denote
s = s1 + s2. Applying estimate (3.7) to F (u) = |u|q−1u ∈ C1(R) with p1 = ∞, p2 = p, we
obtain

‖|D|su(t)‖Lp(R) ≤ ‖|D|sKα
t ‖L1(R)‖u0‖Lp(R) +

∫ t
0

‖|D|s1∂xK
α
t−σ‖L1(R)‖|D|s2f(u(σ))‖Lp(R)dσ

. t−
s
α +

∫ t
0

(t− σ)−
s1+1

α ‖|D|s2u(σ)‖Lp(R).

Assuming that ‖|D|s2u(t)‖Lp(R) . t−
s2
α for all t ∈ (0, T ) we obtain that for any s < α− 1 + s2

we have

‖|D|su(t)‖Lp(R) . t−
s
α +

∫ t
0

(t− σ)−
s1+1

α σ−
s2
α dσ . t−

s
α , ∀t ∈ (0, T ).

This means that we always we can gain up to α− 1 derivatives with respect to the initial
assumption.
Repeating the above argument and using Step I we obtain that for any s ∈ (0, α) and any

p ∈ (1,∞) we have u(t) ∈ Hs,p(R) for all t ∈ (0, T ) and

‖|D|su(t)‖Lp(R) . t−
s
α , ∀ t ∈ (0, T ).

Moreover, using the properties of the Hilbert transform we also obtain for any s ∈ [0, α− 1)
and any p ∈ (1,∞)

‖|D|sux(t)‖Lp(R) . t−
s
α , ∀ t ∈ (0, T ).
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Step III. Let us now consider the case s ≥ α. We write the equation for ux:

ux(t) = ∂xK
α
t ∗ u0 +

∫ t
0

∂x(K
α
t−σ) ∗ f

′(u)ux(σ)dσ.

Let us consider s = s1 + s2 with 0 < s1 < α− 1 and 0 < s2 < min{α, q} − 1. Thus

‖|D|s1+s2ux(t)‖Lp(R) ≤ ‖|D|s1+s2∂xKt‖L1(R)‖u0‖Lp(R)

+

∫ t
0

‖|D|s1∂xKt−σ‖L1(R)‖|D|s2(f ′(u)ux)‖Lp(R)dσ

. t−
s+1

α +

∫ t

0

(t− σ)−
1+s1

α ‖|D|s2(f ′(u)ux)‖Lp(R)dσ.

Leibniz’s rule ([24, Th. 3], [15, Prop. 3.3]) gives us that

‖|D|s2(f ′(u)ux)‖p . ‖|D|s2f ′(u)‖p1
‖ux‖p2

+ ‖|D|s2ux‖q1‖f
′(u)‖q2

where 1
p = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
and 1 < p1, q1 <∞, 1 < p2, q2 ≤ ∞ (Th. 3 in [24] allows the case

p2 = q2 = ∞). Choosing q1 = p, q2 = ∞ we obtain

‖|D|s1+s2ux(t)‖Lp(R) . t−
s+1

α + I1 + I2,

where

I1 =

∫ t
0

(t− σ)−
1+s1

α ‖|D|s2f ′(u(σ))‖p1
‖ux(σ)‖p2

dσ

and

I2 =

∫ t
0

(t− σ)−
1+s1

α ‖|D|s2ux(σ)‖p‖f
′(u(σ))‖∞dσ.

For s2 < α− 1, using Step II, we have for any t ∈ (0, T )

I2 .

∫ t
0

(t− σ)−
1+s1

α σ−
1+s2

α dσ ≃ t1−
1
α− s+1

α . t−
s+1

α .

It remains to estimate the first term. For ux we use the estimates from the previous step
since 1 < α to obtain that ‖ux(σ)‖p2

. σ− 1
α . For the term |D|s2f ′(u) we use the fact that

f ′(u) = q|u|q−1 is Hölder continuous of order q − 1 so for s2, β satisfying

0 < s2 < q − 1 < 1, 0 <
s2
q − 1

< β < 1,

we have [44, Proposition A.1]

‖|D|s2 |u|q−1‖p1
≤ ‖|D|βu‖s2/βr2 ‖|u|q−1−

s2
β ‖r3

where
1

p1
=

s2
r2β

+
1

r3
, r3

(
1−

s2
(q − 1)β

)
> 1.

Choosing r3 large enough such that

r3

(
(q − 1)−

s2
β

)
≥ 1

the last condition is satisfied and moreover the term ‖|u|q−1−
s2
β ‖r3 belongs to L∞((0, T )) since

u ∈ L∞((0, T ), L1(R) ∩ L∞(R)). On the other hand for β < 1 we have estimates on the term
|D|βu in the Lr2(R)-norm, r2 > 1, obtained previously. This gives us that

I1 .

∫ t
0

(t− σ)−
1+s1

α ‖|D|βu(σ)‖s2/βr2 ‖ux(σ)‖p2
dσ

.

∫ t
0

(t− σ)−
1+s1

α σ− β
α

s2
β σ− 1

α dσ =

∫ t
0

(t− σ)−
1+s1

α σ−
s2+1

α dσ <∞
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since s1 < α− 1 and s2 < min{α, q} − 1 ≤ q − 1. To do that we have to check that for any
fixed p ∈ (1,∞), s2 ∈ (0, q − 1) and q ∈ (1, 2) the following system has a solution (p1, β, r2, r3)

p ≤ p1 <∞,
1

p1
=

s2
βr2

+
1

r3
,

s2
q − 1

< β < 1, (q − 1)−
s2
β

≥
1

r3
, r2 > 1.

In order to show the existence of β, r2, r3, p1 which solves the above system we proceed as
follows: Given s2 ∈ (0, q − 1) let us choose β such that

s2
q − 1

< β < 1.

We now choose r2 ≥ 2p and r3 such that

r3 ≥ max

{
2p,

1

q − 1− s2
β

}
.

Thus we choose p1 such that

1

p1
=

s2
βr2

+
1

r3
<
q − 1

r2
+

1

r3
≤

1

r2
+

1

r3
≤

1

p
.

The choice of r2 and r3 guarantees that p1 ≥ p.
As a consequence of the above estimates for any s2 < min{q, α} − 1 we can always make

such a choice. Then we obtain that u ∈ Hs,p for any s < 1 + α− 1 + min{q, α} − 1 = α+
min{q, α} − 1 and 1 < p <∞.

Proposition 3.2. Assuming that the initial data is positive and bounded u0 ≥ ǫ > 0 then
the unique mild solution of Problem (1.1) satisfies
(i) u(t, x) is also positive and bounded with ǫ ≤ u(t) ≤ ‖u0‖L∞(R), for all x ∈ R.
(ii) u ∈ C∞

b ((0,∞)× R).

Proof. Using the maximum principle in Proposition 3.1 we have that ǫ ≤ u(t) ≤ ‖u0‖L∞(R)

for all t > 0. This gives us that the nonlinearity f(s) = sq/q belongs to C∞((ǫ, ‖u0‖L∞(R)))
and then the results of [18, Proposition 5.1, Theorem 5.2] guarantee that u ∈ C∞

b ((0,∞)× R).

3.2. Smooth approximate solutions

Some of the estimates we need to prove in this paper require positive solutions. This is why
we proceed by considering approximating the problem with positive data which, thanks to the
maximum principle, also admits positive solutions. We will prove the necessary estimates for
the approximating problem and then pass to the limit. Let u0 ∈ L∞(R) nonnegative be the
initial data of Problem (1.1). We consider the following approximating problem





(uǫ)t(t, x) + (−∆)α/2uǫ(t, x) + |uǫ|
q−1(uǫ)x = 0 for t > 0 and x ∈ R,

uǫ(0, x) = u0,ǫ(x) for x ∈ R,
(Pǫ)

where u0,ǫ is an approximation of u0.

Lemma 3.3. Let u be the solution of Problem (1.1) with initial data u0 ≥ 0 and let uǫ be
the solution of Problem (Pǫ) with initial data u0,ǫ = u0 + ǫ. Then for every T > 0 we have

max
t∈[0,T ]

‖uǫ(t)− u(t)‖L∞(R) → 0 as ǫ→ 0. (3.8)
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Proof. Proposition 3.2 shows that there exists a unique mild solution of Problem (Pǫ) with
uǫ ∈ C∞

b ((0,∞)× R) and ǫ ≤ uǫ(t, x) ≤ ‖u0‖L∞(R) + ǫ for all x ∈ R, t ≥ 0.
For u0 ≥ 0 the maximum principle in Proposition 3.1 guarantees that u the solution of system

(1.1) is also nonnegative. Let us choose ǫ ≤ ‖u0‖L∞(R) and A = 2‖u0‖L∞(R). The result follows
from the fact that f(s) = sq/q is Lipschitz on [0, A] and the use of Fractional Gronwall Lemma
[11, Lemma 2.4]. Indeed, using the mild formulation we find that

u(t)− uǫ(t) = Kα
t ∗ (u0 − u0,ǫ) +

∫ t
0

(Kα
t−s)x ∗ (f(u(s))− f(uǫ(s)))ds.

Then

‖u(t)− uǫ(t)‖L∞(R) ≤ ‖Kα
t ‖L1(R)‖u0 − u0,ǫ‖L∞(R)

+

∫ t
0

‖Kα
t−s‖L1(R)‖f(u(s))− f(uǫ(s))‖L∞(R)ds

≤ ǫ+ CAq−1

∫ t
0

(t− s)−
1
α ‖u(s)− uǫ(s)‖L∞(R)ds.

Since α > 1 we can apply Fractional Gronwall Lemma [11, Lemma 2.4] to obtain that for any
T > 0 there exists a positive constant C(T ) such that

‖u(t)− uǫ(t)‖L∞(R) ≤ ǫ C(T ), ∀ t ∈ [0, T ].

This finishes the proof.

3.3. Hyperbolic estimates for (Pǫ)

For any ǫ > 0 we now consider initial data in Problem (Pǫ) a function u0,ǫ such that ǫ ≤
u0,ǫ ≤ m and let uǫ be the solution of Problem (Pǫ). The following is the key estimate towards
the proof of the asymptotic result.

Proposition 3.4. Let 1 < q, α ≤ 2. For any ǫ > 0 solution uǫ of Problem (Pǫ) satisfies the
Oleinik type estimate:

(uq−1
ǫ )x(t, x) ≤

1

t
, ∀t > 0, x ∈ R. (3.9)

Remark 4. We emphasize here that the result holds for all q, α ∈ (1, 2] without the
assumption q < α. When α = 2 this estimate has been obtained in [21]. A similar result has
been proved in [2] when α ∈ (0, 1) and q = 2 for the regularised equation

ut + (−∆)α/2u+ |u|q−1ux − ǫuxx = 0.

We are not able to use the barrier method as in [2]. The difficulty comes from the fact that
one should prove that for a suitable function, i.e. Φ(x) = (1 + x2)γ , the term

A(w, z) = −(2− q)w(−∆)α/2[zβ+1] + z(−∆)α/2[zβw]

satisfies z−(β+1)(t, x)A(Φ(x), z(t, x)) ≥ −Cz for all x ∈ R and t > 0 where z is a C∞
b ((0,∞)×

R) function and β = 2−q
q−1 > 0. Observe that in the case q = 2 we have β = 0, A(w, z) =

(−∆)α/2w and the required estimate holds by choosing γ suitably.

Proof. We consider α ∈ (1, 2) since the case α = 2 has been treated in [21]. Let z(t, x) =
(uǫ)

q−1(t, x). For simplicity we will not make explicit the dependence on ǫ. Then z ∈
C∞

b ((0,∞)× R) and

zt + (q − 1)z1−
1

q−1 (−∆)α/2[z
1

q−1 ] + zzx = 0.
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Let w(t, x) = zx(t, x). Then w ∈ C∞
b ((0,∞)× R) and it verifies

wt + w2 + zwx + z−β−1A(w, z) = 0.

We continue as in [14] following some ideas from [18, 30]. Let us denote W (t) =
supx∈R

w(t, x). Since z is Ck
b ((0,∞)× R) using the same arguments as in [30, Th. 1.18] we

have that W is locally Lipschitz. In particular W is absolutely continuous so differentiable
almost everywhere. We now differentiate W (t) for t > 0 and obtain the equation it satisfies.
Let us choose 0 < s < t. We use Taylor’s expansion in the time variable t:

w(t, x) ≤ w(t− s, x) + swt(t, x) + Cs2 ≤W (t− s) + swt(t, x) + Cs2.

It follows that

w(t, x) + s
(
w2(t, x) + zwx(t, x) + z−β−1(t, x)A(w(t, x), z(t, x))

)
≤W (t− s) + Cs2. (3.10)

Let us fix t > 0 and consider the points xn such that w(xn, t) =W (t)− 1/n. Following [30,
Lemma 1.17] we have

lim
n→∞

wx(t, xn) = 0.

Moreover, since the sequence (z(t, xn))n≥1 is bounded we can assume that, up to a subsequence,
z(t, xn) → p(t) for some function p(t) ∈ [ǫ,m].
Now we evaluate (3.10) at the point x = xn. Letting n→ ∞ we can easily see that, up to a

subsequence,

w(t, xn) + s(w2(t, xn) + zwx(t, xn)) →W (t) + sW 2(t).

We claim that up to a subsequence

A(w(t, xn), z(t, xn)) ≥W (t)In(t)− o(1) (3.11)

for some bounded non-negative sequence In(t). This implies that, up to a subsequence, In(t) →
q(t) where q(t) ≥ 0. This implies that inequality (3.10) becomes

W (t) + s
(
W 2(t) + p−β−1(t)q(t)W (t)

)
≤W (t− s) + Cs2.

Letting s→ 0 we obtain that for a.e. t > 0, W satisfies

W ′(t) +W 2(t) + p−β−1(t)q(t)W (t) ≤ 0.

Now it follows using classical ODEs arguments (see for example [14, p. 3136]) that W satisfies

max{W (t), 0} ≤
1

t
, ∀ t > 0.

To finish the proof it remains to prove claim (3.11). To do that, we use representation (3.1)
with suitable r = rn depending on xn that will be specified latter. Using that β/(β + 1) = 2− q
we write A(w, z) as follow

A(w(x), z(x))/c(α)

= −z(x)

∫
|y|>r

zβw(x + y)− zβw(x)

|y|α+1
dy − z(x)

∫
|y|<r

zβw(x + y)− zβw(x) − y(zβw)x(x)

|y|α+1
dy

+
β

β + 1
w(x)

∫
|y|>r

zβ+1(x+ y)− zβ+1(x)

|y|α+1
dy

+
β

β + 1
w(x)

∫
|y|<r

zβ+1(x+ y)− zβ+1(x)− y(zβ+1)x(x)

|y|α+1
dy

=

∫
|y|>r

[
w(x)

( zβ+1(x)

β + 1
+
βzβ+1(x+ y)

β + 1

)
− w(x + y)zβ(x+ y)z(x)

] dy

|y|α+1
+R(r, w, z),
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where we have collected the integrals in the ball of radius r in the reminder term R. It is easy
to evaluate each integral in R and prove that

|R(t, w, z)| . r2−α(‖z‖∞‖(zβw)xx)‖∞ + ‖w‖∞‖(zβ+1)xx‖∞) ≤ C(ǫ, β, ‖z(t)‖C3
b (R)

)r2−α.

Let us evaluate A(w, z) at the point x = xn. Using that w(t, xn) =W (t)− 1/n we obtain

A(w(t, xn), z(t, xn))

≥

∫
|y|>r

[
w(t, xn)

(zβ+1(t, xn)

β + 1
+
βzβ+1(t, xn + y)

β + 1

)

− w(t, xn + y)zβ(t, xn + y)z(t, xn)
] dy

|y|α+1
− Cr2−α

=

∫
|y|>r

[
W (t)

(zβ+1(t, xn)

β + 1
+
βzβ+1(t, xn + y)

β + 1

)
− w(t, xn + y)zβ(t, xn + y)z(t, xn)

] dy

|y|α+1

−
1

n

∫
|y|>r

(zβ+1(xn)

β + 1
+
βzβ+1(xn + y)

β + 1

) dy

|y|α+1
− Cr2−α

≥W (t)

∫
|y|>r

[(zβ+1(t, xn)

β + 1
+
βzβ+1(t, xn + y)

β + 1

)
− zβ(t, xn + y)z(t, xn)

] dy

|y|α+1

− Cr2−α −
‖z(t)‖β+1

∞

nrα

:=W (t)In(z(t), r, xn)− Cr2−α −
C

nrα
.

Let us now choose r = rn such that rn → 0 and nrαn → ∞ as n→ ∞. Lemma 3.5 below shows
that In(t) = I(z(t), rn, xn) is well defined and is uniformly bounded. Moreover, In(t) ≥ 0:
indeed this follows by applying Young’s inequality ap

p + bq

q ≥ ab, 1
p + 1

q = 1 for a = z(t, xn),

b = z(t, xn + y), p = β + 1, q = β+1
β . Hence

A(w(t, xn), z(t, xn) ≥W (t)In(t)− o(1)

and claim (3.11) is proved. The proof is now complete.

Lemma 3.5. Let z ∈ C1
b (R) such that 0 < ǫ ≤ z ≤ m and α ∈ (0, 2], β > 0. The function

I(z, r, x) =

∫
|y|>r

(
1

β + 1
zβ+1(x) +

β

1 + β
zβ+1(x+ y)− z(x)zβ(x+ y)

)
dy

|y|1+α
,

defined for r > 0, x ∈ R, satisfies

|I(z, r, x)| ≤ C(β, ǫ,m)‖z‖2C1
b (R)

.

Proof. Observe that for any β > 0 we have βtβ+1 + 1− (β + 1)tβ ∼ (t− 1)2 as t ∼ 1. Then
the following inequality holds

|βtβ+1 + 1− (β + 1)tβ| ≤ C(β)max{1, tβ−1}|t− 1|2, ∀t > 0.
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Applying to t = z(x+ y)/z(x) and integrating on y we obtain that∫
|y|>r

(
1

β + 1
zβ+1(x) +

β

1 + β
zβ+1(x+ y)− z(x)zβ(x+ y)

)
dy

|y|1+α

≤ C(β, ǫ,m)

∫
|y|>r

|z(x+ y)− z(x)|2

|y|1+α
dy

≤ C(β, ǫ,m)
(
‖zx‖

2
L∞(R)

∫
|y|<1

1

|y|α−1
dy + ‖z‖2L∞(R)

∫
|y|>1

1

|y|α+1
dy

)
.

The proof is now complete.

3.4. Estimates for the solution of Problem (1.1)

We will prove various estimates for u the mild solution of Problem (1.1) by using as the
starting point the estimate in Proposition 3.4. We recall that u ∈ C((0,∞), Hs,p(R)) for any s <
α+ q − 1 and 1 < p <∞, according to Proposition 3.1. Remark that (3.8) and the regularity
of u implies that uǫ(t, x) → u(t, x) for all t > 0, x ∈ R, where uǫ is the solution of Problem
(1.1) with initial data u0,ǫ = u0 + ǫ.

Lemma 3.6. Let u be the solution of Problem (1.1) with nonnegative initial data u0 ∈
L1(R) ∩ L∞(R). Then the following estimates hold:

(i) Mass conservation:
∫
R
u(t, x)dx =M, ∀t ≥ 0.

(ii) Hyperbolic estimate: (uq−1)x(t, x) ≤
1

t
for all t > 0 in D′(R).

(iii) Upper bound: 0 ≤ u(t, x) ≤

(
q

q − 1
M

)1/q

t−1/q for all t > 0, x ∈ R.

(iv) Decay of the Lp-norm, 1 ≤ p ≤ ∞:

‖u(t, ·)‖Lp(R) ≤

(
q

q − 1

) p−1

pq

M
p−1

pq + 1
p t−

1
q (1−

1
p), ∀ t > 0.

(v) Decay of the spatial derivative: ux(t, x) ≤ C(q)M
2−q
q t−

2
q for all t > 0, a.e. x ∈ R.

(vi) W 1,1
loc (R) estimate:

∫
|x|≤R

|ux(t, x)|dx ≤ 2RC(q)M
2−q
q t−

2
q + 2

(
q

q − 1
M

)1/q

t−1/q, ∀t > 0.

(vii) Energy estimate: for every 0 < τ < T ,
∫T
τ

∫
R

|(−∆)α/4u(t, x)|2dxdt ≤
1

2

∫
R

u2(τ, x)dx ≤
1

2

(
q

q − 1

)1/q

τ−1/qM
q+1

q .

Proof. Using the regularity obtained in Proposition 3.1 ii), we can integrate the integral
representation (3.2) we respect to the x variable. Using Fubini’s theorem, we obtain the mass
conservation property. Alternatively, the mass conservation also follows from the distributional
formulation. In fact, a classical approximation argument allows to write for any ψ ∈ C2

c (R) the
following identity∫

R

u(t, x)ψ(x)dx −

∫
R

u(0, x)ψ(x)dx =

∫ t
0

∫
R

f(u)ψx − λq−α

∫ t
0

∫
R

u(−∆)α/2ψ.

We choose as test function ψR(x) = ψ(x/R) where ψ ∈ C2
c (R), 0 ≤ ψ ≤ 1, ψ(x) ≡ 1 for |x| ≤ 1

and ψ(x) ≡ 0 for |x| ≥ 2. Then (ψR)x = O(R−1) and (−∆)α/2ψR = O(R−α). Letting R → ∞
gives us the conservation of the mass.
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For the second property we consider uǫ the solution of Problem (Pǫ) with u0,ǫ = u0 + ǫ. Then
by Lemma 3.3 we have that uǫ(t) → u(t) in L∞(R). This way we are able to pass to the limit
estimate (3.9) in a distributional sense.
The regularity results obtained in Proposition 3.1 show that u(t) is a continuous function

for any t > 0. Using estimate (3.9) for uǫ and letting ǫ→ 0 imply that

uq−1(t, x)− uq−1(t, y) ≤
x− y

t
, ∀ y < x, ∀ t > 0. (3.12)

The proof of the third estimate follows from (3.12): we fix x ∈ R and we integrate in y on the
interval I = {y ∈ R : y < x and uq−1(t, x) − x−y

t ≥ 0}. Thus

M =

∫
R

u(t, y)dy ≥

∫
I

(
uq−1(t, x)−

x− y

t

)1/(q−1)

dy =
1

t1/(q−1)

∫ tuq−1(t,x)

0

z1/(q−1)dz

=
q − 1

q
tuq(t, x).

Inequality (iv) is a consequence of the mass conservation and previous estimate.
Using the intermediate value theorem we obtain that

u(t, x)− u(t, y) =
(
uq−1(t, x)− uq−1(t, y)

) 1

q − 1
ξ2−q,

for some ξ between u(x) and u(y). Then according to (3.12) for any y < x the following holds

u(t, x)− u(t, y) ≤
1

q − 1
‖u(t)‖2−q

L∞

x− y

t
.

Then using the upper bound from point ((iii)) we get

u(t, x)− u(t, y)

x− y
≤ C(q)M

2−q
q t−

2
q .

Since u is differentiable a.e. we can let y → 0 we obtain the desired upper bounds for ux.
Denoting BR = (−R,R) and using that u ∈W 1,1

loc (R) we have∫
BR

|ux(t, x)|dx =

∫
BR∩{ux>0}

uxdx+

∫
BR∩{ux<0}

(−ux)dx

= 2

∫
BR∩{ux>0}

uxdx+ u(−R)− u(R)

≤ 2RC(q)M
2−q
q t−

2
q + 2

(
q

q − 1
M

)1/q

t−1/q.

Multiplying equation (1.1) by u and integrating by parts

1

2

d

dt

∫
R

u2dx+

∫
R

|(−∆)α/4u|2dx = 0.

The decay of the L2(R)-norm gives that
∫T
τ

∫
R

|(−∆)α/4u|2dxdt ≤
1

2

∫
R

u2(τ)dx ≤
1

2

(
q

q − 1

)1/q

τ−1/qM
q+1

q .

The proof is now finished.

4. Asymptotic behaviour

Let u be the unique mild solution to Problem (1.1) with nonnegative data u0 ∈ L1(R) ∩
L∞(R) obtained in Proposition 3.1. In order to prove the asymptotic behaviour we perform
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the method developed by Kamin and Vázquez in [29]. For every λ > 0, we define the rescaled
function

uλ(t, x) := λu(λqt, λx). (4.1)

It follows that uλ is a solution of the problem




(uλ)t + λq−α(−∆)α/2[uλ] + (uλ)
q−1(uλ)x = 0, x ∈ R, t > 0,

uλ(0, x) = λu0(λx), x ∈ R.
(Pλ)

Using the properties obtained in Lemma 3.6 and the definition of uλ we obtain the following
uniform in λ estimates for uλ.

Lemma 4.1. Let uλ be the rescaled function defined by (4.1). Then the corresponding
a-priori estimates are true.

(i) Mass conservation:
∫
R
uλ(t, x)dx =M, ∀t ≥ 0, ∀λ > 0.

(ii) Decay of the Lp-norm:

‖uλ(t, ·)‖Lp(R) ≤

(
q

q − 1

) p−1

pq

M
p−1

pq + 1
p t−

1
q (1−

1
p ), ∀λ > 0, ∀p ≥ 1.

(iii) W 1,1
loc (R) estimate: for R > 0 we have∫

BR

|(∂xuλ)(t, x)|dx ≤ 2RC(q)M
2−q
q t−

2
q + 2

(
q

q − 1
M

)1/q

t−
1
q , ∀ t > 0.

(iv) Energy estimate: for every 0 < τ < T and λ > 0

λq−α

∫T
τ

∫
R

|(−∆)α/4uλ(t, x)|
2dxdt ≤

1

2

∫
R

u2λ(τ, x)dx ≤
1

2

(
q

q − 1

)1/q

τ−1/qM
q+1

q .

In what follows we establish the results stated in Theorem 1.1 by re-writing in an equivalent
manner the asymptotic behavior (1.2). For 1 ≤ p <∞ and t > 0 we will prove that

‖uλ(t, x)− UM (t, x)‖Lp(R) → 0 as λ→ ∞, (4.2)

where UM (t, x) is the solution to the purely convective equation (1.3).
We emphasize that it is enough to prove (4.2) only for some t = t0 > 0.

Proof Proof of Theorem 1.1. For the reader’s convenience we divide the proof according
to the four-step method developed in [29]. Moreover for completeness we recall the following
classical compactness argument due to Aubin-Lions-Simon.

Theorem 4.2 [39], Th.5. Let us consider three Banach spacesX →֒ B →֒ Y whereX →֒ B
is compact. Assume 1 ≤ p ≤ ∞ and
i) F is bounded in Lp((0, T ), X),
ii) ‖τhf − f‖Lp((0,T−h),Y ) → 0 as h→ 0 uniformly for f ∈ F .
Then F is relatively compact in Lp((0, T ), B) (and in C([0, T ], B) if p = ∞).

Let us consider 0 < t1 < t2 <∞.

Step I. Compactness of family (uλ)λ>0 in C([t1, t2], L
2
loc(R)). Let BR = (−R,R).

We apply the Aubin-Lions-Simon compactness argument in Theorem 4.2 to the triple
W 1,1(BR) →֒ L2(BR) →֒ H−1(BR). Estimate (iii) in Lemma 4.1 and the mass conservation
give us that (uλ)λ>0 is uniformly bounded in L∞((t1, t2) :W

1,1(BR)). Moreover, we can
prove that (∂tuλ)λ>1 is uniformly bounded in L2((t1, t2) : H

−1(BR)). Indeed, let us choose
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ϕ ∈ Cc((0,∞)×BR). We extend it with zero outside BR. For such ϕ and λ > 1 we have
∣∣∣∣
∫ t2
t1

∫
R

(∂tuλ)ϕ

∣∣∣∣ ≤
∣∣∣∣
∫ t2
t1

∫
R

(uqλ)xϕ

∣∣∣∣+ λq−α

∣∣∣∣
∫ t2
t1

∫
R

(−∆)α/2[uλ]ϕ

∣∣∣∣

=

∣∣∣∣
∫ t2
t1

∫
R

uqλϕx

∣∣∣∣+ λq−α

∣∣∣∣
∫ t2
t1

∫
R

(−∆)α/4[uλ](−∆)α/4ϕ

∣∣∣∣
≤ ‖uqλ‖L2((t1,t2),L2(R)) · ‖ϕ‖L2((t1,t2),H1(R))+

+ λq−α

(∫ t2
t1

∫
R

|(−∆)α/4uλ|
2

)1/2 (∫ t2
t1

∫
R

|(−∆)α/4ϕ|2
)1/2

= ‖uqλ‖L2((t1,t2),L2(R)) · ‖ϕ‖L2((t1,t2),H1(R))+

+ λ
q−α

2

(
λq−α

∫ t2
t1

∫
R

|(−∆)α/4uλ|
2

)1/2 (∫ t2
t1

∫
R

|(−∆)α/4ϕ|2dxdt

)1/2

≤ ‖uqλ‖L2((t1,t2),L2(R)) · ‖ϕ‖L2((t1,t2),H1(R)) + λ
q−α

2 C(M, q, t1)‖ϕ‖L2((t1,t2),Hα/2(R))

≤ C(M, q, t1)‖ϕ‖L2((t1,t2),H1(R)).

This gives us that

‖(uλ)t‖L2((t1,t2),H−1(BR)) ≤ C(M, q, t1), ∀λ ≥ 1.

Using the classical compactness arguments in Theorem 4.2, we deduce that (uλ)λ>1 is relatively
compact in C([t1, t2], L

2(BR)). Therefore there exists U ∈ C([t1, t2], L
2(BR)) such that uλ → U

in C([t1, t2], L
2(BR)). By a diagonal argument we get that U ∈ C([t1, t2], L

2
loc(R)) and

uλ → U in C([t1, t2], L
2
loc(R)) as λ→ ∞. (4.3)

Step II. Tail control and convergence in C([t1, t2], L
1(R)). In view of (4.3) we obtain

that uλ → U in C([t1, t2] : L
1
loc(R)). In order to prove the convergence in C([t1, t2], L

1(R)) we
will prove a uniform tail control of the functions (uλ)λ>1. More exactly, we prove that there
exists a constant C(M) such that∫

|x|>2R

uλ(t, x)dx ≤

∫
|x|>R

u0(x)dx + C(M)

(
tλq−α

Rα
+
t1/q

R

)
, ∀t > 0. (4.4)

In view of this estimate, classical arguments give us that

uλ → U in C([t1, t2], L
1(R)) as λ→ ∞.

Let us now prove estimate (4.4). Let ϕ ∈ C2(R) be such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 for |x| ≥ 2,
ϕR ≡ 0 for |x| ≤ 1. Let ϕ(x) = ϕ(x/R). Multiplying equation (Pλ) by ϕ and integrating by
parts we obtain∫

R

uλ(t)ϕRdx =

∫
R

uλ(0)ϕRdx− λq−α

∫ t
0

∫
R

uλ(τ, x)(−∆)α/2ϕRdxdτ

+

∫ t
0

∫
R

uqλ(τ, x)(ϕR)xdxdτ

= I + II + III.

For λ > 1 the first term satisfies

I ≤

∫
|x|≥R

uλ(0, x)dx =

∫
|x|>λR

u0(x)dx ≤

∫
|x|>R

u0(x)dx.

Using that ϕ ∈ C2
b (R) and the homogeneity of (−∆)α/2 we obtain that

|((−∆)α/2ϕR)(x)| =
1

Rα
|((−∆)α/2ϕ)(x/R)| ≤

C

Rα
.
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Thus the second term satisfies

II ≤ λq−α‖(−∆)α/2ϕR(x)‖L∞(R)

∫ t

0

∫
R

uλ(τ, x)dxdτ ≤ λq−α C

Rα
tM.

The third term is bounded as follows:

III ≤ ‖(ϕR)
′‖L∞(R)

∫ t
0

‖uλ(τ)‖
q
Lq(R)dτ ≤ C(M)

t1/q

R
.

Using the fact that ϕR is identically one outside the ball of radius 2R we obtain the desired
estimate (4.4).

Step III. Identifying the limit. We now prove that U ∈ C((0,∞), L1(R)) obtained above is
an entropy solution of system (1.3). First, by construction in [1, 18], u is an entropy solution
of Problem (2.2) and this implies that uλ is an entropy solution of Problem (Pλ). In view
of Definition 2 with the particular choice ηk(s) = |s− k| and φk(s) = sgn(s− k)(f(s)− f(k)),
function uλ satisfies for any ϕ ∈ C∞

c ((0,∞)× R) the following inequality:∫∞
0

∫
R

(|uλ − k|∂tϕ+ sgn(uλ − k)(f(uλ)− f(k))∂xϕ)dxdt

+ c(α)λq−α

∫∞
0

∫
R

sgn(uλ(t, x)− k)

∫
|z|>r

uλ(t, x+ z)− uλ(t, x)

|z|1+α
ϕ(t, x)dzdxdt+

+ c(α)λq−α

∫∞
0

∫
R

∫
|z|≤r

|uλ(t, x) − k|
ϕ(x+ z)− ϕ(x) − ϕ′(x)z

|z|1+α
dzdxdt ≥ 0.

We prove that the last two terms, denoted by I1, I2, tend to zero as λ→ ∞. Assume that ϕ is
supported in (0, T )× (−R,R) for some positive T and R. The first term satisfies

|I1| ≤ 2c(α)λq−α‖ϕ‖L∞(R)

∫T
0

∫
R

|uλ(t, x)|

∫
|z|>r

1

|z|1+α
dz

≤ C(α, r, ϕ)TMλq−α → 0, λ→ ∞.

In the case of the second term we have

|I2| ≤ c(α)λq−α‖ϕ′′‖L∞(R)

∫T
0

∫
|x|≤R+r

|uλ(t, x)− k|

∫
|z|≤r

1

|z|α−1
dz . λq−α → 0, λ→ ∞.

Since uλ → U in C((0,∞), L1(R)) and ϕ ∈ C∞
c ((0,∞)× R) we obtain∫∞

0

∫
R

|uλ(t, x) − k|∂tϕdxdt →

∫∞
0

∫
R

|U(t, x) − k|ϕdxdt.

Observe that since uλ → U in C((0,∞), L1(R)), function U satisfies∫
R

U(t, x)dx =M.

Moreover uλ → U a.e. in (0,∞)× R. This shows that the L∞(R) bound in uλ transfers to
U :

‖U(t)‖L∞(R) ≤ C(M)t−1/q.

This shows that f(uλ) → f(U) in C((0,∞), L1(R)) and∫∞
0

∫
R

sgn(uλ − k)(f(uλ)− f(k))∂xϕdxdt →

∫∞
0

∫
R

sgn(U − k)(f(U)− f(k))∂xϕdxdt.

In view of the fact that I1 and I2 tend to zero as λ→ ∞ we obtain that U satisfies condition
C1) in Definition 1.
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We now identify the initial data taken by U at t = 0 by proving condition C2) in Definition
1. Multiplying (Pλ) by ψ ∈ C2

c (R) the solution uλ satisfies
∫
R

uλ(t, x)ψ(x)dx −

∫
R

uλ(0, x)ψ(x)dx =

∫ t
0

∫
R

f(uλ)ψx − λq−α

∫ t
0

∫
R

uλ(−∆)α/2ψ.

This implies that

∣∣∣
∫
R

uλ(t, x)ψ(x)dx −

∫
R

u0(x)ψ
(x
λ

)∣∣∣ ≤ ‖ψx‖L∞(R)

∫ t

0

∫
R

uqλdxds+ tλq−αM‖ψ‖Hα(R)

≤ C(M)t1/q‖ψx‖L∞(R) + tλq−αM‖ψ‖Hα(R).

Passing to the limit λ→ ∞ and using that α < 2 we get that for any ψ ∈ C2
c (R) we have

∣∣∣
∫
R

U(t, x)ψ(x)dx −Mψ(0)dx
∣∣∣ ≤ t1/q‖ψ‖H2(R). (4.5)

By density this estimate also holds for any ψ ∈ H2(R).
We now claim that for any ψ ∈ BC(R) the following holds

lim
t→0

∫
R

U(t, x)ψ(x)dx =Mψ(0). (4.6)

This shows that U is the unique entropy solution of system (1.3). Since (1.3) has a unique
solution, UM , then the whole sequence (uλ)λ>0 converges to U not only a subsequence.
We now prove that an approximation argument and the tail control of uλ (so of U) give

(4.6) for any ψ ∈ BC(R). Even this procedure is standard, for completeness we prefer to add
it here. Let us choose a sequence of mollifiers {ρn}n≥1 as in [12, Ch. 4.4, p. 108] and ψn =
ρn ∗ ρ. It follows that ‖ψn‖L∞(R) ≤ ‖ψ‖L∞(R) and ψn → ψ uniformly on compact sets of R (cf.
[12, Prop. 4.2.1, Ch. 4, p. 108]). Moreover, ‖ψn‖H2(R) ≤ C(n, ρ)‖ρn‖L∞(R). Applying (4.5) to
ψn ∈ H2(R) we obtain

∣∣∣
∫
R

U(t, x)ψn(x)dx −Mψn(0)
∣∣∣ ≤ t1/q‖ψn‖H2(R).

We write∫
R

U(t, x)ψ(x)dx −Mψ(0) =

∫
|x|>2R

U(t, x)(ψ(x) − ψn(x))dx

+

∫
|x|<2R

U(t, x)(ψ(x) − ψn(x))dx +M(ψ(0)− ψn(0))

+

∫
R

U(t, x)ψn(x)dx −Mψn(0)

= I + II + III.

The uniform tail control in (4.4) and the fact that for any t > 0, uλ(t) → U(t) in L1(R) give
us, letting λ→ ∞, that U satisfies something similar to (4.4):

∫
|x|>2R

U(t, x)dx ≤

∫
|x|>R

u0(x)dx + C(M)
t1/q

R
, ∀t > 0.

Hence
∣∣∣
∫
|x|>2R

U(t, x)(ψ(x) − ψn(x))dx
∣∣∣ ≤ 2‖ψ‖L∞(R)

∫
|x|>2R

U(t, x)dx

≤ 2‖ψ‖L∞(R)

( ∫
|x|>R

u0(x)dx + C(M)
t1/q

R

)
< ǫ,
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provided that 0 < t < 1 and R > R(ǫ). Let us fix R large enough. We analyze the second term
II. We have

∣∣∣
∫
|x|<2R

U(t, x)(ψ(x) − ψn(x))dx
∣∣∣ ≤ ‖ψ − ψn‖L∞(|x|<2R)

∫
R

U(t, x)dx

=M‖ψ − ψn‖L∞(|x|<2R).

Thus

|II| ≤ 2M‖ψ − ψn‖L∞(|x|<2R) ≤ ǫ

provided that n is large enough. We now apply estimate (4.5) to ψn to obtain

|III| ≤ t1/q‖ψn‖H2(R) < ǫ,

provided t is small enough. Hence |I + II + III| ≤ 3ǫ for t small enough, which finishes the
proof of (4.6).

Step IV. Conclusion. When p = 1 we have proved that for any t > 0, uλ(t) → UM (t) in
L1(R). For p > 1 we use interpolation, the fact that (uλ(t))λ>0 is uniformly bounded in L2p(R)
and that U(t) ∈ L2p(R). Indeed, we have

‖uλ(t)− UM (t)‖Lp(R) ≤ ‖uλ(t)− UM (t)‖
1/(2p−1)
L1(R) (‖uλ(t)‖L2p(R) + ‖UM(t)‖L2p(R))

2(p−1)/(2p−1),

since 1
p = 1−θ

1 + θ
2p with θ = 2(p−1)

2p−1 . This proves the result for any 1 ≤ p <∞ and the proof is
finished.

5. Appendix

We give now the proof of Lemma 2.2. We mention that these estimates were done in [43]
for dimensions N ≥ 2 and in the particular case s = α using some technical results of [37]. We
provide here the proof for all s ∈ (0, 2) and α ∈ (0, 2) in the one-dimensional case. This requires
a more careful proof since the results of [37] allow only Bessel functions of positive index.
Using the homogeneity of the Fourier transform of Kα

t the proof is easily reduced to the case
t = 1. To simplify the presentation we will denote Kα the kernel Kα

t at the time t = 1. In the
first case we know (see [9]) that Kα satisfies

|Kα(x)| .
1

|x|1+α
, |x| >> 1.

The estimates on the Lp(R) norm of Kα immediately follow.
We now want to estimate (−∆)

s
2Kα. Using the Fourier transform we have

(−∆)
s
2Kα(x) =

1

2π

∫+∞

−∞

eixξe−|ξ|α |ξ|sdξ =
1

π

∫+∞

0

cos(xξ)e−|ξ|αξsdξ.

and

(−∆)
s
2 ∂xK

α(x) =
1

2π

∫+∞

−∞

eixξe−|ξ|α |ξ|s(iξ)dξ = −
1

π

∫+∞

0

sin(xξ)e−|ξ|αξs+1dξ.

We consider the case when x is positive and then

(−∆)
s
2Kα(x) =

√
x

2π

∫+∞

0

e−|ξ|αξs+1/2J−1/2(xξ)dξ

and

(−∆)
s
2 ∂xK

α(x) = −

√
x

2π

∫+∞

0

e−|ξ|αξs+3/2J1/2(xξ)dξ,
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where Jn is the Bessel function of first kind with index n. We now use Lemma 1 in [37] but
we need to involve Bessel functions with positive index Jν , ν ≥ 0. In the second case applying
this lemma we obtain that for |x| large the following holds

|(−∆)
s
2 ∂xK

α(x)| .
1

|x|s+2
.

This shows that (−∆)
s
2 ∂xK

α belongs to Lp(R) for any 1 ≤ p ≤ ∞.
In the first case we perform an integration by parts to obtain that

(−∆)
s
2Kα(x) = −

1

2πx

∫∞

0

e−|ξ|αJ1/2(xξ)
(
sξs−1/2 − σξs+α−1/2

)
dξ.

Applying again Lemma 1 in [37] we obtain that for |x| large

|(−∆)
s
2Kα(x)| .

1

|x|s+1

and then (−∆)
s
2Kα belongs to Lp(R) for any 1 ≤ p ≤ ∞.
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Bucharest, Romania

liviu.ignat@imar.ro

Diana Stan
Basque Center for Applied Mathematics,
Bilbao, Spain.

dstan@bcamath.org


	1. Introduction and main results
	2. Preliminaries
	3. Existence of solutions and main properties
	4. Asymptotic behaviour
	5. Appendix
	References

